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Functional Multiple-set Canonical Correlation Analysis 

 
Abstract 

We propose functional multiple-set canonical correlation analysis for exploring 

associations among multiple sets of functions. The proposed method includes functional 

canonical correlation analysis as a special case when only two sets of functions are 

considered. As in classical multiple-set canonical correlation analysis, computationally, 

the method solves a matrix eigen-analysis problem through the adoption of a basis 

expansion approach to approximating data and weight functions. We apply the proposed 

method to functional magnetic resonance imaging (fMRI) data to identify networks of 

neural activity that are commonly activated across subjects while carrying out a working 

memory task.  

 

Keywords: Functional data, multiple-set canonical correlation analysis, functional 

canonical correlation analysis, functional magnetic resonance imaging data. 
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1. Introduction 

In psychology and many other fields of inquiry, data are increasingly being collected in 

the form of smooth curves or functions over time, space, and other continua. A few 

examples include motor control data (e.g., Mattar & Ostry, 2010; Olshen, Biden, Wyatt, 

& Sutherland, 1989), emotion speech production data (Lee,  Bresch, & Narayanan, 2006), 

musical cognition/perception data (e.g., Almansa & Delicado, 2009; Vines, Krumhansl, 

Wanderley, & Levitin, 2006; Vines, Nuzzo, & Levitin, 2005), eye-tracking data (e.g., 

Jackson & Sirois, 2009), and brain imaging data (Tian, 2010).  

Functional canonical correlation analysis is a tool for exploring the associations 

between a pair of such functional data (Leurgans, Moyeed, & Silverman, 1993; Ramsay 

& Silverman, 2005, Chapter 11). For example, Leurgans et al. (1993) shows how 

variation in the knee angle functions of children is related to their hip angle functions 

through a gait cycle. In functional canonical correlation analysis, a series of weight 

functions are obtained for each set of functional data such that the resultant components 

or weighted composites of the functional data are mutually orthogonal to each other 

within the same set of components, while maximally correlated with the different set of 

components.  

Despite its usefulness, functional canonical correlation analysis is limited to the 

analysis of two functional datasets. In practice, it is not uncommon to collect more than 

two sets of functional data concurrently and investigate their interdependencies. For 

example, in functional neuroimaging studies, nearly all investigations collect data on 

multiple subjects, and it is increasingly common to collect data in multiple modalities 
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such as functional magnetic resonance imaging (fMRI), electroencephalography (EEG), 

and magnetoencephalography (MEG) (e.g., Correa, Li, Adali, & Calhoun, 2009).  

 In this paper, we propose an extension of functional canonical correlation analysis 

to the analysis of more than two sets of functional data. We call this proposed method 

functional multiple-set canonical correlation analysis. As the name explicitly suggests, 

the proposed method represents a functional version of classical multiple-set canonical 

correlation analysis (Carroll, 1968; Horst, 1961; Meredith, 1964). Classical multiple-set 

canonical correlation analysis is a multivariate technique for describing interrelationships 

among multiple sets of variables. Multiple-set canonical correlation analysis subsumes 

many extant statistical methods as special cases including canonical correlation analysis, 

discriminant analysis, principal components analysis, and simple/ multiple 

correspondence analysis (e.g., Gifi, 1990). In addition, multiple-set canonical correlation 

analysis has been recognized as a way of integrating the data observed from different 

sources such as subjects, stimuli, areas, etc. (e.g., Correa, Eichele, Adali, Li, & Calhoun, 

2010; Takane & Oshima-Takane, 2002).   

Technically, the proposed method extends multiple-set canonical correlation 

analysis to analyze associations among multiple sets of functional data. Accordingly, it 

consists of functional canonical correlation analysis as a special case when only two sets 

of functional data are considered. This method also subsumes functional principal 

components analysis (Rice & Silverman, 1991; Ramsay & Silverman, 2005, chapter 8) as 

a special case when each set of functional data reduces to a discrete value sampled from a 

single function. As will be shown in the application section, the proposed method can 

also be a useful tool for the fusion of functional data acquired from numerous sources.      
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 4 

  The paper is organized as follows. Section 2 reviews classical multiple-set 

canonical correlation analysis, focusing on its problem formulation and computation. 

Section 3 briefly describes functional canonical correlation analysis for two sets of 

functions. Section 4 provides the technical underpinnings of the proposed functional 

multiple-set canonical correlation analysis. Section 5 presents the empirical application of 

the proposed method to brain imaging data. In particular, the method is employed to 

discover brain regions that are activated jointly across subjects during an fMRI 

experiment. The final section summarizes the implications of the proposed method and 

discusses directions for future research. 

