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Abstract As the most abundant biopolymer in

nature, cellulose has become a fascinating building

block for the design of functional nanomaterials.

Owing to the presence of numerous hydroxyl groups,

cellulose provides a unique platform for the prepara-

tion of new materials via versatile chemical modifi-

cations. This critical review aims to present the

advances about nanomaterials based on cellulose

derivatives with the focus on cellulose esters within

the last two decades, including the chemistry and

application of these nanostructured materials. This

review starts with the introduction on first fundamen-

tal aspects about diverse esterification techniques used

up to now to modify cellulose. The in situ esterifica-

tion for the isolation of nanocelluloses and diverse

post esterification methods of nanocelluloses for the

surface functionalization were highlighted in the

following description. Various esterification strategies

and further nanostructure constructions have been

developed aiming to confer specific properties to

cellulose esters, extending therefore their feasibility

for highly sophisticated applications, which were

summarized with respect to the categories of the

introduced ester moieties. Thus, this review assembles

and emphasizes the state-of-art knowledge of func-

tional nanomaterials derived from diverse esterified

cellulose compounds.
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Abbreviations

3D Three-dimensional

ATRP Atom transfer radical

polymerization

BNC Bacterial nanocellulose

BriBB 2-Bromoisobutyryl bromide

CDI N,N0-Carbonyldiimidazole

CNCs Cellulose nanocrystals

CUE Cellulose 10-undecenoyl ester

DMAc Dimethylacetamide

DMF Dimethylformamide

DMSO Dimethyl sulfoxide

DS Degree of substitution

FITC Fluorescein-50-isothiocyanate

LCST Lower critical solution temperature

LiCl Lithium chloride

NFC Nanofibrillated cellulose

NPs Nanoparticles
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PDMAEMA Poly(N,N-dimethylaminoethyl

methacrylate)

PEDOT Poly(3,4-ethylene-dioxythiophene)

PNIPAAM Poly(N-isopropylacrylamide)

PolyDADMAC Poly(dimethyldiallyl-ammonium

chloride)

RBITC Rhodamine B isothiocyanate

TEMPO 2,2,6,6-Tetramethylpiperidin-1-

oxyl

TosCl p-Toluenesulfonyl chloride

Introduction

Cellulose is the most abundant, renewable, and

sustainable biopolymer in the biosphere, representing

around 1.5 9 1012 tons of the annual biomass pro-

duction (Klemm et al. 1998b, 2005). It is present in

diverse ecosystems, ranging from the kingdoms of

plants, animals, algae, fungi, bacteria (Habibi 2014;

Moon et al. 2011). The term cellulose was first

recorded in 1839 by French chemist Anselme Payen,

who first isolated cellulose from plants (Eyley and

Thielemans 2014; Habibi et al. 2010; Roy et al. 2009).

Since then, multiple physical and chemical aspects of

cellulose have been extensively studied. The poly-

meric structure of cellulose was later determined by

Staudinger in the 1920s (Eyley and Thielemans 2014;

Klemm et al. 2011). He discovered that cellulose is a

linear syndiotactic homopolymer composed of D-an-

hydroglucose units linked by b-(1 ? 4)-glycosidic

bonds (Fig. 1a) (Klemm et al. 1998b). Cellulose

possesses several advantageous properties, such as

excellent biocompatibility, nontoxicity, biodegrad-

ability and great mechanical strength (Klemm et al.

1998b; Qiu and Hu 2013). It was used as a precursor

for mechanical/chemical modifications even before its

polymeric nature was confirmed and well understood,

such as synthesis of cellulose nitrates for the applica-

tions in various fields including plastics, lacquers,

coatings, explosives and propellants (Heinze et al.

2006; Klemm et al. 1998a). Natural cellulose-based

materials in the form of wood, hemp, and cotton have

been used as engineering materials for thousands of

years and the tradition still maintains today in the

fields of forest products, paper, textiles, etc. (Klemm

et al. 2005; Moon et al. 2011; Roman 2009). In recent

years, environmental awareness has driven research in

using and transforming more naturally occurring

sustainable biomaterials, such as cellulose, hemicel-

lulose and lignin from plant sources (Moon et al.

2011). Despite that the naturally occurring cellulose is

already outstanding, it still lacks versatile properties,

in order to chemically and dimensionally meet the

demands of modern society for high performance

materials. This point explains the continuing research

interest focusing on dimensional transition to nanos-

cale and chemical modifications with desired func-

tions, which can improve the given features and can be

used to tailor advanced materials.

In nature, cellulose is preferentially biosynthesized

as fibers via assembly of individual cellulose chains

through both intra- and intermolecular hydrogen

bonds (Habibi 2014; Somerville 2006). These hydro-

gen bonds give rise to various three-dimensional (3D)

arrangements of the cellulose chains, leading to

coexisting of crystalline and amorphous regions

within cellulose fibers (John and Thomas 2008;

Klemm et al. 2005; Moon et al. 2011; Nada and

Hassan 2003). To be more specific in the case of

cellulose from plant sources, approximately 36 cellu-

lose chains arrange as a basic fibrillar unit known as

elementary fibrils, which have a characteristic lateral

dimension of 1.5–3.5 nmwith the length up to 100 nm

(Chinga-Carrasco 2011; Klemm et al. 2005; Krassig

1990; Yuan and Cheng 2015). These elementary fibrils

are further assembled as microfibrils with widths in the

range of 10–30 nm, which in turn further assemble

into the familiar cellulose macrofibers. However,

cellulose from different sources may exhibit different

assembling morphologies (Williamson et al. 2002).

According to these morphological features, cellulose

fibers can be dissociated transversely at the amorphous

regions leading to nanoscaled and highly crystalline

rod-like fragments, which are referred to as cellulose

nanocrystals (CNCs). Similarly, cellulose fibers also

can be laterally disintegrated by applying high shear

force resulting in nanofibrillated cellulose (NFC)

(Habibi 2014). Nanocellulose can also be obtained

as bacterial nanocellulose (BNC) after the biosynthe-

sis by bacterial species, such as Gluconoacetobacter

xylinum (Brown and Montezinos 1976).

With the presence of three hydroxyl groups per

AGU within cellulose chains and on the surface of

nanocelluloses, cellulose represents a unique platform

for versatile chemical modifications to introduce
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required functional groups using various techniques to

extend their use in a wide range of highly sophisticated

applications. All three hydroxyl groups in the AGU

including primary hydroxyl group at C6 and secondary

hydroxyl groups at C2 and C3 (Fig. 1a) can participate

in almost all the reactions as the alcoholic hydroxyl

groups do, such as esterification, etherification, oxi-

dation, silylation and polymer grafting (Braun and

Dorgan 2009; Braun et al. 2012; Coseri et al. 2013;

Dong and Roman 2007; Duan et al. 2016; Filpponen

and Argyropoulos 2010; Habibi et al. 2010; Hasani

et al. 2008; Ma et al. 2010; Mormann and Demeter

1999; Mormann and Wagner 1997; Pang et al. 2016;

Qiu and Hu 2013; Xu et al. 2010; Yoo and Young-

blood 2016). Among diverse chemical modifications,

esterification represents one of the most promising

technique, which was first adopted to synthesize

cellulose derivatives (Klemm et al. 1998a). Over the

past several decades, there has been extensive research

in esterification of cellulose at both polymeric back-

bone and surface of nancelluloses (Fig. 1b, c). The

fundamental aspects of the cellulose esterification,

together with highlights of the recent advances about

the functionalization of nanocelluloses are considered

at first. Then, the potential applications of cellulose

esters in the fields of nanomaterials are described.

They are by nomeans a comprehensive summary of all

the vast number of research results available, but only

of selected pertinent aspects relating to the attached

ester moieties primarily of the last two decades.

Esterification

During the esterification, the reaction either occurs on

the whole cellulose polymer chains to form conven-

tional cellulose esters or occurs at the outer of

cellulose fibers leaving the cellulose crystalline struc-

ture in the interior intact. Both homogenous and

heterogeneous esterification can be applied for the

synthesis of a vast number of cellulose esters.

Moreover, the reactions under heterogeneous condi-

tions can be carried out almost exclusively for the

surface modification of native cellulose, which also

represents one of the main strategies for the isolation

and chemical modification of nanocelluloses.

Fundamental aspects

Over the past several decades there has been extensive

research in cellulose esterification. The cellulose

esters are usually classified into inorganic and organic

Fig. 1 Schematic

representations for a the

molecular structure of

cellulose, b the molecular

structure of cellulose ester

and c the surface

esterification of

nanocellulose. The red

numbers in a show the

numbering system for

carbon atoms within one

anhydroglucose unit (AGU)

of cellulose
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cellulose esters. Among the numerous inorganic acids

known today, only a few have been employed to

synthesize inorganic cellulose esters, such as cellulose

nitrate, cellulose sulfate, cellulose phosphate and

cellulose xanthate (Heinze et al. 2006, 2018).

