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Preface
The notion of `functorial operational semantics' introduced in this thesis is a cat-egorical formulation (and generalization) of `well-behaved' structural operationalsemantics based on labelled transition systems. This notion has several desirableproperties (such as congruence of the associated strong bisimilarity, and existenceof a dual denotational semantics) and it subsumes existing, concrete schemes (suchas GSOS) for guaranteeing such good behaviour { at least in the case of languagesextending `basic process algebra'. All this is achieved via use of the category theoryof monads and comonads. The thesis also contains a coalgebraic treatment of thetheory of non-well-founded sets which simpli�es and improves some aspects of PeterAczel's original presentation.Non-well-founded sets have played an important rôle in the development of thewhole thesis: by working within Jan Rutten and Jaco de Bakker's project `non-well-founded sets and programming languages semantics', I have had the opportunity ofdistilling the mathematical foundations for the main contribution of the thesis, theintroduction of the functorial approach to operational semantics.Most of the research presented here has been conducted at the CWI, in Ams-terdam. I can hardly imagine a better place to work on a thesis: the serene atmo-sphere, the international contacts, the superb library, the e�cient organization, andthe building itself, with quiet, balanced rooms, have made of this institute an idealplace for conducting pure research.Jaco de Bakker's department at the CWI is part of EuroFOCS, the Europeaninstitute in the logical foundations of computer science. This has o�ered me theopportunity of spending six, most pro�table months at LFCS, Edinburgh, visitingGordon Plotkin, one of whose many contributions to the theory of computer sciencehas been the introduction of the structural approach to operational semantics.When, in the early 80's, it was introduced, the novelty of structural operationalsemantics was that of bringing the mathematics of (structural) induction in theoperational description of the behaviour of programming languages, providing apowerful formal tool for reasoning about programs. The present functorial approachcan be seen as one step further in that direction: based on a suitable interplaybetween inductive and (dual) coinductive principles, it provides a mathematicalde�nition and treatment of `well-behaved' structural operational semantics.The contact with Gordon Plotkin has been crucial both for this thesis and for mygeneral development. Particularly vivid in my memory is the image of a beautifulFebruary of two years ago, when, during some discussions with him, the blackboardvii



looked like self-drawing; the last picture he drew, with \algebras over coalgebras",has been decisive for formulating the notion of functorial operational semantics.The development of this notion, in Edinburgh, has been in
uenced by excitingdiscussions with Marcelo Fiore and Alex Simpson. More generally, Marcelo has beenprecious for my whole research activity.Conceived, for the functorial part, in Edinburgh, this thesis has been written inAmsterdam. Thanks to very frequent reviewing sessions with my supervisors, Jacode Bakker, Bart Jacobs, and Jan Rutten, the writing has rapidly converged to its�nal form, in a natural and serene rhythm.Jaco, one of the pioneers of the mathematical approach to the semantics ofprogramming languages which inspires this thesis, has granted me the room todevelop the mathematics I felt most suitable, free from any prejudice. Almostwithout realizing it, I have written a much more thorough thesis than I had imagined,thanks to his gentle, but steady in
uence.Jan, who brought me to the CWI, has collaborated to the development of coal-gebraic methods in semantics which has been the basis for the research presentedhere. Bart, with his secure knowledge of category theory, has been a constantsource of suggestions, corrections, and improvements. His limpid mind has alwaysbeen available for discussions. Like Jan, he has shown great interest in and hascollaborated to the foundational work on coalgebras.The last step in the preparation of this thesis, the refereeing process, is due toAndy Pitts, who has been very sympathetic to the problems tackled and the methodsused in this thesis. In this preface, I have used many expressions plundered fromhis precise summarizing words.The `palaestra' for my early scienti�c development has been the `AmsterdamConcurrency Group' led by Jaco and including Marcello Bonsangue, Frank de Boer,Franck van Breugel, Arie de Bruin, Joost Kok, Erik de Vink, and Herbert Wiklicky.Nostalgically, I remember the �rst three-sessions talk I gave there, a promising winterof four years ago.Marcello \kamergeno(o)t" Bonsangue, together with Franck room-mate in thebeloved M335, has shared these early developments and my growing interest incategory theory. He is one of the extraordinarily many Italians who, from CatusciaPalamidessi on, have been at the CWI over the years. One of the persons who aremost `responsible' for this Italian `colonization' is Krzysztof Apt; he was also thesupervisor of my \tesi di laurea" for the University of Pisa, in my `prehistorical'time at the CWI.Also at LFCS I have been surrounded by Italians or Italian speakers. One ofthem, Pietro `everywhere' Di Gianantonio, has also been my colleague at the CWIand in the European SCIENCE project `Mathematical Structures in Semantics ofConcurrency'. This project has been an important forum for discussions to me;apart from the CWI, the sites involved have been the university of Koblenz (LutzPriese), Mannheim (Mila Majster-Cederbaum), Pisa (Ugo Montanari), and Udine(Furio Honsell), and the IRISA-INRIA of Rennes, where, in particular, I have had



fruitful contacts with Eric Badouel and Philippe Darondeau.At the CWI, I have enjoyed discussions with Fer-Jan de Vries, Tim Fernando,and Femke van Raamsdonk, the e�cient secretarial support by Mieke Brun�e andMarja Hegt, the technical support by the Computer Help Information Desk, andthe outstanding library service. My visit to Edinburgh has been arranged thanks toGeorge Cleland and Monika Lekuse's help at LFCS.Most of the economic support for this thesis has been provided by the \StichtingInformatica Onderzoek in Nederland" of the Dutch organization for scienti�c re-search (NWO); my grant has been handled in a particularly friendly way by RichardKellermann Deibel and Virginie Meijer-Mes. The remainder of the support has comefrom the SCIENCE project and from EuroFOCS.I have tried to write this thesis in the most unassuming way, trying to com-municate m-my p-personal experience of discovering, through elementary problems,the beauty and necessity of the universals of category theory, a discovery which hasturned my mathematical activity into a \fr�ohliche Wissenschaft".Daniele Turi { Amsterdam, April 1996
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Introduction
\It is all very well to aim for a more `abstract' and a `cleaner' approach tosemantics, but if the plan is to be any good, the operational aspects cannotbe completely ignored. The reason is obvious: in the end the program stillmust be run on a machine { a machine which does not possess the bene�tof `abstract' human understanding, a machine that must operate with �nitecon�gurations. Therefore, a mathematical semantics, which will represent the�rst major segment of the complete, rigourous de�nition of a programminglanguage, must lead naturally to an operational simulation of the abstract en-tities, which { if done properly { will establish the practicality of the language,and which is necessary for a full presentation."Dana Scott, Outline of a Mathematical Theory of Computation\Many modern programming languages are inconsistent with standard math-ematical foundations. The task of �nding sound interpretations for whatit is that computer scientists do strikes this writer as, perhaps, the highesttype of applied mathematics. It is akin to the process that has been goingon throughout the 20th Century with respect to physics. The interactionbetween the mathematicians and the practitioners in each case has resultedin the growth of both subjects."Peter Freyd, Computer Science Contradicts Mathematicslecture at the Int'l Conf. on Category Theoryheld in Como, Italy, July 1990 (see [Fre91])The operational semantics of a programming language accounts for a formal de-scription of the behaviour of the programs, specifying the way programs should beexecuted and the kind of behaviour which should be observable. The operational se-mantics is usually contrasted with the mathematical interpretation of the programscalled denotational semantics.This thesis presents a new mathematical approach to the semantics of program-ming languages aimed at bridging the gap between the operational and the de-notational aspects of semantics. This is based on a suitable interplay between thestandard induction principle which pervades modern mathematics, and the dual`coinduction principle' which has led to non-standard mathematical foundations.1



2 IntroductionIn order to introduce coinduction as the dual of induction, it is convenient tomove from the traditional presentation of induction in the language of set theory toa presentation in the language of category theory . The primitive notions of categorytheory are those of composition and equality of abstract functions called arrows,like the notions of membership and equality of those abstract collections calledsets are the primitives notions of set theory. Now, every statement expressible inthe language of category theory can be straightforwardly dualized by `reversing thearrows'. (Duality principle.)Induction. In set theory, mathematical induction is based on the notion of a well-founded relation, that is, a relation R such that, for every set x, there is no in�nitelydescending chain : : : R x2Rx1Rx0 = xFor instance, one can perform induction on the set N = f0; 1 = s(0); 2 = s2(0); : : :gof natural numbers by using the well-foundedness of the order relation on them0 < s(0) < s2(0) < � � � < sn(0) = nas follows.Recursion Theorem. Given a set X, an element e 2 X and a functiong : X ! X, there exists a unique function f : N ! X from the set ofnatural numbers to the given set such thatf(0) = e and f(s(n)) = g(f(n))for all numbers n 2 N .The value e of the function f at (the least element) 0 (wrt the order relation) is the`base' of the induction and g de�nes the `inductive step'.The fact that standard mathematical constructions are inductive is mirroredby the common assumption that the axioms of set theory include the axiom offoundation which postulates that the set-membership relation `2' is well-founded:for every set x, there exists no in�nitely descending chain: : : 2 x2 2 x1 2 x0 = xThe axiom of foundation allows an inductive (idealized) construction of sets start-ing from the empty set (the base) and recursively applying the power-set operatormapping a set to the set of its subsets. The induction is on those generalized naturalnumbers which are the ordinal numbers.In this thesis, an equivalent categorical formulation of the foundation axiom isgiven which allows for a straightforward dualization. This is best illustrated startingfrom the above recursion theorem:



Introduction 3The recursion theorem can be taken as the de�nition of natural numbers. Thatis, every set N with a distinguished element 0 2 N and a unary operation s : N ! Nsuch that the recursion theorem holds, is isomorphic to the natural numbers. (See,eg, [Mac86, Chapter 2].) As pointed out by Lawvere, the existence/uniquenessstatement of the recursion theorem asserts the universal property characterizingthe natural numbers: initiality . This property underlies induction, not only on thenatural numbers, but in general.Category Theory. The mathematical study of universal properties is called cat-egory theory. It is based on an abstract notion of function called arrowf : X ! Ywhich formally is a triple: name (f), domain (X), and codomain (Y ).A category is a collection of arrows with a composition operation `�' which obeysgeneralized monoidal laws: any two arrows f : X ! Y and g : Y ! Z which `match'in the sense that the codomain of f is the same as the domain of g can be composedY Zgg � ffXto form the arrow g � f : X ! Z; the composition of arrows is associative, ief �(g�h) = (f �g)�h; the domains and codomains of the arrows are called the objectsof the category and for every object X there exists an identity arrow idX : X ! Xwhich is both a left and a right unit for the composition, ie idY � f = f = f � idX .The archetypal category is Set, having sets as objects and functions as arrows.However, it is very misleading (especially at the beginning!) to try and understandthe universals of category theory in terms of Set.The most elementary universal property which an object of a category can enjoyis initiality: an object X is initial in a category if, for every object Y of the category,there exists an arrow f : X ! Y from X to Y and, moreover, this arrow is unique.The basic way of understanding the natural numbers as an initial object is by re-garding them as an object hN; 0; si in the category having as objects triples hX; e; ti,where X is a set with a distinguished element e 2 X and a function t : X ! X onit. The arrows f : hX; e; ti ! hX 0; e0; t0i of the category are functions f : X ! X 0such that f(e) = e0 and f(t(x)) = t0(f(x))(It is easy to verify that the above objects and arrows form a category with com-position and identities as in Set.) Then the recursion theorem says exactly that thetriple hN; 0; si is initial in this category. (Notice that in the category Set the initialobject is the trivial empty set.) Conversely, since initial objects, like all universals,



4 Introductionare unique up to isomorphism, the initial object of this category de�nes the naturalnumbers up to isomorphism.Next, a series of abstractions is necessary in order to generalize this speci�c formof initiality.Firstly, notice that the element e 2 X of a set X can be written as a functionfrom the one-element set 1 = f�g to the set X; that is, one can identify a functione : 1 ! X from the one-element set 1 to a set X with its value e(�) 2 X at theunique element � of 1. Then the recursion theorem amounts to having an object1 0�! N s�! N such that for every object 1 e�! X g�! X, there exists a uniquefunction f : N ! X withf � 0 = e and f � s = g � fDiagrammatically, using dashed arrows to denote arrows given by universal proper-ties, one has that the following diagram commutes.
XX

s N
1 g ffe
1 0 N

Secondly, every pair of functions with the same codomain (thus, eg, e : 1 ! Xand g : X ! X) can be made into a single arrow with as domain the disjoint unionof the domains. This holds in general in every category with coproducts: given twoobjects X and Y in a category, their coproduct, if it exists, is an object X +Y withtwo arrows inlX : X ! X +Y and inlY : Y ! X +Y which is universal in the sensethat for every pair of arrows f : X ! Z and f : Y ! Z there exists a unique arrow[f; g] : X + Y ! Z, making the following diagram commute.
g[f; g]X inlX inrY YX + Yf Z(The dual of the coproduct X + Y is the product X � Y : its projections fstX :X � Y ! X and sndY : X � Y ! Y are universal among all pairs of arrowsf : Z ! X and g : Z ! Y .)In Set the disjoint union, together with the corresponding injection functions,is a coproduct. Hence, one can write [e; g] : 1 +X ! X instead of 1 e�! X g�! X.Correspondingly, the initiality of the natural numbers can be expressed by saying



Introduction 5that for every function h : 1 +X ! X there exists a unique arrow f : N ! X suchthat the following diagram commutes.[0; s]N Xf h1 + f1 +N 1 +X
The arrow 1 + f : 1 +N ! 1 +X is de�ned by universality:1 + f = [inl1 � id1; inrX � f ] = [inl1; inrX � f ] : 1 +N ! 1 +XThus the operation X 7! 1 +X on objects extends to an operation f 7! 1 + f onarrows: this de�nes a functor from Set to Set.Functors are arrows between categories (regarded as objects!). A general cri-terion for forming a category from a collection of objects is to take as arrows the`homomorphisms', that is, the morphisms which preserve the structure of the ob-jects. Now, the structure of a category is given by composition and identities, andfunctors preserve it: a functor F : C! D from a category C to a category D mapsevery object X of C to an object FX of D and every arrow f : X ! Y of C to anarrow Ff : FX ! FY of D in such a way thatF (idX) = idFX and F (g � f) = Fg � FfThe composition of functors can be then de�ned `pointwise'.Universal de�nitions are always functorial. For instance, given two functionsf : X ! Y and g : Y ! Z one de�nes 1 + f : 1 +X ! 1 + Y by

fXY
1 +X[inl1; inrY � f ]1 + f =1

1
1 + Yinl1 inrY

inrXinl1
and then 1 + (g � f) is, by uniqueness, necessarily equal to (1 + g) � (1 + f).Algebras and Coalgebras. The third step of abstraction is now to move from theabove (endo) functor FX = 1+X on Set to arbitrary endofunctors F : C! C and,correspondingly, to consider initial objects in categories of structures h : FX ! Xrather than h : 1 +X ! X.



6 IntroductionGiven an endofunctor F : C ! C on a category C one can form the categoryof F -algebras having as objects pairs hX; hi with X an object and h : FX ! Xan arrow of C. An arrow f : hX; hi ! hX 0; h0i between F -algebras is an arrowf : X ! X 0 between their `carriers' such thatFXh h0FX 0X 0FfX fcommutes, that is, f � h = h0 � Ff . Therefore, the natural numbers can also beunderstood as the initial algebra of the endofunctor FX = 1+X on Set. Similarly,the axiom of foundation can be understood as postulating the initiality of an algebraas follows.Form the class (ie large set) V of all sets, namely the universe of sets. This classis a (strict) �xed point V = PSV of the operator PS mapping a class (ie a possiblylarge set) to the class of all its (small) subsets. This operator can be extended to anendofunctor PS : SET ! SET on the (superlarge!) category SET of classes andclass-functions. Thus the identity function given by the equality PSV = V can beseen as an algebra structure of this endofunctor.Now, it is shown in this thesis that the axiom of foundation is equivalent to pos-tulating that `the universe PSV = V is an initial PS-algebra'. This gives the formallink between initiality and (generalized) induction (on well-founded relations). Mostimportantly, in this form the foundation axiom is easily dualized:The dual of the notion of initiality is the notion of �nality : an object X is �nal(or terminal) in a category when from every object of the category there is a uniquearrow to X. And the dual of the notion of an algebra of an endofunctor F on acategory C is the notion of an F -coalgebra, that is, a pair hX; ki with X an objectand k : X ! FX an arrow ofC; the arrows f : hX; ki ! hX 0; k0i between coalgebrasare those arrows f : X ! X 0 between their carriers such thatX 0fFX FX 0Ff
Xk k0

commutes, ie Ff � k = k0 � f . Therefore, the dual of foundation amounts to pos-tulating that `the universe V = PSV is a �nal PS-coalgebra', which, as shown inthis thesis, is equivalent to Peter Aczel's `anti-foundation axiom' yielding non-well-founded sets.



Introduction 7Coinduction with non-well-founded sets.\The original stimulus for my own interest in the notion of a non-well-foundedset came from a reading of the work of Robin Milner in connection with hisdevelopment of a mathematical theory of concurrent processes. This topic intheoretical computer science is one of a number of such topics that are generat-ing exciting new ideas and intuitions that are in need of suitable mathematicalexpression." Peter Aczel, Non-Well-Founded SetsAczel's theory of non-well-founded sets was driven by the quest for a set-theoreticfoundation for the (abstract) semantics of Milner's Calculus of Communicating Sys-tems (CCS). In CCS, the behaviour of a program t is given by the setft ai�! tigof transitions t ai�! ti which the program can perform, producing an observableaction ai and becoming ti. The non-deterministic nature of the calculus is expressedby the fact that a program t can choose among a set of transitions.The meaning [[t]] of a program t should abstract from the name of the programsinvolved in the transitions and focus to the actions which can be performed, togetherwith the choices which can be made. It should then be the following `coinductively'de�ned set. [[t]]@ = f<a; [[t0]]@> j t a�! t0g(The superscript `@' is used in this thesis to denote coinductive de�nitions in general;its dual is the superscript `#' used for inductive de�nitions.) Now, in general, thetransition relation is not well-founded, since, for instance, cyclic programs t a�! tare allowed. Therefore, the above meaning [[t]]@ can be a non-well-founded set.Traditionally, this `problem' has been overcome by imposing either an order ora metric on the transition relation and then de�ning [[t]]@ as a suitable limit . (See,eg, [Win93] for the order-theoretic and [BV96] for the metric-theoretic approach.)Aczel, instead, chose to look for new foundations allowing for non-well-founded setsand then replaced the foundation axiom by the anti-foundation axiom [Acz88]. Butone does not need to resort to non-standard foundations: as already clear in [Acz88],coinductive de�nitions can be founded on �nal coalgebras and these exist also in thestandard category of ordinary sets (and in many other categories).What the anti-foundation axiom gives is the non-standard fact that the greatest(strict) �xed point gfp(F ) = F (gfp(F ))of an endofunctor F on SET is a �nal F -coalgebra, provided F satis�es some mildconditions. This theorem [Acz88, \Special Final Coalgebra Theorem"] is the `dual'



8 Introductionof the standard fact (holding also without anti-foundation) that the least �xed pointsof most endofunctors on SET are initial algebras.In particular, the special �nal coalgebra theorem holds for the endofunctor map-ping a class X to the class PS(A � X) having as elements (small) sets of pairs<a; x>, with a 2 A and x 2 X. Now, the behaviour of CCS programs can be seenas a coalgebra of this endofunctor by taking for A the set Act of actions performableby the programs, for X the set Prog of programs, and for coalgebra structure thefunction [[-]] : Prog ! PS(Act�Prog) de�ned for every program t 2 Prog as follows.[[t]] = f<a; t0> j t a�! t0gThen the function [[-]]@ mapping a program to its abstract meaning can be de�ned asthe coinductive extension of this coalgebra structure, that is, as the unique coalgebraarrow from the coalgebra of programs to the greatest �xed point of the `behaviourendofunctor ' BX = PS(Act �X)which, by the special �nal coalgebra theorem, is a �nal coalgebra:
B(Prog)[[-]]Prog B([[-]]@)

[[-]]@ B(gfp(B))gfp(B)
That is, for every program t 2 P , [[t]]@ = f<a; [[t0]]@> j t a�! t0g.The special �nal coalgebra theorem is stated in terms of the \Solution Lem-ma" [Acz88]. The �nal coalgebra presentation of anti-foundation introduced in thisthesis makes the solution lemma (and its equivalence with anti-foundation) trivial.Correspondingly, the `uniformity on maps' condition { which an endofunctor has tosatisfy in order for the special �nal coalgebra theorem to hold { can be formulatedin a more transparent way than in [Acz88].Structural Operational Semantics. The operational semantics of CCS, that is,the de�nition of the transition relation between CCS programs, is given using Gor-don Plotkin's structural approach to operational semantics [Plo81b]. In structuraloperational semantics both the programs and their behaviour are de�ned by induc-tion on the basic program constructs { the structure of the programs. In particular,the behaviour of the programs is de�ned as the least transition relation closed undersome conditional operational rules.Since its inception, the structural approach has rapidly become the predominantapproach to operational semantics. The two main reasons are that (i) it is universal ,in the sense that all existing languages can be described this way, and (ii) it comeswith a structural induction principle for reasoning about programs.



Introduction 9In this thesis, a mathematical theory of `well-behaved' operational semantics isintroduced which arises from a suitable interplay between the inductive (ie algeb-raic) aspects of the structural approach and the coinductive (ie coalgebraic) aspectspresent in Aczel's work on CCS.Let us focus on the inductive aspects �rst. In the structural approach, programsare inductively de�ned in terms of some basic constructs � 2 � from a signature �.Every signature can be seen as an endofunctor mapping a set X to the coproduct�X =a� Xarity(�)indexed by the constructs � of the language. The programs form then the (uniqueup to isomorphism) initial algebra of this endofunctor. In particular, by taking asconstructs a constant (arity = 0) and a unary operator (arity = 1) one obtainsthe equivalence between the natural numbers (as inductively de�ned from zero andsuccessor) and the initial algebra of the endofunctor X 7! 1 +X.The initial �-algebra gives the set of closed programs, that is, programs withoutvariables. In order to adjoin variables from a set Var it is su�cient to take the initialalgebra of the endofunctor X 7! Var + �X(In particular, if Var is empty then one gets back the original �.) This initial algebrais also called the free �-algebra over Var.It is worthwhile to make one more step of abstraction and introduce the notionof a monad .Monads. Given a signature �, let X 7! TX be the operation mapping a setX, regarded as a set Var of variables, to the free �-algebra over X (ie the initial(X + �)-algebra). By universality, this operation extends to an endofunctor T :Set! Set on Set. This endofunctor T comes equipped with two `operations': the`insertion-of-the-variables' �X : X ! TX and a `multiplication' �X : T 2X ! TXfor plugging programs into contexts. These operations are `natural' in X and thetriple T =<T; �; �> is a monad on Set.In general, a monad T =< T; �; � > on a category C can be understood as amonoid in a category of endofunctors on C, the `operation' � being the associativemultiplication of the monoid and � its unit.The notion of a monad is one of the most general mathematical notions. Forinstance, every algebraic theory, that is, every set of operations satisfying equationallaws, can be seen as a monad; thus the monoid laws of the monad do subsume allpossible algebraic laws! And algebraic theories are only a minor source of monads.In fact, every `canonical' construction between two categories gives rise to a monad:the free �-algebra construction from Set to the category of �-algebras is one suchcanonical construction.Next, there is a notion of a T -algebra which subsumes the notion of an algebraand, in particular, of a �-algebra. (�-algebras can be understood as algebras in



10 Introductionwhich the operators (of the signature) are not subject to any law.) In particular,the monad T freely generated by a signature � is such that its category of algebrasis isomorphic to the category of �-algebras. Therefore, the syntax of a programminglanguage can be identi�ed with a monad, the syntactical monad T freely generatedby the program constructs �.Now that the syntax is understood as a monad T and the behaviour as anendofunctor B whose coalgebras can be regarded as operational models (eg BX =P(Act�X)) the new notion of a `functorial operational semantics' can be introduced.Functorial Operational Semantics.A functorial operational semantics for a syntax T and a behaviour B isa monad � which `lifts' the syntactical monad T to the coalgebras of thebehaviour endofunctor B.The operational monad � inherits the operations � and � of the syntactical monadT ; as a functor it maps a coalgebra structure k : X ! BX to a structure �k :TX ! BTX which can be seen as the operational model on the set of programsTX given by the semantics � starting from the `assumptions' k : X ! BX.There are many possible liftings � of the same syntax T , each giving a di�erentoperational interpretation of the programs corresponding to T .The novelty of this approach to operational semantics is that it captures in termsof abstract notions of syntax and behaviour the essence of `well-behaved' operationalsemantics.A condition which a well-behaved operational semantics should satisfy is compos-itionality : To every behaviour B there corresponds a notion of observational equi-valence called B-bisimulation [AM89] (which for the behaviour BX = P(Act �X)corresponds to Park and Milner's (strong) bisimulation { the �nest notion of ob-servational equivalence for transition relations); if this observational equivalence isa congruence wrt the constructs of the syntax, then the operational semantics iscompositional. This means that programs with the same observable behaviour canbe interchanged in any context without a�ecting the overall observable behaviour.Now, as shown in this thesis, every functorial operational semantics enjoys the prop-erty of being compositional.Previous general results on compositional operational semantics stem from thetheory of concurrent processes: the operational semantics is then assumed to bestructural and the behaviour is �xed to be BX = P(Act � X) (ie the notion ofobservational equivalence is (strong) bisimulation). The compositionality is ensuredby imposing some restrictions on the syntactic format of the operational rules. Sev-eral formats have been proposed [dS85, BIM88, GV92, Gro93] and one of the mostgeneral is `GSOS ' [BIM88], suitable to model most of the imperative or concurrentlanguages, including Milner's CCS.Another result in this thesis is that every set R of GSOS rules de�nes an `action'of the syntactical monad T on the composite endofunctor BT ; in turn, this action



Introduction 11induces a functorial operational semantics observationally equivalent to the opera-tional semantics induced by the rules R. Hence the syntactic restrictions makingGSOS well-behaved are explained mathematically in terms of abstract notions ofsyntax and behaviour.Denotational Semantics. A more general way of understanding the composi-tionality (and `well-behaviour') of an operational semantics is in terms of `denota-tional models'. Given a syntactical monad T , a denotational model for the corres-ponding language is simply a T -algebra; if the monad T is freely generated by asignature �, then this is the same as a �-algebra, that is, a set and a `denotation'on this set of each program construct in �.(More structured denotational models can be obtained by `interpreting' the syn-tactical monad T in categories of structured objects like partial orders or metricspaces, rather than simply sets.)The unique algebra arrow from the initial algebra of programs to the denotationalmodel gives an inductive interpretation mapping programs to elements of the model.(This is the well-known initial algebra semantics approach of the `ADJ group' { cf,eg, [GTW78].) This interpretation is by de�nition compositional, but one has toestablish its adequacy :A denotational model is adequate wrt an operational semantics if it de-termines the operational behaviour of the programs up to observationalequivalence.It is at this point that the coalgebraic (ie coinductive) aspects of the functorialapproach to operational semantics start playing a rôle: one of the pleasing proper-ties of functorial operational semantics is that they (canonically) coinduce adequatedenotational models. In order to understand this property, let us �rst look at coin-duction in the category of ordinary (ie well-founded) sets.Coinduction with ordinary sets. One of the properties of Aczel's coinductivesemantics for CCS is that it maps two programs to the same set if and only if theyare observationally equivalent:[[t1]]@ = [[t2]]@ () t1 � t2That is, the coinductive extension of the operational model [[-]] : Prog ! B(Prog)does preserve B-bisimulation and, conversely, it can be `pulled back' to form thelargest B-bisimulation relation.The above is a property which holds in general for every coinductive extensionof coalgebras of endofunctors B preserving categorical (weak) pullbacks, where theendofunctor B can be on any category. Therefore:



12 IntroductionOne does not need to work with non-well-founded sets: all one needs isthat there exists a �nal coalgebra (hence coinduction) for B. In partic-ular, one can work in the category of ordinary sets.If anti-foundation is not assumed, then one cannot apply the special �nal coal-gebra theorem in order to obtain �nal coalgebras from greatest (strict) �xed points.(While initial algebras can still be obtained as least �xed points.) There are severalcategorical methods to obtain �nal coalgebras though. One is a simple generaliza-tion of the standard greatest �xed point construction (�a la Tarski) but it does nothold for endofunctors like the power-set functor.There is also a problem of size: the structure of a �nal coalgebra is an iso-morphism, that is, if bB is the carrier of a �nal B-coalgebra then its structure is anisomorphism ' : bB �= B bB(This fact, in its dual version for initial algebras, is known as \Lambek's lemma".)Therefore, there is no �nal coalgebra for the endofunctor BX = P(Act�X) or justP, because there is no set isomorphic to the set of its subsets.Aczel overcomes this problem by moving to the superlarge category of classes andconsidering the endofunctor PS mapping a class to the class of its (small) subsets.Another solution, adopted here, consists in taking the �nite power-set endofunctormapping a set X to the set P�(X) of its �nite subsets.In general for establishing the existence of a �nal object in a category one canuse categorical theorems like the \Special Adjoint Functor Theorem". As shown in[Bar93] this applies also to the coalgebras of endofunctors like the �nite power-setand the corresponding behaviourBX = P�(Act �X)In particular, since CCS programs have only a �nite degree of non-determinism,that is, each program can choose only among a �nite set of transitions, the oper-ational model of CCS is a coalgebra of this behaviour; its coinductive extension[[-]]@ : Prog ! bB yields a semantics in the ordinary category of sets which is `al-most' the same as Aczel's one. The di�erence is in the fact that the �nal coalgebrastructure is an isomorphism ' : bB �= B bB rather than an equality bB = B bB. Corres-pondingly, one has, for every program t,[[t]]@ = '�1f<a; [[t0]]@> j t a�! t0g(In the sequel, for simplicity, the isomorphism ' is omitted.) This is the �nalcoalgebra semantics corresponding to the operational model [[-]] : Prog ! B(Prog).Concretely, the �nal coalgebra for the behaviour BX = P�(Act �X) is the setof rooted, �nitely branching trees, with branches labelled by the actions a 2 Act,quotiented by the (largest) bisimulation relation. These (equivalence classes of) trees



Introduction 13can be seen as the abstract global behaviours corresponding to BX = P�(Act �X):the root of a tree � is the starting point of an abstract computation c with behaviourB; the branching structure records the alternatives of the computation c and thelabels of the branches are its observable actions; the quotient modulo bisimulationis needed in order to identify trees like a2 a3 a4
a0 a2�

1
�

a4a3 a4 ... ...��� � 1and a4 1...
a1 a3� ��

a4a3
a0 a2�

... 1
a1��� ... 1Notice that branches can be of in�nite depth.The fact that the nodes have no name re
ects the abstractness of these globalbehaviours. This can be seen as a special case of the global behaviours observablewith a set of `states' X, which is obtained by labelling the nodes of the trees byelements x of X and, correspondingly, taking the quotient wrt a subtler form ofbisimulation which takes into account the name of these states. For instance:
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By putting X = 1, that is, by using the same label for all nodes, one gets back theabstract global behaviours.Observational Comonads. The above operation X 7! DX mapping a set X tothe set of its global behaviours can be understood as a cofree construction, dual tothe free construction of a monad from a signature. In general, given an endofunctorB on a category (with products)C a cofree B-coalgebra over an objectX, if it exists,is the �nal coalgebra of the product endofunctor X�B mapping an object X 0 to theproduct X�BX 0. This generates a comonad D=<D; "; �>, that is, an endofunctorD : C ! C together with two `operations' "X : DX ! X and �X : DX ! D2X`natural' in X which make D a comonoid in a category of endofunctors on C.Comonads cofreely generated by behaviour endofunctors are called here obser-vational comonads. Correspondingly, of the three conditions (implicitly) arisen sofar which make of an endofunctor B a behaviour endofunctor, namely



14 Introduction1. the coalgebras of B have a computational interpretation as operational models,2. B has a �nal coalgebra (hence coinduction),3. B preserves weak pullbacks (hence coinduction can be `pulled back' to B-bisimulation),the second has to be generalized by requiring the existence of a �nal coalgebra ofthe product endofunctor X � B for every object X. Correspondingly, the categoryC should have �nite products (including a �nal object 1). Since in every category1 � X �= X holds, one has that the �nal coalgebra is isomorphic to the cofreecoalgebra over 1.As mentioned above, in the speci�c case of the behaviour BX = P�(Act �X),the value of the observational comonad D at a set X is a set of (equivalence classesof) rooted trees with nodes labelled by `states' x 2 X. The operations of theobservational comonad D=<D; "; � > permit to visit these trees: the `counit' " isthe operation which extracts the label of the root of a tree and the `comultiplication'� gives the remaining part of the tree.One can form a category ofD-coalgebras and, like for �-algebras and the algebrasof the corresponding freely generated monad T , one can prove that if D is cofreelygenerated by an endofunctor B then this category is isomorphic to the category ofB-coalgebras. Therefore, a functorial operational semantics can be seen as a lifting� of the syntactical monad T to the coalgebras of the observational comonad D. Inthis form, the notion of a functorial operational semantics can be readily dualizedas follows.Functorial Denotational Semantics.A functorial denotational semantics for a syntax T and a (global, ob-servable) behaviour D is a comonad 	 which `lifts' the observationalcomonad D to the algebras of the syntactical monad T .The denotational comonad 	 inherits the operations " and � of the observationalcomonad D. In terms of �-algebras, the endofunctor 	 maps a structure h : �X !X to a structure 	h : �DX ! DX which can be seen as the denotational modelon the set of global behaviours DX given by the semantics 	 starting from the`assumptions' k : �X ! X.Operational is Denotational. Now, the abstract property showing that func-torial operational semantics are well-behaved is that there is a one-to-one corres-pondence between operational monads � and denotational comonads 	 (over the



Introduction 15same syntax and behaviour). Symbolically:
TC CCD 	#

	�@
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The category CD is the category of coalgebras of a comonad D over C and the`forgetful' functor UD : CD ! C forgets the coalgebra structure mapping a coalgebrato its carrier. The dual holds for CT and UT : CT ! C.The mapping � 7! �@ is de�ned by coinduction. In particular, the value ofthe comonad �@ at the (trivial) �nal T -algebra is the coinductive extension of thecoalgebra structure obtained by applying the given operational monad � to the�nal D-coalgebra. The resulting T -algebra is the `canonical' denotational modelcoinduced by the operational semantics �.The essence of the above coinductive construction was already presented in[RT94], but there the assumption was needed that observational equivalence bea congruence (hence compositionality had already to be known) and, in order toensure this fact, the operational semantics was assumed to be �a la GSOS. Instead,here the functoriality of � ensures that the construction can always take place.Moreover, the fact that the mapping � 7! �@ is a bijection immediately gives that�@ is adequate wrt �, that is, one can recover the operational semantics from thedenotational one. Compositionality becomes here a corollary.The bijection `operational  ! denotational' can be used also in the reversedirection. The mapping 	 7! 	# gives an inductive construction of operationalmodels from denotational ones. This is a new principle which had been forecasted in[RT94]. It is used here to show that basic process algebra { the `minimal' languagecorresponding to the behaviour BX = P�(Act � X) { is functorial. This is animportant result because the proof given here that GSOS is functorial is based onthe (mild) assumption that every set of GSOS rules embeds basic process algebra.Correspondingly, the syntactical monad is assumed to correspond to an algebracontaining an associative, commutative, and absorptive binary operator of non-deterministic choice. (This is one example of the advantage of working with theT -algebras rather than with algebras of a signature.)



16 Introduction�-algebras are �@-coalgebras. Another way of understanding the above ad-equacy result is by considering the category of algebras of the operational monad�. It is shown in this thesis that the category of �-algebras is the same as thecategory of coalgebras of its coinduced denotational comonad �@. One can takethis category as the category of models of �: its objects carry both a T -algebra anda D-coalgebra structure which are suitably related via �. (Thus a �-model carriesboth a denotational and an operational structure.) The arrows of the category arethose which preserve both the algebraic and the coalgebraic structure.The category of �-models has both an initial and a �nal object: the initial �-model is the initial algebra of closed programs corresponding to the syntacticalmonad T , together with the operational model obtained by applying � to the(trivial) initial D-coalgebra; dually, the �nal �-model is the �nal coalgebra of ab-stract global behaviours corresponding to the observational comonad D, togetherwith the denotational model obtained by applying �@ to the (trivial) �nal T -algebra.Now, the (both by initiality and �nality) unique arrow from the initial to the�nal �-model is a mapping going from the closed program T0 to the abstract globalbehaviours D1 and it necessarily is both an initial algebra semantics and a �nalcoalgebra semantics. This is the categorical formulation of adequacy.Interestingly, if � is the operational monad corresponding to a set of GSOSrules, then the notion of a �-model cuts down to the notion of a GSOS-modelindependently introduced by Alex Simpson in [Sim95].Adjunctions subsume induction and coinduction. It should be stressed that,categorically, induction and coinduction are just two instances of the same notion,namely the one of an adjunction:If the forgetful functor mapping the algebras of an arbitrary monad T to theircarriers has a left adjoint , then the T -algebras come with an induction principle;the monad T itself is de�ned by this adjunction. Dually, if the forgetful functormapping the coalgebras of a comonad D to their carriers has a right adjoint , thenthe D-coalgebras come with a coinduction principle.Every `canonical' construction between two categories de�nes an adjunction andevery adjunction de�nes both a monad and a comonad. It is in this sense thatcanonical constructions give rise to monads (and comonads).Sets like recursive processes. Finally, one remark on the title of the part ofthis thesis dedicated to non-well-founded sets.It is shown in this thesis that recursive programs can be seen as coalgebras hav-ing as carrier the set of variables involved in the recursion. As a consequence, no(explicit) binding operator (like the operator \�x" in GSOS) is needed and the solu-tion of a recursive program is (a recursive process) de�ned by coinduction. Thissubsumes standard �xed point methods like least �xed points in categories of com-plete partial orders [Plo76] or unique �xed points in categories of complete metric



Introduction 17spaces [Niv79, BZ82].Now, the same method is used here to treat (and trivialize!) the \SolutionLemma" [Acz88] for de�ning non-well-founded sets as solution of recursive equationsinvolving exclusively (variables and) well-founded sets.Historical Notes. The study of adequate denotational models for structural op-erational semantics has been, from [BZ82] on, the central topic of Jaco de Bakker'sAmsterdam school of semantics based on the use of metric spaces. (See [BR92, BV96]for overviews.) The present functorial approach harvests the fruits of that work.The main mathematical tool available in (complete) metric spaces is \Banach'stheorem" ensuring the existence of unique �xed points of `contracting' functions.Like coalgebraic �nality, Banach's theorem, especially in its higher-order form, canbe used both for dealing with coinductive de�nitions and for proving adequacyresults. (Cf [KR90].)In particular, Banach's theorem is used in [Rut90] for coinductively derivingdenotational models from structural operational semantics. The assumption is thatthe operational rules are `well-behaved' in the sense that they are in (a sub-format of)the GSOS format [BIM88] and this implies that the coinduced models are adequate.(A precursor of this method is presented in [Bad87], which, in turn, has been inspiredby [DG87].)A considerable improvement of the above method is achieved in [Rut92] by treat-ing the semantic domain of abstract global behaviours (ie the set of processes) asa transition system and subsequently applying the operational rules to it, that is,by treating \processes as terms". Coinduction is dealt there by means of non-well-founded sets and of the corresponding solution lemma; the operational rules are inthe \tyft/tyxt" format of [GV92], a more general format than the positive GSOSused in [Rut90].An explicit use of the �nality of the greatest �xed point of the endofunctor BX =PS(Act�X) (under the anti-foundation axiom) is made in [Acz88] for coinductivelyde�ning a denotational model for CCS. That example has led the author of this thesisto try and understand the mathematics behind the \processes as terms" methodin terms of an interplay between algebraic and coalgebraic aspects. The article[RT94] contains preliminary results in this sense, but the actual derivation of models,although formulated coalgebraically, still relies there on the use of `well-behaved'structural operational rules �a la GSOS and on regarding the �nal coalgebra (ie theabstract global behaviours) as a transition system.The abstraction step from well-behaved transition systems to operational monadshas come only after Gordon Plotkin's suggestion of working with algebras overcoalgebras rather that with algebras and coalgebras: that has proved to be the extra`dimension' needed for formulating the present functorial approach to operationalsemantics.



