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Prolonged disorders of consciousness (DoC) are characterized by extended

disruptions of brain activities that sustain wakefulness and awareness and are

caused by various etiologies. During the past decades, neuroimaging has been

a practical method of investigation in basic and clinical research to identify

how brain properties interact in di�erent levels of consciousness. Resting-state

functional connectivity within and between canonical cortical networks correlates

with consciousness by a calculation of the associated temporal blood oxygen

level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals

the brain function of patients with prolonged DoC. There are certain brain

networks including the default mode, dorsal attention, executive control, salience,

auditory, visual, and sensorimotor networks that have been reported to be altered

in low-level states of consciousness under either pathological or physiological

states. Analysis of brain network connections based on functional imaging

contributes to more accurate judgments of consciousness level and prognosis

at the brain level. In this review, neurobehavioral evaluation of prolonged

DoC and the functional connectivity within brain networks based on resting-

state fMRI were reviewed to provide reference values for clinical diagnosis and

prognostic evaluation.
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Introduction

The incidence of disorders of consciousness (DoC) has increased sharply due to the

development of first-aid and intensive care techniques over the years. DoC is characterized

as states of unconsciousness induced by severe brain injuries involving trauma (O’Donnell

et al., 2019; Giacino et al., 2020), hemorrhage (Crone et al., 2014), or hypoxic–ischemic

encephalopathy such as cardio-pulmonary resuscitation (Weng et al., 2017; Peran et al.,

2020) or poisoning (De Paepe et al., 2012). The temporal division of DoC includes the

acute phase from a few days or weeks after brain injury when patients get treated in the

emergency room or intensive care unit, with the addition of subacute and chronic phases

when patients spent time in a rehabilitation center, care facilities, or home (Edlow et al.,

2021). Subsequently, prolonged DoC was used to describe subacute and chronic phases

of patients ≥28 days following the primal brain injury (Giacino et al., 2018), including

vegetative state (VS)/unresponsive wakefulness syndrome (UWS) and minimally conscious

state (MCS; Schnakers, 2020). With an in-depth understanding and continuous evolution,

the recognition of a locked-in syndrome (LIS) state (cognitively intact but complete or near-

complete paralysis) and non-behavioral MCS (MCS star or MCS∗, patients in the VS/UWS

state who may preserve partial brain activities that resemble those in MCS) have provided

a more precise distinction between patients in a comatose state and conscious-wakefulness

(Hocker and Wijdicks, 2015; Thibaut et al., 2021).
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It is generally accepted that the cumulative effect of

differentiation of central thalamic neurons and active inhibition

of neocortical and striatal neurons leads to extensive regression

of synaptic activity and low cerebral metabolic rates, ultimately

generating a range of unresponsive symptoms in patients with

DoC (Thibaut et al., 2019; Edlow et al., 2021; Zheng et al., 2022).

Meanwhile, the recovery of consciousness is regarded as closely

relevant to the restoration connections within corticothalamic

neuronal activity (Wagner et al., 2020; Edlow et al., 2021). Based

on these theories, resting-state functional magnetic resonance

imaging (fMRI) is recommended as part of the clinical multimodal

evaluation and provides valuable information for brain networks

to detect those possibly subtle transformations in brain activities

(Snider and Edlow, 2020; Norton et al., 2023).

In this review, we discuss the clinical behavioral evaluations

of prolonged DoC and target studies that investigated the

correlation between prolonged DoC and separate brain networks.

To explore their diagnostic and evaluation value in patients with

prolonged DoC, we searched PubMed for articles published in

English between 1 January 2012 and 31 October 2022 using

the following search terms: “consciousness disorders[Mesh],” and

“fMRI,” “network,” or “assessment.” Seven major brain networks

involved “default mode network,” “salience network,” “executive

control network,” “dorsal attention network,” “auditory network,”

“visual network,” and “sensorimotor network” (Raichle, 2011,

2015). We screened clinical trials, case reports, and review articles

that included patients with prolonged DoC and were relevant to the

topic. Additional references were collected and reviewed from the

included articles’ bibliographies.

