VRIJE
UNIVERSITEIT
° AMSTERDAM

VU Research Portal

Functional Operational Semantics and its Denotational Dual
Turi, D.

1996

document version '
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Turi, D. (1996). Functional Operational Semantics and its Denotational Dual.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
» You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. Aug. 2022


https://research.vu.nl/en/publications/ed71ebdf-af6d-4d8a-b967-e3e7a05b7410

Functorial Operational Semantics

and its Denotational Dual

Daniele Turi



PuD THESIS
FREE UNIVERSITY, AMSTERDAM
JUNE 1996

Author’s e-malil address: dt@dcs.ed.ac.uk



VRIJE UNIVERSITEIT

Functorial Operational Semantics

and its Denotational Dual

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan

de Vrije Universiteit te Amsterdam,

op gezag van de rector magnificus

prof.dr E. Boeker,
in het openbaar te verdedigen
ten overstaan van de promotiecomimissie
van de faculteit der wiskunde en informatica
op donderdag 6 juni 1996 te 15.45 uur
in het hoofdgebouw van de universiteit, De Boelelaan 1105

door
Daniele Turi

geboren te Salerno, Italié



Promotor: prof.dr J.W. de Bakker
Copromotoren: dr B.P.F. Jacobs

dr J.J.M.M. Rutten
Referent: dr A.M. Pitts

Research supported by:

e The “Stichting Informatica Onderzoek in Nederland”

(Project: Non-well-founded sets and semantics of programming languages)

The CWI, Amsterdam

The Laboratory for Foundations of Computer Science, Edinburgh

The European Institute in the Logical Foundations of Computer Science
(EuroFOCS)

The European Community SCIENCE programme

(Project: Mathematical Structures in Semantics of Concurrency)



a Lucia D’Agosto, per la sua fiducia fatta di universali

alla memoria di Giovanni Turi — e della sua filosofia



met dank aan mijn paranimfen Maurizio Gabbrielli en Roos Vogel



Preface

The notion of ‘functorial operational semantics’ introduced in this thesis is a cat-
egorical formulation (and generalization) of ‘well-behaved’ structural operational
semantics based on labelled transition systems. This notion has several desirable
properties (such as congruence of the associated strong bisimilarity, and existence
of a dual denotational semantics) and it subsumes existing, concrete schemes (such
as GSOS) for guaranteeing such good behaviour — at least in the case of languages
extending ‘basic process algebra’. All this is achieved via use of the category theory
of monads and comonads. The thesis also contains a coalgebraic treatment of the
theory of non-well-founded sets which simplifies and improves some aspects of Peter
Aczel’s original presentation.

Non-well-founded sets have played an important role in the development of the
whole thesis: by working within Jan Rutten and Jaco de Bakker’s project ‘non-well-
founded sets and programming languages semantics’, I have had the opportunity of
distilling the mathematical foundations for the main contribution of the thesis, the
introduction of the functorial approach to operational semantics.

Most of the research presented here has been conducted at the CWI, in Ams-
terdam. I can hardly imagine a better place to work on a thesis: the serene atmo-
sphere, the international contacts, the superb library, the efficient organization, and
the building itself, with quiet, balanced rooms, have made of this institute an ideal
place for conducting pure research.

Jaco de Bakker’s department at the CWI is part of EuroFOCS, the European
institute in the logical foundations of computer science. This has offered me the
opportunity of spending six, most profitable months at LFCS, Edinburgh, visiting
Gordon Plotkin, one of whose many contributions to the theory of computer science
has been the introduction of the structural approach to operational semantics.

When, in the early 80’s, it was introduced, the novelty of structural operational
semantics was that of bringing the mathematics of (structural) induction in the
operational description of the behaviour of programming languages, providing a
powerful formal tool for reasoning about programs. The present functorial approach
can be seen as one step further in that direction: based on a suitable interplay
between inductive and (dual) coinductive principles, it provides a mathematical
definition and treatment of ‘well-behaved’ structural operational semantics.

The contact with Gordon Plotkin has been crucial both for this thesis and for my
general development. Particularly vivid in my memory is the image of a beautiful
February of two years ago, when, during some discussions with him, the blackboard

Vil



looked like self-drawing; the last picture he drew, with “algebras over coalgebras”,
has been decisive for formulating the notion of functorial operational semantics.

The development of this notion, in Edinburgh, has been influenced by exciting
discussions with Marcelo Fiore and Alex Simpson. More generally, Marcelo has been
precious for my whole research activity.