18 IntroductionAlgebraic Compactness. Another way of looking at initial algebras and �nalcoalgebras of endofunctors F is as data types: the initial F -algebra is the inductivedata type corresponding to the `type constructor' F , while the �nal F -coalgebra isthe coinductive one. For instance, the type constructor FX = 1+X yields, in Set,the natural numbers N as inductive data type and the `extended natural numbers'N [ f1g as coinductive one.Studies on coinductive types in Set date back at least to [AM80]. A more recentview, put forward by Peter Freyd in [Fre91], is that data types should be de�ned inalgebraically compact categories, that is, in categories where endofunctors have bothinitial algebras and �nal coalgebras which, moreover, do coincide in the sense thatthey are `canonically isomorphic'. (See also [Fre90, Fre92].)The archetypal example of an algebraically compact category is the categorypCpo of complete partial orders and partial `Scott-continuous' functions: regardedas an `order-enriched' category, it has as endofunctors the `locally continuous' ones,which, as shown in [SP82], make it algebraically compact indeed. (See [Bar92] formore examples.)Instead, algebraic compactness fails in the category of sets, no matter whetherordinary or non-well-founded sets are considered. The absence of algebraic compact-ness in Set motivated Peter Freyd's remark on the need for non-standard mathem-atical foundations in computer science quoted at the beginning of this introduction.Algebraic compactness is one of the axioms of Fiore and Plotkin's axiomaticdomain theory [FP92, FP94, Fio96] which aims at isolating the abstract proper-ties which a category should satisfy for hosting interpretations of programming lan-guages. In particular, the semantic domain of a language { in the present setting the�nal coalgebra of the behaviour { should `live' in such a category, typically pCpo.In contrast, the operational model of a language should carry only the structureimposed by syntax and behaviour and thus live in a simpler category, typically Set.This raises the problem of how to extend/lift a functorial operational semantics froman unstructured category like Set to a category of domains like pCpo.Towards a mathematical operational semantics\The motivation for trying to formulate a mathematical theory of computationis to give mathematical semantics for high-level computer languages. Theword `mathematical' is to be contrasted in this context with some such termas `operational'."Dana Scott, Outline of a Mathematical Theory of ComputationThe present functorial approach shows that `operational' and `mathematical' areno longer necessarily contrasting attributes for a semantics. This is achieved byde�ning operational semantics in terms of abstract, mathematical notions of syntax



Introduction 19and behaviour. Yet, considerable work remains to be done before this conceptualachievement will be of any `practical' relevance.Firstly, the examples of behaviour considered here are all minor variations of theendofunctor BX = P�(Act � X), with (strong) bisimulation as the correspondingobservational equivalence. Among the other behaviours which can be describedfunctorially and will be treated in future work there are those for side e�ects, forprobabilistic computation, for trace equivalence, and for applicative languages likethe untyped lambda calculus.The �rst two behaviours are similar to the one for bisimulation, while a treatmentof trace equivalence and of the lambda calculus require, for di�erent reasons, theability of extending or lifting an operational monad from Set to a more structuredcategory, namely pCpo for the lambda calculus [Plo85] and the category of semi-lattices and join-preserving functions for trace equivalence [HP79]. Preliminaryresults on a coalgebraic treatment of trace equivalence and of the lambda calculusare presented in [TJ93, RT94].Secondly, a more re�ned notion of syntactical monads is needed in order to dealwith typed terms and with higher-order terms as introduced, eg, by variable bindingin the lambda calculus and in many imperative and concurrent languages. Fortyped terms one can easily adapt the above approach using multi-sorted algebras.(Categorically, it means to deal with a power of Set.) For higher-order terms theplan is to consider signatures on variable sets (presheaves) rather than simple sets.Correspondingly, one has for a function(al) not an arity but a list of numbers. Thelength of the list is the number of arguments; the i-th number is the number ofvariables the function(al) binds at its i-th argument. (This notion of signature isconsidered, for semantics, in [Acz80], and, for syntax, in [Plo90]. Associated ideasare the work on higher-order rewriting [Klo80], and the work on higher-order algebra[Mei92].)Thirdly, the above adequacy result should be strengthened by dealing also withnon-termination: when, like in the untyped lambda calculus, programs might notterminate, adequacy imposes further requirements. For example, by using partialfunctions for the denotational semantics, the interpretation of a term should beunde�ned if and only if it does not terminate. This property is hard to verifyand much work has been devoted to introduce methods for simplifying this kind ofproofs. (See, eg, [Pit94b].) Therefore, a `meta' adequacy result would be of a greatrelevance. (A related point still to be investigated is whether there exist some extraconditions which make a functorial operational semantics fully-abstract , but this ismuch harder a result to obtain.)Finally, the present functorial approach seems closely related to Eugenio Moggi'smonadic approach to operational semantics [Mog91]. His examples of computationalmonads do all qualify as behaviours and it would be interesting to incorporate theirextra monadic structure in this functorial framework. As a result, a general notionof operational semantics for computational monads and a corresponding adequacytheorem could be obtained.



20 IntroductionSynopsisThis thesis is divided in �ve parts: the �rst four parts are devoted to the functorialapproach to operational semantics, while Part V (Sets like Recursive Processes) isa new presentation of Peter Aczel's theory of non-well-founded sets.In Part I, after some preliminaries, the de�nition of functorial operational se-mantics is introduced. As an example, a simple deterministic language is treatedwith BX = 1+Act�X as behaviour. Final coalgebras and recursive programs arealso treated.In Part II, the general properties of functorial operational semantics are illus-trated. In Section 6 it is shown that every operational monad coinduces an adequatedenotational model. This construction is explained in Section 7 in terms of the no-tion of functorial denotational semantics, dual to the operational one: every oper-ational monad � coinduces a denotational comonad �@. This is the basic propertyof the functorial approach to operational semantics.Section 8 shows that the mapping � 7! �@ is a bijection between operationalmonads and denotational comonads, which implies that �@ is always adequate wrt�. This adequacy result is rephrased in Section 9, where it is shown that the algebrasof an operational monad � are the same as the coalgebras of its coinduced comonad�@. The category of �-algebras (alias �@-coalgebras) is then taken as the categoryof �-models, and the unique arrow from the initial to the �nal �-model is both theinitial algebra and the �nal coalgebra semantics corresponding to �.Part III is dedicated to the non-deterministic behaviour BX = �P(1 + Act �X). Correspondingly, the simple deterministic language used as example in thetwo previous parts can be enriched with a non-deterministic choice construct �a laCCS. In Section 10, following [HP79, Plo81a], the (non-empty) �nite power-set �Pis introduced as the semi-lattice monad. Next, a functorial denotational semanticsis `naturally' associated to the behaviour BX = �P(1 + Act � X) and its inducedoperational semantics is shown to be basic process algebra [BW90]. This is used inSection 11 to prove that GSOS is functorial, under the mild assumption that GSOSembeds basic process algebra.In Section 12, the observational equivalences corresponding to (arbitrary) be-haviours B are treated using the notion of a relation lifting to a `B-bisimulation'introduced in [AM89], which, for BX = �P(1 + Act � X), cuts down to Park andMilner's notion of a bisimulation. If the endofunctor B preserves (weak) pullbacks,then every coinductive de�nition of type B can be `pulled back' to a relation liftingto a B-bisimulation, which fact is useful to reason about coinductively de�ned entit-ies. Here it is shown that, as a corollary of adequacy, for every functorial operationalsemantics, bisimulation (wrt to the behaviour B) is a congruence (wrt the syntaxT ).Section 13 treats the construction of cofree coalgebras for the �nite power-set



Introduction 21functor P� and for the behaviour BX = �P(1 +Act�X). It is based on material in[AM89] and [Bar93].Part IV consists of a technical summary (with proofs) of the �rst three partsphrased in terms of adjunctions rather than in terms of induction and coinduction.



Basic Universal Constructions
Category theory is the mathematical study of universal entities: an entity x isuniversal among a family F of entities if all entities of F can be `reduced' to x.Formally, this can be expressed in a very general form by considering the familyof arrows determined by a functor F : C ! D and an object Y of the codomaincategory D of F . The family of entities is the setF = ff : FX ! Y 2 D j X 2 Cgof arrows from F to Y . (Alternatively, the dual case of arrows from Y to F can alsobe considered.)The universal among the arrows of F (if it exists!) is an arrow "Y : FGY ! Ysuch that, for every f : FX ! Y , there exists a unique arrow f [ : X ! GY suchthat f factorizes through "Y as follows:f = "Y � F (f [)Diagrammatically:

FXX DC F (f [)f [ f
F

YFGY "YGYThe object GY is unique up to isomorphism and so is the arrow "Y (in a suitablesense).Particularly interesting is the case when a universal arrow from F to Y existsfor every object Y of D: then, by universality, the operation Y 7! GY extends to afunctor G : D! C by putting, for every k : Y ! Y 0 in D, Y"YFGYGY FGk Y 0FGY 0 "Y 0 kGk = (k � "X)[GY 0 22



Basic Universal Constructions 23Moreover, one can check that, in this case, the arrow�X = (idFX)[ : X ! GFXobtained by `reducing' the identity on FX to "FX, is a universal arrow from X toG, for every object X of C: FC DFXGg�XX GFXG(g]) g]YGYDually, a universal arrow from X to a functor G : D ! C for every object X ofC, de�nes a functor F : C ! D and a universal arrow from F to Y , for every Yin C. There is thus a hidden symmetry behind the notion of a universal arrow, asymmetry which is captured by the notion of an `adjunction'.Formally, an adjunction from a category C to a category D is given by a pairof functors F : C ! D and G : D ! C in opposite direction and by a `natural'bijection between the arrows of type FX ! Y and those of type X ! GY , forevery X in C and Y in D:f FX Y g]f [ GYX gThe naturality of the mapping f 7! f [ amounts to the fact that it is `well-behaved'wrt both pre- and post-composition; that is, for all arrows h : X 0 ! X in C andk : Y ! Y 0 in D, the following two equations hold.(f � Fh)[ = f [ � h (k � f)[ = Gk � f [By duality, this is equivalent to the following.(g � h)] = g] � Fh (Gk � g)] = k � g]One usually writes the above adjunction asFaGand says that G is a right adjoint for F ; dually, F is a left adjoint for G. Corres-pondingly, f [ is the right adjunct of f and g] is the left adjunct of g.



24 IntroductionNow, if there exists a universal arrow �X : X ! GFX from every object X of acategory C to a functor G : D! C, then G has a left adjoint, the functor F which,by universality, extends the operation X 7! FX. (And the dual holds for universalarrows from F to the objects of D.) Conversely, every adjunction determines twofamilies of universal arrowsf�X = (idFX)[ : X ! GFXgX2C f"Y = (idGY )] : FGY ! Y gY 2D(See, eg, [Mac71, xIV.1, Theorems 1 and 2].)The description of an adjunction in terms of universal arrows is procedurally veryimportant for the actual `construction' of adjunctions. Usually, one has a simplefunctor at hand, like an inclusion functor or a a functor forgetting some structure,and one investigates the problem of the existence of a right or left adjoint to it:if this problem can be solved then the result can be a complex construction. Forinstance, the left adjoint of the forgetful functor from a category of algebras to setsmaps a set to the free algebra over it. (Adjoints, like all universals, are uniqueup to isomorphism, thus one can speak of the left adjoint of a functor.) The ad-vantage is that a complex construction is reduced to the notion of an adjoint to asimple construction and, moreover, in this form, the same result can be understoodin di�erent categories. For instance, one can consider algebras over complete par-tial orders rather than over sets and the left adjoint to the corresponding forgetfulfunctor gives the free algebras over cpos rather than over sets. Similarly, varioustopological completions like the one of metric spaces can all be understood as leftadjoints of inclusion functors. In general, every `canonical' construction arises froman adjunction.The family f"Y : FGY ! Y gY 2D of universal arrows determined by an adjunc-tion has the property that, for all arrows k : Y ! Y 0 in D, the following diagramcommutes. kFGk Y 0FGY 0 "Y 0
YFGY "Y

(And similarly for the family f�X : X ! GFXgX2C.) This gives a `natural trans-formation' from the composite functor FG on D to the identity functor ID.In general, given two functors F1; F2 : E! D, a natural transformation# : F1 ) F2from F1 to F2 is a family f#Y : F1X ! F2X 2 D j X 2 Eg of arrows of D indexedby the objects of E such that, for every arrow f : X ! X 0 in E the square in the



Basic Universal Constructions 25following diagram commutes. F1YF1f #Y 0F1Y 0Yf Y 0 #Y F2YF2fF2Y 0For every two categories D and E one can form the functor category DE havingas objects the functors from E to D and as arrows the natural transformationsbetween them. Identities and composition are obtained `pointwise'. Thus: naturaltransformations are arrows between functors, which, in turn, are arrows betweencategories.One usually omits the subscript under the identity functors and writes� : I ) GF and " : FG) Ifor the two natural transformations de�ned by an adjunction FaG; these are theunit and the counit of the adjunction, respectively.Initial and �nal objects can be described in terms of adjunctions as follows.Consider the trivial category 1 with only one object and one (identity) arrow. Fromevery category C there is a unique functorC! 1to 1. Now, this functor has a left adjoint if and only if C has an initial object: thisleft adjoint maps the unique object of 1 to the initial object of C; the counit of theadjunction at an object X of C gives the unique arrow from the initial object to X.Dually, the functor C! 1 has a right adjoint if and only if C has a �nal object andthe unit of the adjunction gives the unique arrows to this �nal object.Also coproducts and products can be described in terms of adjunctions. Considerthe product category C�C having as objects and arrows pairs <X;X 0> of objectsand pairs < f; f 0 > of arrows of C, with componentwise composition. There is adiagonal functor� : C! C�C X 7!<X;X> f 7!<f; f >`duplicating' the objects and the arrows ofC. This diagonal functor has a left adjointif and only if C has (binary) coproducts; this left adjoint maps a pair <X; Y > ofobjects of C to their binary coproduct X + Y and the value of the unit at <X; Y >is the corresponding pair of injections < inlX ; inrY >. Dually, the right adjoint, if itexists, gives binary products and the counit gives the corresponding projections.The above binary product and coproduct adjunctions are instances of the follow-ing. Consider an arbitrary small category J , that is, a category with a (small) set



26 Introductionof objects and a (small) set of arrows. (Counterexample: Set is not small.) Next,take the functor category CJhaving as objects the functors from J toC and as arrows the natural transformationsbetween them. By putting J in CJ equal to the empty category 0 with no objectsone obtains a category isomorphic to 1; similarly, by putting J equal to the category� �with two objects and no arrows other than the identities, one obtains a categoryisomorphic to C�C: C0 �= 1 C� � �= C�CCorrespondingly, the two functors C ! 1 and � : C ! C � C can be seen asinstances of a general notion of a diagonal functor� : C! CJThis diagonal functor maps an object X of C to a functor from J to C which, inturn, maps every object of J to X and all arrows of J to the identity on X. Theleft adjoint to this � give the `colimits' of functors D : J ! C and the right adjointgives the `limits'. Thus initial objects and coproducts on the one hand and �nalobjects and products on the other hand are, respectively, special cases of colimitsand limits, which are the most common form of universals.As an example, consider the category J with three objects and, apart from theidentities, two arrows connecting one object to the other two:�  � ! �A functor D : J ! C from J to C can be seen as a diagram D in C of `shape' J :f gY0D : Y1 Y2A natural transformation # : D ) �X from such a diagram D to the constantdiagram �X : J ! C obtained by applying � to an object X of CD : Y2Y1 X#1 gf Y0#0 #2X�X : Xcan be collapsed into a `cocone' over D having X as `vertex':D : #1 #2Y0#0f g Y2XY1



Basic Universal Constructions 27that is, a family of arrows from the objects of the diagramD toX making everythingin sight commute. (Notice that the middle arrow �0 : Y0 ! X is super
uous becauseit factorizes (both) as �1 � f (and as �2 � g).)The colimit of the diagram D is then the universal cocone over D, that is, acocone � : D ) ColimD such that every cocone over D factorizes uniquely throughit: �2#1 XColimD�1 gY0f
#2D : Y2Y1

The existence and uniqueness of the `mediating arrow' from the colimit of a diagramD to the vertex X of any cocone over D expresses the universal property of thecolimit.In general, the left adjoint of the diagonal functor � : C! CJ , if it exists, mapsdiagrams of shape J to their colimit object; the unit of the adjunction gives thecorresponding (universal) colimiting cocone.The study of colimits can be reduced to the study of initial objects and `pushouts',the latter being colimits of diagrams of shape J = �  � ! �. Indeed, the colimitof any (small) diagram can be expressed in terms of combinations of (generalized)pushouts and initial objects. For instance, the coproduct X + Y is isomorphic tothe pushout of the diagram YX 0where 0 is the initial object. Alternatively, (small) colimits can also be describedin terms of (generalized) coproducts and `coequalizers', the latter being colimits ofdiagrams of shape J = �� !!A generalized coproduct is obtained by generalizing the two objects and no arrowscategory J = � � to a category with a (small) set I of objects and no arrows. Onewrites then aI Xifor the corresponding coproduct. (And, similarly, binary pushouts can be generalizedby taking (small) sets of arrows with the same domain.)By duality, limits are right adjoints to diagonal functors and the counit givesthe limiting cones over diagrams D : J ! C, that is, the universal among the cones



28 Introduction� : �X ! D. Products are limits with J = � �, while the dual of coequalizers andpushouts are limits of J = �� !!and J = � ! �  �and are called equalizers and pullbacks, respectively. All limits can be describedwith products and equalizers only, as well as with �nal objects and pullbacks only.Notice that equalizers are `left-cancellable' in the sense that, given an equalizerm : Y ! Z and two parallel arrrows f; g : X ! Y , if m � f = m � g then f = g;in general, left-cancellable arrows are called monic arrows. Dually, coequalizers areepi, ie `right-cancellable'. In Set the epi and the monic arrows are the surjectiveand the injective functions, respectively.Some �nal notational remarks. The (standard) notation for pullbacks and pushoutsis
Y1 Y0 andf gY2� f g �Y1Y0 Y2

respectively. Also, it is useful to introduce a special (non-standard) notation for theinjection arrows inlX : X ! X +Y and inrY : Y ! X +Y into a coproduct, namelyby adding a triangle to their `tails':
Zf g[f; g]X + YX Y

Thus the above `copair ' [f; g] : X + Y ! Z of f : X ! Z and g : Y ! Z is theuniversal mediating arrow from the coproduct X + Y to the vertex Z of the coconeformed by f and g over X and Y .Notes. The standard textbook of category theory is [Mac71], whose �rst six chaptersinclude the basic category theory used in this thesis; a useful summary (with examplesand exercises) of those chapters can be found in Part 0 of [LS86].For an alternative, vivid presentation of category theory see [FS90]. Computer scient-ists might want to consult also [Poi92] and [Cro93].For the philosophical import of category theory (and of the notion of adjointnessin particular) one can consult [Law69] and other Lawvere's writings, which are rich ofstimulating connections between disparate �elds.
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1 Initial Algebras, Induction and Program Syntax
The syntax of a programming language is usually de�ned by induction on some basicconstructs � 2 �. Formally, � is a signature and the syntax is the initial �-algebra.Equivalently, the signature de�nes an endofunctor with action X 7! `�2�Xar(�),whose algebras are the same as the algebras of the signature. This leads to thestandard categorical construction of initial �-algebras as suitable !-colimits.Consider, as an example, a simple imperative language whose constructs aresome primitive actions a 2 Act, a sequential composition operator ` ; ', and an`inert' program nil. Correspondingly, the (single-typed) signature � of the abovelanguage is given by a set Act + 1 of constants (ie operators of arity 0) and anoperator of arity two.The programs or terms t induced by the above signature � and some variablesx 2 X are given by the grammar:t ::= x j a j nil j (t ; t)Denote this set of programs by TX. In particular, for X = 0, ie the empty set, theset T0 gives the closed terms of the language:t ::= a j nil j (t ; t)An alternative way of describing the set T0 of closed terms is as the carrier ofthe initial algebra of the signature �, that is, the initial object in the category of�-algebras, where � is the above signature. In general, given a signature �, thecategory of �-algebras has as objects pairs hX; hi, where the carrier X is a set,and the structure h is a function interpreting each operator � in the signature asa function h(�) : Xarity(�) ! X. An arrow f : hX; hi ! hY; ki in this category is afunction f : X ! Y between the underlying sets such that, for every operator � inthe signature, the following diagram commutes.Xar(�)

f
far(�)h� k�Y ar(�)X Y31



32 PreliminariesThat is, f(h�)(x1; : : : ; xar(�)) = (k�)(fx1; : : : ; fxar(�))Notice that if the arity of an operator � is zero, then Xar(�) is simply 1, the singletonset. The corresponding function h� : 1 ! X maps �, the unique element of 1, intoan element of X. This gives the interpretation of a constant � in the algebra.For any signature �, the initial algebra always exists. It is the term algebra hav-ing as carrier the set T0 of closed terms over the signature and as algebra structurethe evident one which maps, for every operator �, a tuple (t1; : : : ; tar(�)) of termsinto the term �(t1; : : : ; tar(�)). Indeed, given any �-algebra hX; hi, there is a uniquearrow from the term algebra into hX; hi, namely the function, say,h# : T0! Xinductively de�ned as follows.h#(�(t1; : : : ; tar(�))) = (h�)(h#t1; : : : ; h#tar(�))Notice that the term algebra is initial also in the category of partial �-algebras, thatis, algebras where the operators of the signature might be interpreted not only astotal but also as partial functions.A more compact way of describing the category of �-algebras is by taking thecoproduct `�2� Xar(�), that is, the disjoint union of the domains of the operations.More formally, every signature � can be seen as a functor � : Set ! Set (thus anendofunctor on Set) de�ned on objects as follows.X 7�! a�2�Xar(�)For example, the endofunctor corresponding to the above signature � = Act [fnil; ; g is �X = 1 + (aAct 1) +X�X �= 1 + Act +X�XThe category of algebras of a signature is then an instance of the following moregeneral notion.Let � : Set ! Set be any endofunctor on Set. The category of �-algebras, denoted by Set�, has as objects pairs hX; hi, with X a setand h : �X ! X a function. The arrows of the category are functionsbetween the underlying sets preserving the algebra structure, that is,making the following diagram commute.h�X �Y�f
f kX Y



Section 1 | Syntax 33That is, f � h = k � �fEven more generality can be achieved by considering also algebras of endofunctors oncategories C other than Set. For instance, since any endofunctor corresponding to asignature � extends to the category pSet of sets and partial functions, the categorypSet� can be considered: this is the same as the category of partial �-algebrasmentioned above.The initial object in the category of algebras of an arbitrary endofunctor �, iethe initial �-algebra, does not always exists, but if it does, then its structure isan isomorphism:Initial algebras are isomorphisms. (Lambek's Lemma.) Let h�;  ibe the initial algebra of an arbitrary endofunctor �. Then the algebrastructure  : �� ! � is always an isomorphism : �� �= � (initial �-algebra)(To prove this notice that the initial algebra structure  is also a �-algebra arrow from h��;� i to h�;  i.)As mentioned in the introduction, initial algebras give a very useful induction prin-ciple. Indeed, every algebra structure h : �X ! X of an arbitrary endofunctor �with initial algebra �� �= � can be inductively extended to an arrow h# : � ! Xby taking the unique algebra arrow from the initial algebra to the algebra hX; hi:Inductive Extension�h# X���=� h# h�XNotice this is a de�nition which holds in any category of algebras, thus, for instance,also for partial �-algebras.Next, consider the construction of initial algebras. In the general setting wherethe endofunctor � might not stem from a signature, the initial �-algebra does notalways arise from an inductive construction and might even fail to exist. But forthe so-called !-cocontinuous endofunctors, like those corresponding to signatures,the construction of the initial algebra is inductive indeed. Here ! is the categoryhaving natural numbers as objects and arrows n ! m i� n � m; that is, ! =f0 ! 1 ! 2 ! � � �g. An !-cocontinuous functor F : C ! D is then a functor



34 Preliminarieswhich preserves the colimits of functors J : ! ! C, that is, FColimJ �= ColimFJ .(The categories C and D are thus supposed to have these colimits.) Notice that afunctor J : ! ! C is a diagram in C of the form fC0 f0! C1 f1! C2 f2! � � �g.The construction of the initial algebra of an !-cocontinuous endofunctor is thefunctorial generalization of the least �xed point construction of an endofunction fin a partial order, namely as the least upper bound Fn<! fn?. (This works if thepartial order has a least element ? and the desired lub, and the function preservesthat lub.) A partial order is a category with at most one arrow from one object toanother. For such a category, the initial object is the least element, an endofunctoris a monotone endofunction, and !-cocompleteness amounts to chain-completeness,ie, to the existence of least upper bounds of !-chains. An !-cocontinuous functoris thus a monotone function which preserves lubs of !-chains. Finally, an algebra isa pre-�xed point fx � x and the initial algebra is the least (pre-)�xed point.Let � be an !-cocontinuous endofunctor on Set. Consider the unique function,say 0�0, from the initial object in Set (the empty set { denoted by 0) to the set�0. Next, consider the diagram D obtained by the iterative application of theendofunctor � to the initial function 0�0; that is, for every n in !, map the arrown! n + 1 of ! into �n0�0: �0 �0�0 �20 � � ��20�00 0�0Let �! be the colimit of this diagram D. Then, since the endofunctor � is !-cocontinuous, ��! is the colimit of the diagram �D (which is simply D without the�rst arrow). Next, consider the colimiting cocone � : D ) �!:�20 � � ��20�00 �0 �0�00�0 �!�0 �1 �2
Without the �rst component �0 this is also a cocone from �D to �!. Then:In the above construction, the mediating arrow from the colimit ��! of�D into �! gives the initial �-algebra structure. This can be provedby noticing that, for any algebra �-algebra hX; hi, a cocone from D toX can be obtained as illustrated in the diagram below and then theinductive extension of the algebra structure h : �X ! X is given by the



Section 1 | Syntax 35corresponding mediating arrow.
�2X�0X0X h

0�0 �20�20X � � ��2h
�20�0 � � ��0�0�0�X0X �h(This is the \Basic Lemma" from [SP82].)Notice that the above construction applies to any category with initial object and !-colimits. Thus, for instance, it can be applied also to !-cocontinuous endofunctorson pSet.Evident !-cocontinuous endofunctors are identity and constant functors, as wellas colimit functors (because of the standard \interchange of colimits") like cop-roducts. In Set, also �nite products are !-cocontinuous (see, eg, [Mac71, TheoremIX.2.1]), hence, since !-cocontinuousness is preserved by composition, the endofunc-tors corresponding to signatures are !-cocontinuous. Similarly, for every signature� and every set X, the endofunctor(X+�) : Set! Setwith action Y 7! X + �Y , is !-cocontinuous, hence its initial algebra exists: it isthe algebra freely generated by � on X, with as carrier TX, the set of termswith variables x 2 X. Since initial algebras are isomorphismsX + �TX �= TXthe set TX is a coproduct and its algebra structure is the copair of the injectionsinlX : X ! TX inrX : �TX ! TXThe left injection is the usual insertion of variables x 2 X into the terms t 2 TX,which is usually left implicit. Formally, x is simply an element of the set X and itis only after applying inlX to it that one obtains a variable. This variable-makingfunction is usually written as �X = inlX : X ! TXThe other injection inrX : �TX ! TX is the operation which permits to constructa new term given any n-ary operator � and terms t1; : : : ; tn; also the right injectionis usually left implicitly and one writes simply �(t1; : : : ; tn) for the resulting term.Like T0, also TX, being an initial algebra, comes with an induction principle.and, since it is a coproduct, one can rephrase the principle as follows. For every



36 Preliminaries�-algebra structure h : �Z ! Z and every `valuation' function f : X ! Z ofthe variables in X as elements of the algebra hZ; hi, there exists a unique functionf ] : TX ! Z making
Zf f ] �f ]�X = inlX TX �TXX

�Zh
inrX

commute. Omitting the injections,f ](x) = f(x) and f ](�(t1; : : : ; tn)) = h(�(f ](t1); : : : ; f ](tn)))This inductive extension of h along the valuation function f is, formally, theinductive extension [f; h]# of the (X+�)-algebra structure on Z given by the copair
Z

�ZhfX [f; h]X+�Z
For instance, this induction principle can be used to show that the operator Tinductively extends to a functor T : Set ! Set. Indeed, to de�ne its action Tf ona function f : X ! Y , take the inductive extension of inrY : �TY ! TY along thecomposite inlY � f : fY �TY�Tf

X
�Y = inlY
�X = inlX (�Y � f)]inrY

inrX �TXTf =TY
TX

To prove that this de�nition is functorial, ie T (idX) = idTX and T (g � f) = Tg �Tf ,for g : Y ! Z, one exploits the uniqueness of inductive extensions: the functionidTX �ts as (�X � idX)] = (�X)] and Tg � Tf �ts as (�Z � g � f)].Notice that a function f : X ! Y can be seen as a `renaming ' of variables andthen the function Tf : TX ! TY is the inductive extension of such a renamingfrom simple variables to complex terms with variables.



Section 1 | Syntax 37Another example is the de�nition of the operation �X : TTX ! TX inductivelyextending inrX : �TX ! TX along the identity on TX:inrTXT 2XTX �X = (idTX)]�TX
inrXTX ��X�T 2X

�TXThis permits to form terms from any operator derivable from the signature. Forinstance, for the above sample language, consider the derived (unary) operator`a ; ( )': given any term t 2 TX, one can form the term a ; t by �rst applyinga ; ( ) to t and then �X : a ; t = �X(a ; (t))Derived operators can also be seen as contexts and then the operation �X is formallyneeded to remove brackets after plugging terms in the holes of a context.

Notes. For a comprehensive survey on the use of �-algebras in semantics see [MT92].



38 Preliminaries



2 Terms, Algebras and Monads
The inductive de�nition of the syntax of a language as a free algebra on a signature� de�nes a `syntactical monad ' T . In general, every algebraic theory h�; Ei de�nesa monad T and, `conversely', every monad is de�ned by its algebras in a categorical,more abstract sense.Let I be the identity functor. By de�nition, the insertion-of-variables function�X = inlX : X ! TX introduced in the previous section is natural in X:� : I ) TSimilarly, the brackets-removing function �X : T 2X ! TX is natural in X, becauseit is the inductive extension of a natural transformation (the right injection inr :�T ) T ) along the identity. The tripleT =<T; �; �>is a `monad' on Set.A monad in a category C is like a monoid in CC { the category hav-ing as objects endofunctors on C and as arrows natural transforma-tions between them: it is a triple < T; �; � > consisting of an objectT : C ! C, an associative multiplication � : T 2 ) T , and a unit� : I ) T for this multiplication. Notice that T 2 = T �T , thus the com-position of functors is used in this de�nition rather than their product.Diagrammatically, the associativity and the (left and right) unit laws areexpressed as follows. Monad LawsT 2�T�

T�T 3 �T 2�TT 2 TIT��T
T

IT
39



40 PreliminariesIn order to prove that the free �-algebra functor T , together with the left injection� = inl : I ) T as unit and the inductive extension of the right injection inr : �T )T along the identity as multiplication � : T 2 ) T , is a monad on Set, recall thede�nition of �: inrTXT 2XTX �X�TX
inrXTX ��X�T 2X

�TXThe commutativity of the triangle on the left shows that � and � satisfy the leftunit law. As for the right unit law, exploit the uniqueness of inductive extensions,noticing that both the identity on TX and the composite �X�T�X �t as the (unique!)inductive extension �X] of inrX along �X :

TX
T 2X inrTX �T�XX TX �TXinrX

inrX
TX �TX�X

�X �X
T�X

X
�X

��X�T 2X
�TXIndeed, everything in sight in the above diagram commutes, either by de�nitionor by naturality (of � and inr). Similarly, one can prove the associativity law bynoticing that both composites �TX ��X and T�X ��X �t as the inductive extension�X] of inrX along �X .



Section 2 | Monads 41From adjunctions to monads. A source of monads is to be found in adjunctions:Every adjunction from a category C to a category DDC unit = � : I ) GFcounit = " : FG) IaF Ggives rise to a monad T =< GF; �;G"F > on C.For a proof of this fact see, eg, [Mac71, xVI.1]; here, as an example, consider again theabove term monad. Firstly, notice that the property that every �-algebra structureh : �Z ! Z can be inductively extended along any function f : X ! Z to a functionf ] : TX ! Z amounts to the fact that the forgetful functor U� : Set� ! Set,mapping �-algebras to their carriers, has a left adjoint, namely the functorF� : Set! Set� X 7! (inrX : �TX ! TX)Indeed, the diagram de�ning f ]
Zf f ] �f ]�X TX �TXX

�Zh
inrX

can be decomposed into
f f ] = U�f ]Z = U�hZ; hi

TX = U�hTX; inrXi�XX
h

inrX
�Z

TX �TX�f ]f ]Zwhich shows that F� is the left adjoint of U� and, moreover, that � is the unit ofthe adjunction.Next, the counit " of the adjunction is id], ie, for every �-algebra structureh : �X ! X, "h : TX ! Xis the inductive extension of h along the identity on X. Then, indeed, from F�aU�,one gets the above monad as follows.T = U�F� � = � � = "inr = "F� = U�"F�



42 PreliminariesFrom monads to adjunctionsNot only every adjunction gives rise to a monad, but also, conversely, every monadsplits into an adjunction. In general, there are many categoriesD such that a monadinC splits into an adjunction fromC toD, but there are two canonical ones, namelythe initial and the �nal ones in a suitable sense. Consider the �nal one; it is de�nedby adding some extra conditions on the objects of the category of algebras of anendofunctor:Let T =< T; �; � > be a monad in a category C. The category of T -algebras, denoted by CT , has as objects pairs hX; hi, with X an objectof C and h : TX ! X an arrow of C such that the following diagramscommute. T -Algebra LawsT 2X�X Th TX
TX

�XX TX
XhXh h

The arrows of the category are those arrows of the category C whichpreserve the algebra structure, that is, making the following diagramcommute.
X Ykh fTX Tf TY

(This category is also called the Eilenberg-Moore category of the monad.)Notice that, in particular, hTX; �Xi is a T -algebra for every object X in C. There-fore, also hT 2X; �TXi is a T -algebra and �X is an algebra arrow between them.Another example of a T -algebra structure is given by the above inductive exten-sion "h : TX ! X of a �-algebra structure h : �X ! X along the identity on X.Indeed, the law "h � �X = idX holds by de�nition, while the other law holds because



Section 2 | Monads 43both composites "h ��X and "h �T"h �t as the inductive extension "h] of h along "h

X
�TX

h
�T 2X
�X

inrTX
�"h]"h]"h T 2XTX

X
as shown by the commutativity of the following two diagrams.inrTX

inrX �"h
��X�TX

�T 2X
�X
�T 2X

h
T"h
"h�X

�TX"h
h

T 2X�TX inrTX
inrX�T"h

�"h X"h
�X

�X
"hX
TX

TX�TXX TX
X

TX T 2X

�-algebras are T -algebras. The above mapping(h : �X ! X) 7! ("h : TX ! X)taking a �-algebra structure on X into its coinductive extension along the identityon X �TX
X �Xh �"hinrX"h�X TXX

is an isomorphism between the category of �-algebras and the algebras of its cor-responding monad T .



44 PreliminariesFor the inverse of this mapping from �- to T -algebras, precompose each T -algebra hX; hi �rst with the right injection inrX : �TX ! TX and then with��X : �X ! �TX hX; hi 7! hX; h � inrX � ��XiOne half of this isomorphism is illustrated by the following diagram, which commutes`almost' by de�nition. �X
h �XX

��X�"h"h inrX �TX�X TXX
The other half of the isomorphism, namely the commutativity of

��X �X�TXhh TX
X inrX �h�TX

inrX
�X

X
TX

is more complex. To prove it, �ll the above diagram with subdiagrams which com-mute either by the T -algebras laws (for the algebra hX; ki) or by naturality (of theright injection inr and of the unit �), or by the `identity law' for the monad T :inrX �T 2XT 2XTh �h�X��XTX inrX �Th�XX �TX�TXinrTX�X ��X ��TXX inrX �TX
TXh hThis concludes the proof of the isomorphism between �- and T -algebras.Under the above isomorphism, the free �-algebra structure inrX : �TX ! TXover X corresponds to the T -algebra structure �X = "inr : T 2X ! TX. (See theconcrete description of these two operations given in the previous section.) Recallthat the forgetful functor U� : Set� ! Set from the �-algebras has a left adjointF�X = hX; inrX : �TX �= TXi. Correspondingly, also the evident forgetful functor



Section 2 | Monads 45UT : SetT ! Set from the T -algebras has a left adjoint namely F TX = hX; �X :T 2X ! TXi and the following two diagrams commute.SetTSet�Set�= UTU� F� F TSetTSet� �=SetIn general, the above adjunction F TaUT holds for algebras of monads on anycategory C:The adjunction F TaUT splitting the monad T . The functorF T : C! CT X 7! hX; �X : T 2X ! TXiis the left adjoint of the forgetful functor UT : CT ! C mapping T -algebras to their carriers. The unit of this adjunction is the unit � of themonad. As for the counit " : F TUT ) I, this is simply"hX;hi = h : F TUT hX; hi = hTX; �Xi ! hX; hiwhich is a T -algebra arrow from hTX; �Xi to hX; hi because of the veryde�nition of T -algebra structure. The right unit law of the monad andthe T -algebra law for the unit are then the two triangular equalitieswhich prove the adjunction F TaUT .The monad arising from this adjunction is the original monad T :T =< T; �; � >=< UTF T ; � ; UTF T " >Therefore: Every monad is de�ned by its algebras.Moreover, the adjunction F TaUT is the `�nal' one de�ning the monad T ; that is,from any adjunction ? DC UFgiving rise to the monad T there exists a unique `comparison' functor K : D! CTsuch that the following two diagrams commute.UTUD CTCK D CTF TF CK



46 PreliminariesIf " : FU ) I is the counit of the adjunction FaU , then, for every object D of D,KD = hUD;U"D : UFUD = TUD ! UDiWhen this comparison functorK is an isomorphism, then the functor U : D! Cis called monadic. Thus, for instance, the forgetful functor U� : Set� ! Set ismonadic.In general, to prove that a functor is monadic, one can use Beck's theorem (see,eg, [Mac71]) stating that a functor is monadic if and only if it `creates' suitablecoequalizers. In particular, this can be used to prove the following generalization ofthe above correspondence between �- and T -algebras.Algebras are T-algebras. Given a signature � and a set E of equa-tions on the (derived) operators of the signature, consider the corres-ponding category Seth�;Ei of �-algebras validating the equations in Eand having as arrows functions which preserve the operators. Then,the evident forgetful functor from Seth�;Ei to Set has a left adjointand, moreover, it is monadic. Therefore, the category of algebras of themonad T corresponding to this adjunction is isomorphic to the categorySeth�;Ei.This shows that the notion of algebras of monads encompasses the standard notionof algebras as varieties, that is, as sets with operations from a signature � whichvalidate a set of equations E. (Eg, monoids, groups, semi-lattices, etc.)Notice that one might want to describe the programs of a language as a freeh�; Ei-algebra rather than a free �-algebra. For instance, the behaviour of thesequential composition operator is intended to be associative thus one can axiomatizethis directly in the syntax by adding the equationx ; (y ; z) = (x ; y) ; zThen, there will be no distinction in the syntax anymore between the programt ; (u ; v) and the program (t ; u) ; v, ie they will represent the same program. (An-other example is in Section 10, where the semi-lattice laws are imposed on the`non-deterministic choice' operator ` or '.)Equations can also be used to describe the behaviour of new operators algebra-ically. For instance, one can de�ne a `replication' operator `!' in terms of sequentialcomposition by means of the equation!x = x ; (!x)Thus, in general, the programs of a language might be terms of a signature �quotiented by (the smallest congruence generated by) a set of equations E. In thesequel, monads T corresponding to h�; Ei-algebras describing the programs of alanguage will be called syntactical monads.