Neurobehavioral evaluation of
prolonged DoC

Accurate diagnosis of prolonged DoC is not only necessary for

the medical teams to make prognosis estimation but also provides

meaningful information and helps family members participate in

valid clinical care support and clinical decision-making. However,

a misdiagnosis rate of 30–40% was reported from consensus-based

expert diagnoses (Schnakers et al., 2009), includingmisdiagnoses of

those that have emerged from the vegetative state into a VS/UWS

or LIS into a VS or an MCS (van Erp et al., 2015; Vanhaudenhuyse

et al., 2018). Here are a few possible reasons. First, the performance

of patients with prolonged DoC fluctuated incessantly, especially

when some inconsistent responsiveness could only be elicited via

certain stimulation or in specific situations. Second, measurement

outcomes could be largely influenced by the patient’s own disease

or complications (e.g., cranial nerve palsies, quadriplegia, severe

spasticity, and dystonia). In addition, the assessor’s experience (lack

of extended observation of patients or under training) may also

have led to considerable reporting bias and error in the results

(Childs et al., 1993). It follows that limited clinical examination

may lead to an underestimation of consciousness levels in patients

in a VS/UWS or an MCS, and the diagnostic accuracy of bedside

qualitative examination needs to be enhanced.

The American Congress of Rehabilitation Medicine reviewed a

number of neurobehavioral scales for DoC that have been applied

to diagnose and predict functional outcomes (Seel et al., 2010).

Of these, the most accepted and recommended was the Coma

Recovery Scale-Revised (CRS-R), which includes six subscales—

audition, vision, motion, mouth movement, communication, and

arousal level—and is widely used to diagnose and classify different

levels of consciousness owing to its reliable validity and reliability

(Tamashiro et al., 2014; Binder et al., 2018; Han et al., 2018;

Iazeva et al., 2018; Zhang et al., 2019). In addition, the Full

Outline of Unresponsiveness Score (FOUR) showed substantial

evidence of good interrater reliability and could reduce the

misdiagnosis of locked-in syndrome and MCS for patients in

the intensive care unit (Kondziella et al., 2020). The Sensory

Modality Assessment Technique (SMART; da Conceicao Teixeira

et al., 2021), Western Neuro Sensory Stimulation Profile (WNSSP;

Cusick et al., 2014), Sensory Stimulation Assessment Measure

(SSAM; Park and Davis, 2016), Wessex Head Injury Matrix

(WHIM; Shiel et al., 2000), and Disorders of Consciousness Scale

(DOCS; Pape et al., 2014) are recommended for assessing DoC

with moderate reservations. Rather, the Coma/Near-Coma Scale

(CNC; Weaver et al., 2021) may be suitable for patients with

major reservations. Although standardized behavioral assessment

scales might outperform clinical expert diagnosticians’ bedside

evaluation for signs of consciousness (Schnakers et al., 2009), even

a single assessment of CRS-R might result in a misdiagnosis rate

of 36% in patients with prolonged DoC (Wannez et al., 2017). The

accuracy rating of these diagnosis scales is still limited due to the

battery of confusion factors in patients’ and assessors’ experiences

listed earlier.

Neuroimaging and
electrophysiological assessment

To date, diverse auxiliary inspection tools have been used in

the diagnosis and assessment of prolonged DoC. Positron emission

tomography (PET) was first used to identify preserved but covert

cortical processing evidence in patient in VS (Menon et al., 1998).

The application of PET provides evidence for cortical activation

in patients with prolonged DoC and helps to identify different

unconsciousness states (Laureys and Schiff, 2012). By contrast,

the electroencephalogram technology (EEG) method is widely

applicable and could also provide objective information for the

evaluation efficacy of patients with prolonged DoC, especially

appropriate for bedside inspection (Chennu et al., 2017). EEG-

derived neuronal signals including both speech-tracking responses

and temporal dynamics of whole-brain neuronal networks were

reported to be related to the behavioral diagnosis of consciousness

and wakefulness prediction (Gui et al., 2020; Zhang et al., 2022).

Continuous EEG and quantitative EEG could also provide effective

value for diagnosis and initial consciousness recovery (Hwang

et al., 2022; Lutkenhoff et al., 2022). In addition, functional near-

infrared spectroscopy (fNIRS) is another non-invasive method

to quantitatively detect brain function based on cerebral oxygen

information in real time (Kempny et al., 2016).