 

2. Multiple-set Canonical Correlation Analysis  

In this section, we describe the problem formulation and computation of classical 

multiple-set canonical correlation analysis (MCCA) for multivariate variables. Note that 

we define MCCA in scalar notation to make clearer the connection between classical 

MCCA and its functional version proposed in Section 4.  

The central problem of MCCA is to construct a series of components, called 

canonical variates, for each set of multivariate variables in such a way that the 

components maximize the association or homogeneity among them, or equivalently they 

minimize the departure from homogeneity among them (e.g., Gifi, 1990, p. 81). By 

evaluating the resultant (typically, low dimensional) canonical variates, MCCA can be of 

use in summarizing how multiple sets of variables are related to one another in a succinct 

manner. 
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For the moment, we focus on the leading canonical variates for K sets of variables 

(i.e., the number of dimensions = 1). Let xipk denote the pth variable value of the ith case 

in the kth dataset ( Ii ,,1 ; kPp ,,1 ; Kk ,,1 ). Let wpk denote the (canonical) 

weight for the pth variable in the kth set. Let 



kP

p

pkipkik wx
1

  denote the ith score of the 

kth leading canonical variate. We assume that xipk is variable-wise centered. The problem 

of MCCA can be formulated as maximization of the following optimization criterion. 
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ik  (Carroll, 1968). 

Let fi denote the ith object score, characterizing the homogeneity among K leading 

canonical variates. Then, alternatively, the MCCA problem can be formulated to 

minimize the departure from the homogeneity among K canonical variates as follows. 
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with respect to fi and wpk, subject to the constraint 1
1

2




I

i

if . This criterion is also called 

the criterion for homogeneity analysis or K-set canonical correlation analysis (Gifi, 1990, 

Chapter 3; Yanai, 1998). As shown in (2), the object scores fi’s are indicative of the most 

highly correlated or homogenous one-dimensional representation of K datasets. Both 

formulations result in essentially the same solutions (Gifi, 1990; Takane, Hwang, & Abdi, 
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2008). In this paper, thus, we focus on (1) for the development of the proposed functional 

version of MCCA.   

We used scalar notation in (1). From a computational perspective, however, it is 

more convenient to express this criterion in matrix notation because its optimization 

reduces to a matrix eigen-analysis problem. Moreover, as will be discussed in Section 4, 

optimization of the proposed functional version of MCCA also reduces to a matrix eigen-

analysis problem similar to that in MCCA.  

We can express criterion (1) in matrix notation, as follows. 

)''(tr)(1 XwXww  ,                                                  (3) 

subject to the constraint 1' Φww , where  KXXXX ,,, 21   is an I by P row block 

matrix ( 



K

k

kPP
1

), and  Kwwww ;;; 21   is a P by 1 column vector stacking 

 ' ,,, 21 kPkkk k
www w  one below another, and Φ is a block diagonal matrix consisting 

of kk XX ' as the kth diagonal block. This criterion can be re-expressed as 

 )''(tr 2/12/1
mXΦXΦm

 ,                                               (4) 

subject to 1' mm , where wΦm
2/1 . Thus, maximizing (4) with respect to m is 

equivalent to obtaining the following eigenvalue decomposition (EVD): 

'' 2/12/1
ΣΔΣXΦXΦ  ,                                             (5) 

where Σ is a matrix of eigenvectors such that IΣΣ ' , and Δ is a diagonal matrix 

consisting of eigenvalues in descending order. Then, m = σ, where σ is the first 

eigenvector in Σ. In turn, w is obtained by       

σΦw
2/1ˆ  .                                                         (6) 
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In addition, an I by 1 vector of object scores, denoted by   ' ,,, 21 Ifff f , can be 

calculated by  

f = /2/1
σXΦ

 ,                                                    (7) 

where δ is the first eigenvalue of Δ (e.g., Takane, Hwang, & Abdi, 2008).  

When we consider multi-dimensional canonical variates (i.e., the number of 

dimensions > 1), orthonormalization constraints are imposed on the MCCA criterion, 

such as IΦWW ' , where  KWWW ;;1   is a P by L column block matrix of weights 

stacking  Lkkk wwW ,,1   one below another, and L indicates the number of 

dimensions. Computationally, it is straightforward to obtain the weights W for multi-

dimensional canonical variates: W are obtained based on the corresponding eigenvectors 

in Σ in (6). 