Section 2 | Monads 47Finally, notice that the fact that �-algebras are T -algebras holds also for arbit-rary endofunctors � : C! C which have an initial (X+�)-algebra TX �= X+�TXfor every object X in the category C. That is, the forgetful functor U� : C� ! Chas a left adjoint X 7! hTX; inrX : �TX ! TXi and, moreover, it is monadic.Thus the isomorphism of categoriesSet� �= SetTis not only an instance of Seth�;Ei �= SetTbut also of C� �= CT
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3 Operational Semantics, Transition Systems and Coalgebras
Operational models like transition systems can be seen as `coalgebras' of suitable`behaviour ' endofunctors.The operational semantics of a language de�nes how programs are to beexecuted and what their observable e�ect is. More speci�cally, the operationalsemantics considered here aims at specifying the actions that programs can perform,like changing a state, and their subsequent transitions into new programs, usuallythe part of the code still remaining to be executed. The result is thus a relation oftype Programs� Actions� Programsusually denoted element-wise as a labelled arrow of typeprogram act�! programRelations of this kind are called `labelled transition systems' as they specify the(labelled) transitions between programs.In general, a transition system with labels a 2 A is given by a set X of statesand a family f a�!gA of transition relations labelled by a 2 A:hX; f a�!gAiOne reads x a�! x0as `from the state x the system can perform an action a and reach the state x0'.Equivalently, a labelled transition system is a labelled directed graph: nodes =states, labelled arcs = transitions.The inert states of a transition system are those from which no action can beperformed. It is convenient to introduce an explicit predicate `# �' on states toexpress that one can observe that a state is inert:x # � () x is inertThus a transition system is a triplehX; f a�!gA ; #�i49



50 PreliminariesIn general, given an operational semantics, it might not be easy to prove thingsabout the behaviour of programs, like, for instance, to see whether a program isdeterministic. In order to facilitate reasoning about programs, it is convenient thatthe operational semantics be structured, that is, the transition system shouldbe de�ned by induction on the program constructs (structural induction). Forexample, the intended operational semantics for the simple imperative languaget ::= x j a j nil j (t ; t)could be speci�ed by induction on the program constructs as follows.Consider �rst the constant nil: its intended meaning is that it is the basic inertprogram, that is, a program which cannot perform any action. The only rule for itis then nil # �Next, every constant a in Act is an atomic program which can perform thecorresponding action a and then become inert:a a�! nilFinally, for the sequential composition operator there are three cases to be con-sidered: (i) the �rst component can perform a transition; (ii) the �rst component isinert but the second component can perform a transition; (iii) both components areinert. That is, using also the meta-variables u, v, etc, to range over the programs ofthe language,u a�! u0u ; v a�! u0 ; v u # � v a�! v0u ; v a�! v0 u # � v # �u ; v # �Let us denote the above set of rules by R. All rules of R are well-founded , hencethe least transition system closed under R does exist: this is the intended modelfor R. Moreover, the rules of R are �nitary , hence every transition in the intendedmodel can be proved in a �nite number of steps.By structural induction, one can prove that the set of states of the intendedmodel is the set T0 of closed programs. Indeed, there are axioms for all constantsand if two programs u and v belong to the states of the model then also u ; v does.Thus the intended model is of the formhT0; f a�!gAct; #�iAnother property of the above transition system which can be proved by struc-tural induction is that it is deterministic: there is only one rule for each constantand the three rules for sequential composition have, by induction, disjoint hypo-theses; thus every program can perform at most one action.A similar argument shows that every program can either perform an action orbeing inert; that is, for every closed program t, either there exists a unique action



Section 3 | Transition Systems 51a and a unique program t0 such that t a�! t0 or, otherwise, t # �. Therefore, thistransition system (ie, the transition relation together with the predicate #�) canthen be regarded as a single total function[[-]]R : T0! 1 + Act� T0For this, put[[t]]R = � () t # � and [[t]]R =<a; t0> () t a�! t0where, recall, `�' denotes the unique element of the �nal object 1 in Set. In general,this de�nes a one-to-one correspondence between deterministic transition systemsand `co-algebras' of the endofunctor BX = 1 + Act�X on Set.Given an endofunctor B : C ! C on a category C, the category ofB-coalgebras, denoted by CB, has as objects pairs hX; ki, with X anobject of C and k : X ! BX an arrow of C. The arrows f : hX; ki !hX 0; k0i of CB are the arrows f : X ! X 0 of C which preserve thecoalgebra structure:
Bfk k0X 0BX 0fXBX(Cf �-algebras in Section 1.)Thus a coalgebra of the endofunctor BX = 1 + Act �X is a pair hX; ki, with X aset and k a function k : X ! 1 + Act�XThis can be seen as a deterministic transition systemhX; f a�!gAct ; #�ibecause of the correspondencex # � () k(x) = � and x a�! x0 () k(x) =<a; x>



52 PreliminariesNotions of behaviour and endofunctors. The above correspondence betweendeterministic transition systems and coalgebras of the `behaviour' endofunctorBX =1+Act�X generalizes to several forms of non-deterministic transition systems. Moregenerally, the claim is that coalgebras are suitable to modelling the operational be-haviour of the programs of a language. The corresponding endofunctors are calledbehaviour endofunctors.Consider transition systems without the inert predicate #�. Take the endofunctorBX = P(Act�X)where P : Set! Set is the (covariant) power-set endofunctor: for every set X andfunction f : X ! YPX = fX 0 j X 0 � Xg (Pf)(X 0) = ffx j x 2 X 0gThen, a one-to-one correspondence between coalgebrask : X ! P(Act �X)and transition systems hX; f a�!gActiis obtained by putting <a; x0>2 k(x) () x a�! x0Another example is obtained by restricting the above behaviour toBX = P�(Act�X)where P� : Set! Set is the �nite power-set endofunctor. Its coalgebras correspondto `�nitely branching transition systems', that is transition systems which can, ateach state, choose among a �nite set of transitions rather than among an arbitrarilylarge one.Notice in the two examples above that a state x is mapped by the coalgebrastructure k to the empty set 0 if and only if the corresponding transition systemcannot perform any transition from x. Alternatively, one can use the isomorphismP�(Act�X) �= 1 + �P(Act�X)where �P is the `relevant' part of the (�nite) power-set functor, mapping a set tothe set of its (�nite) and non-empty subsets. The coalgebras of the behaviourBX = 1+ �P(Act�X) are then �nitely branching transition system with the explicitinert predicate #�. Omitting the injections into the coproduct 1 + �P(Act�X), thecorrespondence is as follows.k(x) = � () x # � and <a; x0>2 k(x) () x a�! x0



Section 3 | Transition Systems 53Here the transition relation and the inert predicate are disjoint: if a state canbecome inert then it cannot choose to perform an action. If, instead, one wantsto consider transition systems with states in which both choices are allowed thefollowing behaviour is to be used.BX = �P(1 + Act�X)Omitting the injections, one has the following correspondence.� 2 k(x) () x # � and <a; x0>2 k(x) () x a�! x0One step further is to consider the same behaviours as above but taken in pSets{ the category of sets and partial functions { rather than in Set. This correspondsto considering partial transition systems, ie transition systems with states whosebehaviour might be unde�ned.It should be stressed that the coalgebras of the above behaviours correspondonly as objects to transition systems: the arrows are quite di�erent. Considerthe case of transition systems without the predicate # �. Then, followingthe de�nition of transition systems as relations (or as graphs) the naturalde�nition of an arrowf : hX; f a�!XgActi ! hY; f a�!Y gActibetween transition systems with the same labels is as a function f : X ! Ybetween their states such that if x a�!X x0 then f(x) a�!Y f(x0). Instead,regarding a transition system as a coalgebra, one has the extra condition thatthe function f must be such that if f(x) a�!Y y for some state y 2 Y , thenthere exists a state x0 2 X such that x a�!X x0.Therefore, a category of transition systems is di�erent from the category ofcoalgebras of the corresponding behaviour. In particular, the universals in thetwo categories will be di�erent. For instance, while the product of two trans-ition system always exists, the product of two coalgebras does not necessarilyexist. Also, the �nal transition system is di�erent from the �nal coalgebra.(The latter is an object which enjoys very important semantical properties {cf Section 5.)The above behaviours, whose coalgebras correspond to various forms of labelledtransition systems, are suitable for modelling imperative and concurrent languages.Instead, for modelling applicative languages, one needs behaviours involving someform of function space functor. An example is the endofunctorBX = 1 +XYThe `exponent' XY is the set of functions from Y to X. In order to avoid the usual`mixed variance' problems, Y is here treated as a parameter. By putting Y = Xone obtains that the corresponding coalgebras are the quasi-applicative transitionsystems de�ned in [Abr90]. The `exception' 1 in the above behaviour can be usedto encode non-termination.



54 PreliminariesFor example, for X and Y both equal to the set � of closed �-terms, one cande�ne a coalgebra structure ev : �! 1 + ��by putting, for every �-term M 2 �,ev(M) = P 7! N [P=x]if M converges to `principal weak head normal form' �x.N , andev(M) = �otherwise.Back now to deterministic transition systems and the corresponding behaviourBX = 1 + Act �X. Recall that the rules R for the above sample language inducea coalgebra [[-]]R : T0 ! BT0This can be seen as a special case of a general construction which, starting from acoalgebra (ie deterministic transition system) structure k : X ! BX, yields a newcoalgebra structure [[-]]kR : TX ! BTXwith the set of terms TX as carrier and which `conservatively extends' the originalstructure k.Indeed, one can add, for every x 2 X, the value of k(x) as an axiom to therules in R that is, if k(x) =< a; x > then add x a�! x0 to R and if k(x) = �then add x # �. The least transition system induced by these extended rules willhave then TX as set of states and be deterministic, hence it can be regarded as acoalgebra with structure [[-]]kR : TX ! 1 + Act � TX. By structural induction, onecan prove that this induced transition system/coalgebra conservatively extendsthe coalgebra/transition system hX; ki in the sense that, for every x 2 X,k(x) = [[x]]kRFormally, recalling that �X : X ! TX is the insertion-of-variables function whichpermits to see the elements x 2 X as variable terms in TX, the above conservativeextension property amounts to the commutativity of the following diagram.
BX B�X BTX[[-]]kRkX TX�X

That is, the function �X : X ! TX `lifts' to a coalgebra arrow�X : hX; ki ! hTX; [[-]]kRifor every coalgebras structure k on X.



Section 3 | Transition Systems 55Notes. The importance of the correspondence between labelled transition systems andcoalgebras of the behaviour BX = P(Act�X) has been stressed by Peter Aczel in [Acz88].(But see also [Ken87] and [Hes88].) For a comprehensive categorical (but not coalgebraic!)treatment of labelled transition systems see [WN95].As mentioned in the introduction, it would be interesting to sort out the relationshipbetween the present notion of behaviour as an endofunctor whose coalgebras are oper-ational models and Eugenio Moggi's notion of computation as a monad [Mog91]. Theexamples of computational monads given in [Mog91] (partiality, non-determinism, side-e�ects, exceptions, etc) all qualify as behaviours, and the corresponding monadic opera-tions could play an important rôle in further developments. (The operations of the (�nite)non-determinism monad P� are already used in Sections 10 and 11.)



56 Preliminaries



4 Functorial Operational Semantics
In this section, a new approach to operational semantics, based on categorical no-tions of syntax and behaviour , is introduced: an operational semantics is functorialwhen it is a `lifting' of the syntactical monad T to the coalgebras of the behaviourendofunctor B.Inductively, this can be obtained by de�ning an `action' of the program con-structs on the composite functor BT ; as an instance, the operational rules of asimple deterministic language are shown to de�ne such an action. More generally, afunctorial operational semantics can be obtained by de�ning a `distributive law' ofthe syntactical monad T over the behaviour functor B.Given a syntactical monad T and a behaviour endofunctor B on the same cat-egory, a functorial operational semantics wrt T and B is a `lifting' of the monadT to the B- coalgebras.In general, let U : CB ! C be the forgetful functor mapping coalgebras hX; kito their carriers X. Then, a lifting of a monad T =<T; �; �> to the coalgebras ofan endofunctor B on the same category C is a monad � such that the diagram

U UCB CB�
T CCcommutes, making U : CB ! C a `map of monads'. That is, � is a triple <�; e�; e�>such that U� = TU : CB ! CU e� = �U : U ) TUU e� = �U : T 2U ) TUThe second and third equation imply that the unit e� and multiplication e� of � arethe same as the unit � and multiplication � of T =<T; �; �>, because of the veryde�nition of coalgebra arrows. Therefore:�=<�; �; �>57



58 Functorial SemanticsOne can check that the three equations and the fact that the triple T =<T; �; �>is a monad imply that also the triple �=<�; �; �> is a monad.Let us now look at the endofunctor �. The equation U� = TU implies that � iscompletely determined by its action on the structure of coalgebras, that is, on thearrow k : X ! BX in a coalgebra hX; ki: BXX k�k BTXTXIndeed, by the de�nition of coalgebra arrows, the action of � on arrows is the sameas the one of T :k BTfBf
fBXX �k BTX 0�k0TX 0BX 0k0X 0 TfBTXTX�

Rewriting the above action as
TUf
BTUf
fhX; kiTUhX; ki�hX; kiBTUhX; ki

hX 0; k0i
BTUhX 0; k0iTUhX 0; k0i�hX 0; k0i

shows the following correspondence.Liftings as Coactions. A lifting of an endofunctor T to the B-coalgebras, that is, an endofunctor � such that U� = TU , is the sameas a coaction of B on the composite functor TU : CB ! C, that is, anatural transformation TU ) BTUFinally, the conditions U e� = �U and U e� = �U amount to say that � and � lift tonatural transformations in the B-coalgebras. That is, for every coalgebra hX; ki,



Section 4 | Functorial Operational Semantics 59the two squares in the following diagram commute.�X
B�XB�X

�X T 2X�2k�kk BT 2XBTX
TXX

BXInductive Functorial Operational SemanticsAn inductive way of de�ning a functorial operational semantics is by specifying theaction of the program constructs � on the `observables' BT of the language, thatis, by giving a natural transformation� : �BT ) BTIndeed, for every B-coalgebra hX; ki, the �-algebra structure �X = �UhX;hi :�(BTX)! BTX on BTX can be inductively extended along the compositeB�X�kto a coalgebra structure b�(k) : TX ! BTX inrXX �TXTX(B�X � k)]b�(k) = �Xk �X �b�(k)�BTXB�X BTXBXBy the naturality of �, this de�nition is natural in hX; ki, that is,b� : TU ) BTUthus b� can be seen as an endofunctor (with the same name) on the B-coalgebras.Moreover, the triple < b�; �; �> { where, recall, � and � are the unit and multi-plication of the term monad T { is a monad on the B-coalgebras, that is, the twosquares in �X
B�XB�X

�X T 2Xb�2(k)k b�(k) BT 2XBTX
TXX

BX



60 Functorial Semanticscommute. Indeed, the square corresponding to the unit � commutes by de�nition,while the one corresponding to the multiplication � commutes because both com-posites b�(k) � �X and B�X � b�2(k) �t as the (unique!) inductive extension of �Xalong b�(k)

�BTXBTX
�b�(k)]b�(k)]

�X
�TXb�(k)BTX

TX inrTX �T 2XT 2X

because
BT 2XB�X �BT 2XBinrTX inrX

inrTX�XT 2X �T 2X
TX
T 2X

�TX
�T 2X��X

�B�XB�TX b�(k)TXBTX
�TX�b�2(k)inrTX

BTX �X
b�2(k)

b�(k) �b�(k)BTX �X
BTX

�TXTX
�BTX �BTX

b�(k)
Some terminology: in the sequel, a functorial operational semantics � is also calledthe operational monad � and the natural transformation � : �BT ) BT indu-cing the operational monad b� is called the germ of b�.



Section 4 | Functorial Operational Semantics 61Operational Rules and Inductive Functorial Operational SemanticsNow the claim is that the operational rules R given in the previous section for thesimple deterministic language t ::= x j a j nil j (t ; t) can be regarded as a naturaltransformation dRe : �B ) BTMoreover, by taking the composite B� � dReT : �BT ) BT one obtains the germof an inductive functorial operational semantics which is `observationally equivalent'to the operational semantics induced by the rules R. (This result is generalized inSection 11 to the large class of `GSOS' operational rules, which are suitable to modelmost of imperative and concurrent programming languages.)Recall that the algebras of the signature � = Act[fnil; ; g for the above languageare the same as the algebras of the endofunctor�X = 1 + Act +X�Xon Set and that the programs t are the elements of TX, the carrier of the free�-algebra on X. Also, recall that the operational semantics induced by the rulesR of the language is a deterministic transition system and that there is a one-to-one correspondence between deterministic transition systems and coalgebras of theendofunctor BX = 1 + Act �XThis correspondence says that a transition x a�! x0 of a deterministic transitionsystem can be seen as the action x 7!<a; x0 > of a coalgebra structure X ! BX;similarly, the action x 7! � corresponds to the fact that x # � holds. Thus theoperational rules R given in the previous section can be written as follows.nil 7! � a 7!<a; nil>u 7!<a; u0>u ; v 7!<a; u0 ; v> u 7! � v 7!<a; v0>u ; v 7!<a; v0> u 7! � v 7! �u ; v 7! �Next, let us de�ne the natural transformation dRe : �B ) BT . Let r and s bemeta-variables ranging over elements of BX = 1 + Act � X, for arbitrary sets ofvariables X. One has to de�ne the value of dReX at nil, at a, and at r ; s, for allr; s. Omitting the subscript X, putdRe(nil) = � and dRe(a) = <a; nil>For sequential composition there are three cases to be considered, namely1. r =<a; x>2. r = � and s =<a; y>



62 Functorial Semantics3. r = � and s = �In the second and third case one can follow the de�nition of R and put <a; y> and�, respectively, for the value of dRe at r ; s. Instead, in the �rst case, one cannotput simply <a; x ; s > because x ; s is not of type T . The problem is that s is oftype B rather than T . But notice that B can be embedded in T :The embedding 
 of the behaviour into the syntax. The action� 7! nil <a; x> 7! a ; xde�nes an injective function from BX to TX, for every set X. It ismanifestly natural in X; call it
 : B ) TOne can then putdRe(r ; s) = 8>>><>>>: <a; x ; 
s> if r =<a; x><a; y> if r = � and s =<a; y>� if r = � = sAltogether, in a more suggestive notation:nil dRe7�! � a dRe7�!<a; nil>r =<a; x>r ; s dRe7�!<a; x ; 
s> r = � s =<a; y>r ; s dRe7�!<a; y> r = � s = �r ; s dRe7�! �This de�nition yields a natural transformationdRe : �B ) BTIndeed, the only problematic clause for the naturality of dRe is dRe(r ; s)for r =<a; x>. One has to show that, for every `renaming' f : X ! Y ,the following holds.dReX<a; x> ; s <a; fx> ; (Bf)(s)�Bf
BTf<a; x ; 
Xs> <a; (Tf)(x ; 
Xs)>=<a; fx ; 
Y (Bf)(s)>dReY

That is, (Tf)(
Xs) = 
Y (Bf)(s)But this is immediate from the fact that 
 is a natural transformationfrom B to T .



Section 4 | Functorial Operational Semantics 63(As shown in Section 11, the argument in the above proof generalizes to any (possiblynon-deterministic) rule in the `GSOS-format'.)Next, consider the germ of the functorial operational semantics correspondingto R. It is essentially the same as dRe, only it is applied to terms, hence themultiplication � of the syntactical monad T is needed in order to remove bracketsfrom the resulting terms of terms to yield simple terms. Thus �R = B� � dReT :�BT ) BT , that is,
BTBT 2�BT�RdReT B�Therefore: nil �R7�! � a �R7�!<a; nil>r =<a; t>r ; s �R7�!<a; t ; 
s> r = � s =<a; t>r ; s �R7�!<a; t> r = � s = �r ; s �R7�! �The resulting �R : �BT ) BT is the germ of a functorial operational semantics.In particular, consider the case of closed terms T0 and write[[-]]dRe : T0! BT0for the operational model obtained by taking the inductive extension of �R0 : �BT0!BT0 �BT0�= �R0� [[-]]dRe

[[-]]dRe
�T0T0 BT0Then, by de�nition,[[u ; v]]dRe = 8>>><>>>: <a; u0 ; 
[[v]]dRe> if [[u]]dRe =<a; u0><a; v0> if [[u]]dRe = � and [[v]]dRe =<a; v0>� if [[u]]dRe = � = [[v]]dReContrast this with the operational model[[-]]R : T0! BT0



64 Functorial Semantics`directly' induced by the rules R on the closed terms: they are the same, except for[[u ; v]]R =<a; u0 ; v> if [[u]]R =<a; u0>In Section 6 it is shown that for every term v, the term 
[[v]]dRe exhibits the same`observable behaviour' as v, under any context. Therefore, the two models [[-]]R and[[-]]dRe are `observationally equivalent'. This is based on the fact that the abovenatural transformation 
 : B ) T is a `retraction' for the operational semanticsinduced by R. More precisely, for every coalgebra structure k : X ! BX, thecomposite arrow �X �
TX : BTX ! TX is a right inverse for the operational model[[-]]kR : TX ! BTX induced by R. Indeed, omitting, as usual, the multiplication �,
TX(�) = nil R7�! � and 
TX(<a; t>) = a ; t R7�!<a; t>hence [[
TX(�)]]kR = � and [[
TX(<a; t>)]]kR =<a; t>



Section 4 | Functorial Operational Semantics 65Semantics as a Distributive LawThe germ � : �BT ) BT of an inductive functorial operational semantics b� de�nesa `distributive law' �# : TB ) BT of the syntactical monad T over the behaviourB. The operational monad b� can be then decomposed in terms of this distributivelaw and of T itself. In turn, every distributive law � : TB ) BT de�nes a lifting ofthe monad T to the B-coalgebras.In general, a distributive law of a monad T =<T; �; �> over an endofunctorB (on the same category) is a natural transformation� : TB ) BTsuch that the following two diagrams commute. TBT BT�TBT 2B T��B B�BT 2�T�TB BTB�B B�Every distributive law � : TB ) BT de�nes an endofunctor lifting T to theB-coalgebras by mapping a coalgebra hX; ki to the coalgebra hTX; � � Tki:TBX �X BTXkTkTXX BXMoreover, this is a lifting of the whole monad T =<T; �; �> to the B-coalgebras,because everything in sight in the following diagram commutes (either by the nat-urality of � and � or by distributivity).
�X TBTX

T 2X�X�X TXX
T�XT 2kTkk T 2BX�TX�BX �BXTBX

BTX BT 2XB�XB�XBXA distributive laws can be de�ned from a germ � : �BT ) BT by taking theinductive extension �# = (B�)] : TB ) BT



66 Functorial Semanticsof the germ � along the natural transformation B� : B ) BT .
B� �BTB �# = (B�)] ��#�BT�TBinrBTB�B

Indeed, the left triangle shows that �# satis�es the �rst of the two conditions forbeing a distributive law. To prove the second, one can show that both composites�# ��B and B���#T �T�# �t as the unique inductive extension of � along �#. (Thisis very much the same as the above proof that � lifts to a multiplication for theinductive functorial operational semantics b�.)Notice that then the action of the inductive operational monad b� on a coalgebrahX; ki can be decomposed into the action of the syntactical monad T on the structurek, followed by the distributive law �# at the carrier X:b� hX; ki = �#X � Tk

Notes. The notion of a distributive law of a monad over an endofunctor is derivedfrom the more familiar notion of a distributive law of a monad T1 over another monadT2 introduced in [Bec69]. In that paper, the equivalence is proved between distributivelaws of the monad T1 over the monad T2, liftings of the monad T2 to the T1-algebras, andactions of the monad T1 over the functor T2UT1 . (See also [BW85], Chapter 9.) Heremonads are lifted to coalgebras (of a functor) rather than to algebras (of a monad) andthis gives a slightly di�erent situation, with a monad distributing over a functor (and withdistributive laws implying liftings but not vice versa). More symmetry is gained in Section7 by considering the comonad D cofreely generated by the behaviour B.



5 Recursive Behaviours, Final Coalgebras and Coinduction
The rôle of �nal coalgebras is dual to the one played by initial algebras, and dualare their properties and constructions. For instance, as initial algebras account forinduction, �nal coalgebras account for the dual notion of `coinduction', which isuseful to deal with the behaviour of recursive programs. Also, as the programs ofa language may be described as the initial algebra of a signature �, the abstractglobal behaviours { the `processes' { of a language may be described as the �nalcoalgebra of a behaviour B.Let B be an endofunctor which has a �nal coalgebra (ie the �nal object inthe corresponding category of coalgebras) and let bB denote the carrier of this �nalcoalgebra. The structure of a �nal coalgebra is, like that of an initial algebra, anisomorphism, because the notion of isomorphism is `self-dual'. Thus:bB �= B bB (�nal B-coalgebra)Any coalgebra structure k : X ! BX can be `coinductively' extended to an arrowk@ : X ! bB by taking the unique coalgebra arrow from the coalgebra hX; ki to the�nal coalgebra: Coinductive ExtensionXBX k@k Bk@ �=B bBbBOf particular interest are the coinductive extensions of operational models. In orderto illustrate this, let us consider languages, like the one in Section 3, which have anoperational semantics yielding deterministic transition systems, that is, coalgebrasof the behaviour endofunctor BX = 1 + Act �Xon Set. Thus, if T is the syntactical monad for the language, an operational modelis a coalgebra with structure [[-]] : TX ! BTX67



68 Functorial Semanticswhere X is the set of variables of the language. Then, under the assumption thatthe �nal B-coalgebra exists, the coinductive extension of this coalgebra structureyields the Final Coalgebra SemanticsbB�=B[[-]]@
TXBTX B bB[[-]] [[-]]@

of the language. Since BTX = 1+Act�TX, this yields, for any term t, the followingde�nition. [[t]]@ = 8<: � if [[t]] = �<a; [[t0]]@> if [[t]] =<a; t0>(Notice that the isomorphism bB �= B bB has been treated as an equality in order tosimplify the notation.) Thus, for instance, wrt the operational model [[-]] given inSection 3, the programs a ; b and a ; nil ; b have the same �nal coalgebra semantics:[[a ; b]]@ =<a; b; �>= [[a ; nil ; b]]@In general, under this �nal coalgebra semantics, a program is mapped into the streamof actions that it can perform.Next, consider the construction of the �nal coalgebra for the above endofunctorBX = 1 + Act � X. This is an !op-continuous endofunctor, that is, it preserveslimits of functors from !op = f0 1 2 � � �g. Indeed, it is made of constants, aproduct, and a coproduct: constants and products (like all limit functors) are !op-continuous in every category; �nite coproducts are !op-continuous in Set, by thedual of a theorem [Mac71, Theorem IX.2.1] mentioned in Section 1. By further dualconsiderations, the carrier of the �nal coalgebra of an !op-continuous endofunctorB is the limit bB of the following diagram obtained by iterative applications of B tothe unique function from B1 to the singleton set 1, the �nal object in Set.B211B1 B1B1 � � �B21B11 B1The isomorphism ' : bB �= B bB giving the coalgebra structure is obtained as amediating arrow just like in the initial algebra construction.This general construction of �nal coalgebras of !op-continuous endofunctorsyields, in the particular case considered here, the �nal coalgebra with carrier theset Act1 = a��!Act�



Section 5 | Final Coalgebras 69of �nite (� = n) and in�nite (� = !) streams of actions generated by Act, and withstructure the isomorphism ' : Act1 �= 1 + Act� Act1This isomorphism is an operation which allows one to explore the streams w 2Act1: if w = �, the empty stream, then '(w) = �, otherwise w = a � w0 and'(w) =<a;w0>, that is, ' applied to a non-empty stream returns the �rst elementof the stream plus its continuation. Also notice that its inverse '�1 : 1+Act�Act1 �=Act1 is a B-algebra structure; it gives the empty stream constant � = '�1(�) andthe pre�xing operators a � - = '�1(a; -), and the identity a � � = a follows from thefact that Act � 1 �= Act.Next, the unique coalgebra arrow from a B-coalgebra hX; ki to hAct1; 'i isde�ned as follows. Let hX; f a�!gActi be the deterministic transition system corres-ponding to the coalgebra hX; ki. (Cf Section 3.) Then, for every x 2 X, considerthe global behaviour of the state x in the transition system: there are three pos-sibilities, namely either (i) the state x is inert, or (ii) the system performs a �nitesequence x a1�! x1 a2�! � � � an�! xnof transitions starting from the state x and then reaches an inert state xn, or (iii)the system performs an in�nite sequencex a1�! x1 a2�! � � � an�! xn an+1�! � � �of transitions, never reaching an inert state. Correspondingly, de�ne the functionk@ : X ! Act1 by putting, for every x 2 X,k@(x) = 8><>: � if (i)<a1; a2; : : : ; an; �> if (ii)<a1; a2; : : : ; an; an+1; : : :> if (iii)One can check this is the desired unique coalgebra arrow from hX; ki to hAct1; 'i.Thus the coinductive extension of a coalgebra structure is de�ned in terms of theglobal behaviours in the corresponding transition system. The carrier of the �nalcoalgebra itself is the set of all possible `abstract global behaviours' wrt B, in whichthe name of the states is irrelevant. In other words, streams are global behavioursof deterministic transition systems with a single state.Notice that, taking the behaviour BX = 1+Act�X in the category pSet of setsand partial functions rather than in Set, the (carrier of the) �nal B-coalgebra inpSet does not contain in�nite steams but only the �nite ones. Indeed, using partialfunctions, the coinductive extension of a state having an in�nite global behaviourcan be left unde�ned.Now, the set of �nite streams is the carrier of the initial B-algebra, both in Setand pSet. Similarly, the set of natural numbers N �= 1 + N is both the carrier



70 Functorial Semanticsof the initial algebra and of the �nal coalgebra of the endofunctor X 7! 1 +X onpSet, while in Set the �nal coalgebra needs an extra in�nity point 1. This factgeneralizes to all functors X 7! `�2� Xar(�) corresponding to signatures �.Guarded Recursion. So far, the operational interpretation of the sample lan-guage t ::= x j a j nil j (t ; t)yields global behaviours which are always �nite. In order to obtain in�nite globalbehaviours, let us use the variables x 2 X of the language and de�ne recursiveprograms as solutions of `term-equations' likex = a ; xIntuitively, the solution of the above equation should be a program having as abstractglobal behaviour the in�nite stream a!.In general, not all term-equations have solutions which can be interpreted asstreams. For instance, the equation x = x ; xshould have as solution a program which keeps on unfolding itselfx �! x ; x �! x ; x ; x ; x �! : : :never performing any action. In order to rule out this kind of equation one usuallyconsiders only recursive de�nitions which are `guarded', that is, equations x = t inwhich t is of the form a ; t0.Operationally, the above presentation of recursive programs can be made formalby introducing a �xed point binding operator �x: given a variable x and a `guarded'term t = a ; t0, the expression �xx:t is then a term with operational behaviourdescribed by the rule t[�xx:t=x] a�! u�xx:t a�! uin which the expression t[�xx:t=x] stands for the term obtained by substituting theterm �xx:t for every occurrence of x in t.One of the advantages and novelties of the present functorial approach to oper-ational semantics is that it allows for an elegant operational description of recursiveprograms which, quite surprisingly, does not require the introduction of a bindingoperator like the above �x (at least for `top-level' recursive de�nitions). Moreover,it allows for a general formal description of guarded recursion, independent of theuse of actions and transitions.



Section 5 | Final Coalgebras 71Firstly, every system of term-equationsx1 = t1x2 = t2...with xi 2 X and ti 2 TX, can be seen as a coalgebra of the syntax T having ascarrier the set X = fx1; x2; : : :g of variables appearing in the system and as structurethe function k : X ! TX xi 7! tiThe generalization of allowing for systems of equations, rather than single equationsamounts to allowing for mutually recursive de�nitions like, eg,x = a ; yy = b ; c ; yNext, recall the embedding 
 : B ) T of the behaviour into the syntax, mapping� to nil and < a; x > to a ; x. Then, a system of (mutually) recursive de�nitionsk : X ! TX is guarded if it factorizes through a coalgebrag : X ! BTXof the composite endofunctor BT in the sense thatg T 2X
TX �XTXBTXX k
commutes, that is, k = �X � 
TX � g : X ! TX, where � : T 2 ) T is themultiplication of the syntactical monad T (cf Section 2). For instance, the abovesystem is guarded because the corresponding T -coalgebra factorizes throughg(x) =<a; y> g(y) =<b; c ; y>Next, given the germ � : �BT ) BTof an inductive functorial operational semantics, write[[-]]g : TX ! BTXfor the inductive extension g] of the �-algebra structure �X : �BTX ! BTX alonga system g : X ! BTX



72 Functorial Semanticsof guarded recursive de�nitions:
�BTX�[[-]]ginrX[[-]]g = g]�Xg�XX �TX

BTX
TX

Notice the left triangle tells that, up to the insertion-of-variables �X ,[[x]]g = g(x)for every x inX. In this way the variables x 2 X can be seen as states of a transitionsystems whose behaviour is described by the semantics �. For instance, in the aboveexample, x a�! y and y b�! c ; y.Then, the desired interpretation of g as a recursive process is obtained by takingthe corresponding �nal coalgebra semantics (g])@ = [[-]] @g : TX ! bB precomposedwith the insertion-of-variables �X : X ! TX. Write, abusing the notation, g@ forthis function:
g TXBTX B[[-]] @g

X [[-]] @gg@[[-]]g = g]�X �=bBB bBThus, for the above example, one has, omitting, as usual, both the insertion-of-variables �X and the �nal coalgebra isomorphism ',g@(x) = <a; g@(y)>g@(y) = <b; [[c ; y]] @g > = <b; c; g@(y)>that is, g@(x) = a(bc)! and g@(y) = (bc)!. (Cf the above �nal coalgebra semantics.)To be formal, the functorial operational semantics of the previous section gives[[c ; y]]g =<c; 
TX [[y]]g>hence g@(y) =<b; c; [[
TX [[y]]g]] @g >. However, by `unfolding' [[
TX [[y]]g]] @g byone step [[
TX [[y]]g]] @g = '�1 � B[[-]] @g � [[
TX [[y]]g]]g



Section 5 | Final Coalgebras 73and by using the fact that 
TX is a retraction for the operational model[[
TX [[y]]g]]g = [[y]]gone obtains g@(y) = [[
TX [[y]]g]] @gTherefore, the equation g@(y) =<b; c; g@(y)>does hold.Notice that the above recursive de�nition is automatically well-de�ned becauseof the coinduction principle given by �nality. In general, �nal coalgebras allowrecursive constructs to be interpreted also in categories where there is no structureto ensure the existence of (canonical) �xed points of functions. In other words, theabove interpretation of recursion by �nal coalgebras encompasses the traditionalmethods using least �xed points in complete partial orders, or unique �xed points incomplete metric spaces, or, more recently, the solution lemma in non-well-foundedsets (see Part V), and it permits to interpret recursion in any category, includingthe ordinary category of (standard) sets.Unguarded Recursion. An alternative approach to recursive programs is ob-tained by regarding them as (possibly) in�nite terms. Representing a term as atree whose root is labelled by the outermost constructor of the term, one has, forinstance, that the solution of the equationx = x ; xis an in�nite tree with no leaf and all nodes labelled by ` ; ':
... ...;�;...

;�... �;� ;�;� ;�Similarly, the solution of x = a ; x is the in�nite term represented by the followingtree ; �;; ...aa ��� �



74 Functorial SemanticsThe advantage of this approach is that it can be applied also to unguarded de�n-itions, but, in order for an in�nite term to be given an operational meaning, oneneeds to shift from the category of ordinary sets to categories with more structuredobjects like cpos or complete metric spaces.Coalgebraically, the idea is that, while the initial �-algebra is the set of �niteterms in �, the �nal �-coalgebra contains also the in�nite terms. The argumentis similar to the one above showing that the �nal coalgebra of the behaviour X 7!1+Act�X contains both �nite and in�nite streams, while its initial algebra only the�nite ones. Now, apart from `meaningless' equations like x = x (or, more generally,x = y; y = x) every (possibly unguarded) system of term-equations can be seen asa coalgebra of the composite endofunctor �T , that is, as a functionk : X ! �TXThis can be made into a �-coalgebra with carrier TX by `copairing' k with theidentity on �TX using the fact that TX, since it is the carrier of the initial (X+�)-algebra, is a coproduct TX �= X + �TXX
�TX

�TXk TX[k; id�TX ]
(By de�nition, the value of this coalgebra structure at a variable x is the same asthe value of k at x.) Abusing the notation, writek@ : X ! b�for the composition of the insertion-of-variables �X : X ! TX with the coinductiveextension of the copair [k; id�TX ] : TX ! �TX

�b�b��TXk �=[k; id�TX ]@[k; id�TX ]�[k; id�TX ]@
k@�XX TX

Thus, for the coalgebra structure k corresponding to the equation x = x ; x one has,omitting, as usual, the �nal coalgebra isomorphism,k@x = (k@x) ; (k@x)which is the desired in�nite term.



Section 5 | Final Coalgebras 75Once in�nite terms are introduced in the syntax, the problem arises of how to interpretthem operationally. One possible solution is to consider categories in which initial algebrasand �nal coalgebras coincide. Indeed, if the inverse of the initial �-algebra isomorphism�� �= � is the �nal �-coalgebra isomorphism b� �= �b� and, hence,� = T0 = b�then the interpretation of a recursive de�nition k is the composition of the above k@ :X ! T0 = b� with the coinductive extension [[-]]@ : T0 = �! bB of the operational model[[-]] : T0! BT0.
B bB= T0 bBk �= b�k@X [[-]]�[k; id�TX ]@ �b��TX �=[[-]]@BT0 B[[-]]@As mentioned in Section 1, a category where the initial �-algebra is also the �nal�-coalgebra is pSet, the category of sets and partial functions. However, like in Set, alsoin pSet the object � = T0 is the set of �nite terms only: the arrow k@ : X ! T0 isthus a partial function mapping to `unde�ned' every variable whose intended solution isan in�nite term. Thus, in particular, both x = x ;x and x = a ;x would be interpretedas unde�ned, which is not what one expects.To obtain both in�nite terms as elements of an initial algebra and the coincidenceof initial algebra and �nal coalgebras one can move from pSets to pCpo, the categoryhaving as objects complete partial orders (possibly without a bottom element) and asarrows partial Scott-continuous functions. The signature �X = `�Xar(�) extends topCpo but its initial algebra is the same as the one in pSets. In order to obtain in�niteterms, one needs to modify � by applying to every element of the coproduct `�2�Xar(�)the lifting monad X 7! X? adding a new bottom element to a cpo. That is, take�X = a�2�(Xar(�))?In this way, the syntax will contain both partial terms of the form ? ; (a ;?) and in�niteterms obtained as limit of �nite terms. (Cf [Plo81a]: \Syntax considered as a cpo".)Notice that the behaviour BX = 1+Act�X also extends to pCpo but, in general, theproblem remains of how to extend a functorial operational semantics from sets to cpos.This is not treated in the present study and left to future work. It shows anyway theimportance of the generality of the formulation of functorial operational semantics, wherethe base category C is not necessarily Set.



