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T2-weighted magnetic resonance (MR) imaging has been widely used
for pretreatment work-up for prostate cancer, but its accuracy for the
detection and localization of prostate cancer is unsatisfactory. To im-
prove the utility of MR imaging for diagnostic evaluation, various other
techniques may be used. Dynamic contrast material–enhanced MR
imaging allows an assessment of parameters that are useful for differen-
tiating cancer from normal tissue. The advantages of this technique
include the direct depiction of tumor vascularity and, possibly, ob-
viation of an endorectal coil; however, there also are disadvantages,
such as limited visibility of cancer in the transitional zone. Diffusion-
weighted imaging demonstrates the restriction of diffusion and the re-
duction of apparent diffusion coefficient values in cancerous tissue.
This technique allows short acquisition time and provides high con-
trast resolution between cancer and normal tissue, but individual vari-
ability in apparent diffusion coefficient values may erode diagnostic
performance. The accuracy of MR spectroscopy, which depicts a
higher ratio of choline and creatine to citrate in cancerous tissue than
in normal tissue, is generally accepted. The technique also allows de-
tection of prostate cancer in the transitional zone. However, it requires
a long acquisition time, does not directly depict the periprostatic area,
and frequently is affected by artifacts. Thus, a comprehensive evalua-
tion in which both functional and anatomic MR imaging techniques
are used with an understanding of their particular advantages and dis-
advantages may help improve the accuracy of MR for detection and
localization of prostate cancer.
©RSNA, 2007

Abbreviation: ADC � apparent diffusion coefficient
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Introduction
Prostate cancer is one of the most common ma-
lignancies in elderly men. In 2005, more than
232,090 Americans were diagnosed with prostate
cancer and more than 30,350 died of the disease
(1). In the United States, the lifetime probability
of developing prostate cancer is one in six (2).

Most prostate cancers grow slowly (3,4), and
early detection can lead to a complete cure. How-
ever, in more than 85% of cases of prostate can-
cer, multiple cancer foci are found in the prostate
(5). The diagnosis of prostate cancer is based
mostly on the results of ultrasonography (US)-
guided transrectal biopsy. Because of the low ac-
curacy of US for prostate cancer detection and
localization, a random biopsy is usually per-
formed instead of a targeted biopsy. However, a
random biopsy has several disadvantages. For
example, it may lead to an increase in complica-
tions because of the unnecessary sampling of nor-
mal prostate tissue. Moreover, cancer located
outside the routine biopsy site may be missed. In
addition, there may be difficulty in determining
the site of a previous biopsy when repeating bi-
opsy in a patient with a previous negative result
and continuously high prostate-specific antigen
levels. For these reasons, an imaging modality is
needed that allows the accurate detection and
localization of prostate cancer, as well as local
staging, guidance of biopsy, and adequate fol-
low-up after treatment with intensity-modulated
radiation, cryosurgery, or ablation with high-in-
tensity focused ultrasound.

Although T2-weighted MR imaging has been
used widely for the pretreatment work-up of pros-
tate cancer, the technique is limited by unsatisfac-
tory sensitivity and specificity for cancer detection
and localization. To improve the diagnostic per-
formance of MR imaging in evaluations for pros-
tate cancer, various other techniques have been
applied. These include dynamic contrast materi-
al–enhanced MR imaging, diffusion-weighted
imaging, and MR spectroscopy. The article de-
scribes the advantages and disadvantages of each
of these techniques for prostate cancer detection
and localization.

Anatomy of the Prostate
Approximately 70% of the prostate is composed
of glandular tissue, and 30% consists of nonglan-
dular tissue. For anatomic division of the pros-
tate, the zonal compartment system developed by
McNeal is widely accepted (6–9). According to
this system, glandular tissue is subdivided into the
central and the peripheral gland. The central
gland is composed of a transitional zone and peri-
urethral tissue, and the peripheral gland is com-
posed of peripheral and central zones (Fig 1).
The peripheral zone includes the posterior and
lateral aspects of the prostate and accounts for
most of the glandular tissue (70%). It is the zone
in which 70% of prostate cancers arise. The tran-
sitional zone accounts for 5% to 10% of the glan-
dular tissue of the prostate. Cellular proliferation
in the transitional zone results in benign prostatic
hyperplasia. In addition, 20% of prostate cancers
arise in the transitional zone.