Cellulose nitrate is by far the oldest and one of the

most important inorganic cellulose esters, which have

been produced on an industrial scale for more than one

century (Klemm et al. 1998a). Cellulose nitrate is used

in many application fields including plastics, lacquers,

coatings, explosives and propellants (Heinze et al.

2006; Wertz et al. 2010). The industrial production of

cellulose nitrate is generally based on the fast

heterogenous equilibrium reaction between cellulose

and the classical nitrating acid mixture containing

nitric acid and sulfuric acid. The degree of substitution

(DS) with rang from 1.8 to 2.8 can be controlled by

adjusting the composition of the nitrating acid mixture

to meet the various requirements (Klemm et al.

1998a). Using this technique, the maximum DS is

limited to around 2.9 due to the side reaction of

cellulose with sulfuric acid. Cellulose trinitrate can be

achieved using nitrating agent systems of nitric acid/

phosphoric acid/phosphorus pentoxide or nitric acid/

acetic acid/acetic anhydride (Alexander and Mitchell

1949; Klemm et al. 1998a; Heinze et al. 2006).

Furthermore, there are some other nitrating agent

systems including dinitrogen pentoxide/tetra-

chloromethane, nitric acid aqueous and nitric acid/

dichloromethane that can be used for the production of

cellulose nitrates (Klemm et al. 1998a).

Cellulose sulfate is synthesized by the direct

esterification of cellulose using sulfuric acid. Besides

sulfuric acid, sulfur trioxide, chlorosulfonic acid,

sulfuryl chloride, fluorosulfuric acid, ethyl chlorosul-

fonate and sulfoacetic acid were employed to produce

cellulose sulfates (Klemm et al. 1998a). Cellulose

sulfates generally can be prepared by three sulfation

routes. The first is sulfation of hydroxyl groups from

native cellulose. This usually occurs in a heteroge-

neous system, which results in non-uniformly dis-

tributed substitution, leading to poor solvability in

water. To obtain uniformly distributed substitution,

partially modified cellulose derivatives can be adopted

as starting materials. Using this route, the primary

substituent acts as a protecting group. During the

sulfation under suitable conditions, the sulfating

agents solely react with the free hydroxyl groups

(Heinze et al. 2006; Zhang et al. 2010, 2011).

Cellulose sulfates with a regioselective distribution

of substituents have been synthesized via this rout by

partial or complete displacement of a labeled group of

a cellulose derivative, usually ester (e.g., nitrite) or

ether (e.g., trimethylsilyl) (Fox et al. 2011; Klemm

et al. 2005; Richter and Klemm 2003; Zhang et al.

2013). Moreover, the cellulose sulfates can also be

synthesized by means of displacement of an ester or

ether group already present in cellulose using sulfating

agents. A wide variety of cellulose sulfates with

regioselective substitution patterns also can be real-

ized via this route (Klemm et al. 1998a; Fox et al.

2011).

The introduction of phosphoric acid ester moieties

to form cellulose phosphates can be accomplished by

means of pentavalent phosphorus reagents including

phosphoryl chloride, phosphorus pentoxide and phos-

phoric acid (Illy et al. 2015). Similar to sulfation,

phosphorylation of cellulose is usually carried out

either by reaction with unmodified cellulose, or with

cellulose derivatives containing specific substituents

(Klemm et al. 1998a). Using the former route, the

reaction usually occurs in a heterogeneous system or

employs a cellulose solution in non-derivatizing

solvent systems, such as N-methylmorpholine N-

oxide, lithium chloride (LiCl)/dimethylacetamide

(DMAc) and dinitrogen tetroxide/dimethylformamide

(DMF) (Klemm et al. 1998a). In the latter route, a

homogeneous system is generally preferred using

completely or partially substituted cellulose esters or

ethers in order to arrive at soluble products (Klemm

et al. 1998a; Heinze et al. 2006). In comparison to

sulfating agents, most of phosphorylating agents show

a lower reactivity in esterification and lead to much

less chain degradation. Moreover, cellulose phos-

phates tend to cross-linking due to the formation oligo-

phosphate side chains, which impedes products solu-

bility (Heinze et al. 2006).

Esterification of cellulose for the introduction of

organic functional groups is among the most versatile

transformations of chemical modifications of cellu-

lose. It gives ready synthetic access to a wide range of

valuable products. Esterification of cellulose is acyla-

tion procedure using carboxylic acids as acylating

agents under strong-acid catalysis or by using an

activated derivative such as an anhydride or acid

chloride, either with base or with a Lewis acid (Heinze

et al. 2006). Due to the low reactivity of carboxylic

acids, it is not capable to esterify cellulose to a
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significant extent using the former esterification

procedure. The most traditional method for the

acylation of cellulose is the reaction with carboxylic

acid anhydrides or acid chlorides.

A typical example of the cellulose carboxylate

esters is cellulose acetate, which was described as the

first organic cellulose ester more than 150 years ago

(Klemm et al. 1998a). Cellulose acetate is commonly

prepared by conversion of cellulose with a mixture of

acetic acid and acetic anhydride in the presence of

sulfuric acid as catalyst. During acylation reactions

with carboxylic acid anhydrides under acidic catalysis,

cellulose hydrolysis generally occurs simultaneously,

which causes chain degradation (Heinze et al. 2006).

To suppress the degradation, a tertiary base, such as

pyridine and triethylamine, is recommended as the

solvent medium as well as the acylation catalyst for

the esterification with acid anhydrides (Heinze et al.

2006). Söyler et al. (2018) reported a rapid and

efficient dissolution and activation of cellulose for the

subsequent esterification with succinic anhydride in a

CO2 based switchable solvent for only 30 min at room

temperature (Fig. 2a). Cellulose was successfully

converted to cellulose succinates with DS ranging

from 1.51 to 2.59, depending on the reaction condi-

tions and the molar ratio of succinic anhydride. An

alternative method for esterification of cellulose using

acid anhydrides is the impeller technique. In this case,

the carboxylic acids or their anhydrides are converted

in situ to reactive mixtures of symmetric and mixed

anhydrides using impeller reagents, such as chloroa-

cetyl, methoxyacetyl, and trifluoroacetyl moieties

(Heinze et al. 2006). Diverse cellulose triesters

including triacetate, tripropanoate, and tributanoate

are attainable using trifluoroacetic anhydride as

impeller reagent (Iwata et al. 1997).

It should be noted that the introduction of more

complex carboxylic acid moieties including fatty acid

moieties and aromatic groups, anhydrides are not

reactive enough. In this case, acid chlorides in

combination with a tertiary base, i.e. pyridine and

triethylamine, are applied (Heinze et al. 2006). This

procedure is widely used for the preparation of

cellulose fatty acid esters with different lengths of

aliphatic chains (Crepy et al. 2011; de Menezes et al.

2009; Granstrom et al. 2011; Kulomaa et al. 2015;

Zhang et al. 2015a, b). In the case of the esterification

in pyridine, pyridine not only acts as the solvent, but

also acts as a catalyst via forming a reactive

intermediate driving the reaction forward. Cellulose

esters with aromatic groups are basically accessible

via the same path, but the relating studies are still rare

(Garces et al. 2003).

It should be noted that a few new synthesis

pathways have been developed over the past years

for more effective esterification to introduce new

functional groups with more complex chemical struc-

tures. One of these synthetic approaches is the in situ

activation for the conversion of cellulose with car-

boxylic acids (Heinze et al. 2006). These reactions are

normally carried out in the mild reaction conditions,

which avoids the common side reactions including

pericyclic reactions, hydrolysis, and oxidation. During

these reactions, the carboxylic acids are activated by a

reagent, which leads to an intermediately formed

highly reactive carboxylic acid derivative. The acti-

vation of carboxylic acids with p-toluenesulfonyl

chloride (TosCl) (Heinze and Liebert 2001; Heinze

et al. 2003; Shimizu et al. 1991; Tosh et al. 2000; Xu

et al. 2011; Zheng et al. 2015) and N,N0-dicyclohexyl-

carbodiimide in combination with 4-pyrrolidinopy-

ridine or 4-dimethylaminopyridine (Fujisawa et al.

2011; Samaranayake and Glasser 1993; Wang et al.

2014;Wu et al. 2004; Yue and Cowie 2002) are typical

examples of this synthetic technique (Grabner et al.