Conceived, for the functorial part, in Edinburgh, this thesis has been written in
Amsterdam. Thanks to very frequent reviewing sessions with my supervisors, Jaco
de Bakker, Bart Jacobs, and Jan Rutten, the writing has rapidly converged to its
final form, in a natural and serene rhythm.

Jaco, one of the pioneers of the mathematical approach to the semantics of
programming languages which inspires this thesis, has granted me the room to
develop the mathematics I felt most suitable, free from any prejudice. Almost
without realizing it, I have written a much more thorough thesis than I had imagined,
thanks to his gentle, but steady influence.

Jan, who brought me to the CWI, has collaborated to the development of coal-
gebraic methods in semantics which has been the basis for the research presented
here. Bart, with his secure knowledge of category theory, has been a constant
source of suggestions, corrections, and improvements. His limpid mind has always
been available for discussions. Like Jan, he has shown great interest in and has
collaborated to the foundational work on coalgebras.

The last step in the preparation of this thesis, the refereeing process, is due to
Andy Pitts, who has been very sympathetic to the problems tackled and the methods
used in this thesis. In this preface, I have used many expressions plundered from
his precise summarizing words.

The ‘palaestra’ for my early scientific development has been the ‘Amsterdam
Concurrency Group’ led by Jaco and including Marcello Bonsangue, Frank de Boer,
Franck van Breugel, Arie de Bruin, Joost Kok, Erik de Vink, and Herbert Wiklicky.
Nostalgically, I remember the first three-sessions talk I gave there, a promising winter
of four years ago.

Marcello “kamergeno(o)t” Bonsangue, together with Franck room-mate in the
beloved M335, has shared these early developments and my growing interest in
category theory. He is one of the extraordinarily many Italians who, from Catuscia
Palamidessi on, have been at the CWI over the years. One of the persons who are
most ‘responsible’ for this Italian ‘colonization’ is Krzysztof Apt; he was also the
supervisor of my “tesi di laurea” for the University of Pisa, in my ‘prehistorical’
time at the CWI.

Also at LFCS I have been surrounded by Italians or Italian speakers. One of
them, Pietro ‘everywhere’ Di Gianantonio, has also been my colleague at the CWI
and in the European SCIENCE project ‘Mathematical Structures in Semantics of
Concurrency’. This project has been an important forum for discussions to me;
apart from the CWI, the sites involved have been the university of Koblenz (Lutz
Priese), Mannheim (Mila Majster-Cederbaum), Pisa (Ugo Montanari), and Udine
(Furio Honsell), and the IRISA-INRIA of Rennes, where, in particular, I have had



fruitful contacts with Eric Badouel and Philippe Darondeau.

At the CWI, I have enjoyed discussions with Fer-Jan de Vries, Tim Fernando,
and Femke van Raamsdonk, the efficient secretarial support by Mieke Bruné and
Marja Hegt, the technical support by the Computer Help Information Desk, and
the outstanding library service. My visit to Edinburgh has been arranged thanks to
George Cleland and Monika Lekuse’s help at LECS.

Most of the economic support for this thesis has been provided by the “Stichting
Informatica Onderzoek in Nederland” of the Dutch organization for scientific re-
search (NWO); my grant has been handled in a particularly friendly way by Richard
Kellermann Deibel and Virginie Meijer-Mes. The remainder of the support has come
from the SCIENCE project and from EuroFOCS.

I have tried to write this thesis in the most unassuming way, trying to com-
municate m-my p-personal experience of discovering, through elementary problems,
the beauty and necessity of the universals of category theory, a discovery which has
turned my mathematical activity into a “frohliche Wissenschaft”.

Daniele Turi — Amsterdam, April 1996






Contents

Introduction 1
Basic Universal Constructions 22
I 29
1 Initial Algebras, Induction and Program Syntax 31
2 Terms, Algebras and Monads 39
3 Operational Semantics, Transition Systems and Coalgebras 49
4 Functorial Operational Semantics 57
5 Recursive Behaviours, Final Coalgebras and Coinduction 67
I 77
6 The Functorial Operational Semantics is Compositional 79
7 A Dual Lifting: Functorial Denotational Semantics 91
8 Operational is Denotational 105
9 A Category of Models 111
111 121
10 Semi-Lattices, Non-Determinism and Basic Process Algebra 123
11 GSOS is Functorial 137
12 Coalgebraic Bisimulations 149