Conventional MR Imaging
Fast spin-echo imaging with endorectal and pel-
vic phased-array coils is widely used for prostate
cancer evaluations (10–13). T2-weighted fast
spin-echo imaging is optimal for depicting the
anatomy of the prostate. Because the prostate has
uniform intermediate signal intensity at T1-
weighted imaging, the zonal anatomy cannot be
clearly identified on T1-weighted images. On T2-
weighted images, the peripheral zone has high
signal intensity, in contrast to the low signal in-
tensity of the central and transitional zones, which
consist of compactly arranged smooth muscle and
loose glandular tissue (Fig 2). The anterior fibro-
muscular stroma also has low signal intensity on
T2-weighted images. The generally established
protocol for T2-weighted imaging at our institu-
tion is as follows: repetition time msec/echo time
msec, 4300/90; echo train length, 15; flip angle,
170°; field of view, 160–200 mm; matrix size,
768 � 768; section thickness, 4 mm; and inter-
section gap, 0 mm.

On T2-weighted images, prostate cancer in the
peripheral zone appears as an area of low signal
intensity that is easily differentiated from high-
signal-intensity normal tissue (Fig 3). However,

Figure 1. Schematics show
the anatomy of the prostate
in transverse (a) and sagit-
tal (b) planes. AFT � anterior
fibromuscular tissue, CZ �
central zone, ED � ejacula-
tory duct, NVB � neurovas-
cular bundle, PUT � periure-
thral tissue, PZ � peripheral
zone, U � urethra, TZ � tran-
sitional zone.
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The sensitivity and specificity of T2-weighted
MR imaging for prostate cancer detection have
varied widely. Sensitivity of 77%–91% and speci-
ficity of 27%–61% were reported for prostate

cancer detection with T2-weighted imaging per-
formed with an endorectal coil (15,16). Most of
the previously reported data about prostate can-
cer detection pertain to cancer in the peripheral
zone. According to the results of a study of T2-
weighted imaging performed without the use of
an endorectal coil, sensitivity and specificity for
cancer detection were 45% and 73%, respectively
(17).

Dynamic Contrast-
enhanced MR Imaging

The theoretic underpinnings of this technique are
based on tumor angiogenesis. In cancer, genetic
mutation leads to the production and release of
angiogenic factors such as the vascular permeabil-
ity factor or vascular endothelial growth factor. As
a result, the number of vessels increases in can-
cerous tissue, and the tumor vessels have greater
permeability than do normal vessels, because of

Figure 2. Axial (a)
and coronal (b) T2-
weighted MR images
show normal zonal
anatomy of the pros-
tate. B � urinary
bladder, NVB �
neurovascular
bundle, PZ � pe-
ripheral zone, R �
rectum, SV � semi-
nal vesicle, U � ure-
thra, TZ � transi-
tional zone.

Figure 3. Biopsy-
proved adenocarci-
noma in a 64-year-
old man. Axial (a)
and coronal (b) T2-
weighted MR images
show an area of low
signal intensity in the
base of the left pe-
ripheral zone (ar-
row), a finding in-
dicative of a tumor.
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T2-weighted imaging has significant limitations
for depicting cancer in the transitional and central
zones, because cancer and normal tissues both
have low signal intensity on T2-weighted images.
In addition, low signal intensity may be seen in
the peripheral zone on T2-weighted images in the
presence of many noncancerous abnormal condi-
tions, such as nonspecific inflammation, biopsy-
related hemorrhage, post–radiation therapy fibro-
sis, and changes after hormone deprivation
therapy. Because of the anticoagulant effect of
abundant citrate in normal tissue in the peripheral
zone, blood products may persist 4–6 weeks or
longer after prostate biopsy, leading to low signal
intensity on T2-weighted images (14). Although
the presence of blood products may be indicated
by areas of high signal intensity on T1-weighted
images, it is difficult to determine whether that
finding represents cancerous tissue or only hem-
orrhage.

Teaching PointT2-weighted imaging has significant limitations for depicting cancer in the transitional and central zones, because cancer and normal tissues both have low signal intensity on T2-weighted images. In addition, low signal intensity may be seen in the peripheral zone on T2-weighted images in the presence of many noncancerous abnormal conditions.



weak integrity of the vessel wall (18–20). Further-
more, because the amount of interstitial space is
greater in cancerous tissue than in normal tissue,
there is a larger gap of contrast material concen-
tration between the plasma and the interstitial
tissue. This characteristic environment makes the
enhancement pattern of cancerous tissue different
from that of normal tissue (21,22). In many ex-
perimental studies, it has been shown that the
values of contrast enhancement parameters such
as mean transit time, blood flow, permeability
surface area, and interstitial volume are signifi-
cantly greater in cancerous tissue than in normal
tissue (23–27). This general observation is also
applicable to prostate cancer.