2002; Heinze et al. 2018). Homogeneous esterification

of cellulose was carried out via in situ activation with

TosCl in DMAc/LiCl for the synthesis of 3-(hydrox-

yphenylphosphinyl)-prop-anoic acid esters of cellu-

lose (Zheng et al. 2015). It was found that the DS range

from 0.62 to 1.42 could be adjusted by changing the

reaction conditions. While the high toxicity and

presence of cellulose-degrading side reactions

impeded the wide application of these activating

agents. Hasani and Westman reported a new commer-

cially available, non-toxic activating agent, namely

4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-mor-

pholinium chloride (DMT-MM), for the esterification

of cellulose via in situ activation (Fig. 2b) (Hasani and

Westman 2007). The resulting cellulose ester has a

low DS of 0.67 due to the low activation efficiency.

Among others, N,N0-carbonyldiimidazole (CDI) is the

most frequently used non-toxic activating agent for the

in situ activation esterification of cellulose (Boufi et al.

2008; Heinze and Liebert 2001; Heinze et al. 2006;

Liebert and Heinze 2005; Peng et al. 2016). In this

case, the acylating agent isN-acylimidazol that readily
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reacts with cellulose for the synthesis of cellulsoe ester

and regeneration of to imidazole (Heinze et al. 2018).

Moreover, transesterification under the presence of

catalysts has been used for the formation of cellulose

esters. The preparation of cellulose esters with long

aliphatic chains via transesterification with methyl

esters have been studied (Antova et al. 2004). In the

new transesterification approach, the vinyl esters of

the carboxylic acids are predominantly investigated

(Cao et al. 2014; Cetin et al. 2009; Ding et al. 2017).

Heinze et al. (2000) reported that cellulose could

dissolve in dimethyl sulfoxide (DMSO)/tetrabutylam-

monium fluoride and reacted with vinyl esters homo-

geneously with or without catalyst. Cetin et al. (2009)

demonstrated that CNCs could react with vinyl acetate

in DMF under the catalysis of K2CO3, producing

acetylated CNCs. However, long pretreatment and/or

reaction times from hours to days were required for

most of the above-mentioned transesterification reac-

tions, leading to relatively low DS of lower than 2 for

many of them even under homogeneous conditions.

Cao et al. (2013) developed a new reaction system

composed of DMSO, aqueous NaOH or KOH, and

vinyl esters to rapidly synthesize cellulose esters by

transesterification (Fig. 2c). Remarkably, cellulose

could react with vinyl acetate, vinyl propionate, and

vinyl butyrate, leading to corresponding cellulose

acetate, cellulose propionate, and cellulose butyrate

Fig. 2 a Dissolution and

activation of cellulose for

the subsequent

derivatization with succinic

anhydride using CO2-based

switchable solvent.

Repinted from Söyler et al.

(2018). Copyright 2018,

Royal Society of Chemistry.

b Schematic illustration of

the esterification involving

in situ activation of

carboxylic acids with DMT-

MM. Reprinted from Hasani

and Westman (2007).

Copyright 2007, Springer.

c Transesterification of vinyl

esters under the catalysis of

NaOH or KOH in DMSO.

Reproduced from Cao et al.

(2013). Copyright 2013,

American Chemical Society
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with a high DS of higher than 2 in 5 min under

heterogeneous conditions. The authors claimed that

the fast reaction is due to the volatile acetaldehydes

formed by tautomerization of the produced vinyl

alcohol. This can effectively prevent the occurrence of

the reverse reaction and, promote the formation of

cellulose esters. This type of reaction with very short

reaction time is in sharp contrast to the required

reaction time of hours in previously existing methods.

With the development of ionic liquids, transesterifi-

cation is also applied in diverse ionic liquid systems

heterogeneously for the modification of cellulose

(Brand et al. 2017; Hufendiek et al. 2016; Söyler and

Meier 2017; Schenzel et al. 2014; Wen et al. 2017).

Esterification of nanocelluloses

Table 1 lists main methodologies applied for the

esterification of nanocelluloses along with the isola-

tion process or post modification. Most esterification

techniques are generally capable for the esterification

of nanocelluloses. The main challenge is to conduct

the reaction in such a way that it mainly esterifies

hydroxyl groups on the surface of nanocelluloses,

while maintaining the integrity of the crystalline

cellulose structure in the interior (Habibi et al. 2010).

Thus, the reaction should be carried out under mild

heterogeneous conditions to avoid severe polymorphic

conversion or disintegration of nanocelluloses.

During the esterification of nanocelluloses, the

reaction either solely occurs on the surface of

nanocelluloses or occurs inside crystal as bulk reac-

tion, which highly depends on the esterification

Table 1 Summary of main esterification of nanocelluloses

Reaction types Esterifying agents Catalysts Comments References

Inorganic

esterification

Sulfuric acid,

phosphoric acid

– Stable dispersing in water

due to the presence of

negatively charged ester

groups

Araki et al. (2000), Espinosa et al.

(2013) and Revol et al. (1994)

Fischer

esterification

Acetic acid, butyric

acid, citric acid,

malic acid, malonic

acid

Hydrochloric

acid

Applied for the one-pot

isolation of CNCs with

desired functions

Braun and Dorgan (2009), Braun et al.

(2012), Sobkowicz et al. (2009),

Spinella et al. (2016) and Yu et al.

(2016)

Mechanochemical

esterification

Succinic anhydride, n-

dodecyl succinic

anhydride, hexanoyl

chloride

– Together with mechanical

shearing for the one-pot

isolation of CNF

Huang et al. (2013), Huang et al.

(2012), Huang et al. (2016) and Kang

et al. (2017)

Pentafluorobenzoyl

chloride

Pyridine Rao et al. (2015)

Transesterification Vinyl acetate, vinyl

cinnamate, canola oil

fatty acid methyl

ester

Potassium

carbonate

Under mild conditions with

long reaction time

Cetin et al. (2009) and Sebe et al.

(2013)

Solvent-free

esterification

Palmitoyl chloride – Using palmitoyl chloride

vapor

Berlioz et al. (2009), Fumagalli et al.

(2013a), Fumagalli et al. (2013b) and

Rodionova et al. (2013)

Iso-octadecenyl

succnic anhydride, n-

tetradecenyl succinic

anhydride

– Esterified in solid state Yuan et al. (2006)

Acetic anhydride Citric acid Using esterifying agents as

solvents

Ramirez et al. (2017)

Aromatic carboxylic

acids

Sulfuric acid Espino-Perez et al. (2016) and Espino-

Perez et al. (2014)
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strategies and reaction conditions. Sassi and Chanzy

studied the structural aspects of acetylation of cellu-

lose using a mixture of acetic acid and acetic

anhydride, and using toluene as non-swelling agent

to stop swelling and dissolution of acetylated chains

(Sassi and Chanzy 1995). With the presence of the

toluene as non-swelling agent, acetylated chains

remain insoluble and surrounded the crystalline core

of unreacted cellulose chains, leading to great degrees

of acetylation without imparting the morphological

features. In contrast, without the presence of non-

swelling agent, acetylated chains are stripped from the

surface of the crystal into solution, leading to severe

morphological change (Sassi and Chanzy 1995).

Eyley and Thielemans applied a quantitative strategy

using a term of surface degree of substitution with the

maxium value of 1.5 to assess the level of modification

carried out on CNCs (Eyley and Thielemans 2014). In

contrast to CNCs, quantification of surface modifica-

tion on NFC and BNC is more challenging using this

mehod due to diverse of the crystalline structures and

difficulty to measure the size of the naofibers

precisely. Furthermore, the modification level can

be, to some extent, qualitatively verified by examining

the changes of crystallinity structure and morphology

before and after the modification reactions. This

review emphasizes more particularly on the diverse

functional groups introduced on nanocelluloses via

esterification routes in order to confer to specific

properties. While, it will not be discussed specificity

whether the reaction solely occurs on the surface of

nanocelluloses.

In situ esterification during the isolation

of nanocelluloses

The main in situ esterification reactions for the

isolation of CNCs are sulfation and phosphorylation

that occur during the hydrolysis process (Chen et al.

2014; Espinosa et al. 2013; Klemm et al. 2011; Lu

et al. 2015b; Revol et al. 1994). During the isolation of

CNCs via hydrolysis, sulfuric acid or phosphoric acid

reacts with the surface hydroxyl groups via an

esterification process allowing the introduction of

anionic sulfate ester groups or phosphate ester groups.

The sulfation and phosphorylation levels depend

highly on diverse parameters including temperature,

acid concentration, reaction time, and ratio of acid to

cellulose. Compared with phosphorylation, sulfation

results in a much higher content of sulfate groups on

the surface of resulting CNCs (Espinosa et al. 2013).

The other example of in situ esterification is the

production of surface modified CNCs via one-pot

reaction methodology, which combines organic acid-

catalyzed Fischer esterification and concurrent cellu-

lose acid hydrolysis of amorphous cellulose chains

(Fig. 3a) (Braun and Dorgan 2009; Braun et al. 2012;

Sobkowicz et al. 2009; Spinella et al. 2016; Yu et al.