 

3. Functional Canonical Correlation Analysis 

In functional data analysis, the data observed are I curves, each of which has discrete 

observations or records of yij ( Ii ,,1 ; Jj ,,1 ). We assume that a smooth function, 

denoted by zi(t), underlies each observed curve, and that the smooth function is available 

for argument t in some finite interval T ( Tt ), over which all integrals are to be taken. 

The argument t can be time, space, wavelength or other continua. We generally assume a 

relationship between the observations of a curve and the underlying smooth function as 

follows. 

 ijjiij etzy  )( ,                                                      (8) 

where eij is an error (Ramsay & Silverman, 2005, p. 40).  
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Assume that we have two sets of such I curves, and the ith curve of the first and 

second sets has observed values of yij1 and yij2, respectively. Let zi1 and zi2 denote smooth 

functions underlying an individual data curve in each set, where the observations yij1 and 

yij2 are associated with functional values zi1(tj1) and zi2(tj2), respectively. 

In functional canonical correlation analysis for two sets of smooth functions 

(Leurgans, Moyeed, & Silverman, 1993; Ramsay & Silverman, 2005, Chapter 11), we 

aim to estimate a pair of weight functions successively in such a way that the same pair 

of canonical variates is maximally correlated with each other, while uncorrelated with 

different pairs. Again, let us focus on the leading canonical variates for now. Let )( 11 t  

and )( 22 t  denote the (canonical) weight functions for the leading canonical variates of zi1 

and zi2, respectively. Let  111111 )()( dtttzii   and  222222 )()( dtttzii  denote the ith 

score of the leading canonical variate for each set. The problem of obtaining a pair of 

weights functions for the leading canonical variates is equivalent to maximizing the 

following criterion.   

 

    























2

2 

22

2

1

2

21

2 

11

2

1

2

1

2

21
213

)()(

 ,cov
),(

dttDdttD
I

i

i

I

i

i

ii






,               (9)                                 

where  21,cov ii   indicates the covariance between two canonical variates, λ indicates a 

non-negative smoothing parameter that controls for the degree of roughness in each 

weight function, and D
m
 denotes the derivative of order m.  

This criterion is equivalent to maximizing the squared covariance between the 

two canonical variates subject to the constraints 
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(Ramsay & Silverman, 2005, p. 205). This way of combining regularization into each 

constraint is comparable to that proposed in regularized canonical correlation analysis 

(Vinod, 1976). In regularized canonical correlation analysis, the ridge type of 

regularization (Hoerl & Kennard, 1970) is used for two sets of multivariate data, whereas 

in functional canonical correlation analysis, a roughness penalty (e.g.,   1

2 

11

2 )( dttD  ) is 

adopted as a regularization term that is the sum of the integrated squared second 

derivative of each weight function. In functional data analysis, a function’s roughness is 

usually assessed by its curvature or second derivative (Ramsay & Silverman, 2005, p. 84). 

When a function is highly variable, its roughness penalty value will be large. Conversely, 

when a function is nearly linear, the penalty value will be close to zero.   

In functional canonical correlation analysis, such regularization is necessary to 

control for smoothness of the estimated weight functions and to deal with the sample 

covariance matrices of functional data that can be singular. For more details, refer to 

Leurgans, Moyeed, and Silverman (1993) and Ramsay and Silverman (2005, p. 209).  

 

4. Functional Multiple-set Canonical Correlation Analysis 

4.1. Defining MCCA for functional data 

We now consider K sets of data curves, and the ith curve of each set has observed values 

of yijk. Let zik denote a smooth function underlying an individual data curve in each set, 

which is available for argument tk ( kk Tt  ). We also concentrate on the leading canonical 

variates for the moment. Let βk denote the weight function for zik with values βk(tk). Let 

 kkikkkik dttzt )()( denote the ith score of the kth leading canonical variate. Then, 
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functional multiple-set canonical correlation analysis (FMCCA) aims to maximize the 

following criterion. 

,)]([)()(
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          (11) 

with respect to βk, subject to the constraint   kkk

I

i

ik dttD
2 

2

1

2 )( 


  = 1.  

The proposed method can be viewed as a regularized version of MCCA, which 

uses a roughness penalty as a regularization term for each set of functional data. This 

method can subsume Takane et al.’s (2008) regularized multiple-set canonical correlation 

analysis as a special case where ridge-type regularization is adopted for each set of 

multivariate variables. Specifically, in the case of classical MCCA where K sets of 

multivariate variables are considered (i.e., xipk in Section 2), the weight function βk is 

replaced by a vector of weights wpk and the canonical variates score is by 



kP

p

pkipkik wx
1

 . 