With a fast imaging technique such as a gradi-
ent-echo sequence, the entire volume of the pros-

tate can be imaged in a few seconds. Although a
standard MR imaging protocol for dynamic con-
trast-enhanced MR imaging has not been com-
pletely established, there are generally accepted
requirements, such as a fast imaging sequence,
minimal artifacts, and high contrast resolution. At
our institution, dynamic MR imaging is per-
formed by applying a three-dimensional fast field
echo sequence (17/2.9; flip angle, 20°; section
thickness, 4 mm; no intersection gap; field of
view, 225 mm; matrix size, 256 � 192; 25 sec-
tions) in the axial plane. From the resultant imag-
ing data, various perfusion parameters can be ex-
tracted according to the time sequence and ana-
lyzed to allow the detection and localization of
prostate cancer (Figs 4, 5) (28–30).

Figure 4. Biopsy-proved adenocarcinoma in a 61-year-old man. (a) Wash-in MR image obtained with a fast field
echo sequence (17/2.9; flip angle, 20°) shows a higher wash-in rate in the right peripheral zone (arrow) than in other
areas. (b) Washout MR image obtained with the same sequence as a shows a higher washout rate in the right periph-
eral zone (arrow) than in other areas.

Figure 5. Time–signal intensity curves from dynamic con-
trast-enhanced MR imaging show faster and stronger en-
hancement and faster washout in prostate cancer (1) than in
normal tissue (red curve, 2). The x-axis shows the number of
series in MR imaging, and the y-axis shows the signal inten-
sity in arbitrary units. The onset time (a) is the time at which
signal intensity began to increase. The time to peak (b) is the
period between the onset time and peak enhancement. The
wash-in rate (c) represents the velocity of enhancement and is
defined by d�c/b�a, where d represents the maximum (peak)
enhancement, which is defined as the absolute maximum
value of enhancement. Maximum (peak) relative enhance-
ment is defined as the difference between the absolute maxi-
mum value of enhancement and the baseline signal intensity.
The washout rate is defined as the velocity of enhancement
loss. The shaded area represents the area under the time–
signal intensity curve for prostate cancer.
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Engelbrecht et al (31) showed the usefulness of
measurements of relative peak enhancement and
washout rate for prostate cancer detection and
localization. From their analysis of receiver oper-
ating characteristic curves, they concluded that
the relative peak enhancement was the most accu-
rate perfusion parameter for cancer detection in
the peripheral zone and central region of the
gland, for which the areas under the curve were,
respectively, 0.93 and 0.82. Kim et al (17) dem-
onstrated that parametric imaging of the wash-in

rate was more accurate for the detection of pros-
tate cancer in the peripheral zone than was T2-
weighted imaging alone (Fig 6). In their study,
the sensitivity and specificity of peripheral zone
cancer detection were 96% and 97% on paramet-
ric images of the wash-in rate but 75% and 53%
on T2-weighted images (P � .05). However, they
also observed significant overlap between the
wash-in rate for cancer and that for normal tissue
in the transitional zone.

Figure 6. Parametric imaging of the wash-in rate allows detection and localization of prostate
cancer in a 65-year-old man. (a) Histologic step section (original magnification, �1; hematoxylin-
eosin stain) at the middle level of the prostate gland shows cancerous tissue (black lines and dots)
in the lateral and medial peripheral zone in the left lobe and in the transitional zone in the right
lobe. (b) Unenhanced T1-weighted MR image shows the placement of four regions of interest,
according to the histologic findings, in cancerous tissue (1), normal tissue in the peripheral zone
(2), normal tissue in the inner two-thirds of the transitional zone (3), and normal tissue in the
outer one-third of the transitional zone (4). (c) Time–signal intensity curves for the four regions of
interest in b (x-axis, time in seconds; y-axis, signal intensity in arbitrary units [au]) show wash-in
rates of 9.7 au/sec for cancerous tissue (1), 2.1 au/sec for normal tissue in the peripheral zone (2),
4.3 au/sec for normal tissue in the inner two-thirds of the transitional zone (3), and 1.3 au/sec for
normal tissue in the outer one-third of the transitional zone (4). (d) Parametric MR image at a
level corresponding to that in a shows a wash-in rate of more than 5.7 au/sec, which was used as
the threshold for differentiating cancerous tissue from normal tissue on the basis of an analysis of
receiver operating characteristic curves. The parametric map of wash-in rates concords with the
histologic findings. (Reprinted, with permission, from reference 17.)
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Some parameters, such as washout rate and
tumor permeability, can be used for determining
the effectiveness of hormone deprivation therapy
as well as for the detection and localization of
prostate cancer. The results of one study showed
a marked reduction of tumor permeability and
changes of washout pattern after androgen depri-
vation treatment (32).