Compared with EEG and fNIRS, fMRI has higher spatial

resolution and better integration with structural lesions and

is more available than PET (Ansado et al., 2021). Assessment

during the resting state is particularly opportune for patients with

prolongedDoC since patient interaction and application of possible
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experimental setups are mostly difficult and infeasible. Recent

studies have measured the brain’s spontaneous neural activities

by resting-state fMRI (rs-fMRI), which used blood-oxygen-level-

dependent (BOLD) contrast to reflect fluctuations and uncover the

important process underlying consciousness (Palanca et al., 2015;

Zhang et al., 2021). The BOLD signal was thought to provide

an indirect measure of brain function that is closely related to

ongoing neuronal events in the brain (Phillips et al., 2016) and

could be used to forecast human behavior (Ward et al., 2020). The

superiority of its sensitivity and technical simplicity have made

other non-invasive imaging techniques of fMRI outshone (Jann

et al., 2015). Of note, it has been suggested that spontaneous

BOLD fluctuation is not random but specifically correlated with

the spatially distinct systems and brain networks in the resting

human brain (Keller et al., 2011). It is, thus, possible that functional

connectivity, measured by the BOLD signal, is disturbed in brain

networks in prolonged DoC.

The intrinsic activities of the brain are linked to multiple

temporal and spatial-related functional networks through

integrating structural or functional connections of different

cortical regions. It has been reported that the brain networks of

prolonged DoC changed from that when in a comatose state until

they recovered consciousness (Cavanna et al., 2018; Threlkeld

et al., 2018; Crone et al., 2020) and potentially predicted recovery

(Wu et al., 2015; Zou et al., 2017; Zhang et al., 2018). Moreover, the

detectable rate of intrinsic cortical activity in MCS seems higher

than that in a coma or VS/UWSwith resting-state fMRI (Kondziella

et al., 2020). This suggests that the whole-brain dysfunction after

brain injury may underlie the abnormal network connectivity

of prolonged DoC, which is strongly correlated with the level

of consciousness. Moreover, by calculating functional temporal

correlations within spatially separated neurophysiologic activities

from fMRI, functional connectivity could be used to identify covert

signatures of consciousness in patients with prolonged DoC and

reflect the inherent brain activities (Bodien et al., 2019; Snider and

Edlow, 2020).

Functional networks in prolonged DoC

As we know, two primary positively correlated components

are involved in consciousness, wakefulness, and awareness (Naro

et al., 2017). In particular, awareness can be subdivided into

two parts: environment (external) and self (internal) awareness

(Demertzi et al., 2011). It has been identified that the default mode

network (DMN) exhibits internal activities, also referred to as the

“task-negative network” (Andrews-Hanna, 2012; Andrews-Hanna

et al., 2014), whereas the lateral frontoparietal areas related to

the network of dorsal attention (DAN; Mallas et al., 2021) and

executive control (ECN; Martin-Signes et al., 2019) mediate task-

driven stimuli (Xin et al., 2021; i.e., task-positive network). These

two sets of regions are reported to be negatively correlated with

healthy adults, anesthetic patients, or patients with prolonged DoC

(He et al., 2014; Palanca et al., 2015), both under resting-state or

attention-demanding processes (Lyu et al., 2021). In another case,

according to the regulating function, the brain networks could be

classified into higher order networks [the DMN, ECN, DAN, and

salience network (SN)] and sensory-related (perceptual processing)

lower order networks including the sensory input auditory network

(AN; Braga et al., 2017), visual network (VN; Wang Y. et al., 2020),

and sensorimotor network (SMN; Liang et al., 2015; Figure 1).

Notably, altered functional brain networks have been observed in

different types of unconsciousness states, such as in deep sleep

(Samann et al., 2011; Boly et al., 2012; Houldin et al., 2021; Rue-

Queralt et al., 2021; Tarun et al., 2021), anesthesia (Qiu et al., 2017;

Golkowski et al., 2019; Malekmohammadi et al., 2019; Wang S.

et al., 2020), pathological hypnosis (Cojan et al., 2015; McGeown

et al., 2015; Jiang et al., 2017), and psychedelics (Tagliazucchi et al.,

2016; Preller et al., 2019; Luppi et al., 2021a). As for patients with

prolonged DoC, the functional connectivity in key regions of each

network was reported to be correlated with CRS-R scores from

different distributions and functions (Demertzi et al., 2015).