13 The Observational Comonad for Bisimulation 165

xi



IV

A Summary

V Sets like Recursive Processes
SYynopsis . . . . ...
Basic Set Theory . . . ... . ... ... ....
Well-Founded Sets and Foundation . . . . . ..
Anti-Foundation and Finality . . .. ... ...
Systems of Set-Equations as Coalgebras . . . .
From Greatest Fixed Points to Final Coalgebras

Bibliography

Index

177

179

193
195
197
200
203
207
211

217

224



Introduction

“It is all very well to aim for a more ‘abstract’ and a ‘cleaner’ approach to
semantics, but if the plan is to be any good, the operational aspects cannot
be completely ignored. The reason is obvious: in the end the program still
must be run on a machine — a machine which does not possess the benefit
of ‘abstract’ human understanding, a machine that must operate with finite
configurations. Therefore, a mathematical semantics, which will represent the
first major segment of the complete, rigourous definition of a programming
language, must lead naturally to an operational simulation of the abstract en-
tities, which — if done properly — will establish the practicality of the language,
and which is necessary for a full presentation.”

Dana Scott, Qutline of a Mathematical Theory of Computation

“Many modern programming languages are inconsistent with standard math-
ematical foundations. The task of finding sound interpretations for what
it is that computer scientists do strikes this writer as, perhaps, the highest
type of applied mathematics. It is akin to the process that has been going
on throughout the 20th Century with respect to physics. The interaction
between the mathematicians and the practitioners in each case has resulted
in the growth of both subjects.”

Peter Freyd, Computer Science Contradicts Mathematics
lecture at the Int’l Conf. on Category Theory
held in Como, Italy, July 1990 (see [Fre91])

The operational semantics of a programming language accounts for a formal de-
scription of the behaviour of the programs, specifying the way programs should be
executed and the kind of behaviour which should be observable. The operational se-
mantics is usually contrasted with the mathematical interpretation of the programs
called denotational semantics.

This thesis presents a new mathematical approach to the semantics of program-
ming languages aimed at bridging the gap between the operational and the de-
notational aspects of semantics. This is based on a suitable interplay between the
standard induction principle which pervades modern mathematics, and the dual
‘coinduction principle’ which has led to non-standard mathematical foundations.



2 Introduction

In order to introduce coinduction as the dual of induction, it is convenient to
move from the traditional presentation of induction in the language of set theory to
a presentation in the language of category theory. The primitive notions of category
theory are those of composition and equality of abstract functions called arrows,
like the notions of membership and equality of those abstract collections called
sets are the primitives notions of set theory. Now, every statement expressible in
the language of category theory can be straightforwardly dualized by ‘reversing the
arrows’. (Duality principle.)

Induction. In set theory, mathematical induction is based on the notion of a well-
founded relation, that is, a relation R such that, for every set x, there is no infinitely
descending chain

... ReoRx1 Ry =2

For instance, one can perform induction on the set N = {0, 1 = s(0), 2 = s*(0), ...}
of natural numbers by using the well-foundedness of the order relation on them

0<5(0)<s?0)<--<s"0)=n
as follows.

Recursion Theorem. Given a set X, an element e € X and a function
g : X — X, there exists a unique function f : N — X from the set of
natural numbers to the given set such that

f(0)=e and f(s(n)) =g(f(n))
for all numbers n € V.

The value e of the function f at (the least element) 0 (wrt the order relation) is the
‘base’ of the induction and g defines the ‘inductive step’.

The fact that standard mathematical constructions are inductive is mirrored
by the common assumption that the axioms of set theory include the aziom of
foundation which postulates that the set-membership relation ‘€’ is well-founded:
for every set x, there exists no infinitely descending chain

LL.ETETLET)g =T

The axiom of foundation allows an inductive (idealized) construction of sets start-
ing from the empty set (the base) and recursively applying the power-set operator
mapping a set to the set of its subsets. The induction is on those generalized natural
numbers which are the ordinal numbers.

In this thesis, an equivalent categorical formulation of the foundation axiom is
given which allows for a straightforward dualization. This is best illustrated starting
from the above recursion theorem:



Introduction 3

The recursion theorem can be taken as the definition of natural numbers. That
is, every set N with a distinguished element 0 € N and a unary operations : N = N
such that the recursion theorem holds, is isomorphic to the natural numbers. (See,
eg, [Mac86, Chapter 2].) As pointed out by Lawvere, the existence/uniqueness
statement of the recursion theorem asserts the universal property characterizing
the natural numbers: initiality. This property underlies induction, not only on the
natural numbers, but in general.