2016). For example, acetylated and butylated CNCs

were synthesized using acetic or butyric acid that both

serves as the reaction solvent and reagent for the

esterification at 105 �C with the presence of

hydrochloric acid as catalyst and hydrolyzing agent

(Braun and Dorgan 2009). The resulting acetylated

and butylated CNCs with size of 200–300 nm in

length and about 20–50 nm in width are of similar

dimensions compared to those obtained by hydrochlo-

ric acid hydrolysis alone. Meanwhile, via this one-pot

technique using a catalytic quantity of hydrochloric

acid and a bio-based organic acid, such as, citric, malic

or malonic acid, various anionic carboxylated CNCs

were extracted (Spinella et al. 2016). Thus, this one-

pot reaction methodology is quite versatile because the

organic acids used for the Fischer esterification can be

selected to introduce the desired functionalities.

However, it is still challenging to strictly control the

esterification degrees. A high degree of esterification

would result in significant depletion of the interchain

hydrogen bonding network, which severely impact

morphological and crystalline structure of CNCs. So,

this approach is still not widely applied for the

isolation and modification of CNCs.

This one-pot strategy also has been applied to

produce surface-esterified NFC together with mechan-

ical shearing. Herrick et al. (1983) presented a method

for the isolation of acetylated NFC using a mixture of

acetic acid and acetic anhydride with sulfuric acid as

catalyst. Huang and coworkers reported a similar one-

step procedure via mechanochemical strategy in an

organic solvent aiming to esterify and defibrillate

cellulose fibers simultaneously (Huang et al.

2012, 2013, Huang et al. 2016; Kang et al. 2017;

Rao et al. 2015). The method consists of ball milling

solid cellulose in a non-aqueous solvent loaded with

an esterifying agent. The authors claim that the

organic solvents and esterifying agents have dramatic

effects on nanoscale dispersion and surface derivati-

zation of NFC. Milling cellulose with hexanoyl
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chloride in DMF gave hexanoylated NFC with excel-

lent dispersibility in several organic solvents

according to the redispersing results in diverse

solvents, and milling cellulose with

Fig. 3 a Reaction scheme illustrating the one-pot methodology

for the production of acetylated CNCs using a mixture of acetic

and hydrochloric acid. Reproduced from Braun and Dorgan

(Braun and Dorgan 2009) Copyright 2009, American Chemical

Society. b Schematic illustration for the fabrication of surface-

stearoylated cellulose NPs from microcrystalline cellulose.

Reprinted from Wang et al. (2015b) Copyright 2015, Wiley
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pentafluorobenzoyl chloride in the mixture of pyridine

and DMF resulted in hydrophobic fluorinated NFC

(Huang et al. 2012, 2013; Rao et al. 2015). Water-

dispersible succinylated CNF was also obtained by

milling cellulose fiber with succinic anhydride in

DMSO for 20 h (Huang et al. 2012, 2016). The

produced CNFs are around 20 nm wide and several

micrometers long.

Moreover, a new method leading to novel surface-

esterified cellulose nanoparticles (NPs) after a one-

step esterification of cellulose fibers under heteroge-

neous conditions was developed using fatty acid

chlorides in pyridine and a follow-up purification

process (Fig. 3b) (Wang et al. 2015b, 2017). The

obtained surface-stearoylated cellulose NPs and sur-

face-undecenoated cellulose NPs have sphere-like

morphology with a relatively high size distribution

from a few dozens to hundreds of nanometer. Both

surface-esterified cellulose NPs have high DS of

around 1.4, which would result in significant depletion

of the interchain hydrogen bonds, leading to complete

conversion of surface hydroxyl groups to esters. With

the presence of numerous fatty acid ester groups on the

surfaces, they were well dispersible in various non-

polar organic solvents, such as, tetrahydrofuran,

dichloromethane, cyclohexane, which significantly

promoted their compatibility with non-polar com-

pounds for the formation of functional composites.

Post esterification of nanocelluloses

Owing to its ease and straightforwardness, modifica-

tion of hydroxyl groups present at the surface of

nanocelluloses through esterification is widely used.

Sulfation has been conducted to introduce stable elec-

trostatic charges on the surface of nanocelluloses for

more stable aqueous dispersions. In addition to the

in situ sulfation during the isolation of nanocelluloses

via sulfuric acid-catalyzed hydrolysis, CNCs pro-

duced by hydrochloric acid hydrolysis could also be

post-sulfated using sulfuric acid to introduce sulfate

moieties in a controlled fashion (Araki et al.

1999, 2000).

Nanocelluloses and functionalized nanocelluloses

are excellent reinforcing components for the construc-

tion of materials with diverse shapes, such as films,

fibers and aerogels (Eichhorn 2011; Klemm et al.

2011; Lam et al. 2012; Moon et al. 2011; Olsson et al.

2010; Walther et al. 2011). The dispersibility of

nanocelluloses within the matrix and their interfacial

interaction with other matrix components play pivotal

roles for the final properties of the obtained nanocom-

posite materials (Fujisawa et al. 2013). The poor

dispersibility of nanocelluloses in non-polar solvents

and weak interactions with non-polar synthetic poly-

mers are the main drawbacks limiting the full perfor-

mance of nanocelluloses. In order to improve all these

issues, nanocelluloses are generally surface-modified

with functional groups, such as alkyl groups, synthetic

polymer chains via ‘‘grafting to’’ or ‘‘grafting from’’

techniques (Fujisawa et al. 2011; Habibi et al. 2008;

Johnson et al. 2011; Kan et al. 2013; Siqueira et al.

2009).

Surface-modified nanocelluloses by alkylacyl

chains are supposed to be well miscible with other

synthetic polymers and exist as reinforcing nanofillers

in diverse materials, including films and foams (Blaker

et al. 2009; Fujisawa et al. 2011; Habibi et al. 2010;

Johnson et al. 2011; Siqueira et al. 2009). Generally, a

post esterification of hydroxyl groups on nanocellu-

loses surface has been used for the immobilization of

alkylacyl groups on nanocelluloses surface. Among

diverse post esterification reactions for the introduc-

tion of alkyl groups, acetylation of nanocelluloses is

the most widely investigated approach. The acetyla-

tion of nanocelluloses could be conducted using acetic

anhydride in the presence of catalyst such as sulfuric

acid, perchloric acid and pyridine. These procedures

have been applied to produce surface-acetylated

nanocelluloses using CNCs (Kim and Song 2016;

Naeli et al. 2017; Sassi and Chanzy 1995; Yang et al.

2013), NFC (Fahma et al. 2014; Mashkour et al. 2015;

Rodionova et al. 2011) and BNC (Kim et al. 2002;

Tome et al. 2011). Furthermore, a novel straightfor-

ward route using citric acid as catalyst for the surface

esterification of CNCs was proposed (Ramirez et al.

2017). Only the acetic anhydride was used in sufficient

excess to allow CNCs dispersion and proper suspen-

sion agitation, while no additional solvent was

required. By tuning the amount of loaded catalyst,

surface-acetylated CNCs with different DS (i.e. DS =

0.18 and 0.34) were obtained. Under the moderate

conditions at 120 �C for 3 h, only the surfaces of

CNCs were esterified, while the initial crystalline

structure of CNCs remained unaffected during the

chemical treatment.

Furthermore, transesterification has been adopted

in the modification of nanocelluloses using vinyl
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esters for the attachment of diverse acyl moieties

including acetyl (Cetin et al. 2009; Sebe et al. 2013),

cinnamoyl (Sebe et al. 2013) and maleyl (Yuwawech

et al. 2017). The group of Gilles Sèbe studied the effect

of reaction time on the acetylation of CNCs by

transesterification of vinyl acetate in DMF at 94 �C

using potassium carbonate as catalyst (Cetin et al.

2009). During the first stage of the reaction (less than

2 h), only the surface of the CNCs was modified, while

their dimensions and crystallinity remained

unchanged. By increasing the reaction time, the inner

crystallites were increasingly attacked by the vinyl

acetate, leading to an erosion of the CNCs structure

and loss of crystallinity. But, the DS of the acetylated

CNCs under these reactions has not been reported.

Wei et al. (2017) esterified the CNCs successfully by a

sustainable and green transesterification approach

using vegetable oil fatty acid methyl ester for the first

time. After transesterification, the degree of crys-

tallinity and crystalline structure of nanocrystals were

not changed, but the esterified CNCs showed higher

thermal stability and smaller particle size than unmod-

ified CNCs.

Esterification of nanocelluloses with acid chlorides

usually resulted in significant bulk modification,

leading to a severe loss of crystallinity and high

degree of substitutions. The esterification of nanocel-

luloses with acid chlorides under vapor phase has also

been achieved at 150 �C using vacuum to remove

hydrochloric acid (Berlioz et al. 2009; Fumagalli et al.