76 Functorial SemanticsNotes. The standard solution of domain equations in pCpo [SP82, Plo85] has longbeen known to be a �nal coalgebra, but this was obscured by the fact that initial algebrasand �nal coalgebras of (`locally continuous') endofunctors on pCpo do coincide in thesense that they are `canonically isomorphic'. (And the same holds for `locally contract-ing' endofunctors on complete metric spaces { cf [AR89, RT93].) Correspondingly, theavailability of a coinduction principle was obscured by the use of induction and by `intern-al' properties, like the existence of least (respectively unique) �xed points of continuous(respectively contracting) functions.It has been Peter Aczel's work on `non-well-founded sets' [Acz88] which has broughtto light the main semantic properties of �nal coalgebras. (But see also [Ole82] for an earlyexample of coinductive de�nitions by means of �nal coalgebras.) In [RT93], a �rst attemptis made towards systematizing these properties and the term `�nal (coalgebra) semantics'is introduced. Examples of �nal coalgebra semantics appear in [RT94] (both with ordinarysets and with semi-lattices), [Acz94, Bal94, HL95, Har96] (with non-well-founded sets),[Fio93] (with complete partial orders), and [TJ93] (both with complete partial orders andwith semi-lattices).The above coalgebraic/functorial approach to the operational semantics of recursiveprograms deals neatly with top-level, mutually recursive de�nitions, but it ignores someaspects of the expressivity of the `�x' operation, like the ability of dealing with localde�nitions and parameterized de�nitions: this is left to future work.
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6 The Functorial Operational Semantics is Compositional
The semantics of a programming language is called compositional when the mean-ing of compound programs can be derived from the meaning of their subcomponents.A typical compositional semantics is obtained by de�ning the meaning of a programby induction, starting from a `denotation' hj� ji for each n-ary program construct�: hj�(t1; : : : ; tn) ji# = hj� ji(hj t1 ji#; : : : ; hj tn ji#)This is called a denotational semantics.A complete account of the meaning of a programming language requires bothan operational and a denotational semantics. The former explains how a machineshould execute programs, specifying their executable behaviours. The latter, be-cause of its modularity, is better suited for reasoning about programs. The twomeanings should be related in such a way that one should be able to infer from thedenotational semantics the operational behaviour of the programs { up to a suitableabstraction. In other words, the denotational semantics of a language should beadequate wrt the operational semantics.In general, much work is needed to prove the adequacy of a denotational se-mantics wrt an operational one. However, from operational semantics of transitionsystems de�ned by operational rules satisfying suitable syntactic restrictions (eg,the rules are in the GSOS format { see Section 11), it is possible to derive adequatedenotational semantics systematically. (Cf notes below.)Now, the novelty of the present functorial approach to operational semantics isthat every functorial operational semantics coinduces a denotational semantics and,moreover, this denotational semantics is adequate wrt the operational one; as acorollary, every functorial operational semantics is compositional. Being formulatedin terms of abstract notions of syntax and behaviour, this gives a general notion of`well-behaved' operational semantics, based on purely mathematical properties. Thisencompasses and explains the `syntactic' arguments otherwise used in the literature.(Cf Section 11.)Assume, as usual, the (closed) programs of the language to be interpreted are theelements of the initial algebra of the endofunctor corresponding to some programconstructs �. That is, let T be the syntactical monad of the language and �T0 �= T0the corresponding initial algebra of closed programs. Then, the problem of de�ning adenotational semantics can be reduced to the problem of �nding a suitable �-algebra79



80 Functorial SemanticshD; hj - jii, whose carrier D is the semantic domain and whose structurehj - ji : �D ! Dis the set of denotations. The desired denotational interpretation of the programsis then the inductive extension of this algebra of denotations, that is, the uniquealgebra arrow hj - ji# from the initial algebra of programs to hj - ji : �D ! D.Diagrammatically: Initial Algebra Semantics�= �hj - ji#
D�Dhj - ji = denotationshj - ji#initial algebraT0�T0

The restriction to closed programs is adopted only to simplify the presentation. Ingeneral, the interpretation of programs with variables x 2 X, that is, for the elements ofTX �= X+�TX, is parametric in a `valuation' function � : X ! D mapping each variableto an element of the semantic domain D. Indeed, the inductive extension hj - ji#� : TX ! Dof the denotations hj - ji : �D ! D along the valuation � : X ! D has the familiar clauseshjx ji#� = �(x)hj�(t1; : : : ; tn) ji#� = hj� ji(hj t1 ji#� ; : : : ; hj tn ji#� )The denotational model of a language is adequate wrt the operational one whenit contains enough information to infer the abstract behaviour of the programs. Now,recall (from the previous section) that when the operational model of the (closed)programs can be expressed as a coalgebra structure [[-]] : T0 ! BT0 of a behaviourB, then the abstract (global) behaviour of the programs is given by its coinductiveextension, that is, by the corresponding �nal coalgebra semantics:
B[[-]]@

bBB bB[[-]] [[-]]@�nal coalgebra semantics �nal coalgebraT0BT0 �=
Then, in this setting, a denotational model is adequate wrt an operational one whenits initial algebra semantics hj - ji# : T0 ! D is equal to the �nal coalgebra semantics[[-]]@ : T0 ! bB corresponding to the operational model. Thus, in particular, the



Section 6 | Compositionality 81semantic domain D should be the carrier bB of the �nal coalgebra of the behaviour.Diagrammatically:
B[[-]]@ �nal coalgebraBT0
�hj - ji#�T0

B bB
hj - ji[[-]] initial algebra semantics�nal coalgebra semanticshj - ji#[[-]]@T0initial algebra � bBbB

That is, for all programs t 2 T0, hj t ji# = [[t]]@As a corollary, the equivalence relation corresponding to the �nal coalgebra se-mantics is a congruence, that is, if, for i = 1; : : : ; n,[[ti]]@ = [[t0i]]@then [[�(t1; : : : ; tn)]]@ = [[�(t01; : : : ; t0n)]]@for every n-ary operator � 2 �.The above equivalence relationt � t0 () [[t]]@ = [[t0]]@is the observational equivalence corresponding to the operational semantics ofthe language, as it is determined by the abstract global behaviour of the programs,which is their intended observable behaviour . Now, if observational equivalence ofa language is a congruence, one can systematically derive a denotational model ad-equate wrt the operational semantics. In turn, to ensure that the observationalequivalence is a congruence one can impose suitable syntactic restrictions on theformat of the operational rules. (Eg, GSOS { see Section 11.) This gives a satis-factory method to derive adequate denotational models from operational semantics,but it strongly relies on the assumption that the operational semantics is given interms of structural rules for transition systems.The novelty of the present functorial approach to operational semantics is thatit gives a general notion of `well-behaved' operational semantics formulated in termsof abstract notions of syntax and behaviour: every functorial operational semanticscoinduces a denotational model adequate wrt it. As shown in Section 11, this purelymathematical approach encompasses { and explains { the above `syntactic' method.



82 Functorial SemanticsThe denotational model coinduced by �. Let us now look at the actual con-struction of the denotations corresponding to a functorial operational semantics �.Recall that the operational monad �=<�; �; �> is a lifting of the syntactical monadT =<T; �; �> freely generated by the program constructs �. It is convenient to usethe isomorphism, illustrated in Section 2, between the categories of �-algebras andT -algebras, and de�ne the desired denotational model as a T -algebra rather than asa �-algebra. That is, let us look for an arrowhj - ji : T bB ! bBsuch that the following diagrams commute. bB bBT bBT bB �bB hj - jihj - jihj - ji
T hj - ji�bBT 2 bBT bB bBThe idea is to exploit the fact that bB �= B bB is a �nal coalgebra and thatthe operational monad � maps a coalgebra structure k : X ! BX to a coalgebrastructure �k : TX ! BTX. Thus, by applying � to the �nal coalgebra isomorphism' : bB �= B bB, one obtains a coalgebra structure on T bB:�' : T bB ! BT bBIts coinductive extension (�')@ : T bB ! bB

BT bB B(�')@�' '(�')@T bB B bBbB (1)is then the natural candidate for the desired denotational model hj - ji : T bB ! bB.Let us prove, using �nality, that this arrow is a T -algebra indeed. Consider �rstthe multiplication law: T bBT (�')@
(�')@�bB (�')@T 2 bB bBT bB (2)



Section 6 | Compositionality 83This is the upper side of the cube T (�')@
B�bB

T bBBT 2 bBT 2 bB
B(�')@ '�'�2' �bB (�')@(�')@bBB bBBT bBT bB

whose vertical sides all commute:The front side and the other (not visible) side underlying the arrow (�')@ :T bB ! bB are two copies of the de�nition of (�')@, hence commute. The back(not visible) side is the square T 2 bB�2' T bBT (�')@ �'BT bBBT 2 bB BT (�')@which is nothing but the image under the functor � of, once more, the squarede�ning (�')@ : T bB ! bB, hence, by functoriality , it commutes. Finally, thelast vertical side is a square which commutes by the fact that, by de�nitionof lifting of a monad, multiplication � : T 2 ) T of the syntactical monad Tlifts to the multiplication � : �2 ) � of the operational monad �.Therefore, both composites (�')@ � �bB and (�')@ � T (�')@ �t as the (unique!)coinductive extension of the coalgebra structure �2' : T 2 bB ! BT 2 bB, hence theymust be the same.The proof of the other T -algebra law
bBbB �bB (�')@T bB



84 Functorial Semanticsis similar and follows from the fact that � : I ) T lifts to the unit of the monad �:bB'B bB B�bB
�bB T bB�'BT bB(Notice this last commuting diagram tells us that, using the terminology of Section3, the coalgebra hT bB;�'i conservatively extends the �nal coalgebra h bB;'i.)Adequacy. Now, the claim is that the initial algebra semantics induced by theabove denotational model hj - ji = (�')@ : T bB ! bBis the same as the �nal coalgebra semantics coinduced by the operational model[[-]] = �0 : T0 ! BT0That is, T 20 hj - ji#[[-]]@ B bBB[[-]]@

T bB
' �nal coalgebra�nal coalgebra semanticsinitial algebra �0 initial algebra semanticsT hj - ji# hj - ji = (�')@

BT0�0 = [[-]]T0 bB
(Formally, the initial algebra semantics hj - ji# : T0 ! bB is the unique T -algebra arrowfrom the initial T -algebra hT0; �0i to the denotational model h bB; hj - jii. By the isomorphismbetween T - and �-algebras, it is the same as the initial algebra semantics of the �-algebracorresponding to the T -algebra h bB; (�')@i.)



Section 6 | Compositionality 85This follows from the fact that everything in sight in the diagram
(�')@ �nal coalgebraB(�')@ '

T 20 T 2 bB
B bBbB

(�')@ = hj - ji
BT0@
T0@T 20@ T bBT (�')@�0initial algebra�0 = [[-]] �'�bBBT0T0 BT bBT bB

commutes:The upper right square is the multiplication law (2) for the T -algebra structure(�')@ : T bB ! bB and the lower right square is the de�ning square (1) of thearrow (�')@ : T bB ! bB. For the left squares �rst recall that 0 is the initialobject in the base category C. (Eg, in C = Set, 0 is the empty set.) andalso recall the convention of writing 0 : 0 ! B0 for the unique arrow from0 to B0, which, by the way, is the structure of the initial B-coalgebra. Thecorresponding coinductive extension 0@ : 0! bB makes the diagram'B bBB0 B0@0@0 bB0
commute. (It is also the unique arrow from the initial object 0 to bB.) Thenthe lower left square commutes because it is the image under the functor �of the above commuting square, and the upper left square commutes by thenaturality of � : T 2 ) T .That is, hj - ji# = (�')@ � T0@ = [[-]]@ : T0 ! bBIndeed, the composite arrow (�')@ � T0@ : T0 ! bB is both a coalgebra arrow {hence the coinductive extension [[-]]@ { and an algebra arrow { hence the inductiveextension hj - ji#.Equivalently, ((�')@)# = (�')@ � T0@ = (�0)@ : T0 ! bBAgain, the restriction to closed programs is not essential. Given a set X of variableswith a coalgebra structure k : X ! BX on it, one has that the composite (�')@ � Tk@ :TX ! bB is both the coinductive extension (�k)@ of the operational model �k : TX !



86 Functorial SemanticsBTX and the inductive extension hj - ji#� of the denotational model along the valuationfunction � = (�k)@ � �X : X ! bBThat is, �] = ((�k)@ � �X)] = (�')@ � Tk@ = (�k)@ : TX ! bBExample. Consider the functorial operational semantics corresponding to therules R for the language t ::= x j nil j a j (t ; t)The base category is Set. The syntactical monad T =<T; �; �> is the one freelygenerated by the endofunctor�X = 1 + Act +X �Xon Set. (Cf Section 2.) The behaviour isBX = 1 + Act�Xwhose coalgebras are the deterministic transition systems. (Cf Section 3.) Its �nalcoalgebra h bB;'i has as carrier bB the set Act1 of �nite and in�nite streams of actionsin Act and the isomorphism ' : Act1 �= 1 + Act � Act1 applied to a non-emptystream p = a�p0 in Act1 returns a pair with �rst component a and second componentthe continuation p0, while ' applied to the empty stream returns �. (Cf Section 5.)Equivalently, the �nal coalgebra hAct1; 'i can be seen as a deterministic transitionsystem with �nite and in�nite streams as states and with transitions p = a�p0 a�! p0.Next, the set T bB is the set of terms over the constructs in � and with streams inAct1 as variables. Thus, for instance, the term a ; (a � b) is in this set. (Notice thedistinction between the �rst a which is a constant of the language and the seconda which is the �rst element of the stream a � b, which is a variable.) Also, all closedterms of the language belong to the set T bB and the function T0@ : T0 ! T bB isnothing but this inclusion.The operational rules R for the language are the axiomsnil # � and a a�! niland the three rules for sequential composition:u a�! u0u ; v a�! u0 ; v u # � v a�! v0u ; v a�! v0 u # � v # �u ; v # �(Cf Section 3.) These rules induce an operational model denoted by[[-]]R : T0 ! BT0



Section 6 | Compositionality 87such that [[nil]]R = �, [[a]]R =<a; nil>, and for all terms u; v,[[u ; v]]R = 8>>><>>>: <a; u0 ; v> if [[u]]R =<a; u0><a; v0> if [[u]]R = � and [[v]]R =<a; v0>� if [[u]]R = � = [[v]]RMore generally, recall that every coalgebra structure k : X ! BX can be seenas a set of axioms for the variables x 2 X by puttingx a�! x0if k(x) =<a; x>. Then, for every such k, the above rules R induce an operationalmodel [[-]]kR : TX ! BTXwhich adds to the above the behaviours[[x]]kR = k(x)for every x 2 X.Consider now the inductive functorial operational semantics � = d�R which themethod in Section 4 assigns to the rules R. It yields operational models�k = [[-]]kdRe : TX ! BTXwhich di�er from the above [[-]]kR only in the treatment of the �rst case of sequentialcomposition: [[u ; v]]kdRe = <a; u0 ; 
TX [[v]]kdRe> if [[u]]kdRe =<a; u0>where, recall, the transformation 
 : B ) T is the embedding of the behaviourinto the syntax mapping � to nil and < a; x > to a ; x. It is a retraction for theoperational semantics in the sense that, in particular,[[
TX [[v]]kdRe]]kdRe = [[v]]kdReThis equation allows one to use the compositionality of functorial operational se-mantics to prove that the coinductive extension of [[-]]kdRe is equal to the coinductiveextension of [[-]]kR, that is, ([[-]]kdRe)@ = ([[-]]kR)@ : TX ! bBwhich implies that the abstract global behaviours corresponding to the former are thesame as those corresponding to the latter, so that the two models are `observationallyequivalent' as claimed in Section 4. The proof is as follows.



88 Functorial SemanticsR is observationally equivalent to dRe. Recall that the de�nitionof coinductive extension gives, for [[u ; v]]kdRe =<a; u0 ; 
TX [[v]]kdRe>,([[u ; v]]kdRe)@ =<a; ([[u0 ; 
TX [[v]]kdRe]]kdRe)@>Then, it is enough to show that([[u0 ; 
TX [[v]]kdRe]]kdRe)@ = ([[u0 ; v]]kdRe)@If hj - ji : T bB ! bB is the denotational model coinduced by the operationalmonad � =d�R, one has, by the above adequacy result,([[u0 ; 
TX [[v]]kdRe]]kdRe)@ = hj([[u0]]kdRe)@ ; ([[
TX [[v]]kdRe]]kdRe)@ ji (adequacy)= hj([[u0]]kdRe)@ ; ([[v]]kdRe)@ ji (retraction)= ([[u0 ; v]]kdRe)@This concludes the proof.The denotational model hj - ji : T bB ! bB coinduced by the operational monad � =d�Ris the coinductive extension of the operational model [[-]]'dRe : T bB ! BT bB which,from the above result that R is observationally equivalent to dRe, is the same asthe coinductive extension of [[-]]'R : bB ! BT bB, that is,hj - ji = ([[-]]'R)@ : T bB ! bBBy de�nition of coinductive extension, this gives, for every term t 2 T bB,hj t ji = 8<: � if [[t]]'R = �<a; hj t0 ji> if [[t]]'R =<a; t0>Thus, in particular, the nil constant is denoted by �,hjnil ji = �every action a is denoted by the pair <a; �>,hja ji =<a; hjnil ji>=<a; �>and the denotation of the sequential composition of two streams p and q ishjp ; q ji = 8>>><>>>: <a; hjp0 ; q ji> if p = a � p0<a; q0> if p = � and q = a � q0� if p = � = q



Section 6 | Compositionality 89The adequacy of this denotational model wrt the operational semantics inducedby the rules R, that is, the commutativity of T bB�0 [[-]]@R
T [[-]]@R hj - ji = ([[-]]'R)@T 20 bBT0tells then that hjC[ [[t]]@R ] ji = [[�0(C[ t ])]]@Rfor every context C[ - ] and term t. (The multiplication �0 : T 20 ! T0 is needed inorder to make of the context C[ - ] and of the term t a term in T0.) In particular,for the context with two `holes' ( - ; - ) one has, omitting the multiplication �0, theequation hj [[u]]@R ; [[v]]@R ji = [[u ; v]]@Rused in the above proof of the equivalence between R and dRe.Another consequence of the above adequacy is that programs with the sameabstract global behaviour can be interchanged in any context. That is, if [[u]]@R =[[v]]@R , then [[C[ u ]]]@R = [[C[ v ]]]@R , or, equivalently, in terms of the observationalequivalence � introduced earlier in this section,u � v implies C[ u ] � C[ v ].Finally, notice that a denotational model is adequate also if the �nal coalgebrasemantics is not equal to but only `included' in the initial algebra semantics; that is,one can be more liberal and de�ne a denotational model hD; hj - jii to be adequate ifit contains bB as a subalgebra and the inclusion sends the �nal coalgebra semanticsto the initial algebra semantics: bB[[-]]@ Dhj - ji#T0



90 Functorial SemanticsNotes. The relevance of initial algebras for semantics, type theory, and algebraic spe-ci�cation was recognized by the `ADJ' group in the mid-seventies. (Some references oninitial algebra semantics are [GTW78, MG85, Mos90, MT92].)The idea of coupling initial algebra with �nal coalgebra semantics was �rst used in[RT94] to give a categorical account of the method described in [Rut92] for systematicallyderiving denotational models from structural operational semantics. (For precursors ofthis method see [Bad87, Rut90].) This method is based on results like those in [dS85,BIM88, GV92, Gro93] which show that the above notion of observational equivalence(`strong bisimulation') is a congruence if suitable restrictions are imposed on the syntacticformat of the rules. (Cf Section 11.) This kind of results, although of great practicalrelevance, is very much dependent on the use of labelled transition systems and hard toexport to other notions of operational model. Instead here the idea is that the structuralrules correspond to the germ of an inductive functorial semantics, that is, they can be seenas an action of the syntax on the composite functor BT , for abstract notions of syntax Tand behaviour B.Like in the present approach, in [RT94] the denotational model is coinduced by theoperational rules and the equivalence between initial algebra and �nal coalgebra semanticsis proved by means of a four-squares diagramT 2 bBT 20
BT0T0 T bBBT bB B bBBT0@ Bhj - jiT0@ hj - ji bBT bBT 20@ T hj - ji

[[-]]R hj - ji[[-]]'Rinitial algebra �bB ' �nal coalgebra�0
The di�erence is that, in order to ensure the commutativity of the upper right square,it is assumed in [RT94] that the observational equivalence coinduced by the operationalsemantics is a congruence, which fact, instead, becomes here a trivial consequence offunctoriality. In fact, the functorial description of `well-behaved' operational rules is theessence of the present approach.



7 A Dual Lifting: Functorial Denotational Semantics
A functorial operational semantics is a monad lifting the syntactical monad (freelygenerated by the signature) to the coalgebras of the behaviour. As shown in theprevious section, this operational monad coinduces a denotational model. In fact,this denotational model is just one particular action of a `comonad ' coinduced bythe operational monad. This `denotational comonad' is a lifting (to the algebrasof the syntax) of another comonad, namely the `observational comonad' cofreelygenerated by the behaviour.The property that every operational monad coinduces a denotational comonadis the basic property of the functorial approach to operational semantics. Its dualalso holds, namely every denotational comonad induces an operational monad; thisgives a useful method to derive an operational semantics from a denotational one.The notion of comonad is dual to the one of monad: a comonad on a categoryC is a triple D=<D; "; �>with D an endofunctor on C D : C! Cand with the counit " and the comultiplication � natural transformations" : D) I � : D) D2which satisfy the following laws. Comonad Laws

D"ID DI�D2D�� "D�DD�
D2D

D2 D3A �rst example of a comonad is given by the observational comonad D=<D; "; � > cofreely generated by the behaviour endofunctor BX = 1 + Act � X onSet. For every set X, the value of D at X is the carrier DX of the �nal coalgebraDX �= X �B(DX)91



92 Functorial Semanticsof the endofunctor (X�B) : Set ! Set. (Cf de�nition of TX in Section 2.) Inparticular, the value of D at singleton 1 { the �nal object of Set { is the carrierbB = Act1 of the �nal B-coalgebra, because 1 � X = X. Thus D1 is the setof abstract global behaviours corresponding to B, that is, the �nite and in�nitestreams generated by Act. (See Section 5.)Now, a stream (a1a2 � � �) can be seen as a sequence of transitions� a1�! � a2�! � � � �in which the states have no name or, equivalently, have all the same name � 2 f�g =1. Therefore, D1 is the set of global behaviours with a single state.In general, the set DX is the set of global behaviours observable with statesx 2 X, that is, the �nite and in�nite sequences of transitionsx a1�! x1 a2�! x2 � � �with states x 2 X and actions a 2 Act. Formally, one can check thatDX = X + a1���!(X�Act)�The �nal coalgebra isomorphism DX �= X�BDX splits into two projections:fstX BDXDX �= X�BDX sndXXThese are the operations which allow one to observe these global behaviours: the�rst projection extracts the root of a global behaviour, the second projection givesits continuation. For instance: sndXx a1�! x1 a2�! x2 � � �x a1�! x1 a2�! x2 � � �fstXThe �rst projection fstX : X � BDX is the natural candidate for the value ofthe counit " : D ) I at X: "X = fstX : DX ! Xwhile the second projection can be coinductively extended to yield the comultiplic-ation � : D ) D2. Indeed, by �nality, the coalgebra DX �= X�BDX comes with acoinduction principle which can be used to extend the operator D to an endofunctorand to de�ne its comultiplication:Every (X�B)-coalgebra structure Y ! X�BY is a pair <f; k>, withf : Y ! X and k : Y ! BY . The �rst function can be seen asa `covaluation' function, while the second is a B-coalgebra structure.By duality with the de�nition of inductive extensions along valuation



Section 7 | The Basic Property 93functions, call the corresponding coinductive extension f [ =< f; k >@:Y ! DX
DX"X = fstX f [ Bf [sndX

k
BDXf BYY

Xthe coinductive extension of k along the covaluation function f .Then, extend D to a functor by putting, for every function f : X ! Y ,Df = (f � "X)[ : DX ! DYThis function Df applied to a global behaviour dx = (x a1�! x1 a2�! x2 � � �) substi-tutes every state in dx 2 DX by its image under the `renaming' f :(Df)(dx) = f(x) a1�! f(x1) a2�! f(x2) � � �Similarly, the value of the comultiplication � : D ) D2 at X is given by the coin-ductive extension of the second projection sndX : DX ! BDX along the identityon DX:
D2X
DX

DX �X = (idDX)[sndX
sndDX"DX B�XBD2X

BDX
The left triangle tells that " is a left counit for �. The proof that it is also a rightcounit and that � is a comultiplication is dual to the proof in Section 2 for the unit� and the multiplication � of the syntactical monad T .Concretely, the comultiplication �X : DX ! D2X maps a global behaviourdx = (x a1�! x1 a2�! x2 � � �) to a global behaviour with the same transitions but withevery state xi replaced by its whole global behaviour dxi:�X(dx) = (dx a1�! dx1 a2�! dx2 � � �)In general, the coinductive extension of a coalgebra structure k : Y ! BY alonga function f : Y ! X can be interpreted in terms of (deterministic) transitionsystems as follows. The B-coalgebra hY; ki is a transition system with Y as set ofstates; the covaluation function f : Y ! X maps every state y 2 Y to a state



94 Functorial Semanticsf(y) 2 X. Then, if the global behaviour of a state y in the transition systemcorresponding to hY; ki is the (possibly in�nite) sequencey a1�! y1 a2�! y2 � � �the coinductive extension f [ : Y ! DX maps y to this global behaviour, butreplacing every state yi by f(yi):f [(yi) = f(y) a1�! f(y1) a2�! f(y2) � � �As an example, let the set Y of states be the set Z of integers and let the setAct of actions be trivial, that is, let Act be made of only one action a:Y = Z and Act = fagNext, let the deterministic transition system corresponding to the coalgebrastructure k : Z! B(Z) be such that 0 is inert, a positive integer n performsa transition to its predecessor n � 1, and a negative integer �n performs atransition to its successor �n+ 1:0 # � n a�! n� 1 � n a�! �n+ 1Now, if X is the three-elements set f0;|;}g and f : Z ! f0;|;}g is thefunction mapping 0 to 0, positive numbers to }, and negative numbers to |,then the coinductive extensionf [ : Z! Df0;|;}gof the transition system along this covaluation function f maps every integer zto a sequence of a-transitions of length jzj having 0 as last state and } (resp.,|) as all other states if z is positive (resp., negative). Thus, for instance,f [(3) = } a�! } a�! } a�! 0 f [(�3) = | a�! | a�! | a�! 0Notice that the same set X = f0;|;}g can be used to observe the globalbehaviours of the above transition system in quite a di�erent way. Considerthe function g : Z! f0;|;}g mapping odd numbers to | and even numbersto }. Then the coinductive extension g[ : Z ! f0;|;}g of the transitionsystem along g identi�es n and �n. For instance:g[(3) = | a�! } a�! | a�! 0 = g[(�3)The same identi�cation can be obtained by setting X = 1 and thus forcing thecovaluation function to map everything to the same state � 2 f�g = 1. Then,the coinductive extension of k along this trivial function Y ! 1 is nothingbut the simple coinductive extensionk@ : Y ! bB = D1 �= 1�BD1 �= BD1 = B bBof k (see Section 5). In particular,k@(3) = � a�! � a�! � a�! � = k@(�3)



Section 7 | The Basic Property 95Consider now, for an arbitrary comonad D =< D; "; � > in a category C, thecategory CD of D-coalgebras. It is the category of coalgebras of the endofunctorD which `respect' the counit " and the comultiplication � of the comonad D; thatis, its objects are pairs hX; ki, with X an object of C and k : X ! DX an arrow ofC satisfying the laws
Dk
kX

DXk �X kDX
D2X X DX"X

X
and its arrows f : hX; ki ! hY; hi are arrows f : X ! Y of C such that Df � k =h � f .B-coalgebras are D-coalgebras. There is an isomorphism betweenthe category of coalgebras of an endofunctor B and the coalgebras ofits cofreely generated comonad D. This isomorphism maps every B-coalgebra hX; ki to the D-coalgebra with same carrier X and with struc-ture the coinductive extension of k along the identity on X:

X DX BDX
k BX

"X
X

sndX(idX)[ B(idX)[
The inverse of this isomorphism is obtained by composing eachD-coalgebrastructure k : X ! DX �rst with the second projection sndX : X �BDX ! BDX and then with B"X : BDX ! BX. That is:hX; ki 7! hX;B"X � sndX � kiThe proof is simply the dual of the proof that �-algebras are T -algebrasgiven in Section 2.Notice that, under the above isomorphism of categories, the �nal B-coalgebra bB �=B bB corresponds to the cofree D-coalgebra over the �nal object, namely hP1; �1i,just like the initial �-algebra corresponds to hT0; �0i, the free T -algebra over theinitial object.The dualities between signature and syntactical monad on the one side and be-haviour and observational comonad on the other side can be summarized as follows.



96 Functorial SemanticsSignature � : C! C Behaviour B : C! CAlgebras CoalgebrasX+�TX �= TX = initial (X+�)-algebra DX �= X�BDX = �nal (X�B)-coalgebraInduction (-)# Coinduction (-)@� = inl : I ) T " = fst : P ) I� = [id; inr]# = id] : T 2 ) T � =< id; snd>@= id[ : P ) P 2Syntactical Monad T =<T; �; �> Observational Comonad D=<D; "; �>TX = Programs DX = Global BehavioursC� �= CT CB �= CDhT0; �0i = Initial Algebra hD1; �1i = Final CoalgebraNext, notice that the isomorphism between B- and D-coalgebras implies thatevery operational monad �=<�; �; �> can be seen as a lifting of the syntacticalmonad T =<T; �; �> to the coalgebras of the observational comonad D rather thanto the coalgebras of the behaviour B (and vice versa). Thus, writing UD : CD ! Cfor the forgetful functor mapping a D-coalgebra hX; ki to its carrier X, one has�UD UDCD CDOperational Monad
T CCThat is, for every D-coalgebra structure k : X ! DX, one has that �k : TX !DTX is also a D-coalgebra structure and, moreover, the two squares in the diagram�2k�kk T 2XDX DT 2XD�XDTXD�X

�XTXX �X
commute.



Section 7 | The Basic Property 97In the above form, the de�nition of functorial operational semantics can be easilydualized to yield the de�nition of functorial denotational semantics, namely asa comonad 	 lifting the observational comonad D=<D; "; �> to the T -algebras:CTCTUT UTD
	Denotational Comonad

CCThat is, 	 is a comonad with counit and comultiplication inherited from the ob-servational comonad D=<D; "; �>	=<	; "; �>and with 	 : CT ! CT such thatUT	 = DUT : CT ! CEquivalently, 	 is an action of the monad T on the composite functor DUT : CT !C, ie a natural transformation 	 : TDUT ) DUTsuch that, for every T -algebra h : TX ! X, 	h : TDX ! DX is also a T -algebra. Therefore, the fact that the counit and comultiplication of the observa-tional comonad D lift to those of the denotational comonad 	 is equivalent to thecommutativity of the two squares in the following diagram.
	h �X"X

T�X 	2hTD2XTDX
D2XDX

TX T"X
Xh(Cf Section 4.)The basic property of the functorial approach to operational semantics can nowbe stated.



98 Functorial SemanticsThe denotational comonad �@ coinduced by an operational monad �.Every operational monad �=<�; �; �> lifting a syntactical monad T =<T; �; �> tothe coalgebras of an observational comonadD=<D; "; �> coinduces an endofunctor�@ : CT ! CTsuch that �@=<�@; "; �> is a denotational comonad lifting D to the T -algebras:
C CT 7�!UDCDCDUD �

CC
�@
D UTUTCT CT

The endofunctor �@ on the T -algebras is de�ned by coinduction as follows. Forsimplicity, recalling the isomorphism CD �= CB between the categories of D- and B-coalgebras, consider the operational monad � to be on the B-coalgebras rather thanon the D-coalgebras. Now, one needs, for every T -algebra structure h : TX ! X, aT -algebra structure �@h : TDX ! DX. Therefore, �rst apply the given operationalmonad � to the B-coalgebra structuresndX : DX ! BDXobtaining the B-coalgebra structure�(sndX) : TDX ! BTDXand then take the coinductive extension of this coalgebra structure �(sndX) alongthe composite arrow h � T"X : TDX ! X(h � T"X)[DX
TDX

"X
BTDX� sndX

sndX B�@h�@h = BDX
TX T"X
XhThat is, �@h =<h � T"X ;�(sndX)>@= (h � T"X)[ : TDX ! DXThe claim is threefold: (i) �@h : TDX ! DX is a T -algebra structure, (ii)the operation �@ is functorial, and (iii) the counit and comultiplication of theobservational comonad D =< D; "; � > lift to counit and comultiplication for �@.The proofs are all by coinduction.



Section 7 | The Basic Property 99Let us start from (iii), that is, from the claim that the two squares in the diagramTDX
�X"X
T�X TD2X�@2h�@hDX D2X

TX T"X
Xhcommute:The left square of the above diagram commutes by de�nition. As for the rightsquare, it commutes because both composite arrows �@2h�T�X and �X ��@hfrom TDX to X �t as the (unique!) coinductive extension

D2X"DX BD2X
BTDXTDX B!! sndDXDX

TDX � sndX
�@h

of the coalgebra structure �(sndX) : TDX ! BTDX along the arrow �@h :TDX ! DX. Indeed:
�@h

� sndXTDX BTDX
BD2X"DX B�XDX BDX�@h B�@hsndX�XD2XTDXDX sndDX

BT�X�@h B�@2hT�XTDX �@2hDX sndDX� sndDXT"DX D2X
� sndXTDX BTDXBTD2XBD2XTD2X"DXNext, consider the claim (i) that the arrow �@h : TDX ! DX is a T -algebrastructure, that is,�@h � T�@h = �@h � �DX and �@h � �DX = idDX



100 Functorial SemanticsThe �rst equation holds because both �@h�T�@h and �@h��X �t as the coin-ductive extension of the coalgebra structure �2(sndX) : T 2DX ! BT 2DXalong the arrow (h � Th) � T 2"X = (h � �X) � T 2"X : T 2DX ! X�2sndXTDX � sndX BTDXT�@h BT�@hBT 2DX�2sndX BT 2DXT 2"X T 2DX T 2DXT 2XThh BDXsndX"X DX B!TX TXX �Xh ! � sndX BTDX�DX B�DXTDXT 2DX BT 2DX�2sndX
Similarly, the second equation, namely �@h � �DX = idDX , holds becauseboth �@h � �DX and the identity on DX �t as the coinductive extension ofthe coalgebra structure �(sndX) : TDX ! BTDX along "X = idX � "X =(h � �X) � "X : DX ! X

sndXDX BD2XB!!"Xh�XTX XX
"X BTDX� sndXDX

Finally, the claim (ii) that, for every T -algebra arrow f : hX; hi ! hY; ki, theoperation TDYDYDXTDXTY 7�! �@f = Df
TDfTf

f �@k�@hkYXTXhis functorial amounts to�@g � �@f = �@(g � f) and �@idX = idDXfor every T -algebra arrow g : hY; ki ! hZ; li. Its proof is similar to the one of (i)and left to the reader.



Section 7 | The Basic Property 101Notice that the above construction applies to any lifting of a (not necessarilyfreely generated) monad to the coalgebras of a cofreely generated comonad on anycategory.As an example, consider the denotational comonad coinduced by the operationalmonad � = c�R corresponding to the rule R for the sample languaget ::= x j nil j a j (t ; t)Thus, using the notation of Section 4, � sndX = [[-]]sndXdRe : TDX ! BTDX. As a short-hand, write � sndX = [[-]]X : TDX ! BTDXNext, recall the set DX is the set of global behavioursdx = x a1�! x1 a2�! x2 � � �with xi 2 X; the counit "X : DX ! X is the operation returning the root x of a globalbehaviour dx and the second projection sndX : DX ! BDX returns its continuation.Then, the value of the corresponding coinduced denotational comonad �@ at a T -algebra structure h : TX ! X is [[-]]X BTDXBDXsndX B�@X�@h =<h � T"X ; [[-]]X>@hTX T"X TDXDX"XXwhich gives, for all global behaviours dx; dy 2 DX,(�@h)(dx ;dy) = hh(x ; y); (�@h)(sndX(dx) ; dy)iif sndX(dx) is di�erent from �. Thus, for instance, the termdx ; dy = (x a1�! x1 a2�! x2) ; (y b1�! y1 � � �)is mapped to the global behaviourh(x ; y) a1�! h(x1 ; y) a2�! h(x2 ; y) b1�! y1 � � �That is, the meaning of the sequential composition of two global behaviours dx and dy isobtained by �rst concatenating dy to dx and then replacing the states xi of dx by h(xi ; y),where y is the root of dy, while apart from y which is removed, all states of dy are left thesame.In particular, consider X equal to the singleton 1, the �nal object in Set. There existsonly one function from T1 to 1, namely the trivial function 1 : T1 ! 1 mapping everyterm of T1 to the state � 2 f�g = 1. Next, the set D1 �= 1�BD1 �= BD1 is the carrier of



102 Functorial Semanticsthe �nal coalgebra bB �= B bB and, moreover, the structure snd1 : D1 ! BD1 is isomorphicto the �nal coalgebra isomorphism ' : bB �= B bB. That is,hD1; snd1i �= h bB;'iThen, the T -algebra structure �@1 : TD1 ! D1 is isomorphic to the canonical denota-tional model BT bB B(�')@�' '(�')@T bB B bBbBgiven in the previous section.Finally, consider the dual of the above construction, namelyThe operational monad 	# induced by a denotational comonad 	.Every denotational comonad 	=<	; "; �> lifting an observational comonad D=<D; "; �> to the algebras of a syntactical monad T =<T; �; �> induces an endofunc-tor 	# : CD ! CDsuch that 	#=<	#; �; �> is an operational monad lifting T to the D-coalgebras:
C CD UTUT T

	 	# UDCDCDUDCT CT
C C 7�!

The endofunctor 	# on the D-coalgebras is de�ned by induction as follows.
	 inrXD�X
inrX �	#h�DTXDX (D�X � k)]	#k =�X

DTX
�TXk TXX

That is, for every coalgebra structure k : X ! DX,	#k = [D�X � k;	(inrX)]# = (D�X � k)] : TX ! DTX(Again, for simplicity, the denotational monad 	 is assumed to be on the �-algebrasrather than on the isomorphic category of T -algebras.)