Category Theory. The mathematical study of universal properties is called cat-
egory theory. It is based on an abstract notion of function called arrow

f: X—=Y

which formally is a triple: name (f), domain (X), and codomain (Y).

A category is a collection of arrows with a composition operation ‘o’ which obeys
generalized monoidal laws: any two arrows f : X — Y and g : Y — Z which ‘match’
in the sense that the codomain of f is the same as the domain of ¢ can be composed

Xf\ig/;
gof

to form the arrow go f : X — Z; the composition of arrows is associative, ie
fo(goh) = (fog)oh; the domains and codomains of the arrows are called the objects
of the category and for every object X there exists an identity arrow idx : X — X
which is both a left and a right unit for the composition, ie idy o f = f = f oidy.

The archetypal category is Set, having sets as objects and functions as arrows.
However, it is very misleading (especially at the beginning!) to try and understand
the universals of category theory in terms of Set.

The most elementary universal property which an object of a category can enjoy
is initiality: an object X is initial in a category if, for every object Y of the category,
there ezists an arrow f: X — Y from X to Y and, moreover, this arrow is unique.

The basic way of understanding the natural numbers as an initial object is by re-
garding them as an object (N, 0, s) in the category having as objects triples (X, e, t),
where X is a set with a distinguished element e € X and a function £ : X — X on
it. The arrows f : (X e, t) — (X', €,t') of the category are functions f : X — X'
such that

fle)=¢€¢  and  f(t(z)) =t (f(2))

(It is easy to verify that the above objects and arrows form a category with com-
position and identities as in Set.) Then the recursion theorem says exactly that the
triple (V, 0, s) is initial in this category. (Notice that in the category Set the initial
object is the trivial empty set.) Conversely, since initial objects, like all universals,



4 Introduction

are unique up to isomorphism, the initial object of this category defines the natural
numbers up to isomorphism.

Next, a series of abstractions is necessary in order to generalize this specific form
of initiality.

Firstly, notice that the element e € X of a set X can be written as a function
from the one-element set 1 = {x} to the set X; that is, one can identify a function
e : 1 — X from the one-element set 1 to a set X with its value e(x) € X at the
unique element *x of 1. Then the recursion theorem amounts to having an object
1 % N —%5 N such that for every object 1 - X %5 X, there exists a unique
function f: N — X with

foO=e and fos=gof

Diagrammatically, using dashed arrows to denote arrows given by universal proper-
ties, one has that the following diagram commutes.

1 0 s

~

f

N
v
X

e o

e g

Secondly, every pair of functions with the same codomain (thus, eg, e : 1 — X
and ¢g : X — X) can be made into a single arrow with as domain the disjoint union
of the domains. This holds in general in every category with coproducts: given two
objects X and Y in a category, their coproduct, if it exists, is an object X 4+ Y with
two arrows inly : X — X +Y and inly : Y — X 4+ Y which is universal in the sense
that for every pair of arrows f: X — Z and f : Y — Z there exists a unique arrow
[f,g] : X +Y — Z, making the following diagram commute.

X inlx X4Y inry v
[f,d]
f ‘ g
v
Z

(The dual of the coproduct X + Y is the product X x Y: its projections fsty :
X XY — X and sndy : X XY — Y are universal among all pairs of arrows
f:Z—Xandg:Z—Y))

In Set the disjoint union, together with the corresponding injection functions,
is a coproduct. Hence, one can write [e,g] : 1 + X — X instead of 1 < X %5 X
Correspondingly, the initiality of the natural numbers can be expressed by saying



Introduction 5

that for every function h : 1 + X — X there exists a unique arrow f : N — X such
that the following diagram commutes.

1
1+N$1+X
[0, s] h
N-------- =X
f

The arrow 1 4+ f: 1+ N — 1 + X is defined by universality:
1+f: [inlloidl, ianof] = [inll, ianof] . 1+N_> 1+X

Thus the operation X — 14 X on objects extends to an operation f — 1+ f on
arrows: this defines a functor from Set to Set.

Functors are arrows between categories (regarded as objects!). A general cri-
terion for forming a category from a collection of objects is to take as arrows the
‘homomorphisms’, that is, the morphisms which preserve the structure of the ob-
jects. Now, the structure of a category is given by composition and identities, and
functors preserve it: a functor F': C — D from a category C to a category D maps
every object X of C to an object FF.X of D and every arrow f: X — Y of C to an
arrow F'f : FX — FY of D in such a way that

F(Idx):IdFX and F(gof):FgoFf

The composition of functors can be then defined ‘pointwise’.