Default mode network (DMN)

The default mode network contains a set of brain regions that

are more active during the resting state than when they focus on

features of the external environment, such as attention-demanding

tasks (Buckner and Krienen, 2013; Raichle, 2015). Compared with

the regions of the cortex that is more directly constrained by

extrinsically driven neural activity, the DMN took on roles that are

both more complex and less directly influenced. This network is

active in internally oriented mentation such as “mind-wandering,”

“daydreaming,” or “self-referential processing” (Konishi et al., 2015;

Yeshurun et al., 2021). To date, the DMN has been the most

studied network in prolonged DoC, and its functional connectivity

is not only critical for the detection of consciousness levels but also

involved in the process of awareness emergence in these patients

(Fernandez-Espejo et al., 2012; Norton et al., 2012; Crone et al.,

2015; Qin et al., 2015a). The within-network correlations were

recognized as positive DMN connectivity, and anti-correlations

between networks were recognized as negative DMN connectivity

(Di Perri et al., 2016). Functional connectivity within the DMNwas

found to be decreased in patients with DoC, ranging from those

in an MCS and UWS to those in a coma state (Fernandez-Espejo

et al., 2012; Norton et al., 2012; Crone et al., 2015; Hannawi et al.,

2015; Coulborn et al., 2021), and remained intact in patients with

locked-in syndrome (Vanhaudenhuyse et al., 2010).

Generally, there are three major fields in the DMN: the

medial prefrontal cortex (mPFC), the posterior cingulate cortex

(PCC), and the adjacent precuneus plus the lateral parietal cortex

(LPC; Leech and Sharp, 2014; Raichle, 2015), which constitute

the primary intrinsic functional connectivity in patients with

DoC (Wu et al., 2015). The neuropathological basis of the DoC

includes the interruption of connections within the DMN, which

involves key regions, such as PCC and mPFC (Silva et al., 2015).

The mPFC is a large, complex, and heterogeneous area with

the highest baseline metabolic activity at rest (Gusnard et al.,

2001) and could be broadly classified into distinct subregions

along with the dorsal to the ventral axis: the medial precentral

area, anterior cingulate cortex (ACC), prelimbic cortex (PL), and

infralimbic cortex (IL; Xu et al., 2019). Among these regions,

some researchers have suggested that the dorsal medial prefrontal

cortex (dmPFC) contains the dorsal region of the ACC and the

PL, while the ventral PL, IL, and dorsal peduncular cortex belong
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FIGURE 1

Functional networks in prolonged DoC. The distribution of seven primary networks that control the resting state of functional connectivity in

prolonged DoC. DMN, default mode network; PCC, posterior cingulate cortex; mPFC, medial prefrontal cortex; LPC, lateral parietal cortex; DAN,

dorsal attention network; IPS, intraparietal sulcus; TPJ, temporoparietal junction; ECN, executive control network; DLPFC, dorsolateral prefrontal

cortex; PPC, posterior parietal cortex; SN, salience network; ACC, anterior cingulate cortex; AIC, anterior insula cortex; FIC, frontoinsular cortices;

AN, auditory network; VN, visual network; SMN, sensorimotor network; SMA, supplementary motor area.

to the ventral medial prefrontal cortex (vmPFC; Jasinska et al.,

2015). Resting-state activity in themPFCwas regarded as correlated

with private self-consciousness (Huang et al., 2016). Of which,

functional activation of the dmPFC subsystem was considered,

specifically associated with rumination (Zhou et al., 2020) and

perceptual memory (Schwiedrzik et al., 2018). By contrast, as the

sensory-visceromotor component of the DMN, the vmPFC plays a

role in theory-of-mind ability, processing self-relevant information,

and greater extinction memory in humans’ ability to modulate fear

(Hebscher et al., 2016; Hiser and Koenigs, 2018; Nejati et al., 2021).

Fast network oscillations are consistently larger in the dmPFC than

in the vmPFC region in anesthetized animals (Gretenkord et al.,

2017), which reflects possible different inputs to mPFC subregions

in prolonged DoC.