If we replace the roughness penalty term by
 

K

k

P

p

pk

k

w
1 1

2 , (11) becomes equivalent to the 

homogeneity criterion for regularized multiple-set canonical correlation analysis. Further, 

(11) reduces to (1) if no regularization is involved or equivalently when λ = 0.  

 

4.2. Computational Considerations 

In functional data analysis, it is typical to convert a functional optimization problem such 

as (11) to an approximately equivalent matrix eigen-analysis for multivariate variable 

values. We shall adopt the same strategy for optimization of (11). In particular, we utilize 
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a basis function expansion approach in which each function is approximated as a linear 

combination of known basis functions (Hastie, Tibshirani, & Friedman, 2009; Ramsay & 

Silverman, 2005). The data and weight functions in (11) can be generally expressed as 

basis function systems as follows.  

)(')()(
1

kkik

S

s

kskiskkik ttctz
k

ψc


 , and kkk

S

s

kskskkk ttt
k

θξ )'()()(
1




 ,        (12) 

where ψk(tk) and  ξk(tk) are Sk by 1 vectors of basis functions (ψsk(tk) and ξsk(tk)) for the 

data and weight functions, respectively; and cik and θk are Sk by 1 vectors of coefficients 

for these basis functions, consisting of cisk, and θsk as elements. We may further express 

the simultaneous expansion of each set of all I data functions as 

)()( kkkkk tt ψCz  ,                                                  (13) 

where Ck is an I by Sk matrix of coefficients for an I by 1 vector-valued data function 

zk(tk). 

Various basis functions are available to represent functions. For example, a 

Fourier series is widely used for approximating very stable, periodic functions. B-splines 

are considered useful for non-periodic functions involving local fluctuations. Refer to 

Ramsay and Silverman (2005, Chapter 3) for descriptions of different basis function 

systems.  

Based on the basis function approximations, (11) can be re-expressed as  
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                            (14)                                 

subject to   1'SS  kkkkk θKθθA  , where SS(H) =  HH 'tr , Qk = 

kkkkk dttt )'()( ξψ , Ak = CkQk , and Kk = kkkkk dttDtD )'()( 22
ξξ . In (14), Ck is typically 

estimated a priori and considered fixed. Based on (8), we obtain the least squares 

estimates of Ck as follows. 

  1
)'()()'(


 kkkkkkjkk ttt ψψψyC ,                                     (15) 

where yjk is an I by 1 vector of discrete records taken at the jth measurement point in the 

kth set (e.g., Ramsay & Silverman, 2005, Chapter 4). This least squares estimation 

implies that Sk should not exceed I. The computation of Qk and Kk involves the integrals 

of products of a derivative D
m
 of basis functions. These integrals may be computed by 

using a numerical integration method such as the trapezoidal rule or Romberg integration 

(e.g., Press, Teukolsky, Vetterling, & Flannery, 1999). We used Ramsay’s computer 

programs for this computation, which are publicly available in R and MATLAB 

(http://www.psych.mcgill.ca/misc/fda/) (also refer to Ramsay, Hooker, & Graves, 2009).      

Let  KAAAA ,,, 21   denote an N by S row block matrix ( 



K

k

kSS
1
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 Kθθθθ ;;; 21   denote an S by 1 column vector, stacking θk one below another, and Ξ 

denote a block diagonal matrix consisting of Kk as the kth diagonal block. Then, 

maximizing (14) is equivalent to maximizing 

 ),)'('(tr θΞAAθ                                                   (16) 

subject to 1)('  θΞDθ A
, where DA is a block diagonal matrix consisting of kk AA '  as 

the kth block (Takane, Hwang, & Abdi, 2008). This maximization problem with respect 

to θk can be solved by EVD as shown in (5) with ΞAAXX  ''  and Φ = ΞD A
. 

Once θk is estimated, the corresponding weight function )( kk t  can be obtained from (12). 

In addition, an I by 1 vector of object scores f can be calculated in a manner similar to (7). 

We recapitulate this estimation procedure in the Appendix. We can also estimate weight 

functions for multi-dimensional canonical variates in the proposed method, as described 

in Section 2. 