2013a, b; Rodionova et al. 2013). CNCs were modified

with palmitoyl chloride vapors through this gas-phase

esterification process, and the palmitoylated CNCs

showed the feasibility to form gels in toluene (Berlioz

et al. 2009; Fumagalli et al. 2013a). By varying the

process parameters including palmitoyl chloride

quantity, reaction time and pressure, palmitoylated

CNCs presenting DS ranging from 0.1 to nearly 2. The

authors claimed that the esterification proceeds essen-

tially from the surface to the core of the CNCs

(Fig. 4a). Indeed, with the DS in the range of 0.3–0.8,

palmitoylated CNCs still kept their integrity and the

modification occurred only at their surface. For higher

DS values, the palmitoylation progress had damaged

the crystallinity of the sample because the remaining

surface shells of highly modified cellulose chains

easily soluble or swollen in non-polar solvent. Though

this route improved significantly the compatibility of

CNCs with non-polar substances for use in

nanocomposites, the authors did not evaluate the

effect of such extensive esterification and damage of

crystalline structure on the mechanical properties and

thermal stability of the resulting nanocrystals.

Peng et al. (2016) demonstrated a comparative

study of various surface esterification methods of

CNCs via acid anhydrides, acid chlorides, acid

catalyzed carboxylic acids and in situ activated

carboxylic acids to introduce acetyl-, hexanoyl-,

dodecanoyl-, oleoyl-, and methacryloyl-functions.

Acid anhydrides exhibited better grafting efficiency

than other reagents as low molecular weight moieties

with short aliphatic chains. In addition, utilizing in situ

activated carboxylic acids was more viable approach

for long aliphatic chain grafts. The preservation of

structural morphology and crystallinity of grafted

CNCs were confirmed using transmission electron

microscopy and X-ray diffraction. The dispersibility

of such surface-esterified CNCs in organic solvents

was generally improved. In addition, the surface

hydrophobization of CNCs by fatty acids, biodiesel,

or plant oils was conducted via a green process using

an organic solvent as a one-pot method (Yoo and

Youngblood 2016).

An environmental friendly surface esterification

route was presented by Yuan et al. (2006) using

alkenyl succinic anhydride emulsions in water to

compatibilize the CNCs with non-polar media. The

emulsions were simply mixed with CNCs aqueous

suspensions, freeze dried, and the resulting solid was

heated to 105 �C. Due to the low DS of around 0.02,

the obtained surface-esterified CNCs retained their

morphological and crystalline integrity. They were

also well dispersible solvents with widely different

polarities, such as, DMSO with a very high dielectric

constant of 46.45 and 1,4-dioxane with a quite low

dielectric constant of 2.21. Another environmental

friendly and simple approach, named SolReact, has

been developed for a solvent-free esterification of

CNCs using aromatic carboxylic acids (Fig. 4b)

(Espino-Perez et al. 2014, 2016). In this process, the

critical point is the use of an in situ solvent exchange

strategy for utilizing the aromatic carboxylic acids as

grafting agent as well as solvent media. Furthermore,

the reactant can be easily recycled and does not suffer

from chemical degradation due to moderate reaction

temperatures.

Grafting of polymer chains on the surface of

nanocelluloses can be achieved by esterification
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directly or indirectly via ‘‘grafting to’’ or ‘‘grafting

from’’ approaches. The ‘‘grafting to’’ approach was

used to graft maleated polypropylene by esterification

onto the surface of CNCs in the suspension of toluene

(Ljungberg et al. 2005). The resulting grafted CNCs

showed very good compatibility and high adhesion

when dispersed in atactic polypropylene. A similar

approach was described by Mulyadi et al. who grafted

maleated styrene block copolymers on the surface of

NFC through esterification (Mulyadi and Deng 2016).

The grafted polymer fraction of 25 wt% by gravimet-

ric measurement was obtained. The presence of the

grafted polymer promoted the surface hydrophobicity

and better thermal stability. Furthermore, a significant

number of surface esterification reactions were used as

precursors for further polymerization on the surface of

nanocelluloses via ‘‘grafting from’’ approach. For

instance, 2-bromoisobutyryl bromide (BriBB) as the

initiator agent was attached to the hydroxyl groups of

nanocellulose by esterification for further polymer-

ization (Majoinen et al. 2011; Wu et al. 2015; Yi et al.

2008). This strategy has been used extensively for the

creation of initiating sites for the polymerization on

the surface of nanocellulose. Moreover, Wang et al.

(2016a) developed a multi-step approach using ester-

ification as first step to attach bis(acyl)phosphane

oxide photoinitiators on CNCs surface for polymer

grafting.

Fig. 4 a Scheme of the

progress of the gas-phase

esterification of CNCs with

palmitoyl chloride with

(a) DS = 0, (b) DS = 0.25,

(c) DS = 0.75, and

(d) DS = 1.5. Reprinted

from Berlioz et al. (2009)

Copyright 2009, American

Chemical Society.

b SolReact strategy and

chemical mechanism for the

functionalization of CNCs

with aromatic carboxylic

acids. Reprinted from

Espino-Perez et al. (2014)

Copyright 2014, American

Chemical Society
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Potential applications

Esterification represents one of the most versatile

transformation strategy of cellulose as it provides easy

access to a variety of functional cellulose-based

materials. In the past few decades, the investigation

and utilization of esterified cellulose compounds in

functional nanomaterials have attracted a tremendous

level of attention because of their exceptional prop-

erties. Various functional nanomaterials using ester-

ified cellulose compounds have been developed for a

broad range of applications, which include but not

limited to sensors, mechanical reinforcement, biomed-

ical materials and interfacial materials (e.g. superhy-

drophobic surfaces) (Dong et al. 2014; Geissler et al.

2013; Heinze et al. 2006; Mulyadi and Deng 2016;

Sehaqui et al. 2014; Zhang et al. 2015b). The

properties and potential applications mainly depend

on the introduced ester moieties.

Esterified cellulose containing charged moieties

The charged ester moieties, such as sulfate ester

groups, can be introduced in cellulose chains using

inorganic acids. The cellulose sulfates show excellent

rheological and gel-forming properties, allowing

themselves for potential applications as film-forming

materials, anionic polyelectrolytes, and biologically

active compounds (Klemm et al. 2005; Klemm et al.

1998a). Thus, over the past few decades, cellulose

sulfates have undergone intensive study (Kamide and

Saito 1994; Mestechkina and Shcherbukhin 2010;

Zhang et al. 2015c). Due to the presence of negative

charged sulfate ester groups, cellulose sulfates exhibit

unique biological properties (Zhang et al. 2015c),

leading to a wide use in biotechnology and pharma-

ceutics to encapsulate enzymes and cells (Bucko et al.

2005; Vikartovska et al. 2007), as inhibitors for HIV

viruses and anticoagulant effectors (Agarwal et al.

2010; Van Damme et al. 2008).

In combination with polycations, e.g., chitosan and

poly(dimethyldiallyl-ammonium chloride) (Poly-

DADMAC), polyanionic cellulose sulfates can form

polyelectrolyte catanionic complexes that possess

huge potential for the encapsulation and immunoiso-

lation of biological matters (Dautzenberg et al. 1999;

Gericke et al. 2009a; Schaffellner et al. 2005; Stiegler

et al. 2014; Zhu et al. 2010). For example, research

showed that chitosan-cellulose sulfate complex films

can be used as controlled drug release systems (Zhu

et al. 2010). Cellulose sulfate/PolyDADMAC com-

plexes showed diverse advantages including

stable physiochemical properties, robust mechanical

strength and biocompatibility (Zhang et al. 2015c).

Gericke et al. demonstrated a typical encapsulation

process with water-soluble cellulose sulfate and

PolyDADMAC (Gericke et al. 2009a). The entrapped

glucose oxidase within the resulting cellulose sulfate/

PolyDADMAC capsules retained its activity. Gericke

et al. (2009b) also synthesized water-insoluble and

ionic liquid-soluble cellulose sulfate with a low DS of

0.16 for the formation of spherical capsules with

PolyDADMAC (Fig. 5a). The stable spherical cap-

sules with encapsulated glucose oxidase were obtained

via a one-pot procedure. Similar polymeric capsules

also prepared using cellulose sulfate and PolyDAD-

MAC (Zeng et al. 2013). These polymeric capsules are

of particular interest for microalgae and microorgan-

isms cultivation. Moreover, cellulose sulfates possess

osteogenic activity which exceeds that of heparin if

derivatization takes place predominantly at the C6

position, with lower sulfation at the C2 position

(Peschel et al. 2012). Thus, cellulose sulfates represent

a highly effective alternative to heparin in tissue

culture applications as component of scaffolds, able to

bind, protect and control the release of growth factors.