Intrinsic functional connectivity strength in the

PCC/precuneus was found to be significantly correlated with

consciousness level, recovery outcome, and differential diagnosis

(Bonfiglio et al., 2014; Palhano-Fontes et al., 2015; Flamand et al.,

2018). The PCC serves as a main connector hub within functional

neural distinct networks in the DMN and plays an important role

in integrating the neural representations of self-location, body

ownership, and internally directed thoughts (Leech et al., 2012;

Guterstam et al., 2015). As sleep depth increased, contributions of

the PCC and mPFC to the DMN seem to be decreased (Samann

et al., 2011). In addition, it was suggested that the PCC is the only

DMN node that interacts with most of the other DMN nodes and

is strongly co-activated with the mPFC (i.e., dmPFC and vmPFC;

Fransson and Marrelec, 2008; Supekar et al., 2010). This region is

characterized by the BOLD signal time series during rest conditions

and is distinguished from task-positive network regions (Yu et al.,

2011). Notably, patients in VS showed significantly reduced

self-inhibition and increased oscillations in the PCC compared

with those of patients in MCS and healthy people (Crone et al.,

2015). Furthermore, the DMN may be related to the prognosis

prediction of patients with prolonged DoC. It was evident that

PCC and left LPC connectivity differentiate patients with UWS

who recovered consciousness after 3 months from those who did

not (Qin et al., 2015a), and patients in coma exhibit significantly

enhanced functional connectivity in the PCC/precuneus when

they regained consciousness (Norton et al., 2012; Guo et al., 2019).

These findings indicate that as a relatively independent network

module, the functions of the brain regions within DMN are closely

connected, and the PCC/precuneus and mPFC in DMN are found

to be important brain network hubs in prolonged DoC (Silva et al.,

2015; Wang et al., 2019).

Salience network (SN)

The salience network contributes to the identification of

stimulus processing that guides behavior (Heine et al., 2012;Miyata,

2019), attention control (Peters et al., 2016), or interoceptive

awareness/conscious perception (Chong et al., 2017; Ueno et al.,

2020). This network could also be activated by interoceptive stimuli

as part of a representation of all feelings from the body, such as

pain (Veréb et al., 2020). The SN comprises the dorsal ACC, the

bilateral anterior insula cortex (AIC), and the orbital frontoinsular

cortices (FIC) and has connections to subcortical regions, including

the amygdala, the substantia nigra/ventral tegmental area, the

thalamus, and the limbic structures (Veréb et al., 2020). It was

reported that AIC, especially the anterior and ventral (inferior)

areas, are involved in the representation of all subjective feelings

from both body and emotional awareness, such as self-recognition

and time perception (Craig, 2009), and play a fundamental role

in human awareness. The SN is non-uniformly impaired in

unconsciousness states, such as in anesthetic (Bonhomme et al.,
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2016; Golkowski et al., 2019), psychedelic (Lebedev et al., 2015), or

epileptic states (Lee et al., 2018). Similar to the DMN, the reduced

functional connectivity in this key network is also correlated

with the degree of impaired consciousness in prolonged DoC.

Functional connectivity of the SN is reduced in patients in MCS

but hardly identified in patients in VS/UWS (Demertzi et al.,

2015). Moreover, the functional connectivity between the AIC and

ACC may also play a fundamental role in awareness (Luo et al.,

2014) and emotional feelings (Krach et al., 2015). Compared with

MCS, patients in UWS showed significantly reduced functional

connectivity between supragenual ACC and left AIC within the SN

(Qin et al., 2015a).

In addition, the SN may also serve as a “switch” between the

“task-positive” network and the “task-negative” network (Goulden

et al., 2014). First, the SN and the “task-positive” network DAN

are anti-correlated with DMN, including, the SN and DAN having

an inhibitory influence on DMN regions, whereas the DMN

in turn excites SN and DAN regions (Zhou et al., 2018). In

addition, functional connectivity between the SN and another

“task-positive” network ECN was observed to be positively elicited

under hypnosis (Jiang et al., 2017), and it was reported that an

anesthetic-induced unresponsive state generates small increases

in bidirectional connectivity within the SN and ECN (Ihalainen

et al., 2021). Moreover, the structural and functional integrity of

the SN seems to be necessary for efficient regulation of the activity

of the DMN. The structural damage in the SN may specifically

predict abnormalities in DMN function (Bonnelle et al., 2012),

and stimulus inherent salience could attenuate the deactivation

BOLD responses of the PCC in the DMN, which could be offset

by a sufficient level of glutamate in the dorsal ACC (von Düring

et al., 2019). Therefore, it is reasonable to presume that the SN is a

potential neural correlate of consciousness.