Universal definitions are always functorial. For instance, given two functions
f:X—=>Yandg:Y — Zonedefinesl+f:1+X —1+4+Y by

inl .
Inip ].—|—X Inrx X

I 1+ f=[inl,inry o f] |f

v
+Y Y

inly inry

—_
—_

and then 1+ (g o f) is, by uniqueness, necessarily equal to (1 + g) o (1 + f).

Algebras and Coalgebras. The third step of abstraction is now to move from the
above (endo) functor FX = 14+ X on Set to arbitrary endofunctors F' : C — C and,
correspondingly, to consider initial objects in categories of structures h : FX — X
rather than h: 1+ X — X.



6 Introduction

Given an endofunctor F' : C — C on a category C one can form the category
of F-algebras having as objects pairs (X, h) with X an object and h : FX — X
an arrow of C. An arrow f : (X,h) — (X', h') between F-algebras is an arrow
f: X — X' between their ‘carriers’ such that
Ff

FX———- S FX'

h I

X — =X

f

commutes, that is, f o h = h' o F'f. Therefore, the natural numbers can also be
understood as the initial algebra of the endofunctor F X =1+ X on Set. Similarly,
the axiom of foundation can be understood as postulating the initiality of an algebra
as follows.

Form the class (ie large set) V' of all sets, namely the universe of sets. This class
is a (strict) fixed point V' = PsV of the operator Ps mapping a class (ie a possibly
large set) to the class of all its (small) subsets. This operator can be extended to an
endofunctor Ps : SET — SET on the (superlarge!) category SET of classes and
class-functions. Thus the identity function given by the equality PsV = V can be
seen as an algebra structure of this endofunctor.

Now, it is shown in this thesis that the axiom of foundation is equivalent to pos-
tulating that ‘the universe PsV =V is an initial Ps-algebra’. This gives the formal
link between initiality and (generalized) induction (on well-founded relations). Most
importantly, in this form the foundation axiom is easily dualized:

The dual of the notion of initiality is the notion of finality: an object X is final
(or terminal) in a category when from every object of the category there is a unique
arrow to X. And the dual of the notion of an algebra of an endofunctor F' on a
category C' is the notion of an F'-coalgebra, that is, a pair (X, k) with X an object
and k : X — FX an arrow of C; the arrows f : (X, k) — (X', k') between coalgebras
are those arrows f : X — X' between their carriers such that

f

X ——m—=X

commutes, ie F'f ok = k' o f. Therefore, the dual of foundation amounts to pos-
tulating that ‘the universe V' = PV is a final Ps-coalgebra’, which, as shown in
this thesis, is equivalent to Peter Aczel’s ‘anti-foundation aziom’ yielding non-well-
founded sets.



Introduction 7

Coinduction with non-well-founded sets.

“The original stimulus for my own interest in the notion of a non-well-founded
set came from a reading of the work of Robin Milner in connection with his
development of a mathematical theory of concurrent processes. This topic in
theoretical computer science is one of a number of such topics that are generat-
ing exciting new ideas and intuitions that are in need of suitable mathematical
expression.”

Peter Aczel, Non-Well-Founded Sets

Aczel’s theory of non-well-founded sets was driven by the quest for a set-theoretic
foundation for the (abstract) semantics of Milner’s Calculus of Communicating Sys-
tems (CCS). In CCS, the behaviour of a program ¢ is given by the set

{t 5t}

of transitions t —+ t; which the program can perform, producing an observable
action a; and becoming t;. The non-deterministic nature of the calculus is expressed
by the fact that a program ¢ can choose among a set of transitions.

The meaning [¢] of a program ¢ should abstract from the name of the programs
involved in the transitions and focus to the actions which can be performed, together
with the choices which can be made. It should then be the following ‘coinductively’
defined set.

[1° = {<a,[t]"> |t - t'}
(The superscript ‘@’ is used in this thesis to denote coinductive definitions in general,
its dual is the superscript ‘4" used for inductive definitions.) Now, in general, the
transition relation is not well-founded, since, for instance, cyclic programs t —— t
are allowed. Therefore, the above meaning [[t]]@ can be a non-well-founded set.

Traditionally, this ‘problem’ has been overcome by imposing either an order or
a metric on the transition relation and then defining [t]® as a suitable limit. (See,
eg, [Win93] for the order-theoretic and [BV96| for the metric-theoretic approach.)
Aczel, instead, chose to look for new foundations allowing for non-well-founded sets
and then replaced the foundation axiom by the anti-foundation axiom [Acz88]. But
one does not need to resort to non-standard foundations: as already clear in [Acz88],
coinductive definitions can be founded on final coalgebras and these exist also in the
standard category of ordinary sets (and in many other categories).