We need to specify the value of λ prior to the above estimation procedure. As λ 

becomes large, a greater penalty is imposed on the roughness or variability of the 

estimated weight function, thereby leading the function to be more linear. Conversely, 

when λ becomes zero, no penalty term is imposed so that the estimated function tends to 

be close to the weight values obtained from classical MCCA. 

We may determine the value of λ subjectively (Ramsay & Silverman, 2005, p. 

206). At the same time, we may choose the value of λ in an automatic manner based on 

G-fold cross validation (Hastie et al., 2001, p. 214). In this method, the entire set of data 

is divided into G subsets. One subset is used as a test set, while the remaining subsets are 

as a training set for parameter estimation. The resultant parameter estimates are applied to 

the test set in order to calculate a prediction error. This procedure is repeated G times, 
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changing test and training sets systematically. Then, the cross-validation estimate of 

prediction error is calculated over all G test sets.  

Specifically, let f
*(g)

 denote a vector of object scores of the gth test set, calculated 

based on the weight functions estimated from the remaining training set ( Gg ,,1 ). 

Let f
(g)

 denote the gth subset of object scores which are calculated based on the entire 

functional data. We then calculate a cross-validation estimate of prediction error as 

follows.  

 . SS
1

)(
1

)(*)(



G

g

gg

G
ff                                          (17) 

We repeat these procedures over a range of the values of λ. The value of λ associated with 

the minimum ε(λ) is be chosen as the final one. 

 

5. An Empirical Application to Functional Neuroimaging Data 

In this section, we apply the proposed method to functional neuroimaging data to 

demonstrate its empirical usefulness. The present example uses a subset of the functional 

magnetic resonance imaging (fMRI) data originally collected for an investigation of 

working memory impairment in schizophrenia (Cairo, Woodward, & Ngan, 2006). fMRI 

records signal variation in blood-oxygen level dependent (BOLD) signal, which is 

correlated with signal variation in blood flow. The basic element of spatial measurement 

in fMRI is referred to as a voxel, which is, for the data analyzed in the current study, a 4 

× 4 × 4 mm cube of imaged neural matter. BOLD signal changes are recorded 

continuously over scans (or time points) in every voxel in the brain. These measurements 
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of signal changes, called time courses, can be considered smooth functions of time (Tian, 

2010).  

 

5.1. Example Data  

We provide a summary of the data analyzed here. Refer to Cairo et al. (2006) for full 

details regarding experimental conditions, the nature of sample, and data acquisition. In 

this example, we used four healthy subjects who performed a verbal working memory 

task under four different memory load conditions while undergoing fMRI. During a 

single trial of this task, the subjects viewed a string of 2, 4, 6 or 8 different uppercase 

letters for 4 seconds (encoding), which they were instructed to remember over a 6 second 

delay (delay). Following the delay, a single lowercase letter was shown for 1 second. 

Subjects were asked to decide whether this letter had been included in the preceding letter 

string (probe). The probe stage was followed by an inter-trial interval of 3, 4, or 5 

seconds in duration. Each subject was presented with two stimulus runs, 9 occurrences of 

each memory load (2, 4, 6 or 8 letters) per run, producing a total of 72 working memory 

trials (2 × 9 × 4). Each stimulus run consisted of 214 scans of the entire brain. The 

duration of each brain scan, called time resolution (TR), was three seconds. There was no 

time interval between scans. Thus, a single stimulus run took 642 seconds (3 × 214). The 

timing of stimulus presentation was identical for all subjects. The BOLD signals in 

23,621 voxels of the whole brain were extracted from each of the 214 scans collected 

from each subject.  

Accordingly, we had four sets of functional data, each of which contained 23,621 

cases, representing voxels, and 214 columns, representing scans measured for each 
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subject. The BOLD signal was realigned, spatially normalized and smoothed prior to 

analysis using Statistical Parametric Mapping (SPM2) (Wellcome Institute of Cognitive 

Neurology, London, UK, http://www.fil.ion.ucl.ac.uk/spm). 

To relate the resultant canonical variates back to experimental conditions, we 

constructed a design matrix that contained models for expected BOLD increases in 

response to the timing of stimulus presentations. The design matrix was built on the finite 

impulse response (FIR) model (Goutte, Nielsen, & Hansen, 2000) for estimating the 

average change in BOLD signal at specific time points. The time points coded by the FIR 

model corresponded to the l
st
 to 8

th
 repetition times following stimulus presentation, 

referred to as peristimulus time. The columns of the design matrix model BOLD signal 

change in peristimulus time for the four load conditions (i.e., 8 repetition times × 4 load 

conditions). Thus, the rows of the design matrix must match the number of scans (214). 