Highly sulfated celluloses enhanced cell growth

remarkably without any additional growth factor at

lower concentrations (Peschel et al. 2010).

Moreover, the negative charge of sulfated cellulose

provides accessibility to electrostatic adsorption and

conjunction with cationic groups or molecules (Huang

et al. 2014). Horikawa et al. prepared a highly

conductive poly(3,4-ethylene-dioxythiophene)

(PEDOT) system using sulfated cellulose as dopants

(Horikawa et al. 2015). PEDOT/sulfated cellulose

composite films were prepared via in situ oxidative

polymerization of 3,4-ethylene-dioxythiophene in an

aqueous solution of sulfated cellulose, followed by the

formation of films via spin-coating. It was confirmed

that the electrical conductivity of PEDOT was

enhanced by doping with sulfated cellulose. Novel

oriented surfaces were prepared to promote skeletal

muscle myogenesis (Dugan et al. 2013). The orienta-

tion was achieved by depositing a monolayer of

negatively charged sulfated CNCs on a positively

charged polyelectrolyte surface using a flexible and

facile spin-coating method. Wang et al. (2016b)
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reported that sulfated BNC is a promising material for

the preconcentration and separation of heavy metals.

Furthermore, Thielemans et al. (2009) prepared

nanostructured thin films of sulfated CNCs using a

simple drop-coating procedure. The negatively

charged sulfate groups inhibit the transfer of nega-

tively charged species through the film, while the

diffusion of neutral species is only slightly hindered.

More specifically, the positively charged species

including Ru(NH3)6
3? was adsorbed by the film,

whereas the negatively charged species, such as,

IrCl6
3-, were excluded by the film.

The other charged ester group is phosphate ester

group. The introduction of phosphate groups to

cellulose chains via the formation of ester bonds

significantly decreases the inflammability of cellulose.

During combustion, phosphorus generates a polymeric

form of phosphoric acid as a char layer, which acts as a

shield protecting the material from oxygen (van der

Veen and de Boer 2012). Thus, cellulose phosphates

have potential to be used as flame-retardant materials

(Aoki and Nishio 2010; Cullis et al. 1992; Ghanadpour

et al. 2015; Pan et al. 2014). Ghanadpour et al. (2015)

prepared thermal stable and flame-retardant nanopa-

per sheets using phosphorylated NFC (Fig. 5b). The

resulting nanopaper sheets showed self-extinguishing

properties after consecutive applications of a methane

flame for 3 s and did not ignite under a heat flux of

Fig. 5 a Polyelectrolyte complex spherical capsules prepared

from cellulose sulfate and PolyDADMAC. Reprinted from

Gericke et al. (2009b) Copyright 2009, American Chemical

Society. b Flammability test of (b1) filter paper and (b2) flame-

retardant nanopaper sheets prepared from phosphorylated NFC.

Reprinted from Ghanadpour et al. (2015) Copyright 2015,

American Chemical Society
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35 kW/m2. By introducing the anionic phosphate

groups into the cellulose backbone, cation-exchange

properties are conveyed to the polymer chains,

showing excellent chelating properties. Thus, cellu-

lose phosphates were used as metal-chelating poly-

mers, as cation exchange materials and as adsorbents

for the treatment of pollution (Bezerra et al. 2014; Illy

et al. 2015; Li et al. 2002; Oshima et al. 2008; Padilha

et al. 1995). Furthermore, phosphorylated BNC was

found to be effective as an adsorbent for proteins with

a high adsorption capacity via electrostatic interaction

(Oshima et al. 2011).

Moreover, cationic amino groups were introduced

to cellulose backbone by ring-opening esterification

reaction using various lactams (Zarth et al. 2011). The

resulting cationic esters are capable of forming

polyelectrolyte complexes as capsules for drug deliv-

ery. Cationic pyridinium groups were grafted onto

CNCs via a one-pot simultaneous esterification using

4-(bromomethyl)benzoic acid or 4-(1-bro-

moethyl)benzoic acid and TosCl in pyridine (Van-

damme et al. 2015). Resulting positively charged

CNCs were relatively insensitive to the inhibition of

flocculation by algal organic matter showing potential

application for microalgae harvesting. Imidazole-

grafted CNCs with a low DS of 0.06 were successfully

synthesized by in situ esterification with 4-(1-bromo-

methyl)benzoic acid activated by TosCl (Eyley et al.

2015). The resulting imidazole-grafted CNCs were

shown to have a pH-responsive flocculation property

due to switching of the surface charge, which can be

adjusted using CO2.

Esterified cellulose containing aliphatic moieties

Cellulose acetate is the commercially most important

cellulose ester due to its wide potential applications in

fibers, plastics, films, membranes, and coatings (Bifari

et al. 2016; Dias and de Pinho 1999; Hou et al. 2012;

Kochkodan and Hilal 2015; Lu et al. 2015a; Qasim

et al. 2015; Shibata 2004). Moreover, diverse cellulose

acetate nanocomposites have potential applications as

packaging, separation media, biomedical technologies

and sensing (Bifari et al. 2016; Konwarh et al. 2013;

Shibata 2004). For instance, Saha et al. (2016)

prepared nanocomposite films using cellulose acetate,

polyethylene glycol and cetyltrimethylammonium

bromide modified montmorillonite. These cellulose

acetate-based nanocomposites can be used as active

packaging material due to their good antimicrobial

activity as well as non-toxicity. Yliniemi et al. (2014)

reported composite membranes by means of spin-

coating technique containing cellulose acetate

and poly(N,N-dimethylaminoethyl methacrylate)

(PDMAEMA) for dissolution control of magnesium,

which is critical for using magnesium as temporal

medical implants. The dissolution control is achieved

by the limited ion and H2 flow through the membranes,

and the permeability of the membrane can be adjusted

by altering the cellulose acetate/PDMAEMA ratio

(Fig. 6a). A class of ultrafiltration membrane for

separating proteins was developed by Nagendran and

Mohan by comprising cellulose acetate and sulfonated

poly(ether imide) (Nagendran and Mohan 2008).

Wongsasulak et al. (2010) have proposed the use of

cellulose acetate and egg albumin as an edible

nanofibrous thin films, which could aid new function-

alities regarding the in vivo controlled release of

pharmaceuticals and nutraceuticals in the gastroin-

testinal tract. Kulterer et al. (2012) demonstrated an

in situ nanoprecipitation technique for preparing

composite NPs from cellulose acetate and hydrophilic

polysaccharides including hydroxyethyl cellulose,

carboxymethyl cellulose, low molecular weight chi-

tosan and amino cellulose. The functional composite

NPs exhibited great potential for the dispersion and

delivery of hydrophobic substances in aqueous sys-

tems. A new system for the delivery of naproxen as

nonsteroidal anti-inflammatory drug was developed

by using electrospinning cellulose acetate nanofibers

loaded with ester prodrugs (Wu et al. 2010b). The

in vitro release experiment indicated that sustained

drug release from nanofibers mats based on cellulose

acetate was observed for a long duration of time.

Glassy carbon electrode, fabricated after coverage

with cellulose acetate and following modification with

prussian blue, could be used as a novel hydrogen

peroxide sensor (Wu et al. 2010a). Such electrode

exhibited excellent stability in weak acidic and neutral

media as well as good catalytic ability for the

reduction of hydrogen peroxide. In particular, the

microporous structure of cellulose acetate at the

surface provided a protective environment to improve

the operational stability of prussian blue. Wang et al.

(2012) designed two prototypes of highly sensitive and

selective solid state biocompatible fluorescence sens-

ing materials for Cu2? and Cr3? based on 1,4-

dihydroxyanthraquinone (1,4-DHAQ, a fluorophore)
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doped cellulose nanofiber. 1,4-DHAQ-doped nanofi-

bers have been achieved via electrospinning with

subsequent deacetylation, and used for the detection of

Cu2? and Cr3? in the nanomolar range with higher

selectivity than other common metal ions. In addition,

an organic vapor-sensitive composite film comprising

cellulose acetate and a representative compound 1-n-

butyl-2,3-dimethylimidazolium hexafluorophosphate

was developed using a solvent precipitation method by

Regmi et al. (2012).

Furthermore, as a commercial product, cellulose

acetate can be used as a starting material for further

modification to form advanced materials. For exam-

ple, superhydrophobic nanofibrous mat is obtained via

electrospinning technique of surface-modified cellu-

lose acetate using perfluoroalkoxysilanes (Arslan et al.

2016). The introduction of the perfluoroalkyl groups

tailored their chemical and physical features as oil–

water separation materials (Fig. 6b). Chen et al.

(2009) found that asymmetric ultrafiltration mem-

branes of cellulose acetate-graft-polyacrylonitrile

copolymers exhibited remarkably high water perme-

ability of about 100 times higher than the pure

cellulose acetate membranes, leading to excellent

oil/water separation performance.