Section 7 | The Basic Property 103Notes. Comonads in semantics appear in Brookes and Geva's work [BG92], which bearsresemblance with Moggi's work on computational monads [Mog91]. The computationalcomonads de�ned in [BG92] are comonads D=<D; "; �> with an extra operation 
 : I )D such that " � 
 = id and � � 
 = 
T � 
The type D is the type of computations and the operation 
 embeds data into computa-tions. For instance, the observational comonad D cofreely generated by the endofunctorX 7! 1 +X is a computational comonad as well: the set DX is the set X1 of �nite andin�nite sequences of x 2 X and the operation 
 : I ) D `saturates' every x 2 X bymapping it to the in�nite sequence x!.Brookes and Geva's work focuses on the (`co-Kleisli') subcategory of cofree coalgebrasof a computational comonad rather than on the full category of coalgebras as in the presentwork. It would be interesting to understand whether there is a closer relationship betweenthe two notions \computational comonad" and \observational comonad".As pointed out to this author by Axel Poign�e, liftings of functors to algebras of monadswere studied in [Joh75]. In particular, Lemma 1 of [Joh75] shows that such liftings are inone-to-one correspondence with distributive laws (cf Section 4); in particular, every liftingof an endofunctor (thus without comonad operations!) D to the T -algebras is equivalentto a distributive law of the monad T over the endofunctor D.The systematic method introduced in this section for deriving operational modelsfrom denotational ones is simply the dual to the already known method for derivingdenotational models from operational ones. The existence of such a method had beenforecasted in Section 5.3 of [RT94] (thanks to the mixed algebraic/coalgebraic approachused there which already allowed for a dualization), yet it had never been described before.(In general, one of the advantages of bringing to light the categorical structure underlyinga given phenomenon is that then the mighty duality principle can be applied.) A concreteexample of an operational monad 	# induced by a denotational comonad 	 is given inSection 10, where it is used to prove that `basic process algebra' is functorial.



104 Functorial Semantics



8 Operational is Denotational
The coinductive construction � 7! �@ is a bijection between operational monadsand denotational comonads whose inverse is the inductive construction 	 7! 	#.The proof of this fact is given in terms of adjunctions.Let us rephrase the inductive construction at the end of the previous section ofan operational monad 	# from a denotational comonad 	 in terms of adjunctions.Recall, for every D-coalgebra structure k : X ! DX, the structure 	#k : TX !DTX is de�ned as the inductive extension of k along the composite D�X � k : X !DTX.

	 inrXD�X
inrX �	#h�DTXDX (D�X � k)]	#k =�X

DTX
�TXk TXX

But this is the same as saying that 	#k is obtained by taking the left adjunct ofthe function D�X � k : X ! DTX = U�hDTX;	 inrXiwrt the adjunction F�aU�, where U� : Set� ! Set is the forgetful functor mapping�-algebras to their carriers and F� : Set ! Set� is its left adjoint mapping a setX to the free �-algebra hTX; inrXi over X. (Cf Section 2.)k 	#kDTXD�XDX
X TX�X

�DTX	#kTX �	#k= (D�X � k)]	 inrX
�TXinrX

DTXThis is for an operational monad 	 on the �-algebras. If, instead, the monad	 is on the isomorphic categories of T -algebras, one can use the similar adjunctionF TaUT regardingDTX as carrying the T -algebra structure 	�X : TDTX ! DTXand thus obtaining �@k as the left adjunct ofD�X � k : X ! DTX = UT hDTX;	�Xi105



106 Functorial Semanticswrt this latter adjunction. That is: �XTXX TX�X T 2X= (D�X � k)] TDTXDTXDTXD�XDX 	#k 	�X T	#k	#kk
Next, recall that, while the syntactical monad T is freely generated by the signa-ture �, the observational comonad is cofreely generated by the behaviour B. Then,by duality, the forgetful functor UB : SetB ! Set mapping coalgebras to theircarriers has a right adjoint , namely the functorGB : Set! SetB X 7! hDX; sndXimapping a set X to the cofree coalgebra over it. (This holds for arbitrary endo-functors B : C ! C, provided that the endofunctor (X�B) : C ! C has a �nalcoalgebra for every object X in C.) Similarly, the forgetful functor UD : CD ! Cmapping the coalgebras of a comonad D =<D; "; � > to their carriers has a rightadjoint GD : C! CD X 7! hDX; �Xiand the counit " : UDGD = D ) I of this adjunction UDaGD is simply the counit ofthe comonad D. Therefore, the coinductive construction of the denotational monad�@ from an operational monad � on the B-coalgebras(h � T"X)[DX

TDX
"X

BTDX� sndX
sndX B�@h�@h = BDX

TX T"X
Xhcan be rephrased in terms of operational monads � on the D-coalgebras as the rightadjunct wrt the adjunction UDaGD of the arrowh � T"X : UDhTDX;	�Xi = TDX ! XThat is:

D2X
DTDX

�X
��XTDX D�@h�@h DX�@h =DX

TDX (h � T"X)[T"X
"X

TX
Xh



Section 8 | Operational is Denotational 107In order to calculate the value of this right adjunct �@h = (h � T"X)[, one can usethe standard formula f [ = Gf � �Xvalid for every adjunction FaG (with unit � : I ) GF ), which, pictorially, amountsto the following bijection. Gf GYGFXX �XFX f YIn particular, the unit itself is the right adjunct of the identity. For the adjunctionUDaGD this gives that the unit at a coalgebra hX; ki is the structure k : X ! DXof the coalgebra itself, since, by the D-coalgebra laws,
DX DXkk DX �XDk D2XX "X kX X

Therefore TDX D(h � T"X)��X XTDXh � T"XDTDX DXand thus �@h = (h � T")[ = Dh �DT"X � ��XFinally, notice that, by using the adjunction, the comonad D needs not to becofreely generated by an endofunctor, the coinduction principle being replaced bythe more general adjunction principle. Dually, also the induction principle can bereplaced by the adjunction principle, which holds for every monad T .



108 Functorial SemanticsTo summarize:Monad T =<T; �; �> Comonad D=<D; "; �>F TX = hTX; �Xi GD = hDX; �X iF TaUT UDaGD�UD UDCD CD
T CC CTUT UTD

�@ CTCC	# = (D� � )]= 	�X � TD�X � T ( ) �@ = ( � T")[= D( ) �DT"X � ��XUDCD CDUD	#
T CC CTUT UTD

	 CTCC
Operational is Denotational. The mapping � 7! �@ is a bijection betweenoperational monads and denotational comonads with 	 7! 	# as inverse:

TC C
CD 	#

	�@
� CD�UD UD

CT
C C
CTUT UTD

	



Section 8 | Operational is Denotational 109In order to prove that, for every D-coalgebra structure k : X ! DX, one has�k = (�@)#k, let us �rst rewrite (�@)#k in terms of �: because �@h = Dh�DT"X���X for every T -algebra structure h and hence�@�X = D�X �DT"TX � ��TXand because 	#k = 	�X � TD�X � Tkone has (�@)#k = �@�X � TD�X � Tk= D�X �DT"TX � ��TX � TD�X � TkBut then everything in sight in the following diagram commutes.
T�kTk DT 2XDT"TXTDTX DT 2XTDX �k DTXD�X

��TX
�2k

(�@)#kDTDTXDT�kTD�X
T�X�X D�XTXTDX

TX

The only non-trivial fact is the commutativity of the sub-diagram in themiddle, but this follows from the fact that it is the image under the func-tor � of one of the two D-coalgebra laws for the structure �k : TX ! DTX.That is, T�kDT�k ��TXDTDTXTDTXT 2XDT 2X�2k�DTXTX D2TX 7�!D�k �TX�k DTX�k
This proves that �k = (�@)#k and, by duality, 	h = (	#)@h.
Notes. The original proof of \operational is denotational" was more complex: the abovesimpli�ed proof is due to Bart Jacobs.
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9 A Category of Models
The algebras (ie the denotational models) of an operational monad � are the sameas the coalgebras (ie the operational models) of its coinduced denotational comonad�@. Therefore, one can de�ne a general category of �-models (ie �-algebras or,equivalently, �@-coalgebras) where both operational and denotational aspects aredisplayed: this is the proper setting for understanding the adequacy results of func-torial semantics. In particular, the unique arrow from the initial to the �nal �-modelis both the initial algebra and the �nal coalgebra semantics corresponding to �.By instantiating the general de�nition of algebras of a monad to a monad �=<�; �; �> on the D-coalgebras one has that a �-algebra has as carrier a D-coalgebrahX; ki and as structure a D-coalgebra arrow h : �hX; ki ! hX; ki such that

�hX; ki hX; ki
�h�2hX; ki�hX;ki �hX; ki

hX; ki
�hX;kihX; ki�hX; ki hh h

If, like in functorial operational semantics, the monad � is a lifting of a monadT =< T; �; � > to the D-coalgebras, then the structure h : �hX; ki ! hX; ki is ofthe form XDTX h k�k DXDh
TX

Moreover, h : �hX; ki ! hX; ki is a �-algebra structure if and only if the underlyingh : TX ! X is a T -algebra structure. Indeed, for instance, the �rst �-algebra law111



112 Functorial Semanticsfor h amounts to the commutativity of the following cube
TX TXT 2X�2k �kDT 2X hhD�X DTX XDXkDh

�XTh
The front side and the other (not visible) side underlying h are two copies ofthe de�nition of h, hence commute. The back (not visible) side is the image ofthe front side under the functor �, hence it commutes. The remaining verticalside commutes because the multiplication � of T lifts to the multiplication of�. The bottom (not visible) side is the image under the functor D of the topside, hence to prove the commutativity of the whole cube it su�ces to provethat the top side commutes. But this is nothing but the �rst T -algebra lawfor h.Therefore a �-algebra is a triple hX; k; hi with k : X ! DX a D-coalgebra andh : TX ! X a T -algebra structure such that�k DTXDXDhhX k

TX
commutes.Similarly, a �-algebra arrow f : hX; k; hi ! hY;m; li is an arrow f : X ! Ysuch that everything in sight in the diagram

�k DTX Df DYDXk
Tf DTY�m DlDhh DTfmlf

TYTX YX



Section 9 | Adequacy 113commutes, but for this it su�ces that
DXk

Tff DYDflh mTYTX YXcommutes, that is, f is both a D-coalgebra arrow f : hX; ki ! hY;mi and a T -algebra arrow f : hX; hi ! hY; li.Dually, given a lifting 	 of a comonad D on a category of T -algebras, a 	-coalgebra is a triple hX; h; ki with h : TX ! X a T -algebra and k : X ! DX aD-coalgebra structure such that
DXTDXTk 	hhX k

TX
commutes. The arrows f : hX; h; ki ! hY; l;mi of the corresponding category CT	are again arrows f : X ! Y which preserve both the T -algebra and the D-coalgebrastructure.The claim now is that a triple hX; k; hi is a �-algebra if and only if hX; h; ki isa �@-coalgebra, that is, �-algebras are �@-coalgebras

h TkTX
kXhDhDX

DTX TDX
DX�@hk

TX �k
X ()



114 Functorial SemanticsEquivalently, the claim is that the diagram
TDX �@h

DTX�kTk DX
TX Dh

commutes. But then �ll this last diagram as follows and notice that all sub-diagramscommute. DT"XDTDXTX ��XTkTDX DhDTXDTXDTk
�@h
�k

DXThe only non-trivial sub-diagram is the one corresponding to the upper leftcorner but this is the image under the functor � of one of the two D-coalgebralaws for the structure k : X ! DX. That is,TX�XD2Xk DX �k DTDX��XTDXTkDTkDTXDk �7�!DXkXThus, up to the permutation hX; k; hi 7! hX; h; ki, for any monad � lifting a monadT to the coalgebras of a comonad D, the two categories of �-algebras and �@-coalgebras are the same: CD� = CT�@Dually, CT	 = CD	#that is, 	-coalgebras are 	#-algebras.Notice that, since every monad is de�ned by its algebras and, dually, everycomonad is de�ned by its coalgebras, this gives an alternative proof that the mapping� 7! �@ is a bijection with 	 7! 	# as inverse.



Section 9 | Adequacy 115�-Models. If � is an operational monad, then the category CD� = CT�@ can beseen as the category of models of �:�-Mod = CD� = CT�@This category has both an initial and a �nal object which are `lifted' from the initialT -algebra and the �nal D-coalgebra, respectively.The claim is that the initial �-model is the �-algebraT 20 �0�! T0 �0�! DT0where, recall, the set T0 is the set of closed programs, the structure �0 is the initialT -algebra structure, and the structure�0 = [[-]] : T0 ! DT0is the initial operational model corresponding to �. Dually, the �nal �-model is the�@-coalgebra TD1 �1�! D1 �@1�! D21where, recall, the set D1 is the set of abstract global behaviours, the structure �1 isthe �nal D-coalgebra structure, and the structure�@1 = hj - ji : TD1 ! D1is the denotational model coinduced by � on the �nal coalgebra.If the above holds, then one has, by the very de�nition of �-algebra and �@-coalgebra arrows, that the unique arrow from the initial to the �nal �-model is boththe initial algebra and the �nal coalgebra semantics corresponding to �
! = [[-]]@ D21�0 �1T 20 hj - ji# D!

T !
�0 = [[-]] DT0T0 D1�@1 = hj - jiTD1

That is, [[-]]@ = hj - ji# : T0 ! D1



116 Functorial SemanticsThe fact that the triple hT0; �0;�0i is the initial �-model can be proved directly,but it is more informative to obtain it by means of an adjunction as follows. Firstnotice that the �-model hT0; �0;�0i can be obtained by applying the functorgF T : CD ! �-Mod hX; ki 7! hTX; �X ;�kito the initial D-coalgebra:(0 0�! D0) fFT7�! (T 20 �0�! T0 �0�! DT0)Next, if a functor has a right adjoint, then it `preserves colimits' (see, eg, xV.5 of[Mac71]), thus, in particular, if the functor gF T has a right adjoint then it maps theinitial D-coalgebra to the initial �-model. Now, the claim is that this right adjointexists and it is the functorgUT : �-Mod! CD hX; h; ki 7! hX; kiwhich forgets the T -algebra structure in a �-model. Moreover, this adjunctiongF TagUTis a `lifting' of the adjunction F TaUT corresponding to the algebras of the monadT (see Section 2).Let us prove this claim in its dual form, namely that the adjunction UDaGD,corresponding to the coalgebras of the comonad D (see previous section), lifts to anadjunction gUDagGDbetween the forgetful functorgUD : �-Mod! CT hX; k; hi 7! hX; hiand the functorgGD : CT ! �-Mod hX; hi 7! hDX; �X ;�@hi



Section 9 | Adequacy 117The adjunction gUDagGD splitting the comonad �@. Given a monad � liftinga monad T to the coalgebras of a comonad D, the composition gUDgGD : CT ! CTof the above functors gGD : CT ! CD� = �-Mod and gUD : �-Mod = CD� ! CTis equal to the endofunctor �@ : CT ! CT . Indeed,(TX h�! X) fGD7�! (TDX �@h�! DX �X�! D2X) fUD7�! (TDX �@h�! DX)for every T -algebra structure h : TX ! X. The claim is that gGD is right adjoint togUD and the whole comonad �@ =<�@; "; � > arises from the adjunction gUDagGD.Moreover, the adjunction gUDagGD `lifts' the adjunction UDaGD (which splits thecomonad D): CD�UT U�C UDGD? CDfGDfUD?CT
That is, UTgUD = UDU� : CD� ! CGDUT = U�gGD : CT ! CD"UT = U�e"U� : DUT ) UTThe �rst and second equation are immediate, while the third is to be checked: byde�nition of T -algebra arrows, it tells that the counit of the upper adjunction isthe same as the counit " : UDGD = D ) I of the lower one. That is, the claim isthat, for every T -algebra arrow f : gUDhY; k; li = hY; li ! hX; hi, the right adjunctUTf [ = f [ : hY; ki ! hDX; �Xi of UT f = f : UDhY; ki = Y ! X wrt the adjunctionUDaGD is the unique �-algebra arrow from hY; k; li to gGDhX; hi = hDX; �X ;�@hifactorizing f through "X . Diagrammatically:

D2X
Dl

��X Df [
DTf [�k
DTDX

TY
Ylf [TDX

�X
k�@h D�@h

DTY
DYTf [Tf [

�@h DX
TY
Ylf [TDX

DXhTXX
T"X
"Xf

Tf



118 Functorial SemanticsAll sub-diagrams commute either by de�nition or because they are obtained byapplying a functor to a commuting diagram, except forTYYl Tf[
f[ TDXDX�@h(and its image under D). But the commutativity of the latter follows from the factthat both composite arrows f [� l and �@h�Tf [ �t as the (unique!) arrow (h�Tf)[ :hTY;�ki ! hDX; �Xi. (If the comonad D is cofreely generated, then this arrow isthe unique coinductive extension of �k along the composite h � Tf : TY ! X.)This shows that gGD is right adjoint to gUD and that " is the counit of the ad-junction. The unit of the adjunction is obtained by taking the right adjunct ofthe identity and, by the D-coalgebra laws, its value at a �-algebra hX; k; hi is thecoalgebraic component of the �-algebra, namely k : X ! DX.

DTf [�k
k

DX
TDX�@h ��XTDX

�X
DTDX
D2X

DX
DTX

D�@h
h Dh

Dk�@h
Tk Tk X

TXhX kk
TX

DXhTXX
T"X
"XFinally, notice that also the comultiplication of the comonad �@ =<�@; "; � >arises from this adjunction by �rst taking the unit at gGDhX; hi and then apply-ing the functor gUD to it. In general, every adjunction F aG de�nes a comonad< FG; "; F�G >, where " and � are the counit and the unit of the adjunction re-spectively. (Cf Section 2 for the dual `every adjunction de�nes a monad'.)



Section 9 | Adequacy 119To summarize, there are two adjunctions for the category of �-models, namely??fUDfGD fF TfUT CDCT CD� = �-Mod = CT �@and the unique arrow from the initial �-model gF T (0) = hT0; �0;�0i to the �nal�-model gGD(1) = hD1; �1;�@1i is both the initial algebra semantics induced by thedenotational model �@1 = hj - ji and the �nal coalgebra semantics coinduced by theoperational model �0 = [[-]]. Diagrammatically:

fGD DT0T0 hj - ji# �1�0 D21! = [[-]]@
0 �0 = [[-]]

T !
D!

fF T 1
D00

T1
1T 20 TD1�@1 = hj - jiD1

This is a more compact and symmetric formulation of the adequacy result given inSection 6.

Notes. The idea that adequacy results `live' in categories of \algebras over coalgebras"is due to Gordon Plotkin and it has been fundamental for the development of the presentfunctorial approach to operational semantics.Liftings of adjunctions are treated in [Joh75]. In particular, the adjunction splittingthe comonad �@ can be obtained by applying Theorem 4 of [Joh75] (see also, eg, [HJ95a]for a 2-categorical account of this theorem).
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10 Semi-Lattices, Non-Determinism and Basic Process Algebra
The `non-deterministic choice' construct is understood as the union of a power-setendofunctor, which, categorically, is a monad whose algebras are semi-lattices. Thisleads to a non-deterministic behaviour endofunctor BX = �P(1 + Act � X) whosecoalgebras are non-deterministic transition systems. A functorial denotational se-mantics is `naturally' associated to this behaviour and its induced functorial opera-tional semantics turns out to be `basic process algebra'.Let us consider programs with a non-deterministic' behaviour. For this, letus introduce the new construct ` or ' of non-deterministic choice. The intendedmeaning of a program u or v is that it can choose whether to behave either as thesubprogram u or as the subprogram v. The following equations should then hold inthe operational model [[-]]. For all programs t; u; v,[[(t or u) or v]] = [[t or (u or v)]] (associativity)[[u or v]] = [[v or u]] (commutativity)[[t or t]] = [[t]] (absorption)Algebraically, a set Y with a binary operator _ : Y �Y ! Y which is associative,commutative, and absorptive, that is, such that for all x; y; z in Y ,(x _ y) _ z = x _ (y _ z)x _ y = y _ xx _ x = xforms a semi-lattice; the operator _ is called the join of the semi-lattice. Theprogram construct or should then behave as the join of a semi-lattice:[[u or v]] = [[u]] _ [[v]]As an example of a semi-lattice, consider the set PX of the subsets of a set X:the binary union [ : PX � PX ! PX is associative, commutative, and absorpt-ive, hence hPX;[i is a semi-lattice. A similar semi-lattice is the one obtained byconsidering the set P�X = fX 0 � X j X 0 �nitegof �nite subsets of a set X, as well as its `relevant ' part�PX = fX 0 � X j X 0 �nite, X 0 6= ;g123



124 Functorial Semanticsobtained by omitting the empty set. This latter semi-lattice (the binary union[ : �PX � �PX ! �PX is its join) is of particular importance because it is the freesemi-lattice over X; that is, the functorX 7! h �PX;[iis left adjoint to the forgetful functorhY;_i 7! Yfrom the category of semi-lattices and join-preserving functions to sets.Write SL(Set) for the category of semi-lattices with arrows f :hX;_i ! hY;ti, the join-preserving functions f : X ! Y betweenthe underlying sets: Y � Y_ tf
f � fX �XX YEquationally, for every pair (x; x0) in X �X,f(x _ x0) = fx t fx0Free semi-lattices. Recall that a functor U : D! C has a left adjoint F : C!D if and only if there exists a natural transformation � : I ) UF such that each�X is universal from X to U . That is, for every X in C, Z in D, and f : X ! UZthere exists a unique arrow f ] : FX ! Z in D, such that f = Uf ] � �X :

UZf Uf ] Z
FXf ]UFXX �X

Let now U : SL(Set) ! Set be the above forgetful functor mapping semi-latticesto their carriers and let FX = h �PX;[iThen, for every set X, the functionf-gX : X ! �PX = UFX x 7! fxg



Section 10 | Semi-Lattices 125mapping every element x of X to the corresponding singleton set fxg gives the unit� : I ) UF of the adjunction:
Uf ] = f ] YUhY;_i = Y

UFX = �PX �PX
_ f ] � f ]Y � Yf ] [f-gX �PX � �PXfX

Indeed, for every �nite subset fx1; : : : ; xng = fx1g [ : : : [ fxng of Xf ]fx1; : : : ; xng = fx1 _ : : : _ fxnis the required unique join-preserving function. (The properties of the join makebracketing irrelevant.) This shows that, for every set X, the pair h �PX;[i is the freesemi-lattice on X.As usual, the counit " : FU ) I of the above adjunction can be obtained by taking for fthe identity on Y = UhY;_i. This gives a `big join'W : �PY ! Ymapping every �nite subset of Y to the join of its elements:Wfy1; : : : ; yng = y1 _ : : : _ ynIn particular, the value of the counit at a free semi-lattice hY;_i = h �PX;[i is the `bigunion' S : �P2 ) �Psending each set of sets into its union. Since every adjunction FaG (with unit � andcounit ") gives rise to a monad <GF; �;G"F >, (cf Section 2), the triple�P =< �P; f-g;S>is a monad. The isomorphism of categoriesSL(Set) �= Set �Pgives then an alternative description of semi-lattices as algebras of the monad �P . (See\Algebras are T -algebras" in Section 2 or check directly.) Similarly, one can check thatthe algebras of the the unrestricted power-set monad P=<P; f-g;S> are complete semi-lattices { semi-lattices with joins of arbitrary cardinality:CSL(Set) �= SetPFormally, a complete semi-lattice is a partial order hY;�i in which every subset Y 0 � Yhas a least upper bound WY 0, while a semi-lattice can be seen as a partial order with least



126 Functorial Semanticsupper bounds only of �nite and non empty subsets. (Conversely, every semi-lattice de�nesa partial order x � y () x _ y = y.)In general, `�-complete' semi-lattices can be used to de�ne power-set monads of any(regular) cardinality �. Semantically, the cardinality to be used depends on the kindof non-determinism one is interested in. Here only �nite determinism is studied, hence(�nite) semi-lattices are used.Even more in general, semi-lattices give an axiomatic description of various `powerdo-mains' used in semantics. This holds because semi-lattices can be de�ned `internally' inany category C with binary products:A semi-lattice in C is a pair hY;_i with Y an object of C and _ : Y �Y ! Y an arrow of C which is associative, commutative, and absorptive ina diagrammatic sense. For instance, the commutativity of the join can bedescribed diagrammatically using the canonical `swap' arrowfstswapY YY � YY � Ysnd sndfstas follows.
Yswap __ Y � YY � Y

Write then SL(C) for the corresponding category with as arrows the join-preserving arrows of C.For instance, the Plotkin powerdomain monad can be shown to arise from the semi-latticesin a category of complete partial orders and continuous functions. (Notice, the order in-duced by the semi-lattice structure has nothing to do with the one of the underlyingcategory of complete partial orders.) Similarly, the semi-lattices in a category of com-plete metric spaces and non-distance-increasing functions give rise to the compact metricpowerdomain.



Section 10 | Basic Process Algebra 127In order to deal with non-deterministic behaviours as introduced by the binarychoice construct ` or ' consider the new behaviour endofunctorB : Set! Set X 7! �P(1 + Act�X)obtained by composing the (deterministic) behaviour endofunctor X 7! 1+Act�Xwith the semi-lattice monad �P. Its coalgebras are the �nitely branching trans-ition systems, that is, transition systems which in every state can choose amonga �nite set of transitions. This �nite non-determinism re
ects the �niteness of thechoice construct; this restriction simpli�es the presentation, but, in general, one canconsider semi-lattices (and corresponding monads) with joins of larger cardinality.Formally, the correspondence between coalgebras hX; ki of the above behaviourand �nitely branching transition systems hX; f a�!gAct; #�i is as follows. Omitting,as usual, the injections into the coproduct 1 + Act�X,x a�! x0 () k(x) 3<a; x0> x # � () kx 3 �for every x 2 X. (Cf Section 3.) Notice that a state might both perform an actionor become inert; for instance, k(x) = f<a; x0>; �g corresponds to the transitions�a �x0 �x�Notice that above, and whenever convenient, the fact that x # � holds is treated asa special transition x �! �: x # � () x �! �Next, consider the following `minimal' language for producing behaviours of type B.Basic Process Algebra. The basic language for the behaviour BX = �P(1+Act�X) should contain a basic inert program nil, an `action pre�xing' unary operator forevery a 2 Act, and the binary choice or . Formally, the language is de�ned by thegrammar t ::= x j nil j a.t j (t or t)and its operational model [[-]] (a B-coalgebra structure on the above terms) is de�nedby induction on the structure of the terms as follows.[[nil]] = f�g [[a.t]] = f<a; t>g [[u or v]] = [[u]] [ [[v]](For the treatment of the variables x see the next section.) In terms of transitionsystems, this corresponds to the following set R of operational rules.nil �! � a.t a�! t u a�! u0u or v a�! u0 u a�! u0u or v a�! u0(In order to simplify the notation, a transition u a�! u0 is here intended possibly tobe of the form u �! �. Thus in particular if u �! � then also u or v �! �.)



128 Functorial SemanticsBasic process algebra is functorial. Let us prove that basic process algebra isfunctorial by de�ning a functorial denotational semantics 	 such that its operationaldual 	# is equal to the operational semantics induced by the rules of basic processalgebra.One would like to use the above rules R for de�ning directly the functorial oper-ational semantics by induction on a germ � : �BT ) BT , for � and T the signatureand the syntactical monad corresponding to basic process algebra, respectively. Thisis easily done for or and nil using the union [ and the termination state � availablein B = �P(1 +Act� - ), but action pre�xing causes troubles. Indeed, for any objectr of type BT , a.r should be mapped by � to f<a; r>g, but this is of type B2Trather than BT . Instead, the de�nition of a functorial denotational semantics 	lifting the observational comonad D=<D; "; �> to the �- (or, equivalently, to theT -) algebras using the rules of basic process algebra causes no problem.Recall that, for every X, the set DX is the carrier of the �nal (X�B)-coalgebra:BDX = �P(1 + Act�DX)"X = fstXX sndXDX �= X�BDXAs shown in Section 13, although the endofunctor �P : Set ! Set is not !op-continuous, the �nal (X�B)-coalgebra exists, hence the observational comonad Dcofreely generated by B can be de�ned.The set DX is the set of global behaviours of states x 2 X wrt B. These canbe seen as trees which are �nitely branching, whose nodes are labelled by x 2 X,and whose arcs are labelled by a 2 Act. The counit "X = fstX : DX ! X of thecomonad gives the label of the root node for each tree inDX and the other projectionsndX : DX ! BDX gives the remaining part of the tree (and it coinductivelyextends to give the comultiplication � : D) D2 of the comonad D):�� � � � xnx� fst snd ana1x1x1 xn�� x� � �a1 an�
Now, let us �rst lift the endofunctor D to an endofunctor 	 on the �-algebrasand then check that also the operations of the comonad D lift. By the equivalencebetween liftings and actions illustrated in Section 7, the desired endofunctor 	 isthe same as the action 	 : �DU� ) DU�of the constructs � on the composite functor DU� : Set� ! Set, where U� :Set� ! Set is the forgetful functor mapping �-algebras to their carriers.



Section 10 | Basic Process Algebra 129The action 	. Let us consider �rst the case of free �-algebras, thatis, the action of the program constructs nil, a., and or on DT , where,notice, an object of type DT is a tree whose nodes are labelled by termst of basic process algebra.
nil nil7�! � a. 7�! ��a.tt� a t �u or vor vu 7�! u or v� �Then, in general, for every �-algebra hX; hi, the action of 	 onDU�hX; hi =DX is
nil h(nil)7�! � x ��ah(a.x)x7�!�a. �7�! h(x or y)yx or� �Formally, using the meta-variables p and q to range over objects of typeD, ie global behaviours wrt B, the value of the natural transformation	 : �DU� ) DU� at a �-algebra hX; hi is de�ned as follows.nil 7! <h(nil); f�g>a.p 7! <h(a.(fstXp)); f<a; p>g>p or q 7! <h((fstXp) or (fstXq)); (sndXp) [ (sndXq)>Naturality follows from the fact that no assumption is made on the formof the �-algebra hX; hi.Therefore, for every �-algebra structure h : �X ! X, the structure 	h : �DX !DX is a pair, whose �rst component is simply the composite function h � �fstX =h � �"X : �DX ! X. Writing 	0h : �DX ! BDX for the second component of	h, one has the following commuting diagram.�DXDX"X = fstX	h BDX	0h = sndX �	hsndX

�"X�XXhThe left square is one of the two diagrams which have to commute in order for	 =< 	; "; � > to lift the whole comonad D =< D; "; � >. The other diagram,



130 Functorial Semanticsnamely �DXDX 	2h�D2XD2X�X	h ��X
also commutes, because:The composite functions �X �	h and 	2h���X both �t as the (unique!) pair<	h;B�X �	0h> : �DX ! D2X

D2X BD2XBDX�DX"DX = fstDX
	0h! sndDXDX

�DX
B�X	hIndeed, noticing that 	0 is natural, everything in sight in the following twodiagrams commutes.

BD2XBDXDX�DX �DX
�XD2X

	0h	h
sndDXsndXDX"DX = fstDX B�X	h sndDXDX"DX = fstDXD2X BD2XBDX	2h 	0h	02h�"DX�DX ��X�D2X�DX

B�X	h
The above shows thus that 	 =< 	; "; � > is a functorial denotational semanticsliftingD=<D; "; �> to the �-algebras. It induces a functorial operational semantics	# as follows. For every D-coalgebra structure k : X ! DX, the structure 	#k :TX ! DTX is the inductive extension of 	inrX along the composite D�X � k:

	#k inrX�X = inlX �	#hD�XDX DTX �DTX	 inrX
�TXk TXX



Section 10 | Basic Process Algebra 131As shown in Section 7, the triple 	# =< 	#; �; � > is a lifting of the syntacticalmonad T =<T; �; �> to the coalgebras of the comonadD. For comparing it with theoperational semantics induced by basic process algebra, one has then to translateit to a lifting to the coalgebras of the endofunctor B. For this, since B cofreelygenerates D, one can use the isomorphism of categories# : SetD �= SetB hX; ki 7! hX;BfstX � sndX � kiillustrated in Section 7. Thus the composite#	##�1 : TUB ) BTUBis of the desired form; let us check that also its `content' is the right one:Consider, without loss of generality, the case k = 0 : 0 ! B0, that is, letk be the initial B-coalgebra structure. The isomorphism #�1 maps it tothe initial D-coalgebra structure 0 : 0 ! D0. Write, for simplicity,[[-]]	 = 	#(0) : T0! DT0The claim is that, for all terms t,#[[t]]	 = [[t]]where [[t]] is the operational semantics induced by the rules of basic pro-cess algebra. Indeed, omitting the subscript 0,#[[a.t]]	 = (Bfst � snd)[[a.t]]	= Bfst(snd <a.t; f<a; [[t]]	>g>)= Bfstf<a; [[t]]	>g= f<a; fst[[t]]	>g= f<a; t>g= [[a.t]]Similarly, one can see that also#[[u or v]]	 = [[u or v]] and #[[nil]]	 = [[nil]]This concludes the proof that basic process algebra is functorial.



132 Functorial SemanticsThe syntax as a semi-lattice. Having established that the choice construct orof basic process algebra really behaves as the join of a semi-lattice, let us treat itas a join also in the syntax. That is, let us consider the algebras of the signature� = fnil; a.(-); or g which validate the equationsE = 8><>: (x or y) or z = x or (y or z)x or y = y orxx orx = xand take for the syntactical monad for basic process algebra the monadTE=<TE; �; �>corresponding to the h�; Ei-algebras, rather than simply to the �-algebras. Inother words, the monad TE is the one arising from the standard adjunction betweenh�; Ei-algebras and sets. (See \algebras are T -algebras" in Section 2.)For every set X, the set TEX is nothing but the quotient wrt (the congruencerelation generated by) E of the free algebra of terms over X; thus one cannotdistinguish in this syntax between, for instance, the terms u or v and v or u. Keepingthis quotient in mind, one can still regard the elements of TEX as terms, that is, onecan use representatives rather than equivalence classes. The unit �X : X ! TEXand the multiplication �X : TETEX ! TEX are the usual operations on variablesand terms: the former is the insertion of the variables x 2 X into terms; the lattermaps every term t 2 TETEX containing a sub-term u 2 TEX as a variable tothe `same' term t 2 TEX by removing the distinction between terms and terms asvariables. For instance,�((a.t) or �TE(u or v)) = (a.t) or u or vNow, by de�nition, the above denotational semantics 	 for basic process algebrais not only a �-action but also a h�; Ei-action; that is, for every h : �X ! X whichvalidates the equations E, also 	h : �DX ! DX validates E. In other words, 	 isa lifting of the observational comonad D to the h�; Ei-algebras.	Seth�;Ei Seth�;Ei
Set SetDCorrespondingly, its operational dual 	# can be seen as a lifting of the monad TEto the D-coalgebras.



Section 10 | Basic Process Algebra 133Next, write � for the operational monad on the B-coalgebras obtained by ap-plying the isomorphism # : SetD �= SetB between D- and B-coalgebras; that is,� = #	##�1 : TEUB ) BTEUBThis coaction, because of the equation [[u or v]]	 = [[u]]	 [ [[v]]	, is join-preserving,that is, the following diagram commutes.orTEUB� [
TEUB � TEUB� ���P(1+Act�TEUB)� �P(1+Act�TEUB)�P(1+Act�TEUB)In other words, the operational semantics of basic process algebra

SetUBSetB
Set BTETE �UBSet

takes place in the category of semi-lattices:
hTE(-); or i UBUB SetBSet Set� hBTE(-);[iSL(Set)That is, � : hTEUB; or i ) hBTEUB;[i



134 Functorial SemanticsThe retraction for basic process algebra. One of the advantages of workingwith the syntax as a h�; Ei-algebra is that it gives a simple construction of a retrac-tion for basic process algebra. This retraction is used in the next section to showthat a certain class of operational rules (the `GSOS' rules) is functorial.Recall, from Section 4, the embedding of the (deterministic) behaviour X 7!1 + Act �X into the syntax T of the language with atomic actions and sequentialcomposition:
 : 1 + Act� (-)) T � 7! nil <a; x> 7! a ; xThe term a ; x behaves like the term a.x of the above syntax TE, hence one canwrite equivalently
 : 1 + Act� (-)) TE � 7! nil <a; x> 7! a.xNotice that �P(1+Act�X) is the carrier of the free semi-lattice over the set 1+Act�Xand that the syntax hTEX; or i is itself a semi-lattice. Then, by taking the leftadjunct of 
 wrt the standard adjunction from sets to semi-lattices
]TE
]1+Act�(-) B �B
] � 
]B = �P(1+Act� - ) B [f-g TE � TETE or
one obtains a natural transformation
] : B = �P(1 + Act� - )) TEwhich embeds the behaviour BX = �P(1+Act�X) into the above syntax TE. Thatis, using the meta-variables r and s to range over objects of type B,
]f�g = 
(�) = nil
]f<a; x>g = 
(<a; x>) = a.x
](r [ s) = (
]r) or (
]s)Now the claim is this embedding 
] is a retraction for basic process algebra.That is, for � =< �; �; � > the above operational monad corresponding to basicprocess algebra, one has that the composite � � �UB � 
]TEUB is the identity naturaltransformation on the functor BTEUB:� � �UB � 
]TEUB = I(Cf Section 4.) In order to prove this, notice that each 
]X is an arrow in SL(Set),that is, 
] : hB;[i ) hTE; or i



Section 10 | Basic Process Algebra 135Therefore, the compositehBTEUB;[i 
]TEUB=) hT 2EUB; or i �UB=) hTEUB; or i �=) hBTEUB;[iis necessarily the identity on the functor hBTEUB;[i : SetB ! SL(Set) because,for every set X, there exists a unique join-preserving arrow from the free semi-latticehBTEX;[i to itself which respects the unit of the monad �P . This proves that thecomposite �UB � 
]TEUB is a retraction for the operational semantics � induced bybasic process algebra.The above retraction can be used to give an alternative (more direct) proof ofthe functoriality of basic process algebra. For this, de�ne the germ�R : �BTE ) BTEof the operational semantics corresponding to the rules R of basic process algebraas follows. For r and s meta-variables ranging over objects of type BTE,�R = 8><>: nil 7! f�ga.r 7! f<a; 
]r>gr or s 7! r [ sFormally the operational monad d�R induced by this germ �R is not equal to theabove operational monad � for basic process algebra. However, the two operationalsemantics are equivalent in a suitable sense� �d�Ras it is shown in the next section. Here already notice that�UB � 
]TEUB is a retraction also ford�R
Notes. The interpretation of the non-deterministic choice as a semi-lattics join datesback at least to [HP79], where the Plotkin powerdomain is treated as the semi-latticemonad on a category of complete partial orders.For a textbook on various non-deterministic languages for concurrency, including basicprocess algebra, see [BW90].The above idea of quotienting of the terms (of basic process algebra) by an algebraiccongruence for de�ning the programs of a language is not new: it is used, for instance, inthe `Chemical Abstract Machine' approach to operational semantics [BB92] and in somepresentations of the `�-calculus' [Mil90].
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11 GSOS is Functorial
One of the largest classes of `well-behaved' structural operational rules for transitionsystems is the class of `GSOS rules'. These are rules satisfying suitable syntacticrestrictions which ensure the compositionality of the corresponding operational mod-els. Almost all transition systems in the literature are de�ned by means of GSOSrules. For instance, languages like basic process algebra, CCS , and CSP have GSOSrules.It is proved here that the operational semantics induced by a set of GSOS rules isalways functorial (under the mild assumption that it embeds basic process algebra).This result shows the generality of the functorial approach to operational semanticsmotivating the claim that it is a �rst step towards a mathematical theory of `well-behaved' operational semantics.A GSOS rule speci�es one possible transition for terms of the form �(u1; : : : ul),for � a given program construct of arity l:GSOS Rulefui aij�! vijg1�i�l1�j�mi fui 6bij�!g1�i�l1�j�ni�(u1; : : : ; ul) a�! C[�!u ;�!v ]The aij's and bij's are actions in Act; the ui's and vij's are all distinct (meta) variablesranging over terms, the expression C[�!u ;�!v ] is a term formed by the context C[�!- ]and some (meta) variables contained in the set of ui's and vij's. The expressionui 6bij�!stands for `ui cannot perform a transition with action bij'.For instance, the rule u1 a�! v1u1 ; u2 a�! v1 ;u2is in GSOS, as well as the rule u1 �! � u2 a�! v2u1 ;u2 a�! v2by considering that a state becomes inert u �! � (ie u # �) as a special case oftransition u a�! v. In this way, all rules considered so-far are GSOS.137



138 Functorial SemanticsBefore setting out to prove the functoriality of GSOS, let us introduce an interme-diate notation between transitions and actions of coalgebras hX; ki of the behaviourendofunctor BX = �P(1 + Act�X)Write x k;<a; y > for k(x) 3<a; y > and x k6;<a; -> for `there exists no y suchthat <a; y> is in k(x)'. That is,x k;<a; y> () x a�! y x k6;<a; -> () x 6a�!A GSOS rule is then of the formfui ;<aij; vij>g1�i�l1�j�mi fui 6;<bij; ->g1�i�l1�j�ni�(u1; : : : ; ul);<a;C[�!u ;�!v ]>Again, one has that u; � is a special case of u; <a; u0>.Now, the proof of the functoriality of GSOS given here is based on the assumptionthat every set R of GSOS rules embeds the basic process algebra of the previoussection. This does not seem to be a serious restriction, because most of the languagesde�ned by means of GSOS rules do have programs behaving like nil, a.t, and u or v.Therefore, let us assume that the signature � of the language contains the basicinert program nil, a unary action-pre�xing operator for every action in Act and thebinary non-deterministic choice ` or ':t ::= x j nil j a j (t or t) j �(t; : : : ; t)Moreover, assume that the semi-lattice lawsE = 8><>: (x or y) or z = x or (y or z)x or y = y orxx orx = xfor the choice construct hold. Thus, the corresponding syntactical monadT =<T; �; �>is the free <�; E >-algebra monad. (Cf Sections 2 and 10.) As a consequence, theembedding 
] : B ) TE of the above behaviour into the syntax of basic processalgebra extends to an embedding 
] : B ) Tinto this syntax T . Since the rules R extend the rules of basic process algebra onealso has that this embedding is a retraction for (the operational semantics inducedby) R. (Cf previous section.)