What the anti-foundation axiom gives is the non-standard fact that the greatest
(strict) fixed point

gip(F) = F(gip(F))

of an endofunctor F' on SET is a final F-coalgebra, provided F' satisfies some mild
conditions. This theorem [Acz88, “Special Final Coalgebra Theorem”] is the ‘dual’



8 Introduction

of the standard fact (holding also without anti-foundation) that the least fixed points
of most endofunctors on SET are initial algebras.

In particular, the special final coalgebra theorem holds for the endofunctor map-
ping a class X to the class Ps(A x X) having as elements (small) sets of pairs
<a,r>, with a € A and x € X. Now, the behaviour of CCS programs can be seen
as a coalgebra of this endofunctor by taking for A the set Act of actions performable
by the programs, for X the set Prog of programs, and for coalgebra structure the
function [-] : Prog — Ps(Act x Prog) defined for every program t € Prog as follows.

[t] = {<a,t'> |t >t}

Then the function [[—]]@ mapping a program to its abstract meaning can be defined as
the coinductive extension of this coalgebra structure, that is, as the unique coalgebra
arrow from the coalgebra of programs to the greatest fixed point of the ‘behaviour

endofunctor’
BX = Ps(Act x X)

which, by the special final coalgebra theorem, is a final coalgebra:

@
Prog - - - [[_B - - = gip(B)

[-1 |

B(Prog)wB(gfp(B))
That is, for every program t € P, [t]® = {<a, [t']*> |t - t'}.

The special final coalgebra theorem is stated in terms of the “Solution Lem-
ma” [Acz88]. The final coalgebra presentation of anti-foundation introduced in this
thesis makes the solution lemma (and its equivalence with anti-foundation) trivial.
Correspondingly, the ‘uniformity on maps’ condition — which an endofunctor has to
satisfy in order for the special final coalgebra theorem to hold — can be formulated
in a more transparent way than in [Acz88].

Structural Operational Semantics. The operational semantics of CCS, that is,
the definition of the transition relation between CCS programs, is given using Gor-
don Plotkin’s structural approach to operational semantics [Plo81b]. In structural
operational semantics both the programs and their behaviour are defined by induc-
tion on the basic program constructs — the structure of the programs. In particular,
the behaviour of the programs is defined as the least transition relation closed under
some conditional operational rules.

Since its inception, the structural approach has rapidly become the predominant
approach to operational semantics. The two main reasons are that (i) it is universal,
in the sense that all existing languages can be described this way, and (ii) it comes
with a structural induction principle for reasoning about programs.



Introduction 9

In this thesis, a mathematical theory of ‘well-behaved’ operational semantics is
introduced which arises from a suitable interplay between the inductive (ie algeb-
raic) aspects of the structural approach and the coinductive (ie coalgebraic) aspects
present in Aczel’s work on CCS.

Let us focus on the inductive aspects first. In the structural approach, programs
are inductively defined in terms of some basic constructs o € ¥ from a signature 3.
Every signature can be seen as an endofunctor mapping a set X to the coproduct

VY — H Xarity(zr)

indexed by the constructs o of the language. The programs form then the (unique
up to isomorphism) initial algebra of this endofunctor. In particular, by taking as
constructs a constant (arity = 0) and a unary operator (arity = 1) one obtains
the equivalence between the natural numbers (as inductively defined from zero and
successor) and the initial algebra of the endofunctor X — 1+ X.

The initial 3-algebra gives the set of closed programs, that is, programs without
variables. In order to adjoin variables from a set Var it is sufficient to take the initial
algebra of the endofunctor

X = Var+ XX

(In particular, if Var is empty then one gets back the original ¥.) This initial algebra
is also called the free ¥-algebra over Var.

It is worthwhile to make one more step of abstraction and introduce the notion
of a monad.

Monads. Given a signature Y, let X — T'X be the operation mapping a set
X, regarded as a set Var of variables, to the free X-algebra over X (ie the initial
(X + X)-algebra). By universality, this operation extends to an endofunctor T :
Set — Set on Set. This endofunctor 7' comes equipped with two ‘operations’: the
‘insertion-of-the-variables’ nx : X — T'X and a ‘multiplication’ pux : T?°X — TX
for plugging programs into contexts. These operations are ‘natural’ in X and the
triple T'=<T,n, p> is a monad on Set.