Cellulose esters with longer aliphatic moieties other

than acetic ones, such as cellulose fatty acid esters,

were also attempted to construct advanced nanomate-

rials. Cellulose fatty acid esters exhibit plasticized

polymer behavior (Crepy et al. 2011). Thus, these

esters with hydrophobic nature show the potential to

be used as film and coating material with unique

wetting ability. Bras et al. (2007) studied the water

vapor permeability of fully substituted cellulose esters

Fig. 6 a Dissolution

control of magnesium by

cellulose acetate (CA)/

PDMAEMA membranes.

Reprinted from Yliniemi

et al. (2014) Copyright

2014, American Chemical

Society.

b Superhydrophobic

nanofibrous mat from

surface modified cellulose

acetate as oil–water

separation materials.

Reprinted from Arslan et al.

(2016) Copyright 2016,

American Chemical Society
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with long aliphatic chains. Fully substituted cellulose

esters with acyl substituents ranging in size from C2 to

C18 were synthesized using the acid chloride method.

These esters were further transferred into film via

solvent-casting or compression-molding at elevated

temperatures. The resulting films were found to

represent effective barriers to water vapor transport.

Zhang et al. (2015b) reported the fabrication of

moisture-responsive films using cellulose stearoyl

esters with a low DS of 0.3. In the presence of a local

moisture gradient, such films could reversibly fold and

unfold as rhythmical bending motions due to the

absorption and desorption of water molecules at the

film surface. Geissler et al. (2013) demonstrated an

efficient path to superhydrophobize diverse surfaces

with non-uniform shapes, such as metal spoon, plastic

fork or textile fabric using NPs from cellulose

tristearate (Fig. 7). In addition, slippery surfaces were

fabricated using nanoporous cellulose lauroyl ester

films comprising lubrication fluid. Such surfaces

exhibited both excellent liquid repellency upon liquid

impact and anti-icing properties (Chen et al. 2014).

Furthermore, a highly water-repellent aerogel was

prepared using stearoylated NFC with a very low DS

(\ 0.1) by supercritical CO2 drying process (Gran-

strom et al. 2011). Such aerogels maintained stable in

water for 24 h without disintegration or collapse after

drying.

Esterified cellulose containing aromatic moieties

Espino-Perez et al. (2016) esterified CNCs surfaces

with aromatic functions using phenylacetic acid or

hydrocinnamic acid. These CNCs with aromatic

functionalities at surface showed macroscopically

hydrophobic and water-repellent characters, while

the water vapour sorption isotherms were only slightly

affected. Moreover, such CNCs were able to rever-

sibly take up large quantities of the volatile aromatic

compound anisole, while the non-aromatic compound

cyclohexane was much less absorbed. Furthermore,

diverse hydrophobic dye molecules could be

Fig. 7 a Schematic illustration of the synthesis of cellulose

tristearate. b Scanning electron microscope images of surface

and side profile of a nanostructured superhydrophobic surface

consisting of cellulose tristearate NPs. c Superhydrophobization

of various surfaces by deposition of cellulose tristearate NPs via

spray coating. Reprinted from Geissler et al. (2013) Copyright

2013, Royal Society of Chemistry
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incorporated into NPs prepared by self-assembly of

hydrophobic cellulose acetate phthalate (Schulze et al.

2016). The thermal reactive carboxyl moieties in

phthaloyl groups were further employed for coupling

C-reactive protein anti-bodies. These composite NPs

based on cellulose acetate phthalate were well suit-

able as dye labels in immunoassay applications.

Furthermore, many aromatic moieties show unique

photo activities, such as fluorescence. Grigoray et al.

(2017) synthesized fluorescent cellulose derivatives,

namely N-(3-propanoic acid)-1,8-naphthalimide and

N-(4-butanoic acid)-1,8-naphthalimide cellulose

esters with various DS (Fig. 8a). The derivatives

contained a cationic moiety, namely (3-car-

boxypropyl)trimethylammonium chloride. While flu-

orescent cellulose esters were used as surface

modifying agents adsorbed irreversibly onto the pulp

fibers mainly via irreversibly charge-directed self-

assembly. As the result of surface modification, the

fibers became fluorescent and they emitted visible

light under UV light exposure (Fig. 8b). Under black

light illumination, the modified fibers fluoresced and

were visually distinguishable from the reference

fibers, which made them be potential as authenticity

indicator in packaging materials (Fig. 8c). Won-

draczek et al. (2012) decorated the cellulose with

high amounts of photochemically active chromene

moieties after the homogeneous reactions with of

2-[(4-methyl-2-oxo-2Hchromen-7-yl)oxy]acetic acid

and cationic (3-carboxypropyl) trimethylammonium

chloride via activation with CDI. The obtained water

soluble photoactive cellulose-based polyelectrolytes

are of interest for the design of smart materials. The

6-O-phthalocyanine cellulose derivative, 2,3-di-O-

myristyl-6-O-[p-(9(10),16(17),23(24)-tri-tert-butyl-2-

zinc(II)phthalocyaninyl-benzoyl)cellulose was syn-

thesized via the esterification of 2,3-di-O-myristyl

cellulose with the mono-substituted phthalocyanine

derivative containing phenolic carboxyl groups (Saito

et al. 2014). Langmuir–Blodgett monolayer films from

the phthalocyanine-containing cellulose derivatives

exhibited a photocurrent generation performance in

the range of 600–700 nm. This property led such

compound to potential application as solar cell

materials. Grigoray et al. (2015) used the same

synthesis approach to produce coumarin-containing

cellulose polyelectrolytes, which were used to deco-

rate pulp fibers to prepare light-responsive pulp

fibers/fibrous materials with light-controllable

mechanical properties. In addition, fluorescent CNCs

with carbazole and coumarin functionalities were

synthesized via a one-step esterification reaction using

carbazole-9-yl-acetic acid and coumarin-3-carboxylic

acid respectively (Sirbu et al. 2016).

Esterified cellulose containing terminal active

moieties

Some ester moieties contain terminal active groups

acting as precursors for further modifications. BriBB

has been extensively used for the esterification of

cellulose to form a macroinitiator for further atom

transfer radical polymerization (ATRP) (Eyley and

Thielemans 2014). CNCs grafted with fluorescent and

thermo-responsive poly(N-isopropylacrylamide)

(PNIPAAM) brushes were prepared via ATRP using

BriBB as initiator in the methanol/water mixtures with

various volume ratios (Fig. 9a) (Wu et al. 2015).

Obtained surface-grafted CNCs showed thermo-en-

hanced fluorescence owing to the thermal-driven

chain dehydration of the grafted PNIPAAM brushes

(Fig. 9b, c). Liu et al. (2014) showed a new method to

synthesize anti-adhesive surfaces based on cellulose-

derived materials by grafting the surfaces with zwit-

terionic polymers through surface-initiated ATRP

after the immobilization of BriBB on cellulose

membrane surface. These cellulose membrane sub-

strates after the modification with zwitterionic brushes

exhibited excellent anti-biofouling ability with low

non-specific adsorption of proteins, platelet adhesion

and cell attachment. Sui et al. (2008) utilized ionic

liquid and DMF as solvent system to synthesize

cellulose macroinitiator by esterification with BriBB,

and the macroinitiator was further grafted with

PDMAEMA via ATRP to obtain pH- and tempera-

ture-responsive cellulose-g-PDMAEMA copolymers.

Using similar approach, Xu et al. (2008) prepared azo

polymers-grafted CNCs and the modified CNCs

showed two types of liquid crystal formation, ther-

motropic and lyotropic properties. Navarro et al.

(2016) converted NFC into fluorescently labeled

probes using the NFC-based macroinitiators that were

synthesized via esterification of the hydroxyl groups

on NFC using 2-bromo-2-methylpro-pionic acid. Such

NFC-based macroinitiators initiated radical polymer-

ization of methyl acrylate and acrylic acid N-hydrox-

ysuccinimide ester, resulting in NFC with surface-

attached block copolymers. A luminescent probe was
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further coupled to the modified NFC through an

amidation reaction, leading to an excellent biomarker

sensing property.

In addition to BriBB, the double bond and thiol

groups have been reported as active sites for further

modification. Nielsen et al. (2010) demonstrated a

versatile synthetic strategy to obtain fluorescent CNCs

for pH sensing. The double bond was introduced onto

CNCs by esterification, followed by the thiol-ene

Michael addition to introduce amine functionality,

which further coupled with the succinimidyl ester dyes

containing fluorescein-50-isothiocyanate (FITC) and

rhodamine B isothiocyanate (RBITC) (Fig. 10a).