Section 11 | GSOS 139GSOS is natural. The claim is that every set R of GSOS rules over T containingbasic process algebra can be seen as a natural transformationdRe : �B ) BTMoreover, the operational models induced by R and by dRe are `observationallyequivalent' in the sense that their coinductive extensions are equal.The de�nition of the transformation dRe : �B ) BT is based on the rules R asfollows. Let the meta-variables r and s range over objects of type B = �P(1+Act� - ).For the rules corresponding to basic process algebra, putdRe(nil) = f�g dRe(a.r) = f<a; 
]r>g dRe(r or s) = r [ sand, in general, for every rulefui ;<aij; vij>g1�i�l1�j�mi fui 6;<bij; ->g1�i�l1�j�ni�(u1; : : : ; ul);<a;C[�!u ;�!v ]>in R, put <a;C[�!
Xr;�!x ]>2 dReX(�(r1; : : : ; rl))if <aij; xij>2 ri for 1 � i � l and 1 � j � mi, and, for every x 2 X, <bij; x> 62 rifor 1 � i � l and 1 � j � ni. The only di�erence between R and dRe is in the use inthe latter of the embedding 
] : B ) T , which is necessary in order to plug objects oftype B into the context C[�!- ;�!x ]. The fact that this embedding is a retraction wrtthe operational semantics will ensure that this di�erence is observationally irrelevant.To prove that the above de�nition of the arrow dReX : �BX ! BTX is naturalin X, let us �rst use the following more suggestive notation.fri 3<aij; xij>g1�i�l1�j�mi fri 63<bij; ->g1�i�l1�j�ni�(r1; : : : ; rl) dReX; <a;C[�!
]Xr;�!x ]>The proof that this de�nition is natural is a simple generalization of the one givenin Section 4 corresponding to the rules for the simple deterministic language usedthere:Naturality. The claim is that, for every `renaming' f : X ! Y , thediagram �BY�BfdReX dReYBTf
�BXBTX BTYcommutes. Consider the case of negative premises: if there is no pair< a; x > in r 2 BX for a given action a and arbitrary x 2 X then



140 Functorial Semanticsthere is also no pair < a; y > in (Bf)(r) 2 BY for arbitrary y 2 Y .Therefore, the problem of proving the naturality of dRe can be reducedto the problem of proving that the following holds. dReY�(r1; : : : ; rl)dReX <a; (Tf)(C[��!
]Xr; ~x])>=<a;C[�������!
]Y (Bf)(r);�!fx]><a;C[��!
]Xr; ~x]>
�Bf �((Bf)(r1); : : : ; (Bf)(rl))

BTfBut, again, like in Section 4, the equation(Tf)(C[�!
]Xr;�!x ]) = C[�������!
]Y (Bf)(r);�!fx]is an immediate consequence of the naturality of the retraction 
] fromB to T and of the GSOS condition that all variables in C[�!u ;�!v ] are ofthe form ui or vij (hence (Tf)C[: : :] = C[(Tf) : : :]).Notice that it is very easy to violate the naturality of dRe by relaxing the assumptions onR. For instance, one cannot drop the assumption that all meta-variables vij on the righthand side of the premises ui aij�! vij are di�erent. Indeed, one would then permit ruleslike u1 a�! v u2 b�! v�(u1; u2) c�! nilwhich fails to be natural: under the above translation R 7! dRe and in absence of otherrules for the operator �, one has that �(<a; x1>;<b; x2>) cannot perform any transitionwhile, by using the renaming f(x1) = y = f(x2)one has that �(<a; f(x1)>;<b; f(x2)>);<c; nil>There exists however a useful extension of GSOS which is `well-behaved' in the sensethat it induces operational models which are always compositional. It is the so-called`ntyft '-format (see notes below) which is obtained by allowing for whole contexts Ci ratherthan for simple (meta) variables to appear in the left hand side of the premises of the rules:fCi aij�! vijg1�i�l1�j�mi fCi 6bij�!g1�i�l1�j�ni�(u1; : : : ; ul) a�! CThe ui's and vij 's are still all distinct meta-variables, but there might now appear someextra meta-variables in the contexts C and Ci. (The induction on these rules is made moreproblematic by the appearance of contexts also in the premises, hence some restriction (eg,`strati�cation') on the use of negative premises is needed.) It is not yet clear whether theserules �t in the present functorial approach.



Section 11 | GSOS 141R is observationally equivalent to dRe. Like in the example in Section 4, thetransformation dRe : �B ) BT can be made into the germ �R : �BT ) BTof a functorial operational semantics by composing dRe at the syntax T with thebehaviour B applied to the multiplication � of the syntax:
BTBT 2�BT�RdReT B�Spelling out the details, this germ �R : �BT ) BT is de�ned by `rules'fri 3<aij; tij>g1�i�l1�j�mi fri 63<bij; ->g1�i�l1�j�ni�(r1; : : : ; rl) �R;<a; �(C[�!
]Tr;�!t ])>corresponding to the rules in R. The multiplication � : T 2 ) T is formally neededin order to remove bracketing and make of the termC[�!
]T r;�!t ](with as variables the terms 
]T ri and tij) a simpler term with the variables of 
]T riand tij as variables. In the sequel, for simplicity, � is omitted.For every set X, the function �RX : �BTX ! BTX is not only a �- but also ah�; Ei-algebra structure for hBTX;[i. That is, �R is join-preserving. Therefore,by the isomorphism between h�; Ei- and T -algebras (cf Section 2) it can be seen asan action of the monad T on the composite functor BT :�R : TBT ) BTThen, for every coalgebra structure k : X ! BX, the germ �R induces an opera-tional model [[-]]kdRe : TX ! BTXby taking the left adjunct of the composite arrowB�X�k : X ! BTX = UT hBTX; �RXiwrt the standard adjunction F TaUT from the T -algebras to their carriers
= (B�X � k)]k B�XBX

X [[-]]kdRe �RX TBTX
T 2X�X T [[-]]kdRe[[-]]kdReTX TX�X

BTXBTX(See Section 2.)



142 Functorial SemanticsRegarding the coalgebra structure k : X ! BX as a set of transitions x a�! x0,with x; x0 2 X, one can also take the least transition system induced by thesetransitions and by the rules in R and obtain another operational model[[-]]kR : TX ! BTXThe claim is that these two operational models are observationally equi-valent in the sense that their coinductive extensions are the same; inother words, they have the same �nal coalgebra semantics.Without loss of generality, let us prove this claim taking for k the `empty' coalgebrastructure 0 : 0 ! B0 as the base of the induction. Correspondingly, one has themodels [[-]]R : T0! BT0 and [[-]]dRe : T0! BT0with the set T0 of closed terms as carrier. The claim is that, for all closed terms t,[[t]]@dRe = [[t]]@RDiagrammatically: [[-]]@dRe[[-]]@RB[[-]]@R[[-]]dRe[[-]]RT0BT0 B[[-]]@dRe�=B bBbB' �nal coalgebra
where, recall, BX = �P(1 + Act �X) and the �nal B-coalgebra h bB;'i is describedin Section 13.First notice that [[t]]R ; � () [[t]]dRe ; �Thus, consider, without loss of generality, only the case when t might not becomeinert. Then, the functions [[-]]@R and [[-]]@dRe are the unique functions which, for all t,satisfy the coinductive de�nitions[[t]]@R = '�1f<a; [[t0]]@R> j [[t]]R ;<a; t0>gand [[t]]@dRe = '�1f<a; [[t0]]@dRe> j [[t]]dRe ;<a; t0>grespectively, for '�1 the inverse of the �nal coalgebra isomorphism ' : bB �= B bB. Ifone can show that, for all terms t, the identityf<a; [[t0]]@dRe> j [[t]]dRe ;<a; t0>g = f<a; [[t0]]@dRe> j [[t]]R ;<a; t0>g (3)



Section 11 | GSOS 143holds, then one has that, for all t, both[[t]]@dRe = '�1f<a; [[t0]]@dRe> j [[t]]R ;<a; t0>gand [[t]]@R = '�1f<a; [[t0]]@R> j [[t]]R ;<a; t0>gwhich, by the uniqueness of coinductive extensions, implies that they are the same.Now, the identity (3) can be proved as follows. Notice that, by de�nition of dRe,[[t]]dRe ;<a; t0>() [[t]]R ;<a;C[�!u ;�!v ]> and t0 = C[������!
]T0[[u]]dRe;�!v ]It su�ces then to show that[[C[������!
]T0[[u]]dRe;�!v ]]]@dRe = [[C[�!u ;�!v ]]]@dReFor this, one can use the compositionality of functorial operational semantics (theabstract semantics of a term is invariant under substitution of sub-terms with thesame abstract semantics) and reduce it to the problem of proving that[[
]T0[[ui]]dRe]]@dRe = [[ui]]@dReholds. This, in turn, is a consequence of the fact that 
] is a retraction for dRe, ie[[
]T0r]]dRe = r (see previous section):[[ui]]@dRe = '�1 �B[[-]]@dRe � [[ui]]dRe (unfold)= '�1 �B[[-]]@dRe � [[
][[ui]]dRe]]dRe (retraction)= [[
]T0[[ui]]dRe]]@dRe (fold)This concludes the proof.
Structural Coinduction. A more direct way of proving that the set [[t]]@R is equal to the set[[t]]@dRe would be to prove that the two sets are equal under the coinductive hypothesis thatthe [[t0]]@R 's are equal to the [[t0]]@dRe's. Intuitively, this principle holds by duality wrt thestructural induction principle, the algebraic structure of the program constructs being herereplaced by the coalgebraic structure of the behaviour observations. However, a formalfoundation for this particular `structural coinduction principle' is still to be investigated.



144 Functorial SemanticsGuarded Recursion in GSOS. Recall from Section 5 that every set of terms(mutually) recursively de�ned by means of equations in some variables xi 2 Xx1 = t1[X]; x2 = t2[X]; : : :where ti[X] are elements of TX (hence might contain variables from X), can be seenas a T -coalgebra k : X ! TX by putting k(xi) = ti[X]. (And vice versa.) Alsorecall that a system of (mutually) recursive de�nitions k : X ! TX is guarded if itfactorizes through a coalgebrag : X ! BTX = �P(1 + Act� TX)of the composite endofunctor BT in the sense thatg T 2X�XTX
]TXBTXX k
commutes, that is, k = �X � 
]TX � g : X ! TX, where � : T 2 ) T is themultiplication of the syntactical monad T (cf Section 2) and 
] : B ) T is theretraction for basic process algebra. Clearly:g(xi) = f<ai1; ti1>; : : : ; <ain; tin>gthat is, the equations xi = ti are guarded if they are of the formxi = (ai1.ti1) or : : : or (ain.tin)Conversely, every BT -coalgebra can be seen as a set of mutually recursive de�nitions.Now, for every set R of GSOS rules, one can take the left adjunct of everyg : X ! BTX = UT hBTX; �RXi wrt the adjunction F TaUT from the T -algebras totheir carriers:

BTXg TX�X BTX[[-]]gdRe[[-]]gdRe �X
�RX= g]X T [[-]]gdReTBTXT 2XTX

Then, the desired interpretation of g as a recursive process is obtained by taking thecorresponding �nal coalgebra semantics ([[-]]gdRe)@ = ([[-]]gR)@ : TX ! bB precomposed



Section 11 | GSOS 145with the insertion-of-variables �X : X ! TX. With the usual abuse of notation,write g@ : X ! bB for this composite arrow:
�=B bBbBBTX[[-]]gdRe

g@
B([[-]]gR)@

�X ([[-]]gR)@gX TX
Notice that no variable binding operator (like, eg, the operator \�x" in the originalde�nition of GSOS) is needed here to deal with recursion.As an example, letR be basic process algebra together with the rules for (simple)interleaving u1 a�! v1u1 k u2 a�! v1 k u2 u2 a�! v2u1 k u2 a�! u1 k v2and let g be the BT -coalgebra corresponding to the guarded recursive de�nitionx = a.x y = (a.y) or (b.x) z = (a.z) or (b.(x k y))in X = fx; y; zg. Write, for simplicity,[[-]]g = [[-]]gdRe : TX ! BTXand, correspondingly, let[[-]] @g = ([[-]]gdRe)@ = ([[-]]gR)@ : TX ! bBbe its coinductive extension. Then, omitting, as usual, the insertion-of-variables�X : X ! TX and the �nal coalgebra isomorphism bB �= B bB,[[a.t]] @g = f<a; [[
]TX [[t]]g]] @g >g = f<a; [[t]] @g >g[[t1 or t2]] @g = [[t1]] @g [ [[t2]] @g[[t1 k t2]] @g = f<a; [[t01 k t2]] @g >j t1 a�!t01g [ f<a; [[t1 k t02]] @g >j t2 a�!t02gg@(x) = f<a; g@(x)>g = �ag@(y) = f<a; g@(y)>g [ f<b; g@(x)>g = a �a � bg@(z) = f<a; g@(z)>g [ f<b; [[x k y]] @g >g



146 Functorial SemanticsGSOS models are �-models. The functoriality of GSOS gives a systematicmethod for deriving an adequate denotational model from any set R of GSOS rules.Another systematic method proposed in the literature (see notes below) permitsto derive a proof system from any set R of GSOS rules. This proof system canbe used for proving that the programs of the language of R satisfy assertions inHennessy-Milner logic.The main result on this proof system is that it is complete wrt a certain classof `models' of R. The problem arises then of �nding an independent motivation forthe de�nition of GSOS models. It is here shown that the models of a set R of GSOSrules are exactly the algebras of the operational monad � induced by the rules R.This supports the choice of that class of models as the `natural' one.A model for a set of GSOS rules R is a triple hX; h; ki with h : TX ! X analgebra of the syntactical monad T =<T; �; �> corresponding to R and k : X !BX = �P(1 + Act �X) a B-coalgebra structure such that�(x1; : : : ; xl) h7�! x k;<a; x0>holds if and only if there exists a rulefui ;<aij; vij>g1�i�l1�j�mi fui 6;<bij; ->g1�i�l1�j�ni�(u1; : : : ; ul);<a;C[�!u ;�!v ]>in R such thatxi k;<aij; yij> xi k6;<bij; -> C[�!x ;�!y ] h7�! x0(Formally, this de�nition is obtained from the original de�nition of GSOS models byusing the one-to-one correspondences between h�; Ei- and T -algebras and (�nitelybranching) transition systems and B-coalgebras.)Next, let � =< �; �; � > be the operational monad induced by a set of GSOSrules R. That is,
�RXBTXBTXX �X T 2X�k T�kB�X �kk TBTX�XBX TX TX

Recall, from Section 9, that an algebra of the monad � is a triple <X; h; k>, with



Section 11 | GSOS 147h a T -algebra and k a B-coalgebra structure over the set X such that the diagram
BXh Bh�k

kX BTXTX
commutes. But this means thath(�(x1; : : : ; xl)) k;<a; x0>holds if and only if �(x1; : : : ; xl) �k;<a; t> and t h7�! x0In turn, by de�nition of �, the latter holds if and only if there exists a rulefui ;<aij; vij>g1�i�l1�j�mi fui 6;<bij; ->g1�i�l1�j�ni�(u1; : : : ; ul);<a;C[�!u ;�!v ]>in R such thatxi k;<aij; yij> xi k6;<bij; -> t = C[�!x ;�!y ]Since ht = x0 this proves that every GSOS model is a �-algebra, and vice versa. InSection 9, �-algebras are also called �-models, hence this result can be rephrasedformally as GSOS models are �-models.

Notes. The notion of a GSOS model has been introduced in [Sim95]. The GSOSrules have been de�ned in [BIM88], considerably extending a previous de�nition of `well-behaved' rules from [dS85]. More recent proposals are the tyft format [GV92] extendingGSOS without negative premises and its subsequent ntyft format [Gro93] mentioned above.It would be interesting to understand whether the functorial approach can deal also withthese latter formats.



148 Functorial Semantics



12 Coalgebraic Bisimulations
There are several notions of observational equivalence for a transition system; themost general one corresponds to a relation on its states called (strong) bisimulation.The �nal coalgebra of the behaviour corresponding to transition systems `classi�es'bisimilar states in the sense that two states are bisimilar if and only if they havethe same �nal coalgebra semantics, ie the same abstract global behaviour. In otherwords, coinduction can be `pulled back' to bisimulation. As a corollary, the �nalcoalgebra is `internally fully abstract'.Categorically, this can be generalized to every behaviour functor B preserving`weak pullbacks'.Recall from Section 10 the correspondence between (�nitely) non-deterministictransition systems and coalgebras of the behaviour endofunctorBX = �P(1 + Act�X)Recall also the notation x k;< a; x0 > introduced in Section 11 to express that<a; x0>2 k(x) in a coalgebra structure k : X ! �P(1+Act�X); in other words, thetransition system corresponding to the coalgebra hX; ki can perform the transitionx a�! x0.A relation R between the carriers X and Y of two coalgebras hX; ki and hY; `ilifts to a (strong) bisimulation between the two coalgebras when, for all x inX and y in Y such that xRy (ie < x; y >2 R), the following three conditions aresatis�ed.1. x k; � if and only if y ;̀ �2. if x k;<a; x0> then y ;̀<a; y0> for some y0 such that x0Ry03. and, conversely, if y ;̀<a; y0> then x k;<a; x0> for some x0 such that x0Ry0Notice that bisimulations are themselves coalgebras. Indeed, from the above condi-tions, one can de�ne a coalgebra structureeR : R! �P(1 + Act� R)on the relation R by puttingxRy eR; � () x k; � (() y ;̀ � )149



150 Functorial Semanticsand xRy eR;<a;<x0; y0>>() x k;<a; x0> y ;̀<a; y0> x0Ry0In the sequel, the above notion of bisimulation is also called ordinary bisimula-tions, in order to distinguish it from the followingmore general notion of `coalgebraicbisimulation'.Bisimulations are coalgebras; now the question is: Is there a coalgebraic descrip-tion of bisimulation? For this, consider the two `legs' r1 : R ! X and r2 : R ! Yobtained by composing the insertion R ,! X�Y of the relation R into the cartesianproduct X�Y with the �rst and second projection, respectively. Now, if the relationR lifts to an ordinary bisimulation, then its legs r1 and r2 lift to coalgebra arrows;that is, the two squares in
Br1 BYBX BRReRk `r2r1 Br2X Y

commute. The converse is also true; namely, if a relation lifts to a coalgebra ofthe above behaviour endofunctor B in a way that its legs also lift to correspond-ing coalgebra arrows as in the above diagram, then this relation is a bisimulation.Indeed, the �rst condition is obvious, while the second and the third follow fromthe commutativity of the left and the right diagram, respectively. Notice that theremight be more structures eR making the above diagram commute, corresponding tothe several ways in which, in general, a relation can lift to a bisimulation.The above diagram can be de�ned wrt any endofunctor B. Call the correspond-ing notion coalgebraic bisimulation. It applies also to endofunctors on categoriesother than Set, by taking a relation between two objects X and Y in a categoryC to be a span r2r1X YRwhich is monic in the sense that the two legs are jointly monic in C; that is, if fand g are two `parallel' arrows such thatr1 � f = r1 � g and r2 � f = r2 � gthen f is equal to g. (To be precise, a monic span is not a relation, but justone representative of an equivalence class (of monic spans) which forms the actualrelation { more details below.) Then, a relation R between the carriers X and Y



Section 12 | Bisimulation 151of two coalgebras hX; ki and hY; `i of an endofunctor B on C lifts to a coalgebraicbisimulation if there exists a B-coalgebra structure eR : R ! BR which makes
Br1 BYBX BRReRk `r2r1 Br2X Y

commute. Notice the stress is put on the fact that the legs of the relation R liftto coalgebra arrows, rather than on the actual (possibly not unique) coalgebraicstructure of R. Therefore, let us forget about the coalgebraic structure of R andwrite hY; `ihX; ki � r2Rr1to express that R is a relation between the carriers X and Y which lifts to a bisim-ulation between the coalgebras hX; ki and hY; `i.A canonical way of de�ning relations is by pullbacks: for any diagramgf ZX Ythe two legs of the corresponding pullbackX Zr1f gr2 YR
are jointly monic (by the universal property of the pullback). For instance, in Set,the pullback of two functions f and g is the relation f<x; y> j fx = gyg. Anotherexample is given by the equality relation: the pullbackX X XEQ(X)e1 e2



152 Functorial Semanticsis the equality relation on the object X in a category C with pullbacks.The equality relation always lifts to a coalgebraic bisimulation.Firstly, notice that the two legs e1 and e2 of the equality are the same.Next, consider the `diagonal' dX : X ! EQ(X)
e1EQ(X) XX e2dXXidX idXX

given by the universal property of EQ(X). (In Set, the value of thediagonal dX at an element x of X is the pair <x; x >.) For any endo-functor B and any B-coalgebra hX; ki since the composite ei � dX is theidentity on X, the diagram BeieiEQ(X) BX BXBdX
k

k B(EQ(X))XeiXcommutes; hence, the composite BdX �k � ei lifts the equality EQ(X) toa bisimulation on the coalgebra hX; ki:
hX; kihX; ki �EQ(X)e2e1

Next, let B be an endofunctor on a categoryC with pullbacks. Recall that pullbacks,like all universals, are determined by two conditions: uniqueness and existence.When only the existence part is known to hold one speaks of a weak pullback (andof a weak universal in general). Now, not all pullbacks lift to B-bisimulations, buta su�cient condition is that the functor B preserves weak pullbacks. That is, ifthe image under B of a weak pullback is still a weak pullback, then every pullback inC of arrows which are coalgebra homomorphisms lifts to a B-bisimulation. Indeed,since pullbacks are also weak pullbacks, for all f : hX; ki ! hZ; ji and g : hY; `i !



Section 12 | Bisimulation 153hZ; ji in CB, the existence of a (possibly not unique) suitable coalgebra structureeR : R! BR for the pullback R of f and g in C is ensured by the weakly universalproperty of the weak pullback BR:r2gfr1X R BgBr1`k j BYeR
Z Y BZBfBX Br2BR

(The coalgebra structures k and ` turn the legs of R into a cone over the diagramfor which BR is a weak pullback.)Pullbacks lift to ordinary bisimulations. Let us check that the behaviourfunctor BX = �P(1 + Act � X) preserves weak pullbacks and hence, by the aboveargument, pullbacks lift to (ordinary) bisimulations.Let us consider the functor BX = �P(Act�X); the proof carries over trivially to thecase BX = �P(1 + Act�X). The problem of showing that the functor B preserves weakpullbacks can be reduced to the problem of showing that B maps (ordinary) pullbacks toweak pullbacks. Indeed, the following holds.In Set, weak pullbacks embed pullbacks. That is, the diagramWw1 w2f gX YZis a weak pullback diagram if and only if there exists an injection m : R� Wof the pullback R = f<x; y>j fx = gyg of f and g into W such thatmR WX f
r2r1 gw1 w2 ZYcommutes.Therefore, if BR = f<a; x; y>j a 2 Act; fx = gyg



154 Functorial Semanticsis a weak pullback for Bf : BX ! BZ and Bg : BY ! BZ, the set BW inherits theweak universality of BR by means of the mediating arrow Bm : BR! BW .In turn, in order to prove that BR is a weak pullback for Bf and Bg it su�ces toprove that the (ordinary) pullback R0 of Bf and Bg factorizes through it in the sense thatthere exists a function h : R0 ! BR such that r0i = Bri � h:
BgBf

R0 h Br1r01 r02Br2BRBX BZBYIndeed, then every other cone (f 0; g0) over the co-span hBf;Bgi factorizes through thepullback as follows. R0f 0 g0� hBR r02r01 BfBr1 BgBr2BX BZBYLet us now try and de�ne such a function h : R0 ! BR from the pullback R0 of Bf andBg to the image under B of the pullback R of f and g. By de�nition of pullbacks in Set,the set R0 is made of those pairs<f<ai; xi>gi2I ; f<aj ; yj>gj2J>such that the index sets I and J are �nite andBff<ai; xi>gi2I = Bgf<aj ; yj>gj2JThe latter holds if and only if for every i 2 I there exists a j 2 J such that<ai; fxi>=<aj; gyj> (ie ai = aj ; fxi = gyj)and, conversely, for every j 2 J there exists an i 2 I such that < ai; fxi>=<aj ; gyj >.But then one can de�ne h : R0 ! BR as mapping every pairf<ai; xi>gi2I R0 f<aj ; yj>gj2Jto the set f<ai; xi; yj> j ai = aj ; fxi = gyjg 2 BRThis gives the desired factorization. Notice that the mediating function h is not uniqueand that this construction also applies to the simpler behaviour BX = 1 + Act�X.



Section 12 | Bisimulation 155The semantic import of coalgebraic bisimulation is shown by a list of propertieswhich relate it to �nal coalgebras. One property is that coinductive extensionsidentify bisimilar elements; in particular, if two programs are bisimilar, then theyhave the same �nal coalgebra semantics. Another way of expressing this fact isto say that the equality on the �nal coalgebra lifts to the �nal bisimulation (in asuitable category of relations). As a corollary, �nal coalgebras are internally fully-abstract, in the sense that in a �nal coalgebra one cannot distinguish betweenbisimilar elements; this property is also called strong extensionality.Next, if the pullback of two coinductive extensions lifts to a bisimulation, like,eg, when the functor B under consideration preserves weak pullbacks, then thispullback is the greatest relation lifting to a bisimulation. Together with the aboveproperty that coinductive extensions identify bisimilar elements, this gives that twoprograms have the same �nal coalgebra semantics if and only if they are bisimilar.In other words, coinduction can be `pulled back' to bisimulation.Let us look at these properties in detail.Coinductive extensions identify bisimilar elements. That is, for any relationR lifting to a bisimulation the following diagram commutes.
h bB;'i
�hX; ki hY; `ik@ `@r2Rr1

This is a trivial consequence of the fact that both composites in the diagram arecoalgebra arrows to the �nal coalgebra, hence they must be the same.Corollary (Strong Extensionality): Final coalgebras are internally fully-abstract. That is, every relation which lifts to a bisimulation on the �nal coalgebrahas equal legs: r1 r2� h bB;'ih bB;'i h bB;'i
R



156 Functorial SemanticsThe equality on the �nal coalgebra lifts to the �nal bisimulation. Considerthe category having as objects relations lifting to bisimulations of an endofunctor Band as arrows triples of arrows <r; f; g> making everything in sight inR0rfR � hY 0; `0ihX 0; k0ihX; ki hY; `i g r02r01� r2r1
commute { where f and g are arrows in CB, while r is an arrow in C. Then theequality EQ( bB) on (the carrier of) the �nal coalgebra is the �nal object of thiscategory. This is an immediate consequence of the fact that EQ( bB) is a pullback(in C): EQ( bB)h bB; 'i h bB;'ir2 �`@k@hX; ki hY; `i�r1 e2e1R
That is, from any relationR lifting to a bisimulation there is a mediating arrow to theequality EQ( bB) on the �nal coalgebra because the two legs of R can be coinductivelyprolonged to form a suitable cone on (the carrier of) the �nal coalgebra.Greatest bisimulations. So far, we have made no distinction between relationsand monic spans (like pullbacks). To be precise, one should �rst de�ne an equi-valence relation among monic spans with a common codomain and then take thecorresponding equivalence classes as the actual relations; this equivalence relationis de�ned as follows.For any two monic spans with a common codomainm2 YXm01 M 0 m02M YXm1write m2 YXm01 M 0 m02�M YXm1if there is an arrow f : M ! M 0 such that Mi factorizes as M 0i � f , for both i = 1



Section 12 | Bisimulation 157and i = 2:
YM 0 m02m2m01 fMXm1The two monic spans are then equivalent (hence represent the same relation) if theconverse also holds, that is, if alsom2 YXm01 M 0 m02�M YXm1The above de�nes a partial order `�' of relations (and also of relations which lift tobisimulations). If the cartesian product X�Y of two objects X and Y in a categoryexists, then its equivalence class is the greatest relation between X and Y wrt thispartial order. If the category has �nite limits, then products are pullbacks wrt the�nal object; in particular, Y1

X�Yfst sndXIn semantics, the `base' category C should, like Set, have all �nite limits. Thesame cannot be said in general of the category CB of coalgebras of the behaviourendofunctor B. What certainly is true is that the behaviour should have a �nalcoalgebra, that is, the category CB should have a �nal object. Now, recall that thecoinductive extension k@ : X ! bB of a coalgebra structure k : X ! BX is theunique coalgebra arrow from the coalgebra hX; ki to the �nal coalgebra h bB;'i; thenone can take the pullback (in C) of two coinductive extensions and, if it lifts to abisimulation between the corresponding coalgebras� hY; `ihX; kik@ `@�
h bB;'ithen this is the greatest (relation lifting to a) bisimulation between the coalgebrashX; ki and hY; `i.



158 Functorial SemanticsWrite k;�̀ for the relation obtained above by `pulling back' the coinductive exten-sions of the coalgebra structures k and `. Then, in Set, if the relation k;�̀ lifts to abisimulation, x k;�̀ y () k@(x) = `@(y)for any two elements x 2 X and y 2 Y . (The implication from left to right fol-lows the property that coinductive extensions always identify bisimilar elements.)Semantically, for an operational model [[-]] : TX ! BTX with syntax T and beha-viour BX = �P(1 + Act � X), two programs t; t0 2 TX are bisimilar if and only ifthey have the same �nal coalgebra semantics:t [[-]]� t0 () [[t]]@ = [[t0]]@Notice the underlying assumption that the pullback [[-]]� lifts to a bisimulation on theoperational model [[-]]:
[[-]]@�� hTX; [[-]]ihTX; [[-]]i[[-]]@ h bB; 'iAs shown above, pullbacks lift to ordinary bisimulations, ie to the bisimulations ofthe behaviour functor BX = �P(1+Act�X). As a consequence, one can thus obtainthe familiar result that the union of all bisimulations on a transition system is itselfa bisimulation.



Section 12 | Bisimulation 159Bisimulations along arrows. The fact that coinductive extensions can be pulledback to bisimulations can be generalized to coinductive extensions along arrows.This leads to a new, more general notion of ordinary bisimulation in which not onlythe actions but also some (properties of the) states can be observed.Recall that �nal coalgebras bB �= B bB are a special case of cofree coalgebrasDX �= X � BDX (namely bB = D1) and that, correspondingly, the coinductionprinciple of �nal coalgebras generalizes to the arbitrary cofree coalgebras: for everycoalgebra structure k : X ! BX and arrow f : X ! Z one has a unique coalgebraarrow f [ : hX; ki ! hDZ; sndZi, namely the coinductive extension of k along f :X BX
Z DZf [ sndZ"Z = fstZ BDZ

kf Bf [
(Cf Section 7.)Next, consider a relation R between two arrows f : X ! Z and g : Y ! Zover the object Z, that is, a relation between X and Y such that the diagram

Zr1f gr2X R Y
commutes. Then, if X and Y carry coalgebra structures k : X ! BX and ` : Y !BY respectively and the relation R lifts to a bisimulation between them

hY; `ihX; ki � r2Rr1then also the diagram �hX; ki hY; `if [ g[hDZ; sndZir2
Rr1



160 Functorial Semanticscommutes, because both composites f [ � r1 and g[ � r2 �t as the unique coinductiveextension of the (no matter which!) coalgebra structure on R along the compositef � r1 = g � r2 : R! Z.If pullbacks lift to B-bisimulation, then the pullback (in the base category) ofthe coinductive extensions f [ and g[ of k and ` along f and g is the greatest relationbetween f and g which lifts to a bisimulation between hX; ki and hY; `i.As an example, consider the simple behaviour BX = 1 + Act � X and, corres-pondingly, ordinary bisimulation for deterministic transition systems. Let the setAct of actions be trivial, that is, let Act be made of only one action a. Let hX; kiand hY; `i be the same coalgebra having as carrier the set Z of integers and as struc-ture ` : Z! B(Z) the one corresponding to the following (deterministic) transitionsystem: 0 is inert, a positive integer n performs a transition to its predecessor n�1,and a negative integer �n performs a transition to its successor �n + 1:0 # � n a�! n� 1 � n a�! �n + 1(Cf Example in Section 7.) Finally, let Z be the three-elements set f0;|;}g. Thus:X = Z= Y Z = f0;|;}g Act = fagNow, di�erent bisimulations are possible according to the choice of the functionsf; g : Z! f0;|;}g. Let us �x the function g : Z! f0;|;}g to be the one mappingodd numbers to | and even numbers to }. If f is equal to g, then every number isbisimilar to itself and to its opposite. For instance,f [(�3) = | a�! } a�! | a�! 0 = g[(3)and thus �3 is bisimilar to 3 (wrt g).The above amounts to assume that one can observe in both transition systemswhether a number is odd or even. If, instead, in the �rst transition system one canobserve this only for positive numbers, thus, eg, f(�n) = 0 and f(n) = g(n), thenone has that a positive number n is bisimilar to both �n and n (wrt f and g) butits opposite �n is not bisimilar to any number in the second transition system.Finally, if one cannot observe at all in the �rst transition system whether anumber is odd or even (ie f(z) = 0 for all z 2 Z) then only the two 0's are bisimilar.(Notice that the arrows f and g can be regarded as abstract interpretations ofthe states.)Another example is when one has a distinguished subset Obs(X) � X of stateswhich are `observable'. This can be expressed by taking Z = Obs(X) [ f?g andf : X ! Obs(X) [ f?g to bef(x) = 8<: x if x 2 Obs(X)? otherwise



Section 12 | Bisimulation 161Bisimulations vs CongruencesConsider the case in which, like for the above behaviour functor, pullbacks liftto coalgebraic bisimulations. Then, in any situation like in functorial operationalsemantics
�nal coalgebra semantics [[-]]@

�hj - ji#
B[[-]]@

initial algebra semantics hj - ji#T0[[-]] hj - ji� bB
B bBbB�= �nal coalgebraBT0

�=initial algebra�T0
in which both an operational and a denotational model are given and the denota-tional model is adequate wrt the operational one in the sense that initial algebraand �nal coalgebra semantics coincide, one has that `bisimulation is a congruence'.That is, if u1 [[-]]� v1; : : : ; un [[-]]� vnfor terms ui and vi, then, for every n-ary construct � in �,�(u1; : : : ; un) [[-]]� �(v1; : : : ; vn)Indeed, using the hypothesis that pullbacks lift to coalgebraic bisimulations, one hasthat, for all terms t and t0, t [[-]]� t0 () [[t]]@ = [[t0]]@hence, for i = 1; : : : ; n, [[ui]]@ = [[vi]]@and thus [[�(u1; : : : ; un)]]@ = hj�(u1; : : : ; un) ji#= hj� ji(hju1 ji#; : : : ; hjun ji#)= hj� ji([[u1]]@; : : : ; [[un]]@)= hj� ji([[v1]]@; : : : ; [[vn]]@)= [[�(v1; : : : ; vn)]]@Therefore, �(u1; : : : ; un) [[-]]� �(v1; : : : ; vn)which means that the (bisimulation) relation [[-]]� is a congruence. In general, arelation R between the carriers X and Y of two �-algebras hX; hi and hY; li is a



162 Functorial Semanticscongruence when, for all x1; : : : ; xn in X and y1; : : : ; yn in Y and n-ary construct� in �, if x1R y1; : : : ; xnR yn then h(�(x1; : : : ; xn)) R l(�(y1; : : : ; yn))Diagrammatically, this is equivalent to saying that the relation R lifts to the �-algebras in the sense that there exists a �-algebra structure eR : �R ! R makingthe following diagram commute.
�Y�X �r2�r1 �R

r2h lr1 YX ReR
This de�nition generalizes to algebras of (arbitrary) monads T :

TYTX Tr2Tr1 TR
X lh r2r1 YReR

In particular, if R is a �-congruence, then its inductive extension is a congruence ofthe monad T freely generated by �. This amounts to the well-known fact that if Ris a (�-) congruence then, for every context C[-], if x R y then C[x] R C[y].Notice that for coalgebras one speaks of relations lifting to bisimulations whilefor algebras one speaks of relations being congruences. The point is that, while thereare many ways of lifting a relation to a bisimulation, it is often the case that thereexists a unique way of lifting a relation to a congruence. This is certainly true withpullback relations:Pullbacks uniquely lift to T -congruences. The lifting eR : TR! Rin TXTr1 TR ReR r1 gTYh lj XTr2Tf TgTZ f Z Yr2



Section 12 | Bisimulation 163is given by the unique mediating arrow from the cone hh �TR1; k �TR2ito the pullback R of f and g. The universality of R can be used to provethat the function eR : R ! BR is a T -algebra structure.One can check that the above implies that hR; eRi is the pullback of f and g in theT -algebras:
gr2hR; eRihX; hi hY; lihZ; jifr1The fact that pullbacks of functions between carriers of algebras lift uniquely topullbacks (of the same functions but) in the category of algebras amounts to saythat the forgetful functor UT : CT ! C creates pullbacks. In turn, this is aconsequence of the more general fact (see, eg, xVI.2 of [Mac71]) thatThe forgetful functor UT : CT ! C creates limits.In other words, a category of algebras has the same limits as its base category.Colimits are more di�cult. Dually, a category of coalgebras has the same colimitsas its base category, ie:The forgetful functor UB : CB ! C creates colimits.Instead, in general, the limits (eg, products and pullbacks) of coalgebras are dif-�cult. This explains why there is no systematic way of lifting a pullback relationto a bisimulation, and extra assumptions are needed like the preservation of weakpullbacks.