The value 1 was placed in rows in the design matrix for which BOLD signal amplitude 

was to be modeled, and 0 was in the other rows. The TR for these data was 3 seconds; 

therefore, the BOLD signal was modeled for each condition separately over a 24-second 

window in peristimulus time. The encoding, delay and probe stages were covered by this 

24-second window for each of four load conditions (2, 4, 6, and 8 letters). Refer to 

Metzak et al. (2010, 2011) for more details with respect to the construction of the design 

matrix with extension to multiple subjects.  

 

5.2. Analyses and Results  

The aim of our analysis was to integrate signal variation in four subjects’ brain voxels 

into highly-correlated, low-dimensional representations and to identify regions of the 
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brain which might form networks that were positively or negatively activated among the 

subjects who performed the same working memory tasks.  

We used the B-spline basis system to approximate both data and weight functions 

for all datasets, considering their non-periodic signal changes over scans. The B-spline 

basis consists of piecewise polynomials of prescribed order for subintervals of Tk which 

are separated by so-called breakpoints or knots. Polynomials in adjacent subintervals are 

constrained to join smoothly at the breakpoint of the subintervals. Thus, in using the B-

spline basis, it is necessary to specify the number of knots and the order of polynomials. 

For this example, we set the number of knots at 72 so as to place at least two subintervals 

for each load condition. Moreover, the polynomial order selected was 4, i.e., a cubic 

polynomial, which is one of the most widely used orders in practice (Hastie, Tibshirani, 

& Friedman, 2009, p. 120). We used Ramsay’s computer programs (available at 

http://www.psych.mcgill.ca/misc/fda/) to construct the B-spline basis under the 

prescribed numbers of knots and polynomial order.  

We applied five-fold cross validation for selecting the value of λ. Figure 1 

displays the cross-validated prediction error estimates ε(λ) against the common  

logarithms of different values of λ, varying from 10
1
 to 10

10
 by a factor of 10 (i.e., 

 10,,2 ,1)(log10  ). As shown in the figure, the minimum value of ε(λ) was achieved 

at λ = 10
2
. Thus, we chose λ = 10

2
 for the proposed method.   

_______________________________ 

Insert Figure 1 about here 

_______________________________ 
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As with other fMRI analyses, it is crucial to examine whether or not solutions 

obtained from the proposed method are directly relevant to experimental manipulations. 

To interpret the canonical variates obtained from the proposed method in the context of 

the present experimental conditions, we calculated so-called predictor weights (Hunter & 

Takane, 2002) for each dataset. The predictor weights are equivalent to the regression 

coefficients obtained by regressing each weight function )( kk t  on the design matrix 

aforementioned. These predictor weights indicate the contribution of a specific time point 

on the temporal variation in the functional networks represented by particular canonical 

variates over scans, thereby showing whether the networks are associated with the 

hemodynamic response function (HRF) shapes expected from the experimental design. 

For example, in the present experiment, an HRF peak was expected in response to the 4-

second encoding stage (between 8-15 seconds after trial onset) for each memory-load 

condition (Metzak et al., 2010, 2011).      

Figure 2-A presents the estimated weight functions for the leading canonical 

variates of the four subjects. The weight function shows an overall pattern of fluctuation 

over 214 scans of the neural network represented by the leading canonical variate for 

each subject. Despite differences in their time-course fluctuations, these weight functions 

appear to vary in a relatively similar manner. The mean correlation among the four 

leading canonical variates is .61. Figure 2-B displays the mean predictor weight values 

(averaged over subjects) that represent the response of a functional network to the 

memory task at different memory-load conditions. Inspection of these predictor weights 

suggests that the network represented by the leading canonical variates shows activation 

changes similar to the HRF shapes expected from the experimental design (e.g., peak 
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activation between 8-15 seconds after trial onset in response to an encoding stage). This 

suggests that the network associated with the leading canonical variates involves voxel 

activations that are related to the experimental stimulus presentations.    

Figure 3-A exhibits the estimated weight functions for the second-dimensional 

canonical variates. These weights functions appear to change more distinctively across 

the four subjects, compared to those for the leading canonical variates. The mean 

correlation among these canonical variates is .49. Figure 3-B displays the mean predictor 

weight values (averaged over subjects) for each memory-load condition. As shown in this 

figure, the predictor weights do not match expected HRF shapes. Thus, the network 

represented by the second-dimensional canonical variates is less likely to be activating in 

response to the stimulus timing.  