Executive-control network (ECN)

As stated, awareness is related to a large-scale frontoparietal

network that comprises two distinct subsystems in processing

the self and external-related components of awareness (Haugg

et al., 2018). In the composition of awareness, except for the

impaired DMN that is involved in internal awareness, the ECN

acts more like a lateral and dorsal frontoparietal network involved

in the awareness of the environment and related to externally

guided awareness (Luppi et al., 2021b). It is centered on the

dorsolateral prefrontal cortex (DLPFC) and the posterior parietal

cortex (PPC), and also includes the frontal eye fields (FEF) and

part of the dorsomedial prefrontal cortex (dmPFC) that coordinate

executive function (Chen et al., 2013; Friedman and Robbins, 2022;

Menon and D’Esposito, 2022). This network regulates behavioral

measures of executive control (e.g., attention, working memory,

and cognitive control), including the voluntary control of novel

and complex situations (Martin-Signes et al., 2019). Moreover,

the anterior ECN was reported to be involved in interference

control, which modulates perceptual sensitivity and conscious

perception (Colás et al., 2017). Previous studies suggested that

there are neural correlates between executive control and conscious

perception in frontal–parietal regions by functional connection

analysis (Martin-Signes et al., 2019; Martín-Signes et al., 2021).

Compared with the wake state, the within-network functional

connectivity of the DMN, SN, and ECN was observed to be

significantly reduced under unresponsive states (drug sedation or

deep sleep; Guldenmund et al., 2017). In addition, fewer patients

in MCS and VS/UWS showed components of neuronal origins for

bilateral ECN compared with healthy controls (Demertzi et al.,

2014). It could be speculated that the ECN constitutes a crucial

neural substrate of the global workspace that enables consciousness

control.Moreover, it has been suggested that the reduced functional

connectivity between the DLPFC and precuneus enables the former

a popular therapeutic target for non-invasive brain stimulation in

prolonged DoC as to restore the disrupted balance between the

ECN and DMN (Qin et al., 2015b; O’Neal et al., 2021).

Dorsal attention network (DAN)

The dorsal attention network (DAN) is a vital part of the

“task-positive” network and typically modulates brain activity to

exert control over thoughts, feelings, and actions during task

performance (Humphreys and Sui, 2016; Lu et al., 2019). The

DAN could be subdivided into endogenous and exogenous control

components. The endogenous attention control components link

the dorsal frontoparietal regions and cover the intraparietal sulcus

(IPS), while exogenous components are associated with the ventral

frontal and temporoparietal regions, including the temporoparietal

junction (TPJ; Bourgeois et al., 2013; Ahrens et al., 2019). It

was reported that functional connectivity within the DAN was

reduced under anesthetic-induced light sedation (Wang et al.,

2021). Moreover, the DAN is also negatively correlated with the

DMN and constitutes negative DMN connectivity (Fox et al., 2005;

Favaretto et al., 2022). In comparison, the DMN mediates the

recurrence of thoughts experienced during past events, whereas the

DAN may contribute to the visuospatial attention distribution of

episodic memory features (Stawarczyk et al., 2018). As the anti-

correlation between the spontaneous activity of the DMN and

DAN increased, patients’ behavioral performance became more

consistent, and these negative correlations seem to be decreased

proportionally under anesthesia (Boveroux et al., 2010). It was

reported that the switching between these two networks is crucial

for conscious cognition and might be a more credible marker for

tracking alterations of consciousness even than the positive DMN

connectivity in patients with prolonged DoC (Di Perri et al., 2016).

In any event, the disruption in both positive DMN connectivity

and negative DMN connectivity seemed always to be increased

with the improvement of consciousness (i.e., from UWS, MCS, and

emergence fromMCS to healthy controls; Boly et al., 2009; Di Perri

et al., 2016).

Auditory, visual, and sensorimotor
networks

As is well-known, the direct clinical diagnosis of prolonged

DoC is mainly based on the behavior responses reflected from

auditory, visual, and sensorimotor cortices (Kondziella et al., 2020).