164 Functorial SemanticsNotes. Preliminary material presented in this section has appeared in [RT93, RT94].Bisimulations along arrows appear here for the �rst time.The notion of an ordinary bisimulation stems from the work of Park [Par81] and Milner[Mil80] on concurrency. Coalgebraic bisimulations were introduced in [AM89], while theirdual algebraic congruences already appear in [Man76, page 167]. An order-enriched formof coalgebraic bisimulations is studied by Marcelo Fiore in [Fio93] (improving a previousde�nition from [RT93]); Fiore's notion cuts down, for a particular functor, to the notionof an applicative bisimulation from [Abr90].For a categorical de�nition of relations see, eg, [FS90]. When dealing with categoriesother than Set like, eg, the category pCpo as in [Fio93], one might want to use a moresubtle de�nition of relations, considering only a class of admissible monic spans, closedunder pullbacks.A drawback of the present de�nition of coalgebraic bisimulations is that it requires thatthe relations live in the same category as the coalgebras. In Set this is not a problem, butwhen one is working with more structured objects it might be too strong a requirement.For instance, in categories of complete partial orders one has to consider chain-closedrelations.Andy Pitts [Pit94a, Pit93, Pit94c] has introduced a di�erent notion of generalizedbisimulations for the functor types most commonly used in semantics which overcomesthis problem and, moreover, it is `compositional': if two composable relations are bisimu-lations (in the sense of Pitts) wrt two di�erent functors F and G, then their compositionis a bisimulation wrt the composite functor FG, which is not the case for coalgebraicbisimulations. These two properties really make the `pulling back' of coinduction to (gen-eralized) bisimulation a useful method for reasoning about coinductively de�ned objects.(Notice, however, that the actual construction of bisimulation relations can be quite in-volved, hence it would be important to generalize to functorial operational semantics theexisting methods for constructing ordinary bisimulation like those treated in [San95].)Pitts' notion is implicitly based on lifting the functors to a category of relations. Thisidea is formalized by Claudio Hermida and Bart Jacobs [Her93, HJ95a, HJ95b, Jac95] bymeans of the categorical notion of a `�bration': a category R of relations over a givencategory C is a certain �bration on C; functors F on C de�ned by universal propertieslift to functors eF on R; a bisimulation wrt to F is then a eF -coalgebra in R. Notice thatan object of R does not need to be an object of C as well.An alternative categorical approach to generalized bisimulations is pursued in [JNW93];its relationship with the above approaches is still to be investigated.



13 The Observational Comonad for Bisimulation
The behaviour BX = �P(1+Act�X) is not an !op-continuous endofunctor, becausethe power-set functor �P is not, hence its �nal coalgebra cannot be obtained as thelimit of the usual !op-chain. This section illustrates two alternative methods forestablishing the existence of the �nal coalgebra of the �nite power-set functor. The�rst method, due to Peter Aczel, amounts to quotienting a weakly �nal coalgebraby its greatest bisimulation.The second method is due to Michael Barr. It amounts to �nding a `generatingset' for the coalgebras of the �nite power-set functor, that is, a (small) set fhXi; kiigIof coalgebras such that every coalgebra is a quotient of a coproduct of hXi; kii's. Bythe Special Adjoint Functor Theorem (SAFT), the �nal coalgebra is then the greatestquotient of the coproduct of all the hXi; kii's.More generally, SAFT ensures the existence of a right adjoint for the forgetfulfunctor mapping coalgebras to their carriers. This right adjoint maps a set to itscofree coalgebra and the whole adjunction de�nes the cofree comonad for the �nitepower-set functor. The same can be done with the composite behaviour functorBX = �P(1+Act�X) thus obtaining the observational comonad D for bisimulation.For simplicity, let us consider the �nite power-set functorP� : Set! Set X 7! fX 0 � X j X 0 �niteginstead of its `relevant' part only, the functor �P which does not produce the emptyset. The coalgebras of the �nite power-set functor P� are in a one-to-one corres-pondence with the �nitely branching, directed graphs. Indeed, a coalgebra struc-ture k : X ! P�X de�nes a graph with x 2 X as nodes and with arcs x ! x0 forevery x0 2 k(x). That is, the children of x in the graph are the elements of theimage of x under k. Conversely, every �nitely branching and directed graph de�nesa P�-coalgebra: x! x0 () x0 2 k(x)Next, if the �nal coalgebra cP� �= P�cP� of the �nite power-set functor exists,then every coalgebra structure k : X ! P�(X) can be coinductively extended to afunction k@ : X ! cP� such thatk@(x) = fk@(xi) j xi 2 k(x)g165



166 Functorial SemanticsMoreover, this coinductive extension is unique:k cP�P�cP�P�(k@)P�X
k@ �=X

The equation k@(x) = fk@(xi) j xi 2 k(x)gcan be seen as the recursive de�nition of a tree:k@(x1) k@(xn)k@(x) = (for k(x) = fx1; : : : ; xng)� � ��This is a rooted tree, �nitely branching, and possibly of in�nite depth. Neithernodes nor arcs are labelled. The set T of these rooted �nitely branching trees canbe seen as (the carrier of) a coalgebra of the �nite power-set functor: every tree� 2 T is mapped to the (�nite) set f�1; : : : ; �ng of children of its root:� � ��� 7�!�1 �n� ���1 � � � �nThis coalgebra is not a �nal but a weakly �nal coalgebra, that is, it is a coalgebrawhich ensures the existence but not the uniqueness of coinductive extensions. Forexample, the coalgebra structure k : X = fx; x1; x2; x01; x02g ! P�(X)k(x) = fx1; x2g k(x1) = fx01g k(x2) = fx02g k(x01) = 0 = k(x02)can be extended to both the following trees.� ������ �
Proposition. The �nal coalgebra of the �nite power-set functor is theset of rooted �nitely branching trees quotiented by the corresponding(greatest) coalgebraic bisimulation.



Section 13 | A Domain of Processes for Bisimulation 167More generally, the quotient modulo bisimulation of any weakly �nal P�-coalgebrayields the �nal P�-coalgebra.Recall, from the previous section, that a relation R between the carriers X andY of two coalgebras hX; ki and hY; `i lifts to a coalgebraic bisimulation if there existsa coalgebra structure eR on the relation making its legs coalgebra arrows:
`r2r1 eRRk P�(r1) P�(r2)P�R P�YP�XX Y

That is, for all x in X and y in Y such that xRy,� if x !k x0 then y !` y0 for some y0 such that x0Ry0� and, conversely, if y !` y0 then x !k x0 for some x0 such that x0Ry0.(Here the notation x !k x0 stands for `there is an arc from x to x0 in the graphcorresponding to the coalgebra hX; ki'.)As shown in the previous section, the �nite power-set functor preserves weakpullbacks, hence pullbacks lift to P�-bisimulations. As a consequence, for every P�-coalgebra hX; ki, the greatest relation on X lifting to a P�-bisimulation exists if the�nal P�-coalgebra exists. The argument is not circular because, later in this section,the existence of the �nal P�-coalgebra is proved by means of SAFT and withoutusing bisimulations.Next, consider the quotient of a P�-coalgebra hX; ki modulo its greatest bisim-ulation Rk. Categorically, this amounts to taking the coequalizer q : X ! X=Rk ofthe two legs r1; r2 : Rk ! X of the relation Rk:r2 P�(X=Rk)P�(Rk)Rk r1
P�(q)P�(r2)P�(r1) q X=RkXP�Xk

Notice this lifts to a coequalizer in the category of coalgebras. The coalgebrastructure for X=Rk is given by the universal property of the coequalizer. Indeed,since the legs of the relation Rk lift to coalgebra arrows, the composite functionP�(q) � k : X ! P�(X=Rk) equates the two legs of the relation Rk. The correspond-ing unique mediating function from X=Rk to P�(X=Rk) is the desired structure.Write hX; ki=Rk for this quotient coalgebra.



168 Functorial SemanticsLemma. From every coalgebra there is at most one arrow to the quo-tient coalgebra hX; ki=Rk.Indeed, consider two coalgebra arrows f; g : hY; `i ! hX; ki=Rk. Since,as shown in the previous section, the equality relation always lifts to acoalgebraic bisimulation EQ(Y ) hY; `ihY; `i � e2e1one has that the equality on Y with as legs the composites f � e1; g �e2 : EQ(Y ) ! X=Rk lifts to a bisimulation on the quotient coalgebrahX; ki=Rk: �EQ(Y )
hX; ki=Rkf ghX; ki=Rke1hY; `i e2hY; `iTherefore, for every y 2 Y , f(y) is bisimilar to g(y). Since, by construc-tion, the quotient hX; ki=Rk is strongly extensional , that is, bisimulationis the equality, one has that f(y) is equal to g(y) for every y 2 Y , hencef = g and the lemma is proved. (Cf [Acz88, Theorem 2.19].)Therefore, the quotient modulo bisimulation of a weakly �nal P�-coalgebra is neces-sarily �nal: the existence of an arrow from every coalgebra is guaranteed by beingthe quotient of a weakly �nal coalgebra, the uniqueness is guaranteed by the aboveproperty of quotients modulo bisimulation. In particular, the weakly �nal coalgebraof rooted �nitely branching trees can be thus quotiented by bisimulation to yieldthe �nal coalgebra of the �nite power-set functor. This concludes the proof of theabove proposition.Notice that the �nite power-set functor is not !op-continuous, that is, the limit of thefollowing chain is not a �xed point for the �nite power-set functor P�. (Cf Section 5.)P�211 P�1 P�21P�11 � � �Indeed: Each object P�n1 of the chain is the set of �nitely branching trees with depthat most n, quotiented by bisimulation. Correspondingly, the following sequence of treesbelong to the above chain. �� � � �� ��� �� ��� �� �



Section 13 | A Domain of Processes for Bisimulation 169The problem is then that the limit has to contain the following tree with in�nitely manybranches, � 1� � �� �� ��� 1...��
�

while the �nal coalgebra, as shown above, contains only �nitely branching trees.� � �The coequalizer q : hX; ki ! hX; ki=Rk of the two legs of the greatest bisimula-tion on a coalgebra hX; ki is the `greatest quotient' of hX; ki. Formally, a quotient isan equivalence class of epis, just like a relation is an equivalence class of monic spans(see previous section). Coequalizers are always epi, ie they are `right-cancellable':given a coequalizer q : X ! Y and two parallel arrows f; g : Y ! Z, if f � q = g � qthen f = g. (This is immediate because of the universal property of coequalizers.)Given two epis f : X � Z and g : X � Y with a common domain X putf � g () f = f 0 � gfor some (necessarily unique and epi) arrow f 0 : Y � Z. The two epis are equivalent(hence represent the same quotient) if the converse also holds, that is, if alsog � fIt is wrt this partial order on quotients that one can prove that q : hX; ki �hX; ki=Rk is (a representative of) the greatest quotient of the coalgebra hX; ki. In-deed, since the pullback of �P-coalgebra arrows lifts to coalgebraic bisimulations (seeprevious section), the pullback K(f) of (two copies of) every other quotient f liftsto a bisimulation and hence it is smaller than the relation Rk:hX; ki=RkRk hX; ki q fK(f) f hY; `iq� hX; kiTherefore f � q, for every quotient f : hX; ki � hY; `i of hX; ki.The greatest quotient of an object can be seen as the least upper bound of allquotients of that object. Dually, and more generally, also the greatest lower bound,ie the intersection, of all quotients of a suitable object can be used for �nding the�nal object of a category.



170 Functorial SemanticsIn general, the intersection of a set of quotients of an object is their pushout , ifthis exists, because \pushouts of epis are epi" and \epis are closed under composi-tion". (See, eg, [Mac71, xV.7].) For instance, the following diagram shows that thepushout of two epis f1 and f2 is their least upper bound.f 01� � f 02f2f1 ���
Indeed, by de�nition of pushout, the composite f 01 � f1 is equal to the compositef 02 � f2, it is an epi, and it is greater that both f1 and f2. Moreover it is smallerthan every other upper bound for f1 and f2, because of the universal property ofpushouts.Even if pushouts exist, the intersection of all quotients of an object in a categorymight fail to exist: one needs that the category be `co-well-powered', that is, thecollection of all quotients of a given object should be a (small) set, so that its pushoutcan be taken. Now, by a standard cardinality argument, for every coalgebra hX; kiof an arbitrary endofunctor B on Set, one can form the set of its quotients, henceSetB is co-well-powered.for all B : Set ! Set (and thus the �nite power-set functor in particular).As for pushouts, these are colimits and coalgebras inherit all colimits from theirunderlying category, since, as mentioned in the previous section,The forgetful functor UB : CB ! C creates colimits.Therefore, since Set is cocomplete (ie it has all colimits), the category of coalgebrasof an endofunctor B on Set is also cocomplete:SetB is cocomplete.Now, a more general way of �nding a �nal object in a cocomplete and co-well-powered category is by �nding a (small) set of objects fXigI such that every objectin the category is the quotient of a coproduct ofXi's. (A set fXigI with this propertyis called a generating set for the (cocomplete) category.)



Section 13 | A Domain of Processes for Bisimulation 171From a generating set to the �nal object. In a cocomplete category witha generating set fXigI , if the intersection of all quotients q : `I Xi � Q of thecoproduct `I Xi exists, then Q is the �nal object of the category.Let us �rst check uniqueness, that is, that from every object Y there exists atmost one arrow to Q. Indeed, if there were two distinct arrows one can coequalizethem. Let q0 : Q � Ebe this coequalizer. Since coequalizers are epi, the compositeaI Xi q� Q q0� Ewould then be greater than q, which is a contradiction.For the uniqueness part one only uses the fact that Q is the greatest quotient ofan object. It is for the existence part that the generating set fXigI is used. Indeed,by de�nition of generating sets, every object Y is (the codomain of) a quotientq0 :aJ Xj � Yof a coproduct `J Xj of elements of fXigI . Since every Xj is an element of fXigI ,there is, by the universal property of the coproduct, a function from `J Xj to`I Xi, mapping each Xj to the corresponding Xi. (Notice that this function is notan embedding, because there might be more copies in `J Xj of the same Xi.) Onecan then take the pushout
`I Xi Q0q00q

0`J Xj Y
of this function and the quotient q0 : `J Xj � Y . Since pushouts of epis are epi, thearrow q00 : `I Xi � Q0 is epi, hence there exists an arrow from Q0 to the codomainQ of the intersection of all quotients of `I Xi. One can then form a compositeY ! Q0 � Q, which proves the existence of an arrow from an arbitrary Y to Q.This concludes the proof. (Cf, eg, [Mac71, Theorem V.8.1].)



172 Functorial SemanticsA generating set for the P�-coalgebras.The set G = fhU; ki j k : U ! P�U and U � !gof P�-coalgebras with ordinals less than or equal to ! as carriers is a(small) generating set for the category of P�-coalgebras.Firstly notice that, if a set U has cardinality � !, then also its set of �nite subsetsP�U has cardinality � !. Therefore the above collection G really is a set (and nota proper class).Next, let us show that the set G is a generating set for the P�-coalgebras. Forthis, notice that, in a category which (like the one of P�-coalgebras) is cocomplete,a set G of objects is generating if and only if for every two parallel arrows f1 and f2such that f1 6= f2 there exists an arrow g from an object in G such thatf1 � g 6= f2 � gThis de�nition is easier to check (and it makes sense also in categories which arenot cocomplete). For instance, in Set, two functions f1; f2 : X ! Y are distinct ifand only if there exists an x 2 X such that f1(x) 6= f2(x), therefore, the singletonset 1 is a generator.Two coalgebra arrows f1; f2 : hX; ki ! hY; `iare functions, thus also they have a distinct value at some x 2 X. However, thecoalgebras with carrier 1 do not su�ce to form a generating set for the P�-coalgebras,because the discriminating x will be mapped by k : X ! P�X to a set fx1; : : : ; xmgin which the xi's are, in general, di�erent from x.The idea is that, since every P�-coalgebra structure k : X ! P�X maps elementsx 2 X to �nite subsets of X, one can start from x and recursively apply (P� of)k to it. Thus at the �rst step one has fxg only, at the second fxg [ fx1; : : : ; xmg,and so on, until a subset U � X is found such that x 2 U and k restricted to U isa P�-coalgebra structure on U itself. Because at each step only �nitely many xi'sare added, the set U cannot be larger than !. Therefore, the coalgebra hU; ki isisomorphic to a coalgebra in G.Formally, given a P�-coalgebra hX; ki and an x 2 X, letU = [n2!Unwhere U0 = fxg Un+1 = Un [ P�(k)(Un)By de�nition U is a subset of X of cardinality at most !. It remainsthus only to show that, if xi 2 U , then k(xi) � P�U . But this followsfrom the fact that xi 2 U implies there exists an n such that xi 2 Un,hence k(xi) � Un+1 � U .



Section 13 | A Domain of Processes for Bisimulation 173This concludes the proof that the above G is a generating set for the P�-coalgebras.(Cf [Bar93, Proposition 1.3].)Corollary 1. The �nal coalgebra of the �nite power-set functor is theintersection of all quotients of the coproduct `GhU; ki.Notice that, by essentially the same argument, one can show that the setGB = fhU; ki j k : U ! BU and U � !gis a generating set for the behaviour BX = �P(1 + Act�X). Thus:Corollary 2. The �nal coalgebra of the behaviour BX = �P(1+Act�X)is the intersection of all quotients of the coproduct `GBhU; ki.Next, a category is locally small if the collection of arrows between every twoobjects forms a (small) set. For instance, Set is locally small. Now, the above proofof the existence of a �nal coalgebra by means of a generating set is an applicationof the following general theorem.The Special Adjoint Functor Theorem (SAFT). If D is cocom-plete, co-well-powered, and with a (small) generating set, and if C islocally small, then every cocontinuous functor F : D ! C has a rightadjoint.(For a proof see, eg, [FS90] or [Mac71].)Indeed, by instantiating the above theorem to the unique functorSetB ! 1from the coalgebras of the endofunctor BX = �P(1 + Act �X) (or BX = P�X) tothe (�nal) category 1 with one object and one arrow (the identity), one obtains theexistence of the �nal B-coalgebra.A functor which creates colimits also preserves them, that is, it is cocontinuous,hence, for every endofunctor B on Set,The forgetful functor UB : SetB ! Set is cocontinuous.Therefore, the Special Adjoint Functor Theorem also shows that, for every endo-functor (like the behaviour BX = �P(1 + Act �X) or the �nite power-set functor)whose coalgebras have a generating set,The forgetful functor UB : SetB ! Set has a right adjoint.This adjunction gives rise to a cofree comonad D=<D; "; �>:



174 Functorial SemanticsLet GB : Set ! SetB be the right adjoint of the above forgetful functorUB : SetB ! Set. By de�nition of right adjoint, given a set X, a coalgebrahY; `i, and a function f : Y ! X there exists a unique coalgebra arrowf [ : hY; `i ! GBX such that f = "X � UBf [, where " : UBGB ) I is thecounit of the adjunction. (Cf Section 8.)Write DX for the carrier of the coalgebra GBX and �X : DX ! BDX for itsstructure. Then UBf [ : Y ! DX is the unique (X�B)-coalgebra arrow fromthe coalgebra (structure) <f; `> : Y ! X �BY to the coalgebra (structure)<"X ; �X> : DX ! X �BDX, which means that the latter is the (structureof the) �nal (X�B)-coalgebra.Because �nal coalgebras are isomorphisms, this implies that DX �= X�BDX,the counit at X is the �rst projection fstX : DX ! X and the structure�X : DX ! BDX is the second projection.As shown in Section 7, the operation X 7! DX extends to an endofunctorD : Set ! Set, and the counit " : D ) I and the coinductive extension� : D ) D2 of the second projection along the identity are comonad operationsfor it.In particular, the cofree comonad corresponding to the behaviour BX = �P(1+Act�X) is the observational comonad for bisimulation.Concretely, the value of the observational comonad for bisimulation at a set Xcan be obtained by means of a quotient construction in terms of trees and bisimu-lations as follows.Let TX be the set of trees which are coinductively generated by �nitely branchingtransition systems. That is, the set TX is the set of trees which are rooted, �nitelybranching, with nodes labelled by x 2 X, arcs labelled by a 2 Act, and whoseleaves are labelled by � (and the arcs to leaves are then unlabelled). These trees arepossibly of in�nite depth. For instance, the following is a tree in TX if x; x1; x2; : : :are in X.
x3a1a�� x2xx x1a2a3a4� ���...

�
1This tree has root labelled by x, one leaf, and one in�nite branch.Just like the set T given at the beginning of this section can be seen as a coalgebraof the �nite power-set functor, this set TX can be seen as an (X�B)-coalgebra. Thefunction TX ! X is the operation which, given a tree, returns the label x 2 X ofits root.



Section 13 | A Domain of Processes for Bisimulation 175One can check that, with this structure, the set TX is a weakly �nal (X�B)-coalgebra. The �nal (X�B)-coalgebra (with carrier DX!) can be then obtained bytaking the quotient modulo the greatest (X�B)-bisimulation. By instantiating thecoalgebraic notion of bisimulation to the functor (X�B), one obtains relations R onTX such that two trees �1; �2 2 TX by R (ie �1R�2) i� the following four conditionsare satis�ed.1. The label x 2 X of the root of �1 is the same as the label of the root of �2;2. �1 �! � if and only if �2 �! �;3. if �1 a�! � 01 then �2 a�! � 02 for some � 02 such that � 01R � 02,4. and, conversely, if �2 a�! � 02 then �1 a�! � 01 for some � 01 such that � 01R � 02.The �rst clause is the one corresponding to the extra information given by the statesx 2 X. By putting X = 1 one recovers the ordinary notion of bisimulation betweentrees (with unlabelled nodes).

Notes. The idea of de�ning semantics by taking quotients of transition systems (iecoalgebras) by greatest (ordinary) bisimulations dates back at least to [Mil80]. The FinalCoalgebra Theorem in [AM89] (based on a previous result in [Acz88]) generalizes thatidea: it shows that �nal coalgebras of endofunctors can be obtained by quotienting weakly�nal coalgebras by the greatest (coalgebraic) congruence. This is stated for `set-based'endofunctors on the category SET of classes (ie large sets { cf Part V): an endofunctoris set-based if its value at a class X is determined by its value at the (small) subsets ofX [Acz88, De�nition 6.1]. An example is the endofunctor PS : SET ! SET mappinga class to the class of its (small) subsets, which is used in Part V. If an endofunctorpreserves weak pullbacks then the notion of a (coalgebraic) conguence cuts down to thatof a (coalgebraic) bisimulation [AM89, Proposition 6.2].In [Bar93], the �nal coalgebra theorem of [Acz88] is reformulated in Set (thus withoutuse of classes) by replacing the set-based condition by that of `accessibility', modellingwith inaccessible cardinals the size distinction between sets and classes. In particular, theendofunctors P� and BX = �P(1 +Act�X) are accessible and the above `construction' ofthe corresponding generating sets is a special case of that in [Bar93, Proposition 1.3].
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A Summary
In this section a technical summary of the above results is given. It can be read inde-pendently from the other sections by a reader familiar with the categorical notions ofadjunction and monad . After some preliminaries recalling the basic de�nitions andfacts about algebras and coalgebras, the notion of functorial denotational semanticsis introduced; as an example, basic process algebra [BW90] is de�ned denotationally.Next, every functorial denotational semantics is shown to induce an operationaldual (and vice versa). (The Basic Property .) Next, several results are proved (Op-erational is Denotational , �-algebras are �@-coalgebras, Adequacy Theorem) whichillustrate the adequacy of the denotational semantics �@ coinduced by a functorialoperational semantics �. Finally, it is proved that the operational semantics inducedby GSOS rules [BIM88] is always functorial.Algebras. The category of the algebras of a monad T =<T; �; �> on a categoryC is denoted by CT . Its objects are the arrows h : TX ! X of C such thath � �X = idX and h � �X = h � Th; its arrows f : (TX h�! X)! (TX 0 h0�! X 0) arethe arrows f : X ! X 0 in C such that f � h = h0 � Tf .The evident forgetful functor UT : CT ! C has a left adjoint X 7! (T 2X �X�!TX). This adjoint situation is here denoted as follows.

TYYY TX h Tf]f]f]f�XX T 2X�XTX (4)(In the sequel, f ] does always denote the above left adjunct of f wrt the adjunction.The uniqueness of f ] is exploited here to prove several equalities between arrows.)The monad de�ned by this adjunction is trivially equal to the original monad T ,hence every monad is de�ned by its algebras.Given a signature � and a cocomplete category C with �nite products, onecan de�ne an endofunctor (with the same name) on C as the coproduct �X =`�Xarity(�) indexed by the operators � of the signature. Then the �-algebras h :�X ! X form a category C� with as arrows f : (�X h�! X)! (�X 0 h0�! X 0) thearrows f : X ! X 0 in C such that f � h = h0 � �f .179



180 Functorial SemanticsAlso the forgetful functor U� : C� ! C has a left adjoint and, moreover, itis monadic, ie, if T is the monad arising from this adjunction, then there is anisomorphism of categories C� �= CT making the following diagram commute.C� �= CTU� C UT (5)For C = Set, TX is the usual set of terms inductively de�ned by the operatorsin � and the variables x 2 X. In particular, T at the empty set 0 is the set ofclosed terms. In other words, T0 is the carrier of the initial �-algebra �T0 �= T0(Lambek's lemma: initial algebras are always isomorphisms [SP82]) and, in general,TX is the carrier of the initial (X+�)-algebra X+�TX �= TX. The unit �X =inlX : X ! TX at X is the formal insertion of the variables x 2 X in the termst 2 TX and the multiplication �X : T 2X ) TX is the `inductive extension' of theright injection inrX . Thus, for instance, �X(�(�Xt1; : : : ; �Xtn)) = �(t1; : : : ; tn). Toease the notation, � and � is often omitted from the terms.In the sequel, also h�; Ei-algebras are considered, ie �-algebras which satisfysome equations E on the operators derivable from the signature. The forgetfulfunctor from the corresponding category Seth�;Ei has a left adjoint and it is monadic,hence Seth�;Ei �= SetT (6)for the corresponding monad T . For instance, consider semi-lattices with a leastelement, ie let � contain only a binary operator _ and a constant ? and let E bethe associativity, commutativity, and associativity axioms for _ and the unit axiomfor ? wrt _. Then Seth�;Ei is isomorphic to the category of algebras of the monad<P�; f-g;S>, where �PX is the set of �nite subsets of X.If the operators of � are the constructs of a programming language then, analgebra h : TY ! Y of the corresponding syntactical monad T is a denotationalmodel of the language and it induces an initial algebra semantics [GTW78], namelythe unique arrow h# : T0! Y from the initial algebra �0 : T 20! T0 to h : TY !Y : h#(�(t1; : : : ; tn)) = h(�(h#t1; : : : ; h#tn))Coalgebras. Dually, let CB denote the category of coalgebras of an endofunctorB on C, having as objects arrows k : X ! BX in C and as arrows f : (X k�!BX)! (X 0 k0�! BX 0) those arrows f : X ! X 0 in C such that f � k0 = Bf � k.Every �nitely branching labelled transition system [Plo81b]hX; f a�!ga2Actican be seen as a coalgebra k : X ! BX of the behaviour endofunctor BX =P�(Act�X) on Set [Acz88]:x a�! x0 () <a; x0>2 k(x) (7)



Part IV | Summary 181Notice that although the category of B-coalgebras has the same objects as thestandard category of transition systems [WN95], the arrows are di�erent.The �nal B-coalgebra D1 �= B(D1) exists [AM89] and, correspondingly, everyoperational model, ie coalgebra (ie transition system) [[-]] : TX ! BTX on thesyntax, coinduces a �nal coalgebra semantics [RT93], namely the unique arrow [[-]]@ :TX ! D1 from [[-]] to the �nal coalgebra. Up to the isomorphism D1 �= B(D1),[[t]]@ = f<a; [[t0]]@> j<a; t0>2 [[t]]gThe existence of this �nal coalgebra is a corollary of the fact that the forgetfulfunctor UB : SetB ! Set has a right adjoint [Bar93]. In general, for any endofunctoron a complete category C, if the forgetful functor UB : CB ! C has a right adjointthen it is comonadic, ie the coalgebras of the corresponding comonad D=<D; "; �>are isomorphic to the B-coalgebras: CB �= CD (8)(A coalgebra of the comonad D is an arrow k : X ! DX in C such that "X �k = idXand �X � k = Dk � k.) Correspondingly, the forgetful functor UD : CD ! C has aright adjoint X 7! (DX �X�! D2X): f[ f[f X"Y DY DY Df[D2YDXX �Y
kX (9)To every endofunctor B corresponds a notion of B-bisimulation [AM89] which,for BX = P�(Act�X), specializes to the ordinary bisimulation [Par81]. Final coal-gebras are internally fully-abstract in the sense that their greatest B-bisimulation(exists and) is an equality relation; moreover, if B (like the above behaviour) pre-serves weak pullbacks, then the kernel pair of the �nal coalgebra semantics is thegreatest B-bisimulation (on the B-coalgebra under consideration) [RT93]. One canprove that the �nal coalgebra of the behaviour BX = P�(Act � X) is the set ofrooted �nitely branching trees quotiented by its greatest bisimulation.In general, for an endofunctor B to qualify as a behaviour its correspondingnotion of bisimulation should be a signi�cant notion of observational equivalence;moreover, it should preserve weak pullbacks, and the forgetful functor UB : CB ! Cshould have a right adjoint. The corresponding comonad D is then an observationalcomonad .



182 Functorial SemanticsFunctorial Denotational SemanticsGiven an observational comonad D =< D; "; � > and a syntactical monad T =<T; �; � >, a functorial denotational semantics is a comonad 	 lifting the co-monad D to the T -algebras: UT	 CTCT DUT CCThat is, 	 is a triple <	; e"; e�> such thatUT	 = DUT : CT ! CUT e" = "UT : DUT ) UTUT e� = �UT : DUT ) D2UTIn other words, UT : CT ! C is a `map of monads'.The second and third equation imply that the counit e" and comultiplication e� of	 are the same as those of D=<D; "; �>, because of the very de�nition of coalgebraarrows. Therefore: 	=<	; "; �>One can check that the three equations and the fact that the triple < P; "; � > isa comonad imply that also the triple 	=<	; "; � > is a comonad. Also, the �rstequation is equivalent to 	 being an action of T on DUT : CT ! C, ie a naturaltransformation 	 : TDUT ) DUTsuch that, for every T -algebra h : TX ! X, 	h : TDX ! DX is also a T -algebra.(See, eg, [BW85] for the equivalence between liftings and actions.) Then, the secondand third equations are equivalent to the fact that, for every h : TX ! X, thefollowing diagram commutes. 	h �X"X
T�X 	2hTD2XTDX D2XDXTX T"XXhThat is, "X �	h = h � T"X (10)�X �	h = 	2h � T�X (11)



Part IV | Summary 183As an example, consider the following functorial denotational semantics for basicprocess algebra [BW90]. The base category C is Set. The syntactical monad T isthe one freely generated by the constructs � = fnil; a.; or g, iet ::= nil j a.t j t or tThe observational comonad D =<D; "; � > is cofreely generated by the behaviourBY = P�(Act� Y ). The set DX is the carrier of the �nal (X�B)-coalgebra:BDXDX �= X�BDX"X = fstX sndXXand it is a set of (�nitely branching) trees whose nodes are labelled by x 2 X andwhose arcs are labelled by a 2 Act. The operation "X = fstX : DX ! X gives thelabel of the root node for each tree in DX and the other operation sndX : DX !BDX = P�(Act � DX) gives the remaining part of the tree (and it coinductivelyextends to give the counit � : D ) D2 of the comonad D):x1a1� anxn�� � �� sndfstx ana1 � � ��x1 x� �xnUsing (5), one can de�ne 	 as an action of � rather than of T . That is, 	 : �PU� )DU�. Then, for every h : �X ! X, de�ne the action of the constant nil as the treewith only one node and label h(nil), and the action of `a.' and ` or ' as follows.x ��ah(a.x)x7�!�a. �7�! h(x or y)yx or� �Formally, using the meta-variables p and q to range over the elements of DTX,for every X, 	 is de�ned as follows.nil 7! <h(nil); ;>a.p 7! <h(a.(fstp)); f<a; p>g>p or q 7! <h((fstp) or (fstq)); (sndp) [ (sndq)>Therefore, the �-algebra 	h : �DX ! DX is a pair, whose �rst component issimply the composite function h � �fstX , ie, up to (5), the equation (10) holds,because fstX = "X . Also (11) holds, because both �X �	h and 	2h ���X �t as the(unique!) pair <	h;B�X � sndX � 	h>. Therefore, 	=<	; "; � > is a functorialdenotational semantics for the above signature � and behaviour B.



184 Functorial SemanticsA Dual Lifting: Functorial Operational SemanticsThe de�nition of functorial operational semantics is the dual of the one offunctorial denotational semantics: it is a monad �=<�; �; �> lifting the syntacticalmonad T =<T; �; �> to the D-coalgebras. That is, a coaction� : TUD ) DTUDof the comonadD on TUD : CD ! C such that, for every D-coalgebra k : X ! DX,the following diagram commutes. �2k�kk T 2XDX DT 2XD�XDTXD�X
�XTXX �X

The Basic Property. Every functorial denotational semantics 	 de�nes a func-torial operational semantics whose action 	# : TUD ) DTUD is de�ned by meansof the adjunction (4) as follows. �XTXX TX�X T 2X= (D�X � k)]TDTXDTXDTXD�XDX 	#k 	�X T	#k	#kk
That is, 	# = (D� � )]Dually, every functorial operational semantics � de�nes, by means of (9) a functorialdenotational semantics �@ = ( � T")[Proof. Naturality follows from universality. Next, 	#k��X is equal to D�X �	#2kbecause both �t as the (unique!) T -algebra arrow(	#k)] : (T 2X �TX�! TX)! (TDTX 	k�! DTX)obtained by taking the left adjunct of 	#k wrt the adjunction (4). Similarly, 	#k :TX ! DTX is a D-coalgebra: to prove that "TX �	#k is equal to the identity idTXon TX notice that both �t as �]X , since �X = �X � idX = �X � ("X � k); and to provethat D	#k �	#k is equal to �TX �	#k notice that both �t as (D2�X � (Dk � k))] =(D2�X � (�X � k))]. 2For the denotational semantics 	 in the above example one has the followinginduced operational semantics 	#. Using the isomorphisms (5) (to move from �- to



Part IV | Summary 185T -actions) and (8) (to move from D- to B-coactions), obtain 	# : TUB ) BTUB.Consider, for simplicity, the case of the `empty' coalgebra 0 : 0 ! B0 given by theinitial function into B0 and put[[-]]	 = 	#(0) : T0! BT0Up to (7), this is the transition system induced by 	 on the closed program t 2 T0of basic process algebra. Spelling out the details, one can obtain[[nil]]	 = ;[[a.t]]	 = f<a; t>g[[t1 or t2]]	 = [[t1]]	 [ [[t2]]	Using (7), this really yields basic process algebra:nil 6�!a.t a�! tt1 or t2 a�! t if t1 a�! t or t2 a�! tOperational is DenotationalThe mapping � 7! �@ is a bijection between operational monads and denotationalcomonads with 	 7! 	# as inverse:
TC CCD 	#

	�@
� CD�UD UDCTC CCTUT UTD	Proof. Everything in sight in the following diagram commutes.