Although they are not presented here to preserve space, we have also examined 

other subsequent canonical variates (i.e., L > 2). Similarly to the second-dimensional case, 

no functional networks associated with the higher-dimensional canonical variates 

involved voxel activation that was sensitive to the experimental design.  

___________________________________ 

Insert Figures 2 and 3 about here 

___________________________________ 

Thus, we concentrated only on the object scores of voxels (fi’s) obtained based on 

the leading canonical variates in order to identify neural regions that were commonly 

activated among the four subjects while they performed the working memory task. Figure 

4 exhibits five slice images constructed from these leading (voxel) object scores. The far-

right sagittal brain image indicates which slices of the brain the first four images 
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represent. All the images present dominant 5% of the object scores mapped onto a 

structural brain image template, where positive scores are in red and yellow and negative 

scores are in blue and green. The images of these object scores represent neural networks 

that were activated in all four subjects during the experiment, suggesting that these 

regions were likely to be functionally connected across the subjects. The neural networks 

associated with the leading canonical variates comprise the elements of both task-positive 

and task-negative networks (Fox, Snyder, Vincent, Corbetta, Van Essen, & Raichle, 

2005). The task-positive network is dominated by increased activation in dorsal anterior 

cingulate cortex/supplementary motor area, left dorso-lateral prefrontal cortex (DLPFC), 

left insula, bilateral inferior frontal cortices (including Broca’s area), and bilateral inferior 

parietal cortices. This network of regions is thought to activate in response to the memory 

task. The task-negative network is a system of functionally connected brain regions that 

are thought to be suppressed during the task. Here this is characterized by decreased 

activation in medial superior frontal cortex, bilateral middle/inferior temporal cortices, 

ventral anterior cingulate cortex, right fusiform gyrus, posterior cingulate cortex, and 

bilateral angular gyri. 

___________________________________ 

Insert Figure 4 about here 

___________________________________ 

For comparison purposes, we also applied classical MCCA to the same data, 

considering the data multivariate. Figures 5 and 6 display the estimated weight values for 

the first- and second-dimensional canonical variates, respectively. Due to their severe 

local fluctuations over scans, it is difficult to describe the time-dependent patterns of the 
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weights values in a clean manner. More importantly, the mean predictor weight values 

calculated from these canonical variates do not vary in a fashion similar to the expected 

HRF shapes, as also shown in the figures. This suggests that the networks represented by 

the first- and second-dimensional canonical variates obtained from classical MCCA 

involve voxel activation irrelevant to the experimental stimulus presentations. This was 

the case in subsequent higher-dimensional canonical variates, although again they are not 

provided here to conserve space.  

___________________________________ 

Insert Figures 5 and 6 about here 

___________________________________ 

 

6. Concluding Remarks 

We proposed an extension of functional canonical correlation analysis to the analysis of 

more than two sets of functional data. This method represents a regularized version of 

multiple-set canonical correlation analysis, which adopts a roughness penalty as a 

regularization term for each set of functional data. The proposed method has proved 

useful in investigating which brain regions were activated during an fMRI experiment on 

verbal working memory. Specifically, the method was able to produce experimental 

condition-specific canonical variates of signal changes over scans. The object scores of 

voxels obtained by integrating these canonical variates reflected neural networks that 

were activated commonly in multiple subjects while performing the experiment. 

Conversely, classical MCCA resulted in canonical variates that were not directly 

attributed to the working memory experimental conditions. This suggests that MCCA 
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showed the association among several sets of BOLD signal changes derived from any 

sources of brain activity other than the experimental conditions. Thus, it is unlikely to be 

worthwhile to interpret the results of MCCA from substantive perspectives.  

We may further refine and extend the proposed method to improve its data-

analytic capability and applicability. For example, we may incorporate linear constraints 

into the proposed method for more elaborate analyses. In the present application, we 

applied the proposed method to the original data, and then related the results of the 

method to a design matrix that took experimental conditions into account. Conversely, as 

an initial stage of analysis, we may regard such a design matrix as linear constraints and 

decompose the data into different parts based on the design matrix (e.g., Metzak et al., 

2010). In the next stage, the proposed method can be applied only to the portion of the 

data explained by the design matrix. This may result in a solution that is more directly 

relevant to experimental conditions. Takane and Shibayama (1991) developed a 

comprehensive approach to imposing linear constraints on the row and column sides of a 

data matrix (also see Hwang & Takane, 2002; Takane & Hwang, 2002; Takane & Hunter, 

2001). We may adopt a similar strategy for the proposed method.  