Dynamic contrast-enhanced MR imaging has
the advantage of providing direct depiction of
tumor vascularity and may obviate the use of an
endorectal coil. However, the limitations of this
technique include unsatisfactory depiction of
transitional zone cancer in patients with hypervas-
cular benign prostatic hyperplasia. In addition,
there is as yet no consensus with regard to the
best acquisition protocol and the optimal perfu-
sion parameter for differentiating cancer from
normal tissue.

Diffusion-weighted Imaging
Diffusion is the process of thermally induced ran-
dom molecular displacement, or brownian mo-
tion. The diffusion properties of tissue are related
to the amount of interstitial free water and perme-
ability. In general, cancer tends to have more re-

stricted diffusion than does normal tissue because
of the high cell densities and abundance of intra-
and intercellular membranes in cancer (33–37).

Diffusion-weighted images may be acquired
with various techniques. At our institution, diffu-
sion-weighted images are obtained by applying a
gradient-echo echo-planar sequence (2700/96;
flip angle, 90°; b values, 0 and 1000 sec/mm2) in
the axial plane. For diffusion-weighted image in-
terpretation, images obtained with a b value of
1000 sec/mm2 are displayed by using the reverse
mode, and apparent diffusion coefficient (ADC)
maps are displayed by using the conventional
mode.

In prostate cancer, normal glandular architec-
ture is disrupted and replaced by aggregated can-
cer cells and fibrotic stroma. These changes in-
hibit the movement of water macromolecules,
with resultant restriction of diffusion and reduc-
tion of ADC values in the cancer tissue (Fig 7).
Despite significant differences in the mean ADC
values between cancerous and normal tissues,
individual variability may decrease the diagnostic
accuracy of ADC measurement for prostate can-
cer detection and localization (38–43). Accord-
ing to the results of an analysis of receiver operat-
ing characteristic curves, the use of diffusion-
weighted imaging in addition to T2-weighted

Figure 7. Biopsy-proved adenocarcinoma in a 72-year-old man. (a) Axial T2-weighted MR image shows a
low-signal-intensity lesion in the right lobe of the prostate (arrow). (b) ADC map shows a low ADC value in
the lesion (arrow), a finding indicative of decreased diffusion. A targeted biopsy was performed.
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Teaching PointDynamic contrast-enhanced MR imaging has the advantage of providing direct depiction of tumor vascularity and may obviate the use of an endorectal coil. However, the limitations of this technique include unsatisfactory depiction of transitional zone cancer in patients with hypervascular benign prostatic hyperplasia. In addition, there is as yet no consensus with regard to the best acquisition protocol and the optimal perfusion parameter for differentiating cancer from normal tissue.

Teaching PointDespite significant differences in the mean ADC values between cancerous and normal tissues, individual variability may decrease the diagnostic accuracy of ADC measurement for prostate cancer detection and localization.



imaging significantly improved the accuracy of
tumor detection beyond that achieved with T2-
weighted imaging alone (area under the curve,
0.93 for the combined imaging techniques vs 0.87
for T2-weighted imaging alone) (44).

At diffusion-weighted imaging, the diffusion
sensitivity can be varied to control the image con-
trast. Traditionally, a b value of 1000 sec/mm2

has been used because the strength of the diffu-
sion gradients was restricted by hardware perfor-
mance limitations that made it difficult to achieve
acceptable echo times with higher b values. Kings-
ley and Monahan (45) stated that the contrast-to-
noise ratio at a b value of 1000 sec/mm2 is optimal
for the detection of acute or chronic stroke; how-
ever, to our knowledge, there is no consensus re-
garding the optimal b value for prostate cancer
detection. The use of higher b values may increase
diffusion sensitivity by diminishing the hyperin-
tensity of tissues with long T2 relaxation times
(ie, T2 shine-through). However, high b values
may lead to decreased absolute differences in sig-
nal intensity between cancer and normal tissue.

Diffusion-weighted imaging has advantages
such as short acquisition time and high contrast
resolution between tumors and normal tissue.
However, this technique is limited by poor spatial
resolution and the potential risk of image distor-
tion caused by postbiopsy hemorrhage, which
results in magnetic field inhomogeneity.