In general, a monad T'=<T,n, > on a category C can be understood as a
monoid in a category of endofunctors on C, the ‘operation’ i being the associative
multiplication of the monoid and 7 its unit.

The notion of a monad is one of the most general mathematical notions. For
instance, every algebraic theory, that is, every set of operations satisfying equational
laws, can be seen as a monad; thus the monoid laws of the monad do subsume all
possible algebraic laws! And algebraic theories are only a minor source of monads.
In fact, every ‘canonical’ construction between two categories gives rise to a monad:
the free Y-algebra construction from Set to the category of ¥-algebras is one such
canonical construction.

Next, there is a notion of a T-algebra which subsumes the notion of an algebra
and, in particular, of a Y-algebra. (3-algebras can be understood as algebras in



10 Introduction

which the operators (of the signature) are not subject to any law.) In particular,
the monad 1" freely generated by a signature X is such that its category of algebras
is isomorphic to the category of ¥-algebras. Therefore, the syntax of a programming
language can be identified with a monad, the syntactical monad T freely generated
by the program constructs .

Now that the syntar is understood as a monad 7T and the behaviour as an
endofunctor B whose coalgebras can be regarded as operational models (eg BX =
P(Actx X)) the new notion of a ‘functorial operational semantics’ can be introduced.

Functorial Operational Semantics.

A functorial operational semantics for a syntax 1" and a behaviour B is
a monad ® which ‘lifts’ the syntactical monad 7" to the coalgebras of the
behaviour endofunctor B.

The operational monad ® inherits the operations 1 and u of the syntactical monad
T'; as a functor it maps a coalgebra structure £ : X — BX to a structure ®k :
TX — BTX which can be seen as the operational model on the set of programs
T X given by the semantics ® starting from the ‘assumptions’ k£ : X — BX.

There are many possible liftings ® of the same syntax 7', each giving a different
operational interpretation of the programs corresponding to 7.

The novelty of this approach to operational semantics is that it captures in terms
of abstract notions of syntar and behaviour the essence of ‘well-behaved’ operational
semantics.

A condition which a well-behaved operational semantics should satisfy is compos-
ittonality: To every behaviour B there corresponds a notion of observational equi-
valence called B-bisimulation [AM89] (which for the behaviour BX = P(Act x X)
corresponds to Park and Milner’s (strong) bisimulation — the finest notion of ob-
servational equivalence for transition relations); if this observational equivalence is
a congruence wrt the constructs of the syntax, then the operational semantics is
compositional. This means that programs with the same observable behaviour can
be interchanged in any context without affecting the overall observable behaviour.
Now, as shown in this thesis, every functorial operational semantics enjoys the prop-
erty of being compositional.

Previous general results on compositional operational semantics stem from the
theory of concurrent processes: the operational semantics is then assumed to be
structural and the behaviour is fixed to be BX = P(Act x X) (ie the notion of
observational equivalence is (strong) bisimulation). The compositionality is ensured
by imposing some restrictions on the syntactic format of the operational rules. Sev-
eral formats have been proposed [dS85, BIM88, GV92, Gro93] and one of the most
general is ‘GSOS’ [BIMS8S8], suitable to model most of the imperative or concurrent
languages, including Milner’s CCS.

Another result in this thesis is that every set R of GSOS rules defines an ‘action’
of the syntactical monad 7T on the composite endofunctor BT'; in turn, this action



Introduction 11

induces a functorial operational semantics observationally equivalent to the opera-
tional semantics induced by the rules R. Hence the syntactic restrictions making
GSOS well-behaved are explained mathematically in terms of abstract notions of
syntax and behaviour.

Denotational Semantics. A more general way of understanding the composi-
tionality (and ‘well-behaviour’) of an operational semantics is in terms of ‘denota-
tional models’. Given a syntactical monad T, a denotational model for the corres-
ponding language is simply a T-algebra; if the monad 7' is freely generated by a
signature X, then this is the same as a Y¥-algebra, that is, a set and a ‘denotation’
on this set of each program construct in X.

(More structured denotational models can be obtained by ‘interpreting’ the syn-
tactical monad T in categories of structured objects like partial orders or metric
spaces, rather than simply sets.)