Rosilo et al. (2013) presented the functionalization

of rigid native CNCs by esterification using 10-unde-

cenoyl chloride to introduce a dense hydrocarbon

chain brush containing cross-linkable terminal double

bonds. Composite films with 0–80 wt% of such

modified CNCs within a poly(butadiene) rubber

matrix were prepared via cross-linking by UV-light

Fig. 8 a Synthesis scheme of N-(3-propanoic acid)-1,8-naph-

thalimide and N-(4-butanoic acid)-1,8-naphthalimide esters of

cellulose and the corresponding mixed naphthalimide (3-

carboxypropyl)trimethylammonium chloride esters of cellulose

via in situ activation. b Visualization of fluorescent modified

pulp fibers by epi-fluorescence microscope under exposure of

UV light (up) and white light (down). c Picture of fiber hand-

sheets using mixture of neat pulp fibers and modified fibers with

different ratios under black light illumination. Reprinted from

Grigoray et al. (2017) Copyright 2016, American Chemical

Society
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initiated thiol-ene click reaction to mimic biological

nanocomposites involving self-assembled and space-

filed structures of hard reinforcing and soft toughening

domains. Furthermore, pH-responsive NPs with

switchable sizes using a modified nanoprecipitation

method were prepared using cellulose 10-undecenoyl

ester (CUE) as precursor (Wang et al. 2016c). The

CUE with a DS of 3 was synthesized after the

esterification of cellulose with 10-undecenoyl chloride

under heterogenous condition. Then, CUE was mod-

ified by photo-induced thiol-ene reaction using

2-(diethylamino)ethanethiol hydrochloride and

2-(dimethylamino)ethanethiol hydrochloride, in order

to introduce amine groups. The obtained cellulose

derivatives containing tertiary amines were further

transformed into NPs with average diameters in the

range of 90–180 nm, which exhibited pH-responsive,

size-switchable properties as shown by alternately

changing the pH value between 7 and 4. Moreover,

cellulose esters with thiol groups were also applied to

manufacture reversibly fluorescent NPs (Wang et al.

2015a). First, the thiol groups were introduced into

Fig. 9 a Synthesis route for the immobilization of the initiator

on CNCs and subsequent surface grafting of poly(NIPAAM-co-

EANI). b Conformation of grafted PNIPAAM brushes below

the lower critical solution temperature (LCST) and above the

LCST. c Fluorescence emission spectroscopy of surface-grafted

CNCs (0.02 wt% in H2O) and EANI (10-6 M in H2O).

Reprinted fromWu et al. (2015) Copyright 2015, Royal Society

of Chemistry

123

3722 Cellulose (2018) 25:3703–3731



cellulose chains after the esterification by 3,30-

dithiodipropionic acid and further reductive cleavage

of disulfide bonds. Then, rhodamine spiroamide was

immobilized via thiol-ene reaction between cellulose

thiopropionyl ester and rhodamine B methacrylamide.

The rhodamine spiroamide endows the NPs from this

cellulose ester reversible fluorescence in response to

UV-illumination, temperature and pH, which allows

such NPs for potential applications in biomedical

sensing and imaging.

In addition, Navarro et al. have chemically modi-

fied NFC with furan and maleimide groups through

esterification with 2-furoyl chloride and a Diels–Alder

cycloaddition with 1,10-(methylenedi-4,1-

phenylene)bismaleimide (Navarro et al. 2015). The

modified NFC fibers were selectively labeled with

fluorescent probes, i.e. 7-mercapto-4-methylcoumarin

and fluorescein diacetate 5-maleimide, through two

specific click chemistry reactions as Diels–Alder

cycloaddition and Thiol-Michael reaction. These two

luminescent dyes could be selectively labeled onto

NFC, yielding a multicolored NFC that could be

imaged using a confocal laser scanning microscope

(Fig. 10b). In addition, Kim et al. (2015) prepared a

novel group of robust aerogels based on maleic acid-

grafted NFC, which exhibited good network stability

in water and springiness after compression. Such

advantageous mechanical properties are derived from

Fig. 10 a Dual fluorescent labelled CNCs for pH sensing. (a1)

Synthesis of fluorescent labeled CNCs with succinimidyl ester

dyes; (a2) AFM image of fluorescent labeled CNCs; (a3)

suspensions of pH responsive fluorescent labeled CNCs

(0.1 wt%) at increasing pH values; (a4) emission spectra of

pH responsive fluorescent labeled CNCs at different pH values

(kex = 490 and 540 nm for FITC and RBITC, respectively); (a5)

plot of intensity ratios versus pH values. Reprinted from Nielsen

et al. (2010) Copyright 2010, Royal Society of Chemistry.

b Multicolor fluorescent labeled NFC by click chemistry. (b1)

Surface chemical structure of the multicolored NFC; (b2)

Combined overlay fluorescence-bright-field images of multi-

colored NFC using confocal laser scanning microscopy.

Reprinted from Navarro et al. (2015) Copyright 2015, American

Chemical Society

123

Cellulose (2018) 25:3703–3731 3723



the grafted maleic acid that reacted with hypophos-

phite forming a chemically cross-linked network.

Esterified cellulose containing other more complex

structures

Various substitutes with more complex chemical

structures and desired functions have been introduced

to esterify cellulose with the aim of constructing high-

performance advanced materials. Kuhnt et al. (2015)

created a group of new release systems by decorating

CNCs with thiol-ene adduct of b-damascone by

esterification (Fig. 11a). A short linker serves to bind

the fragrance molecules to the CNCs surface and

permits their slow release via a retro 1,4-Michael-type

reaction (Fig. 11b). The data showed that b-damas-

cone is indeed slowly released, and that the quantity of

fragrance released after 3 days is up to 80 times higher

than reference experiments, where the tissue was

treated with the neat fragrance under identical condi-

tions. Rosin-grafted CNCs were synthesized via

esterification of CNCs using nontoxic abietic acid

(de Castro et al. 2016). Such rosin-grafted CNCs

exhibited a high antibacterial activity against gram-

negative bacteria and a modest antibacterial activity

against gram-positive bacteria. Recently, CNCs were

surface-functionalized with b-cyclodextrin (b-CD)

using succinic acid or fumaric acid as bridging agents

by esterification (Castro et al. 2016). The resulting b-

CD-grafted CNCs showed promising potential to be

used as bioactive materials that are able to release

antibacterial molecules over a prolonged period of

time.

Conclusion

Esterification of cellulose is among the most versatile

modifications leading to a wide range of structural and

functional types with valuable properties. The current

review attempts to provide a general overview of

chemical transformations of cellulose via esterifica-

tion for the functional applications. We emphasized

various methodologies, materials and achievements

for esterified cellulose compounds and provided an

overview of their applications as functional materials

on a large scale. From the scientific point of view,

esterification can yield a broad spectrum of cellulose

ester derivatives with DS in the range of 0–3, which

were promoted and expanded continually due to the

introduction of new esterification methodologies. The

maintained challenges are the precise esterification for

the introduction of functionalities onto cellulose in

diverse size scales including cellulose polymeric

Fig. 11 a Synthesis of b-damascone decorated CNCs (b-CD-CNCs). b Reaction mechanism of the base-induced retro 1,4-Michael-

type reaction of thiol-ene adducts of b-damascone. Reprinted from Kuhnt et al. (2015) Copyright 2015, Royal Society of Chemistry
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chains, nanocellulose, and cellulose microfibers and at

the same time the persistence of cellulose polymeric

chains or supramolecular morphologies.

Remarkably, nanocelluloses including CNCs,

NFC, BNC and other unconventional nanocelluloses

are currently the objects of intense scientific curiosity

and have been intensively studied over the last

10 years. A wide variety of esterification approaches

have been carried out on nanocelluloses ranging from

simple in situ esterification to sophisticated post

surface modifications, which all impart desired func-

tions to the surface of nanocelluloses. Most of these

approaches carried out in nanocelluloses have con-

centrated on the compatibilization of nanocelluloses

with other matrices via turning their hydrophilic

nature for the formation of composite functional

materials. Esterification has leads to the highest

reported surface DS at around 1.5, but the average

DS is usually much lower to avoid any damage either

to the morphology or to the native crystalline structure

of nanocelluloses.

To achieve a broad understanding of the application

of esterified cellulose compounds, the review touched

upon selected important ester moieties that can lead to

advanced materials in many fields including drug

delivery, tissue engineering, water purification, catal-

ysis, electrical devices, sensing and more. To be more

specific, the conventional cellulose esters, such as

cellulose sulfates, cellulose acetates and cellulose

fatty acid esters, have been intensively studied to

develop new advanced functional materials. Mean-

while, a wide variety of new functional ester moieties,

such as pyridinium, chromene, coumarin, rhodamine

spiroamide and polymeric chains, have been intro-

duced by esterification in cellulose directly or indi-

rectly to import new properties.
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