T�kTk DT 2XDT"TXTDTX DT 2XTDX �k DTXD�X
��TX�2k

(�@)#kDTDTXDT�kTD�XT�X�X D�XTXTDX
TX



186 Functorial SemanticsIndeed, the value of the unit of the adjunction (9) at a coalgebra hX; ki is itsstructure k : X ! DX, thus, in particular, its value at hTDX;��Xi is ��X :TDX ! DTDX, hence:�@h = (h � T"X)[ = D(h � T"X) � ��X = Dh �DT"X � ��XDually: 	#k = 	�X � TD�X � TkTherefore: (�@)#k = �@�X � TD�X � Tk= D�X �DT"TX � ��TX � TD�X � TkThis proves the commutativity of the lower subdiagram in the above diagram. Theother non-immediate fact is the commutativity of the subdiagram in the middle,but this follows from the fact that it is the image under the functor � of one of thetwo D-coalgebra laws for the structure �k : TX ! DTX. That is,T�kDT�k ��TXDTDTXTDTXT 2XDT 2X�2k�DTXTX D2TX 7�!D�k �TX�k DTX�k
This proves that �k = (�@)#k and, by duality, 	h = (	#)@h.�-Algebras are �@-coalgebrasThe algebras of an operational monad � and the coalgebras of its coinduced denota-tional comonad �@ are respectively of the formTX k DTXDXDh�kXh kTX TDXDX�@hTkXhwhere h : TX ! X is a T -algebra and k : X ! DX is a D-coalgebra. For both,the arrows are those between their carriers (hence in C) which are simultaneouslyT -algebra (hence in CT ) and D-coalgebra (hence in CD) arrows.The claim is that Dh � �k is equal to �@h � Tk. Indeed, everything in sight inthe following diagram commutes. DT"XDTDXTX ��XTkTDX DhDTXDTXDTk�@h

�k
DX



Part IV | Summary 187The only non-trivial sub-diagram is the one corresponding to the upper leftcorner but this is the image under the functor � of one of the two D-coalgebralaws for the structure k : X ! DX. That is,TX�XD2Xk DX �k DTDX��XTDXTkDTkDTXDk �7�!DXkXThus, up to the permutation hX; k; hi 7! hX; h; ki, for any monad � lifting a monadT to the coalgebras of a comonad D, the two categories of �-algebras and �@-coalgebras are the same: CD� = CT�@Dually, CT	 = CD	#that is, 	-coalgebras are 	#-algebras.AdequacyIf � is an operational monad, then the category CD� = CT�@ can be seen as thecategory of models of �: �-Mod = CD� = CT�@This category has both an initial and a �nal object which are `lifted' from the initialT -algebra and the �nal D-coalgebra, respectively.Lemma. The forgetful functorgUD : CD� ! CT with action (TX ! X ! DX) 7!(TX ! X) has a right adjoint, namely �@h �X
��XX DTDXD2XD�@hDXTDXh fGDTX

Dually, gUT : CT	 ! CD has a left adjoint(X k�! DX) fFT7�! (T 2X �X�! TX 	#k�! DTX)Proof. The counit of the adjunction is simply the counit " of D, ie it is lifted fromthe adjunction (9). 2



188 Functorial SemanticsThus there are two adjunctions for the category of �-models, namely??fUDfGD fF TfUT CDCT CD� = �-Mod = CT�@Hence, gF T maps the (trivial) initial D-coalgebra to the initial �-model :(0 0�! D0) fFT7�! (T 20 �0�! T0 �0�! DT0)Dually, gGD maps the (trivial) �nal T -algebra to the �nal �-model :(T1 1�! 1) fGD7�! (TD1 �@1�! D1 �1�! D21)Then, by de�nition of �-algebra (alias �-model) arrow, the following holds.Adequacy Theorem. The unique (both by initiality and �nality) arrow fromgF T (0) to gGD(1) is both the initial algebra semantics from the closed programs T0to the domain D1 with denotations �@1, and the �nal coalgebra semantics from thetransition system �0 on the closed programs to the set of most abstract observationsD1. 2Since by `pulling back' this �nal coalgebra semantics one obtains the greatest B-bisimulation, the fact that it is also an initial algebra semantics gives the followingCorollary. B-bisimulation is a congruence wrt �.GSOS is FunctorialFirst a preliminary remark. Notice that, in the operational semantics [[-]]	 givenabove for basic process algebra, the construct or behaves as the join [ of the semi-lattice P�(Act � T ). Thus the above 	 can also be seen as a lifting of B to theh�; Ei-algebras, where E are the semi-lattice laws for the binary operator or (ie oris required to be associative, commutative, and absorptive). For simplicity, let uskeep the notation T =< T; �; � > also for the monad corresponding to the h�; Ei-algebras.(Thus TX is now the quotient wrt (the congruence relation generated by) Eof the (previous) free algebra of terms over X; thus one cannot distinguish in thissyntax between, for instance, the terms t1 or t2 and t2 or t1. Keeping this quotientin mind, one can still regard the elements of TX as terms, that is, one can userepresentatives rather than equivalence classes.)One can then embed the behaviour BX = P�(Act � X) into this new syntaxT by mapping ; to nil, f<a; x>g to a.x, and [ to or . This de�nes a naturaltransformation 
 : B ) T



Part IV | Summary 189injective in each component. It is a retraction for the above basic process algebra	#, in the sense that the composite 	# � � � 
T : BT ) BT is the identity naturaltransformation on BT .This retraction 
 is important because it permits to regard every setR of `GSOS'rules containing basic process algebra as a natural transformation dRe : �B ) BT .A GSOS rule speci�es one possible transition for terms of the form �(u1; : : : ul),for � a given program construct of arity l:fui aij�! vijg1�i�l1�j�mi fui 6bij�!g1�i�l1�j�ni�(u1; : : : ; ul) a�! C[�!u ;�!v ] (12)The aij's and bij's are actions in Act; the ui's and vij's are all distinct (meta) variablesranging over terms, the expression C[�!u ;�!v ] is a term formed by the context C[�!- ]and some (meta) variables contained in the set of ui's and vij's.Clearly, the rules of basic process algebra are in GSOS. Let us assume thatevery set R of GSOS rules conservatively extends basic process algebra. Therefore,the corresponding syntactical monad T contains terms nil; a.t; t1 or t2, and or is asemi-lattice join, hence the above retraction 
 : B ) T is a retraction also for (theoperational semantics induced by the rules) R.Then, using the meta-variables ri to range over the elements of BX = P�(Act�X), de�ne dReX : �BX ! BTX by putting, for every rule (12) in R,<a;C[�!
Xr;�!x ]>2 dReX(�(r1; : : : ; rl))if f<aij; xij>2 rig1�i�l1�j�mi and, for every x 2 X, f<bij; x>62 rig1�i�l1�j�niThe claim now is that this really de�nes a natural transformationdRe : �B ) BTie for every `variable renaming' f : X ! Y , BTf � dReX = dReY � �Bf .Consider the case of negative premises: if there is no pair <bij; x> in ri 2 BXfor any x 2 X, then there is also no pair <bij ; y > in (Bf)(ri) 2 BY for arbitraryy 2 Y . Assume thus only positive premises in the rule. Then the following lemmasu�ces to prove the claim.Substitution Lemma. (Tf)(C[�!
Xr;�!x ]) = C[�������!
Y (Bf)(r);�!fx]Proof. It is an immediate consequence of the naturality of the retraction 
 from Bto T and of the GSOS condition that the variables of C[�!u ;�!v ] are contained in theset of ui's and vi;j's (hence (Tf)C[: : :] = C[(Tf) : : :]). 2Next, this natural transformation dRe : �B ) BT can be made into an actionof � on BT : �BT dReT=) BT 2 B�=) BT



190 Functorial SemanticsThis family of �-algebras validates the semi-lattice laws, thus, using (6), it can alsobe seen as an action �R : TBT ) BTof the syntactical monad T . Then, like in the basic property, one can obtain anoperational monad � lifting the monad T to the B-coalgebras (instead of to theD-coalgebras) by putting � = (B� � )], ie �k �RX TBTXT�kBTX= (B�X � k)]T 2X�XTXX TX�X BTX�kk B�XBX(Notice the coalgebra k : X ! BX can be seen, by (7), as a set of \�-rules" in thesense of [BIM88].)Theorem.The operational semantics induced by R is observationally equivalent to �.Proof. Consider, without loss of generality, the case of closed terms T0. Call[[-]]R : T0 ! BT0 the coalgebra corresponding, via (7), to the transition systeminduced by R starting from the empty transition system (ie from the coalgebra0 : 0 ! B0). Similarly, put [[-]]dRe = �0 : T0 ! BT0. The claim is that the �nalcoalgebra semantics [[-]]@R : (T0 [[-]]R�! BT0) ! (D1 �= BD1) and [[-]]@dRe : (T0 [[-]]dRe�!BT0)! (D1 �= BD1) are the same. The idea is that the �nal coalgebra semanticsabstracts from the actual name of the states and just looks at the actions which canbe performed. Then, since <a; t0>2 [[t]]dRe i� there exists a context C[�!u ;�!v ] andterms ui's and vij's such that <a;C[�!u ;�!v ]>2 [[t]]R and t0 = C[������!
T0[[u]]dRe;�!v ], thetheorem follows from the followingLemma. [[C[������!
T0[[u]]dRe;�!v ]]]@dRe = [[C[�!u ;�!v ]]]@dReProof. From the second corollary of the main theorem, the �nal coalgebra semantics[[-]]@dRe : T0 ! D1 is also an initial algebra semantics (wrt the denotations �@1),hence [[-]]@dRe is compositional and the lemma can be reduced to[[
T0[[ui]]dRe]]@dRe = [[ui]]@dRewhich is a consequence of the fact that 
 is a retraction for (basic process algebraand hence, as one can check, for) [[-]]dRe. 2Notice that [[-]]@dRe : T0 ! D1 is the unique arrow from the initial to the �nal�-algebra.



Part IV | Summary 191GSOS models are �-models. Spelling out the de�nition of �-models (alias �-algebras) for the operational monad � corresponding to a set R of GSOS rules, oneobtains those TX h! X k! BXsuch that h : TX ! X validates the T -algebra laws and such that<a; x0>2 (k � h)(�(x1; : : : ; xl))i� there exists a rule (12) in R such that <aij; yij>2 k(xi), x0 = h(C[�!x ;�!y ]), and,for all y 2 X, < bij; y >62 k(xi). Up to the isomorphisms (5) and (7), this is thede�nition of GSOS models given in [Sim95].Guarded Recursion, coalgebraically. Every set of terms (mutually) recursivelyde�ned by means of equations in some variables xi 2 Xx1 = t1[X]; x2 = t2[X]; : : :where ti[X] are elements of TX (hence might contain variables from X), can be seenas a T -coalgebra k : X ! TX by putting k(xi) = ti[X]. (And vice versa.) In orderto interpret the recursive terms xi = ti[X] operationally, the usual requirement isthat they are guarded, that is, every term ti is of the form (ai1.ti1) or : : : or (ain.tin).Notice then, that if all terms in a recursive de�nition are guarded, the correspondingcoalgebra k : X ! TX always factorizes through a BT -coalgebra g : X ! BTX =P�(Act� TX) as follows. k = �X � 
TX � g : X ! TXClearly, g(xi) = f<ai1 ; ti1>; : : : ; <ain ; tin>g. Conversely, every BT -coalgebra canbe seen as a set of mutually recursive de�nitions.Now, one can take the left adjunct wrt the adjunction (4) of every g : X ! BTXusing a given set of GSOS rules R:[[-]]gdRe [[-]]gdRe = g] T [[-]]gdRe�XX TX TX �X T 2X�RXg TBTXBTXBTXThen the �nal coalgebra semantics ([[-]]gdRe)@ : TX ! D1 from the resulting coal-gebra [[-]]gdRe : TX ! BTX to the �nal coalgebra D1 �= BD1 gives the desiredinterpretation of g as a recursive process. Notice that no variable binding operator(like, eg, `�x' in [BIM88]) is (explicitly) needed here.



192 Functorial SemanticsExample. Let R be basic process algebra together with the rules for (simple)interleaving u a�! u0u k v a�! u0 k v v a�! v0u k v a�! u k v0and let g be the BT -coalgebra corresponding to the guarded recursive de�nitionx = a.x y = (a.y) or (b.x)in X = fx; yg. (Notice that the x's and y's in the interleaving rules are meta-variables not to be confused with the actual variables x; y used in the recursivede�nition.) Writing, for simplicity,[[-]] = [[-]]gdRe : TX ! BTXand letting [[-]]@ : TX ! D1 be the unique �-algebra arrow from T 2X �X�! TX [[-]]�!BTX to the �nal �-algebra TD1 �@1�! D1 ��! BD1, one has, omitting the insertion-of-variables �X and the �nal coalgebra isomorphism D1 �= BD1,[[x]]@ = f<a; [[x]]@>g = �a[[y]]@ = f<a; [[y]]@>;<b; [[x]]@>g = a �a � b[[a.t]]@ = f<a; [[
TX [[t]]]]@>g = f<a; [[t]]@>g[[t1 or t2]]@ = f<a; [[t01]]@>j t1 a�!t01g[f<a; [[t02]]@>j t2 a�!t02g= [[t1]]@ [ [[t2]]@ = �@1([[t1]]@ or [[t2]]@)[[t1 k t2]]@ = f<a; [[t01 k t2]]@>j t1 a�!t01g[f<a; [[t1 k t02]]@>j t2 a�!t02g= �@1([[t1]]@ k [[t2]]@)Final Remarks. The retraction 
 : B ) T gives a general way of dealing withguarded recursion, but it is not clear whether its use and the assumption that therules conservatively extend basic process algebra are really necessary to presentGSOS functorially. At the moment, basic process algebra, with its natural denota-tional de�nition, seems to be the language for the behaviour BX = P�(Act � X)(somewhat like the untyped lambda-calculus is the language for a suitable functionspace functor [Sco80]), while all other GSOS rules seem to be intrinsically operationaland in a less direct correspondence with the behaviour, although denotationally well-behaved.
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Synopsis
This part is devoted to a coalgebraic presentation of Peter Aczel's theory of \non-well-founded sets" [Acz88]. A categorical duality is proved between the `anti-foundation axiom' giving non-well-founded sets and the `foundation axiom': it isshown that the former is equivalent to postulating that `the universe V = PSV isa �nal coalgebra', while the latter is equivalent to `V = PSV is an initial algebra'.(The endofunctor PS maps a class to the class of its (small) subsets.)The semantic motivation for the use of anti-foundation is that it permits to provethe \Special Final Coalgebra Theorem" [Acz88] which states that, under mild as-sumptions, the greatest �xed point of an endofunctor on (possibly non-well-founded)sets is a �nal coalgebra.The special �nal coalgebra theorem is stated in terms of the \Solution Lemma"[Acz88]. The �nal coalgebra presentation of anti-foundation adopted here rendersthis lemma (and its equivalence with anti-foundation) trivial. Correspondingly, the`uniformity on maps' condition which an endofunctor has to satisfy in order for thespecial �nal coalgebra theorem to hold can be formulated in a more transparent waythan in [Acz88].

Note. A preliminary version of this part has appeared as [RT93, x4].195



196 Sets like Processes



Basic Set Theory
One way of understanding the abstract notion of set is as a collection x such thatits elements have \no internal structure whatsoever" and x itself has \no internalstructure except for equality and inequality of pairs of elements". (Cf [Law76, page119].) Axiomatically, this corresponds to taking the membership relation `2' as theonly primitive notion of set theory and to postulating the following `extensionalityaxiom', the �rst axiom of set theory.Extensionality:Two sets are equal i� they have the same elements.Next, for every property P in a (�rst-order) language with membership and equalityonly, one would like the collection fx j P(x)g of sets which have the property P tobe a set. However, Russel's paradoxical set fx j x 62 xg shows that this `strongcomprehension axiom' cannot be stated in its full generality. One needs to considerproperties relative to the elements of an already de�ned set. This leads to the`comprehension axiom', the second axiom of set theory.Comprehension:For every property P and every set v, the collectionfx j P(x) ^ x 2 vgis a set.As comprehension can be applied only to members of already de�ned sets, it isnecessary to postulate the existence of some sets, either primitive or derived byapplying some basic operators:Empty Set:There exists a set 0 with no elements.Paring, Union, Power Set:fx; yg, Sx, P(x) are all sets, for x; y sets.197



198 Sets like ProcessesAs usual, Sx and P(x) stand for the collection of all members of members of x andthe collection of all subsets of x, respectively. In turn, the subset relation `�' canbe derived from the membership relation:x � y () 8v (v 2 x) v 2 y)By means of the union operator one can de�ne an operator s acting as successor asfollows: s(x) = x[fxg. The existence of an in�nite set can be stated by postulatingthe existence of a set containing the natural numbers. That is:In�nity:There exists a set containing 0 and closed under the successoroperator s.(The axioms above, as well as those given in the sequel, are written for conveniencein natural language but note that they can also be expressed in the language of settheory { see, eg, [Lev79].)Further useful notions can be derived from the above axioms, like, for instance,the notion of ordered pair : <x; y> = fx; fx; yggA formal de�nition of function can then be given as a collection f of ordered pairssuch that for every x there exists a unique y with <x; y >2 f . Two more axiomsabout functions are then usually added:Replacement:The image of a set under a function is a set.Choice:Every surjective function has a `right inverse'.A right inverse for a function f : a! b is a function g : b! a such that f � g is theidentity on b. The above axiom of choice is equivalent to postulate that for everyset a there exists a choice function, that is, a function f such that, for every x 2 a,f(x) 2 x.The above axioms (extensionality, comprehension, empty set, pairing, union,power set, in�nity, replacement, choice) are the basic axioms of set theory; let uscall the theory associated with (ie, the collection of all sentences derivable from)them basic set theory and the corresponding category of sets and functions Set.(Basic set theory is usually called ZFC� in the literature { see, eg, [Lev79].)



Part V | Basic Set Theory 199ClassesEven though the collection fx j P(x)g of all sets x having a given property P mightnot be a set, it can still be of interest for set theory. Such `speci�able' collectionsare called classes. Clearly, a set is a class, but the converse is not true, in whichcase one speaks of a proper class. (Also the terminology `large set ', vs `small set ',is used.) In the sequel, lower case letters are used for (small) sets and capital lettersfor classes.The equality between classes is determined by their small elements. That is, twoclasses X = fx j P(x)g and Y = fx j P0(x)g are equal if and only if P and P0 holdfor the same (small) sets.An example of a proper class is the universe of sets, namely the collection ofall sets: V = fx j x = xg:(Since the property x = x trivially holds for all sets, the class V is the collectionof all sets indeed.) Notice that di�erent properties may specify the same class. Forinstance, any property other than `x = x' which holds for all sets can be used tospecify the universe.Next, let SET be the category of classes and (class) functions corresponding tobasic set theory. The claim is that the universe V can be seen as the carrier ofboth an algebra and a coalgebra structure of a suitable power-set endofunctor PSon SET.Recall, from Section 10, that semi-lattices with sets as carriers and with arbitrarysets of joins give rise (by adjunction) to the power-set endofunctor P : Set ! Setand that, similarly, semi-lattices with �nite joins give rise to the �nite power-setfunctor P� : Set ! Set. By considering semi-lattices with classes as carriers andjoins of sets of classes one obtains then the following endofunctor on SET:PS : SET! SET X 7! fx j x is a set ^ x � XgNotice that only (small) subsets are taken into consideration. This makes possiblethat V be a �xed point of the power-set functor (which, by cardinality reasons,would not be the case if one would consider the collection of all subclasses of agiven class):The universe V is a �xed point V = PSV .Indeed, V is the largest class. Thus, since PSV is itself a class, PSV � V .For the converse it is su�cient to prove that every set x is a subset ofV . That is, for every y 2 x, y is also in V . This is immediate from thefact that y is a set.Therefore, the identity on V can be seen both as a PS-algebra and as a PS-coalgebrastructure for V .



Well-Founded Sets and Foundation
From the axioms of basic set theory alone it is not possible to draw a canonicalpicture of what the universe looks like, a picture independent of the speci�c inter-pretation one might give to the theory. This was felt as a problem already in theearly developments of set theory. The solution was found in the `foundation axiom',which was then added to basic set theory. This axiom restricts the universe to the`smallest' of all possible ones. Then the picture arises of a universe in which sets arehereditarily constructed from the empty set, by iterative applications of the power-set operator. Every set has a rank , namely the stage at which it appears in such a`cumulative hierarchy '.In this section it is proved that the foundation axiom is equivalent to postulatingthat the universe V = PSV is the initial algebra of the power-set endofunctor PS onSET.A set x is well-founded wrt the membership relation `2' if either it is empty orhas a least element wrt 2. In other words, there is no in�nitely descending chain ofelements starting from x. Correspondingly, let the classW = fx j x is well-founded wrt the relation 2gbe the universe of well-founded sets.The `foundations axiom' amounts to postulating that all sets in the universe Vare well-founded, that is,Foundation Axiom: V = WNow, notice that the class PSW of (small) subsets of well-founded sets is thesame as W , because the elements of a well-founded set are themselves well-founded.Thus PSW =Wand the identity on W can be seen as a PS-algebra structure.The universe of well-founded sets is the initial PS-algebra.For every PS-algebra structure h : PSX ! X there exists a unique200



Part V | Well-Founded Sets 201function h# : W ! X such that the following diagram commutes.PSWW PSXhPS(h#)
Xh#That is, h#(0) = h(0)h#fxigI = hfh#(xi)gIThe proof is by straightforward induction on the (well-founded!) mem-bership relation 2.An immediate consequence of the initiality ofW is the existence of a `rank' function,mapping every well-founded set to a suitable `ordinal'. An ordinal is a well-foundedset which is totally ordered by the membership relation and which is `transitive'.(A transitive set is a set x such that every element y 2 x is also a subset y � x.)Correspondingly, one can form the class O of all ordinals, which is a subclass of W .If � and � are two ordinals such that � 2 �, one usually writes � < �. The �rstordinals are: 0, s(0), s2(0), etc. The �rst limit ordinal is ! = Sn2N sn(0), which,by the in�nity axiom, is indeed a set. In general, because every ordinal is totallyordered by 2, the union S f�igI of a set f�igI of ordinals is the least upper boundof the �i's. As a consequence, the union operator is a PS-algebra structure on theclass O of ordinals: S : PS(O) ! O f�igI 7! Sf�igIThe inductive extension rank = S# : W ! O of this algebra structure on is thefunction assigning a `rank' to every well-founded set. This can be thought of as thestage at which a well-founded set is constructed in an ideal construction startingfrom the empty set and then iteratively applying the power-set functor PS :rank(0) = 0rankfxigI = Sfrank(xi)gIAnother consequence of the initiality of W is that W = PSW is the least (pre-)�xed point for PS: W = lfp[PS]That is, for every class X such that PSX � X, one has that W � X. Indeed,regarding the inclusion of PSX into X as a function � : PSX ,! X, one has that itsinductive extension �# : W ! X is of the following form.�#(0) = 0�#fxigI = �f�#(xi)gI



202 Sets like ProcessesThen, to see that �# is the inclusion of W into X, it su�ces to notice that thepower-set functor PS `preserves inclusion functions'that is, if � : X ,! Y is the inclusion of a subclass X of Y into Y , then the functionPS(�) : PSX ! PSY is the inclusion of PSX into PSY .Usually, initial algebras are unique up to isomorphism, but in this setting onehas a stronger result:PSX = X is the initial PS-algebra () X = WThat is, any other initial algebra which is a (strict) �xed point of PS is not onlyisomorphic but equal to W . In order to prove this, ie the non-trivial implicationfrom left to right, one can use very much the same argument as the one used aboveto prove that W is the least �xed point of PS .Therefore, by replacing X by Y in the above equivalence, one has that thefoundation axiom `V = W ' is equivalent to postulating that the universe V is theinitial algebra of the power-set functor:Foundation is Initiality:V = W () PSV = V is the initial PS-algebra.



Anti-Foundation and Finality
Not all sets occurring in the mathematical practice are well-founded. A typicalexample is given by recursive processes as occurring in the semantics of programminglanguages. (Cf Section 5.) In order to ensure the existence of non-well-founded sets,one can postulate the `anti-foundation axiom'.In this section, `anti-foundation' is shown to be the dual of the initial algebraformulation of `foundation':Foundation: PSV = V is an initial PS-algebra.Anti-Foundation: V = PSV is a �nal PS-coalgebra.That is, anti-foundation postulates that the universe is the `largest' possible one,while foundation postulates that it is the `smallest'.Let us consider the existence of the �nal coalgebra for the endofunctorPS : SET! SET X 7! fx j x is a set ^ x � Xgwhere, recall SET is the category of classes (ie large sets) which are de�nable withinbasic set theory. The proof that a �nal coalgebra for this functor exists can be carriedout very much the same way as for the �nite power-set functorP� : Set! Set x 7! fy j y is �nite ^ y � xgAs shown in Section 13, the coalgebras of this �nite power-set functor are the sameas the directed �nitely branching graphs and the �nal coalgebra is the set of rooted�nitely branching trees (possibly of in�nite depth) quotiented by P�-bisimulation.Correspondingly, the coalgebras of the power-set functor PS are the same as thedirected `locally small' graphs and the �nal coalgebra is the class of rooted `locallysmall' trees (possibly of in�nite depth) quotiented by PS-bisimulation. A (possiblylarge) graph is locally small if the collection of children of every node is a (small)set. Thus locally small graphs are in between large graphs (with a class of nodeseach possibly having a class of children) and small graphs (with a set of nodes anda set of arcs).Peter Aczel's original formulation of the anti-foundation axiom is in terms ofsmall graphs and `decorations'. A decoration for (the graph corresponding to) a203



204 Sets like ProcessesPS- coalgebra hX; ki is a coalgebra arrow from hX; ki to V = PSVVPSVPSX
f

PSfkX
That is, a function f from X to the universe V such that, for every x 2 X,f(x) = ff(x0) j x0 2 k(x)gIn terms of graphs, this corresponds to a function mapping every node to a set inthe following way. f(x) = ff(x0) j x �! x0gTherefore, by de�nition of �nal coalgebra, the coalgebra V = PSV is �nal if andonly if every (directed) locally small graph has a unique decoration. Now, the claimis that `locally small' can be replaced by `small' in the above equivalence. That is,every locally small graph has a unique decoration if (and only if) every small graphhas a unique decoration. Indeed:(By contradiction.) Assume that every small graph has a unique decor-ation and that there are two distinct decorations f and g of (a coalgebrahX; ki corresponding to) a locally small graph. Then there is a nodex 2 X such that f(x) 6= g(x)Now, the subgraph of hX; ki accessible from x is not only locally smallbut also (totally) small, that is, there are only set-many nodes accessiblefrom x, because every node has only set-many children. But then f andg are both decorations for this small subgraph, which, by hypothesis,implies that f(x) = g(x)(The same argument can be used to prove that the class of small PS-coalgebras forms a generating class for the PS-coalgebras. (Cf Section13.))As a consequence, the postulate `V = PSV is a �nal PS-coalgebra' is equivalent toPeter Aczel's original formulation of anti-foundation:Anti-Foundation Axiom:Every directed small graph has a unique decoration.That is,



Part V | Non-Well-Founded Sets 205Anti-Foundation is Finality:Every directed small graph has a unique decoration if and onlyif V = PSV is a �nal PS-coalgebra.Notice that no axiom is needed in order to obtain a unique decoration for awell-founded graph: One can check that the class WG of well-founded directed smallgraphs is a (strict) �xed point for the power-set functor PS , and, moreover, thatPS(WG) = WG is an initial PS-algebra. Therefore WG is isomorphic to the universeof well-founded sets W and the image under this isomorphism of a well-foundedgraph is its unique decoration. (Cf \Mostowski's collapsing lemma" in [Acz88].)When anti-foundation is postulated also non-well-founded graph have a uniquedecoration, but the converse is not true anymore. That is, there exist (non-well-founded) sets which `decorate' di�erent graphs. An example is the archetypal non-well-founded set, namely the self-singleton set
 = f
gwhich is a member (and the only member) of itself. If anti-foundation is assumed,then both the root of the graph with one node and one arc�and the root of the graph consisting in one in�nite path� �! � �! � �! � � �are necessarily mapped to 
 by the corresponding unique decorations.
Notes. Aczel's anti-foundation axiom is equivalent to Forti and Honsell's \X1-axiom"[FH83].Besides applications in the semantics of programming languages (eg, [Acz88, Muk91,RT93, Acz94, Bal94, HL95, Har96]), non-well-founded sets have been extensively used inSituation Theory (eg, [BE87]), where they are better known as hypersets. (Correspond-ingly, models of the universe of non-well-founded sets are also called hyperuniverses.)



206 Sets like ProcessesReasoning about non-well-founded sets: bisimulation. By the extensional-ity axiom, the equality between two sets is determined by the membership relation.One of the consequences of foundation is that, since then the membership relationis well-founded, one can use induction to reason about (the equality between) sets.Categorically, this induction principle follows from the fact that foundation postu-lates that the universe is an initial algebra. Dually, anti-foundation, by postulatingthat the universe is a �nal coalgebra, gives a coinduction principle for reasoningabout (possibly non-well-founded) sets.Now, as shown in Section 12, if an endofunctor preserves weak pullbacks thencoinduction (wrt its �nal coalgebra) can be `pulled back' to the corresponding coal-gebraic notion of bisimulation. In particular, the power-set functor PS does preserveweak pullbacks; the proof is essentially the same as the one given in Section 12 forthe behaviour BX = �P(1+Act�X). Therefore, two sets are equal if and only theyare PS-bisimilar. (Cf [Acz88] for this \Strong extensionality".)By instantiating the general de�nition of coalgebraic bisimulation (Section 12)to the PS-coalgebras one has that a (possibly large) relation on the carrier X of acoalgebra hX; ki lifts to a PS-bisimulation when, for all x1; x2 2 X such that x1Rx2,� if x1 ! x01 then x2 ! x02 for some x02 such that x01Rx02� and, conversely, if x2 ! x02 then x1 ! x01 for some x01 such that x01Rx02.(Here the notation x ! x0 stands for `there is an arc from x to x0 in the graphcorresponding to the coalgebra hX; ki'.)In particular, a relation R on the universe V lifts to a PS-bisimulation if, forevery set x and y such that xRy, for every x0 2 x there exists a y0 2 y such thatx0R y0 and, conversely, for every y0 2 y there exists an x0 2 x such that x0R y0.Therefore, by strong extensionality,x = y () there exists a relation R such that:� xR y� 8x0 2 x; 9y0 2 y; x0R y0� 8y0 2 y; 9x0 2 x; x0R y0



Systems of Set-Equations as Coalgebras
The self-singleton non-well-founded set 
 = f
g can be seen as the unique solutionof the `set-equation' x = fxgIn general, all non-well-founded sets arise from systems of set-equations with, onthe left hand side, variables x 2 X, and, on the right hand side, well-founded sets,possibly containing variables from X. This is the content of the \Solution Lemma".In this section an elementary presentation of the solution lemma is given bymeans of the coalgebraic account of anti-foundation (and the initial algebra present-ation of well-founded sets). This follows the coalgebraic treatment of recursiveprograms given in Section 5.The de�nition of the universe of well founded sets W can be made parametric:for every (possibly large) set X, the expanded universe of well-founded setsWX is the class of all well-founded sets with variable x 2 X. That is, every setin WX is either empty, or an element of X, or it has a least element wrt themembership relation 2. For X = 0 this yields the standard universe W0 of well-founded sets. Thus, in the sequel, W stands for an operator mapping a (large) setto the corresponding expanded universe of well-founded sets, rather than for thesimple universe of well-founded sets.The fact that W0 is the least (strict) �xed point of the power-set functor PS andthat PSW0 = W0 is an initial PS-algebra generalizes as follows: the class WX isthe least (strict) �xed point of the endofunctor X+PS(-) on SET andX + PSWX =WXis an initial algebra for this endofunctor. As usual, this initiality can be used toextend the operator W to a functor (cf Section 1):

inrY PSWYPSWfPSWXWf = [�Y � f; inrY ]#inrX�X = inlX
�Y = inlY WY = Y+PSWY

WX = X+PSWXfXYThat is, for every function f : X ! Y , the function Wf : WX ! WY is the in-ductive extension of the algebra structure inrY : PSWY !WY along the composite207



208 Sets like Processes�Y � f : X ! WY , where the left injection �Y = inlY : Y ! WY is the usualinsertion-of-variables function. In other words,W is freely generated by PS.Now, the idea is that a system of `set-equations' like, eg,x = fx; fyggy = fy; 0gcan be seen as a function k mapping the variables x; y; : : : 2 X of the system toelements of PSWX, ie sets of well-founded sets possibly with variables in X. Forinstance, the above system corresponds to a function k : fx; yg = X ! PSWXmapping x to fx; fygg and y to fy; 0g. Therefore, in general, a system of set-equations in X is a coalgebra hX; ki of the composite endofunctor PSW on SET.In order to solve a system of set-equations hX; ki one can (postulate anti-foundationand) use the �nality of the universe V = PSV . For this, one �rst needs to extend thePSW -coalgebra structure k : X ! PSWX to a PS-coalgebra structure as follows.Since WX = X + PSWX is a coproduct, one can form the copair of k and theidentity id on PSWX
PSWX
WXk [k; id]X PSWX

This is a PS-coalgebra structure behaving as k on x 2 X and as the identity onv 2 PSWX. Its coinductive extension k = [k; id]@ : WX ! V wrt the �nal PS-coalgebra V = PSV is then the (unique) solution of the system k : X ! PSWXof set-equations:
[k; id] Vk �X PSk PSVPSWX

k = [k; id]@X WX
Omitting, as usual, the injections, and letting v and v0 range over objects of typePSW , one has that k(x) = fk(v) j v 2 hxgand k(v) = fk(v0) j v0 2 vg



Part V | Solution Lemma 209For example, the unique solution of equation k(x) = fxg is the self-singleton(non-well-founded) set k(x) = fk(x)gthat is, k(x) = 
. Similarly, the solution of the above systemk(x) = fx; fygg k(y) = fy; 0gis k(x) = fk(x); fk(y)ggk(y) = fk(y); 0gIn terms of graphs, the sets k(x) and k(y) correspond to
��� and ��respectively.The Solution Lemma is equivalent to Anti-Foundation. Theabove property that every system of set-equations has a unique solution,is called the solution lemma in [Acz88]. (See also [BE87, Chapter3].) It is obtained assuming the anti-foundation axiom. Conversely,postulating the solution lemma, one can prove that V = PSV is the �nalPS-coalgebra. Indeed, for every PS-coalgebra hX; ki, one obtains

PSX PSVPSWXk [PS(�X) � k; id]PS(�X) � k�X
PS(�X) PS(PS(�X) � k)

VX WX
The desired coinductive extension of the coalgebra structure k : X !PSX is given by the composite coalgebra arrowk@ = PS(�X) � k � �X : X ! VNotice that, assuming anti-foundation, the upper rectangle in the following diagram



210 Sets like Processescommutes, because all other sub-diagrams commute.
PSWX

�Xk VX WX
PSV[k; id]inrX

PSWX k PSk PSV
PSkTherefore, the solution k : WX ! V of a system of set equations hX; ki is not onlya PS-coalgebra arrow but also a PS-algebra arrow from hWX; inrXi to PSV = V .The algebra hWX; inrXi is a free PS-algebra over X.The Substitution Lemma from Freeness. In the present approach, the proofof the solution lemma is trivial. The original proof, instead, makes use of a substi-tution lemma [Acz88]. This lemma asserts that, for every function f : X ! V ,there exists a unique extension f ] : WX ! V of f to WX = X+PSWX such that,omitting the injections, f ](x) = f(x)and f ](v) = ff ](v0) j v0 2 vgNow, also this becomes trivial here, because of the initial algebra presentation ofthe expanded universe of well-founded sets WX. Indeed, the desired function f ] :WX ! V is the inductive extension of the PS-algebra structure PSV = V alongf : X ! V . That is: f ]f �X

V PSV
inrX PSWXPSf ]WXX

Notice that, in contrast with [Acz88], anti-foundation is not used here.Notes. In general, every free PS-algebra over a (possibly large) set X can be used tomodel the universe of Zermelo-Fraenkel set theory expanded with elements of X as atoms.This fact can be seen as an instance of a more general result in [JM95] (Theorem II.5.5)stated in terms of free \Zermelo-Fraenkel algebras" and intuitionistic set theory.



From Greatest Fixed Points to Final Coalgebras
The greatest (strict) �xed point V = PSV of the power-set functor PS can be seenas the �nal coalgebra of the restriction of the functor PS to the subcategory SET�of inclusion functions. Anti-foundation postulates that this �nal coalgebra lifts toa �nal coalgebra in SET. If an endofunctor is `uniform on maps', then, assuminganti-foundation, its �nal coalgebra in the subcategory SET� also lifts to a �nalcoalgebra in SET. This is the content of the \Special Final Coalgebra Theorem".In this section, a new formalization of the notion of uniformity on maps in termsof natural transformations is given. The proof of the theorem is then rephrased interms of this de�nition.Let F be an endofunctor on SET. A post-�xed point X � FX for F can be seenas an inclusion function X,!FX, hence as an F -coalgebra structure on X. If theendofunctor F preserves inclusion functions, ie F applied to X,!Y is an inclusionFX,!FY , then one can restrict F to the subcategory SET� of classes and inclusionfunctions. The post-�xed points of F are then its coalgebras in this subcategory. Inparticular, the �nal F -coalgebra in SET�, if it exists, is the greatest (post-)�xedpoint gfp[F ] = F (gfp[F ])of F . The claim is that if F is `uniform on maps' then, assuming anti-foundation,gfp[F ] = F (gfp[F ]) is also a �nal coalgebra.Intuitively, an endofunctor on SET is uniform on maps if it is completely de-termined by its action on objects (ie classes). Most of endofunctors are thus uniformon maps. For instance, consider the endofunctor X 7! A�X mapping a class X toits product with a �xed class A. Given a function f : X ! Y , the value of A� f atan element <a; x> of A �X is the pair <a; f(x)>2 A� Y which is obtained byapplying f to the x 2 X in A�X. This suggests that the class X should be regardedas a class of variables and that, in general, the action of a functor F uniform onmaps on a function f should simply be the substitution of the variables x occurringin FX by f(x).Formally, this can be expressed by means of the expanded universe of well-founded sets WX = X + PSWX. What one needs is a natural transformation� : F ) PSWwhich, for every X, `embeds' FX into PSWX { the class of sets of (well-founded)sets having x 2 X as variables. 211



212 Sets like ProcessesNaturality amounts to having, for every function f : X ! Y , the followingdiagram commute. �YFYPSWYPSWfFf�XFXPSWXIt should be an `embedding' in the sense that, for every X and for every v 2 FX, by`forgetting' the distinction between variables and sets in �X(v) 2 PSWX one shouldget back the original set v. This operation of forgetting the distinction betweenvariables and sets in objects of type PSW can be made formal as follows.Consider the inductive extension "V : WV ! V of the PS-algebra structurePSV = V along the identity on V :�V WV inrV PSWV"VV PSVPS("V )V
Omitting, as usual, the injections, one has that, for every v 2 WV , "V (v) = v if v is avariable and "V (v) = f"V (vi)gI if v = fvigI . Then, an endofunctor F : SET! SETis uniform on maps if there exists a natural transformation� : F ) PSWsuch that �VFV VPS("V ) PSVPSWVcommutes.Before setting out to prove the special �nal coalgebra theorem, notice that, sinceW is freely generated by PS, the forgetful functor mapping PS-algebras to theircarriers is right adjoint to the functor mapping a class X to the (free) PS-algebrawith carrier WX and structureinrX : PSWX !WX(Cf Section 2.) The other injection �X = inlX : X ! WX is the unit of theadjunction at X, while the value of the counit at an algebra hY; hi is given by the



Part V | Special Final Coalgebra Theorem 213inductive extension of the right injection inrY : PSWY !WY along the identity onY .
Y PSY

Y �Y PS("hY;hi)h"hY;hiinrY PSWYWY
Thus, in particular, the above function "V : WV ! V is the value of the counitat the algebra PSV = V . (Formally, "V = U"(PSV=V ) = "(PSV=V ), where U isthe forgetful functor mapping algebras to their carriers.) By adjunction, there is abijection (natural in X and hY; hi) between functions f : X ! Y and PS-algebraarrows g : hWX; inrXi ! hY; hi. This bijection maps f tof ] = "hY;hi �Wfand g to g[ = Ug � �X = g � �XThe Special Final Coalgebra Theorem. Let F be a endofunctor onSET which cuts down to an endofunctor on the subcategory SET� ofinclusion functions.If F is uniform on maps, then, assuming anti-foundation, its �nal coal-gebra gfp[F ] = F (gfp[F ])in SET� lifts to a �nal F -coalgebra in SET.Proof: Consider an F -coalgebra structurek : X ! FXBy uniformity on maps, there exists a function �X : FX ! PSWX, hence k can bemade into a system of set-equations in X by composing it with �X . Take its solution�X � k : WX ! V and de�ne a function f from X to V as the right adjunct of thissolution wrt the above adjunction; that is,f = (�X � k)[ = �X � k � �X : X ! V



214 Sets like ProcessesDiagrammatically: V[�X � k; id]k PSV
f = (�X � k)[�X �X � k

�X PSWX PS(�X � k)FX
X WX

The claim is that, under the above hypotheses, f is an F -coalgebra arrow fromhX; ki to gfp[F ] = F (gfp[F ]), that is, the diagramgfp[F ]F (gfp[F ])f
FfkFXXcommutes. More precisely: Let Y be the image under f of X. The function f :X ! V can be factorized, like every function in SET, asX f� Y ,! VThe claim is then as follows.The class Y is a post-�xed point for F , ie Y � FY , and f is a coalgebraarrow from hX; ki to Y ,!FY , ieX f YFf FYkFXcommutes.If the above holds, since F cuts down to an endofunctor on the subcategory SET�of inclusions, the composition of f the inclusion Y ,!gfp[F ] of Y into the greatest�xed point of F is an F -coalgebra arrow:fXFX Yk F (gfp[F ])gfp[F ]FYFf



Part V | Special Final Coalgebra Theorem 215In order to prove the above claim, notice that everything in sight in the followingdiagram commutes.
"Vfk Ff PSVFX PSWXFV

WVPSWf
f ]

PS(f ])PSWV�V
�X Wf[�X � k; id] PS"V

V�X WXX
In particular, the outer diagram does commute, hence:X f YFf FY VkFXTherefore, for all x 2 X, f(x) = (Ff � k)(x)which implies that the image Y of X under f is included in the image of FX underFf , hence Y � FYand f is a coalgebra arrow from hX; ki to Y ,!FY .Therefore, for every F -coalgebra hX; ki, there exists a coalgebra arrow to gfp[F ] =F (gfp[F ]). Moreover, this arrows is unique. Indeed, the above arguments also showthat every coalgebra arrow from hX; ki to gfp[F ] = F (gfp[F ]) �ts as the right ad-junct (�X � k)[ of the unique solution of a system of set-equations, hence it is unique.This concludes the proof.



216 Sets like ProcessesNotes. An alternative (but more restrictive) form of the special �nal coalgebra theoremin the standard category of ordinary sets is presented in [Pau95].The special �nal coalgebra theorem is the `dual' of the standard fact that least (strict)�xed points of most endofunctors on SET are initial algebras. (Cf [Acz88, Theorem7.6].) It gives an elementary way of �nding �nal coalgebras, at the price of assuminganti-foundation. For instance, under foundation, the endofunctor BX = Act�X has theempty set 0 as the unique �xed point, while, under anti-foundation, the empty set is theleast �xed point and the set Act! of in�nite words over the alphabet Act is the greatest�xed point of B: the special �nal coalgebra theorem tells then that Act! = Act� Act! isa �nal B-coalgebra.Notice that one can prove the (non-strict!) �xed point Act! �= Act � Act! is a �nalB-coalgebra in Set, independently of the use of anti-foundation. In general, as shown in[AM89], endofunctors to which the special �nal coalgebra theorem applies always havea �nal coalgebra in the category of ordinary (possibly large) sets. Thus, unless one isreally interested in strict �xed points bB = B bB rather than �xed points up to isomorphismbB �= B bB, the interest can be shifted from non-well-founded sets and greatest �xed pointsto ordinary sets and �nal coalgebras.
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