The visual system consists of the primary, lateral, and occipital

visual networks including the occipital lobe and the fusiform gyrus
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(Heine et al., 2012; Wang Y. et al., 2020). Interestingly, there were

studies suggesting that the activity and connectivity in lower order

networks appear to be less affected under unresponsive states, while

higher order brain networks are significantly weakened (Boveroux

et al., 2010; Kirsch et al., 2017; Wang et al., 2021). For instance,

the functional integrity of higher order networks was severely

disrupted by light sedation when lower level networks were found

to be globally preserved (Liang et al., 2015). Patients in MCS might

also preserve large-scale cortical networks associated with language

and visual processing (Giacino et al., 2006). However, other studies

suggested that the functional activities of low-order networks in

prolonged DoC are reduced, especially in patients in VS/UWS, and

all these networks have a certain capacity to discriminate against

patients with prolonged DoC (Demertzi et al., 2015; Medina et al.,

2022). Specifically, decreased connectivity between visual and SMN

(Amico et al., 2017) and ECN (Mikell et al., 2015) was observed in

unresponsive patients, respectively. The exact reason is not clear,

but we suspect that the inconsistent results may be partly due to

different etiologies or inducements, as well as different analysis

methods of brain networks.

In contrast, more studies have explored AN elicited by voice

stimulation under task-state fMRI, which may be related to

the prognosis of prolonged DoC (Di et al., 2007; Wang et al.,

2015). Nevertheless, the functional connectivity of AN at the

resting state could also be used to distinguish patients in an

MCS from those in a VS/UWS, and the reduced connectivity

between the auditory and visual cortices may be more sensitive

to distinguish patients independently (Boveroux et al., 2010;

Demertzi et al., 2015). This might be partly due to the disrupted

anatomical connections in patients with DoC and the direct

comparison between patients in MCS and VS/UWS among these

networks. The regions of the AN encompassed the bilateral

auditory cortices including the superior/transverse temporal gyrus

and are associated with TPJ (Laureys et al., 2000; Demertzi

et al., 2014). Auditory–visual functional connectivity is considered

relevant to multisensory integration, which is indispensable in

predicting forthcoming sensory events and differentiating patients

with prolonged DoC (Boly et al., 2008). In particular, according

to the analysis of network neuronal properties (neuronal vs.

non-neuronal), the DMN and AN were thought to discriminate

patients from healthy subjects with high accuracy (Demertzi et al.,

2014).

Apart from the primary somatosensory and ventrobasal

thalamic nucleus that transmits somatosensory cortical activity,

and the primary motor cortex and the ventral lateral thalamic

nucleus that carry motor control information (Kang et al.,

2016), there is a higher order sensorimotor circuit of the

brain’s global functional network that supports consciousness

in the sensorimotor processing. This circuit is constituted by

the supplementary motor area (SMA), the supragenual ACC,

the bilateral supramarginal gyrus, and the left middle temporal

gyrus (Qin et al., 2021). Prior studies have shown abnormal

activities or connectivity in higher order sensory and motor

regions in patients in a UWS, healthy people who are asleep, or

patients under anesthesia (Mitra et al., 2015; Qin et al., 2021),

while the stimulus-evoked activity of primary sensory regions is

largely preserved.

Discussion

As fMRI has been increasingly applied in the clinical utility

and investigation of neurological diseases, its clinical values in

prolonged DoC are increasingly significant (Albrechtsen et al.,

2022). Previous studies have mainly applied fMRI to the baseline

consciousness assessment and brain function exploration in

prolonged DoC (Crone et al., 2014; Weng et al., 2017; Zhang et al.,

2018), providing insights into the neural mechanisms of brain

networks that have not been fully understood so far. In addition

to brain injury, functional connectivity and network integrity are

also disturbed to varying degrees in aging (Malagurski et al., 2020;

Patil et al., 2021) and neurodegenerative disorders including mild

cognitive impairment, Alzheimer’s disease, Parkinson’s disease, and

amyotrophic lateral sclerosis (Zhu et al., 2021; Miao et al., 2022;

Thome et al., 2022; Zhao et al., 2022). Of which, the DMN is highly

vulnerable. The underlining mechanisms remain unclear so far, but

some studies suggested that the DMN is especially vulnerable to

amyloid deposition (Hampton et al., 2020; Guzman-Velez et al.,

2022) and inconsistently activated across time (Malagurski et al.,

2020).