In addition, we may integrate some cluster analysis into the proposed method to 

identify heterogeneous subgroups of canonical variates, which involve distinctive 

patterns of weight functions. The capturing of such group-level heterogeneity has been an 

issue of theoretical and empirical importance in various fields including psychology (e.g., 

Wedel & Kamakura, 1998). All of these possibilities warrant future theoretical and 

empirical work. 
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Appendix: A summary of the FMCCA estimation procedure 
 

Given basis functions for data and weight functions, ψk(tk) and  ξk(tk), respectively, and 

the value of λ, the estimation procedure of FMCCA, under L = 1, involves the following 

steps. 

Step 1: We compute Qk = kkkkk dttt )'()( ξψ  and Kk = kkkkk dttDtD )'()( 22
ξξ .      

Step 2: We estimate Ck by  

  1
)'()()'(


 kkkkkkjkk ttt ψψψyC ,                                 (A.1)                                                                                 

where yjk is an I by 1 vector of discrete observations taken at the jth measurement point in 

the kth set. We subsequently compute Ak = CkQk. 

Step 3: We construct  KAAAA ,,, 21   and Φ = ΞD A
, where DA and Ξ are block 

diagonal matrices consisting of kk AA '  and Kk as the kth diagonal block, respectively.  

Step 4: We obtain the following eigenvalue decomposition  

')'( 2/12/1
ΣΔΣΦΞAAΦ    ,                                   (A.2) 

where Σ is a matrix of eigenvectors, and Δ is a diagonal matrix of eigenvalues.  

We obtain  Kθθθθ ;;; 21   by σΦθ
2/1 , where σ is the first eigenvector in Σ. 

We then obtain each element of the weight function for the kth set, )( kk t , 

by kkkkk tt θξ )'()(  . We calculate a vector of object scores, f, by f = /2/1
σAΦ

 , 

where δ is the first eigenvalue of Δ (refer to Equations (16) and (17) in Takane at al., 

2008). 
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Figure 1. The cross-validation prediction error values ε(λ) against the common  

logarithms of different values of the smoothing parameter λ. 
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Figure 2. (A) The estimated weight functions for the first-dimensional canonical variates 

of four subjects obtained from the proposed method (… = subject 1, - - - = subject 2, 

____ = subject 3, and __ . __ = subject 4), and (B) the mean predictor weights (averaged 

over subjects) for each load condition across the first-dimensional canonical variates (● = 

2 letters, ■ = 4 letters, ▲= 6 letters, and * = 8 letters). The predictor weights at the first 

time point are adjusted to zero, and all other values scaled accordingly.  
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Figure 3. (A) The estimated weight functions for the second-dimensional canonical 

variates of four subjects obtained from the proposed method (… = subject 1, - - - = 

subject 2, ____ = subject 3, and __ . __ = subject 4), and (B) the mean predictor weights 

(averaged over subjects) for each load condition across the second-dimensional canonical 

variates (● = 2 letters, ■ = 4 letters, ▲= 6 letters, and * = 8 letters). The predictor weights 

at the first time point are adjusted to zero, and all other values scaled accordingly. 
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Figure 4. Slice images of the object scores of voxels for the leading canonical variates 

obtained from the proposed method. The dominant 5% of the object scores are displayed 

with positive scores in red and yellow and negative scores in blue and green. 
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Figure 5. (A) The estimated weight values for the first-dimensional canonical variates of 

four subjects obtained from multiple-set canonical correlation analysis (… = subject 1, - - 

- = subject 2, ____ = subject 3, and __ . __ = subject 4), and (B) the mean predictor 

weights (averaged over subjects) for each load condition across the first-dimensional 

canonical variates (● = 2 letters, ■ = 4 letters, ▲= 6 letters, and * = 8 letters). The 

predictor weights at the first time point are adjusted to zero, and all other values scaled 

accordingly.  
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Figure 6. (A) The estimated weight values for the second-dimensional canonical variates 

of four subjects obtained from multiple-set canonical correlation analysis (… = subject 1, 

- - - = subject 2, ____ = subject 3, and __ . __ = subject 4), and (B) the mean predictor 

weights (averaged over subjects) for each load condition across the second-dimensional 

canonical variates (● = 2 letters, ■ = 4 letters, ▲= 6 letters, and * = 8 letters). The 

predictor weights at the first time point are adjusted to zero, and all other values scaled 

accordingly.  
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