MR Spectroscopy
MR spectroscopy provides metabolic information
about prostate tissue by demonstrating the rela-
tive concentration of chemical compounds. Nor-
mal prostate tissue contains a high level of citrate.
In prostate cancer, the citrate level decreases as
the citrate-producing metabolism of normal tissue
is converted to a citrate-oxidating metabolism. At
the same time, the level of choline in cancer is
elevated because of a high turnover of phospho-
lipid in cell membranes in the proliferating tissue.
Consequently, the ratio of choline to citrate is
increased in cancerous tissue. Because of the
proximity of the choline and creatine peaks at MR
spectroscopy performed with a 1.5-T MR unit,
the ratio of choline and creatine to citrate, which
also is increased in prostate cancer, is the parame-
ter measured (Fig 8).

Among the various MR spectroscopic se-
quences, the most widely used technique is three-
dimensional chemical shift imaging (46) with
point-resolved spectroscopy, voxel excitation, and
band-selective inversion with gradient dephasing
for water and lipid suppression (47). Chemical
shift imaging refers to a technique that allows the
acquisition of voxels in multiple sections and the
display of parametric maps (of the ratio of choline

Figure 8. Biopsy-proved adenocarcinoma in a 71-year-old man. Left: MR spectrum obtained from an
area of the prostate with low signal intensity at T2-weighted imaging, in which cancer was pathologically
proved, demonstrates an elevated ratio (in arbitrary units) of choline (Ch) and creatine (Cr) to citrate
(Ci). Right: MR spectrum obtained from an area with normal signal intensity shows a spectral pattern
with citrate dominance and no abnormal elevation of choline and creatine.
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and creatine to citrate) in correlation with T2-
weighted morphologic images.

According to Kurhanewicz et al (48), periph-
eral-zone voxels in which the ratio of choline and
creatine to citrate is at least 2 standard deviations
above the average ratio are considered to repre-
sent possible cancer. Voxels are considered very
suggestive of cancer if the ratio of choline and
creatine to citrate is more than 3 standard devia-
tions above the average ratio (49). However, no
consensus has been reached about the metabolite
ratio that can exactly determine the presence of
prostate cancer, and there may be individual vari-
ability in spectral analysis among patients. Fur-
thermore, a voxel may contain nondiagnostic lev-
els of metabolites or may be affected by an artifact
that obscures the metabolite frequency range.

The combined use of MR spectroscopy and
MR imaging has been shown to improve cancer
detection and localization in the peripheral zone
(16) and cancer volume measurement in the pe-
ripheral zone (50). Scheidler et al (16) demon-
strated a sensitivity and specificity for cancer de-
tection of 91% and 95% for combined MR spec-
troscopy and MR imaging, but 77%–81% and

46%–61% for MR imaging alone and 63% and
75% for MR spectroscopy alone. Furthermore,
on the basis of a strong correlation between the
volume of prostate cancer and its extracapsular
extension (51–53), investigators have shown that
the combination of volumetric data from MR
spectroscopy and T2-weighted imaging may re-
sult in improved accuracy in determining extra-
capsular tumor extension (54).

In recent years, other merits of MR spectros-
copy have been noted. The results of several stud-
ies show that prostate biopsy directed with endo-
rectal MR spectroscopy may help increase the
cancer detection rate in patients with an elevated
prostate-specific antigen level and a previous
negative biopsy result (55) (Fig 9). In addition,
investigators have observed a trend toward an
increasing ratio of choline and creatine to citrate
in association with an increasing Gleason score, a
trend suggestive of the potential usefulness of MR
spectroscopy for noninvasive estimation of cancer
aggressiveness (56).

MR spectroscopy also is more useful than con-
ventional MR imaging for detecting transitional
zone cancer (Fig 10). However, the cancer me-
tabolite ratio in the transitional zone varies
broadly, and thus there may be overlap in me-

Figure 9. Biopsy-proved adenocarcinoma in a 65-year-old man with a previous negative biopsy result and a con-
tinuously elevated prostate-specific antigen level. (a) Axial T2-weighted MR image shows no focal lesion in the pros-
tate. (b, c) MR spectroscopic image (b) and corresponding spectrum (c) demonstrate an elevated ratio (in arbitrary
units) of choline (Ch) and creatine (Cr) to citrate (Ci) in the central gland (arrow in b), a finding indicative of pros-
tate cancer, which was confirmed at targeted biopsy.
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tabolite ratios between cancerous and benign tis-
sues in the transitional zone (57).