Here, we focused on the major brain networks that have been

identified as being associated with prolonged DoC in the last few

years. Based on this research, it is determined that prolonged

DoC is associated with severely impaired resting state network

connectivity, especially in higher order (Demertzi et al., 2015;

Kirsch et al., 2017). Notably, numerous studies have indicated that

the impaired functional connectivity within the brain networks is

present in a consciousness-level-dependent manner (Norton et al.,

2012; Crone et al., 2015; Panda et al., 2022; Wang et al., 2022), even

in linear correlation (Di Perri et al., 2016), and most networks seem

to have a high discriminative capacity to separate patients in an

MCS and VS/UWS (Demertzi et al., 2015). Of the seven networks

we listed, the DMN is the most concerned brain network in

prolonged DoC. The functional connectivity strength between the

mPFC and PCC/precuneus has potentially significant value for the

prediction of consciousness awakening (Norton et al., 2012; Guo

et al., 2019). In addition, the negative DMN connectivity including

the anti-correlation between the spontaneous activity of the DMN

and DAN or ECN was also found to be impaired in prolonged DoC

(Boly et al., 2009; Qin et al., 2015b; Di Perri et al., 2016), as well

as the SN may play an important role in switching between “task-

positive” and “task-negative” networks (Goulden et al., 2014; Zhou

et al., 2018).

Apart from consciousness assessment and supportive diagnosis,

recently, fMRI was applied as an evaluation tool to estimate

the therapeutic efficacy of wake-promoting treatment such

as transcranial direct current stimulation (Aloi et al., 2022),

transcutaneous auricular vagus nerve stimulation (Yu et al., 2017),

zolpidem (Rodriguez-Rojas et al., 2013), sensory stimulation (Pape

et al., 2015), amantadine, and transcranial magnetic stimulation

(Bender Pape et al., 2020). In particular, abnormal functional

connectivity as assessed by resting-state fMRI is pivotal in

personalized target identification in neuromodulation therapy (Ren

et al., 2022). This means that fMRI may be an effective technique to

assist in the treatment of prolonged DoC. However, this still needs

a lot of research to confirm. In addition, given that DLPFC is one
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of the most commonly used targets for neuromodulation therapy

in patients with prolonged DoC (O’Neal et al., 2021), ECN may

also serve as an important network for efficacy evaluation as well

as DMN.

Furthermore, although increasing research has been devoted to

exploring the brain networks of prolonged DoC, few studies have

delved into the different etiologies. A previous study analyzed the

fMRI data of 29 patients with cardiac arrest and 14 patients with

traumatic brain injury, the results indicated that posteromedial

cortex disturbance was particularly found in patients with cardiac

arrest, whereas cingulum architectural was found in traumatic

patients (Peran et al., 2020). However, the relationship between

functional networks and different pathological states of the brain

remains poorly understood. Future studies are required to elucidate

differences in functional connectivity between prolonged DoC of

different etiologies, as well as between patients with prolonged

DoC, medicated sedation, or in deep sleep states to facilitate more

accurate diagnosis and the development of personalized treatment.

Moreover, it is worth noting that there is a major challenge

facing the application of fMRI in prolonged DoC, that is, most of

these patients are inapposite for MRI scanning. Whether it is the

intracranial metal, large areas of brain tissue deformation, or the

unconscious headmovement during the process, would all limit the

clinical practice and data analysis of fMRI in prolonged DoC (Desai

et al., 2015; Kirsch et al., 2017). Future compatible technologies

and advanced algorithms are expected to overcome and improve

this problem.

Conclusion

In recent years, the study of neurofunctional imaging in the

field of DoC has evolved from small sample-based studies on areas-

of-interest networks to multicenter across whole-brain network

studies, which significantly advanced our understanding of the

brain function in patients with prolonged DoC at the network level,

allowing them to be dynamically modeled gradually. Meanwhile,

due to the numerous analytical methods of fMRI, one or two

reports are sometimes insufficient to be fully replicated. Further

investigations might aim at larger samples of patients and provide

more objective and cautious evidence.
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