MR spectroscopy is useful, in addition, for
planning treatment and determining therapeutic
effectiveness, as well as for detecting a recurrent
tumor after surgery, radiation therapy, or hor-
mone deprivation therapy. The ratio of choline
and creatine to citrate is indicative of the tumor
response to treatment (58–61).

The advantages of MR spectroscopy are its
generally accepted accuracy, its capability for de-
picting possible cancer in the transitional zone,
and its widely proved diagnostic performance.
However, the technique is disadvantaged by long
acquisition time, possible variability in results de-
pendent on postprocessing or shimming, and no
direct visualization of the periprostatic anatomy.

Furthermore, a previous prostate biopsy may lead
to spectral degradation that makes accurate inter-
pretation of the metabolite ratios impossible. Ac-
cording to the results of a previous study, the
mean percentage of degraded peripheral-zone
voxels was 19% at MR spectroscopy performed
within 8 weeks after biopsy, compared with 7%
after 8 weeks (62). An adequate time interval is
necessary between prostatic biopsy and MR ex-
amination. In another study, investigators showed
that, despite the potential risk of hemorrhage,
MR spectroscopy may improve the ability to de-
termine the presence of prostate cancer and its
spatial extent when postbiopsy changes hinder
interpretation with the use of conventional MR
images alone (63).

Figure 10. Biopsy-proved adenocarcinoma in
the central zone in both lobes of the prostate in a
67-year-old man. (a) Axial T2-weighted MR
image shows areas of abnormally low signal in-
tensity (arrow), a finding that is not definitively
indicative of cancer. (b, c) MR spectrum (b)
and spectroscopic image (c) show high ratios (in
arbitrary units) of choline (Ch) and creatine (Cr)
to citrate (Ci) in three areas (arrows in c). The
findings were indicative of cancer, which was
diagnosed at targeted biopsy.
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Conclusions
Various MR imaging techniques beyond conven-
tional T2-weighted imaging can provide im-
proved cancer detection and localization, as well
as information regarding the biologic behavior,
volume, and staging of cancers for individualized
therapy. However, each technique has one or
more limitations, such as no standard parameters,
or low accuracy in the central region of the gland.
No randomized large study has been performed
to compare the techniques, and there has been no
report with regard to which technique is best in a
specific clinical situation. Furthermore, the exist-
ing literature contains little information about the
effectiveness of MR imaging at 3.0 T for the
evaluation of prostate cancer. Therefore, a com-
prehensive understanding of the advantages and
disadvantages of various MR imaging techniques
and protocols is expected to improve the MR-
based detection and localization of prostate can-
cer (Figs 11, 12).
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Functional MR Imaging of Prostate Cancer 

 
Page 65 
T2-weighted imaging has significant limitations for depicting cancer in the transitional and central 
zones, because cancer and normal tissues both have low signal intensity on T2-weighted images. In 
addition, low signal intensity may be seen in the peripheral zone on T2-weighted images in the 
presence of many noncancerous abnormal conditions. 
 
Page 68 
Dynamic contrast-enhanced MR imaging has the advantage of providing direct depiction of tumor 
vascularity and may obviate the use of an endorectal coil. However, the limitations of this technique 
include unsatisfactory depiction of transitional zone cancer in patients with hypervascular benign 
prostatic hyperplasia. In addition, there is as yet no consensus with regard to the best acquisition 
protocol and the optimal perfusion parameter for differentiating cancer from normal tissue. 
 
Page 68 
Despite significant differences in the mean ADC values between cancerous and normal tissues, 
individual variability may decrease the diagnostic accuracy of ADC measurement for prostate cancer 
detection and localization. 
 
Page 71 
The advantages of MR spectroscopy are its generally accepted accuracy, its capability for depicting 
possible cancer in the transitional zone, and its widely proved diagnostic performance. However, the 
technique is disadvantaged by long acquisition time, possible variability in results dependent on 
postprocessing or shimming, and no direct visualization of the periprostatic anatomy. 
 
Page 72 
Various MR imaging techniques beyond conventional T2-weighted imaging can provide improved 
cancer detection and localization, as well as information regarding the biologic behavior, volume, and 
staging of cancers for individualized therapy. However, each technique has one or more limitations, 
such as no standard parameters, or low accuracy in the central region of the gland. No randomized 
large study has been performed to compare the techniques, and there has been no report with regard 
to which technique is best in a specific clinical situation. 
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