The unique algebra arrow from the initial algebra of programs to the denotational
model gives an inductive interpretation mapping programs to elements of the model.
(This is the well-known initial algebra semantics approach of the ‘ADJ group’ — cf,
eg, [GTWT78].) This interpretation is by definition compositional, but one has to
establish its adequacy:

A denotational model is adequate wrt an operational semantics if it de-
termines the operational behaviour of the programs up to observational
equivalence.

It is at this point that the coalgebraic (ie coinductive) aspects of the functorial
approach to operational semantics start playing a role: one of the pleasing proper-
ties of functorial operational semantics is that they (canonically) coinduce adequate
denotational models. In order to understand this property, let us first look at coin-
duction in the category of ordinary (ie well-founded) sets.

Coinduction with ordinary sets. One of the properties of Aczel’s coinductive
semantics for CCS is that it maps two programs to the same set if and only if they
are observationally equivalent:

[t]° =[t]® = ti~t

That is, the coinductive extension of the operational model [-] : Prog — B(Prog)
does preserve B-bisimulation and, conversely, it can be ‘pulled back’ to form the
largest B-bisimulation relation.

The above is a property which holds in general for every coinductive extension
of coalgebras of endofunctors B preserving categorical (weak) pullbacks, where the
endofunctor B can be on any category. Therefore:



12 Introduction

One does not need to work with non-well-founded sets: all one needs is
that there exists a final coalgebra (hence coinduction) for B. In partic-
ular, one can work in the category of ordinary sets.

If anti-foundation is not assumed, then one cannot apply the special final coal-
gebra theorem in order to obtain final coalgebras from greatest (strict) fixed points.
(While initial algebras can still be obtained as least fixed points.) There are several
categorical methods to obtain final coalgebras though. One is a simple generaliza-
tion of the standard greatest fixed point construction (& la Tarski) but it does not
hold for endofunctors like the power-set functor.

There is also a problem of size: the structure of a final coalgebra is an iso-
morphism, that is, if B is the carrier of a final B-coalgebra then its structure is an
isomorphism

p: B~ BB

(This fact, in its dual version for initial algebras, is known as “Lambek’s lemma”.)
Therefore, there is no final coalgebra for the endofunctor BX = P(Act x X) or just
P, because there is no set isomorphic to the set of its subsets.

Aczel overcomes this problem by moving to the superlarge category of classes and
considering the endofunctor Py mapping a class to the class of its (small) subsets.
Another solution, adopted here, consists in taking the finite power-set endofunctor
mapping a set X to the set P5(X) of its finite subsets.

In general for establishing the existence of a final object in a category one can
use categorical theorems like the “Special Adjoint Functor Theorem”. As shown in
[Bar93] this applies also to the coalgebras of endofunctors like the finite power-set
and the corresponding behaviour

BX = Pﬁ(ACt X X)

In particular, since CCS programs have only a finite degree of non-determinism,
that is, each program can choose only among a finite set of transitions, the oper-
ational model of CCS is a coalgebra of this behaviour; its coinductive extension
[-]¢ : Prog — B yields a semantics in the ordinary category of sets which is ‘al-
most’ the same as Aczel’s one. The difference is in the fact that the final coalgebra
structure is an isomorphism ¢ : B = BB rather than an equality B = BB. Corres-
pondingly, one has, for every program ¢,

[ = o™ {<a, 1> |t > 1}

(In the sequel, for simplicity, the isomorphism ¢ is omitted.) This is the final
coalgebra semantics corresponding to the operational model [-] : Prog — B(Prog).

Concretely, the final coalgebra for the behaviour BX = P;(Act x X) is the set
of rooted, finitely branching trees, with branches labelled by the actions a € Act,
quotiented by the (largest) bisimulation relation. These (equivalence classes of) trees



Introduction 13

can be seen as the abstract global behaviours corresponding to BX = Py(Act x X):
the root of a tree 7 is the starting point of an abstract computation ¢ with behaviour
B; the branching structure records the alternatives of the computation ¢ and the
labels of the branches are its observable actions; the quotient modulo bisimulation
is needed in order to identify trees like

[ )
az a2ikz

X I B

Notice that branches can be of infinite depth.

The fact that the nodes have no name reflects the abstractness of these global
behaviours. This can be seen as a special case of the global behaviours observable
with a set of ‘states’” X, which is obtained by labelling the nodes of the trees by
elements x of X and, correspondingly, taking the quotient wrt a subtler form of
bisimulation which takes into account the name of these states. For instance:

[ ] [ ]
ao \al ao \al
1 T1
0 0

x . x *
a2i QQi\@
T2 ~ T2 o XT2
aai aai aai\%
x3 xrs3 Trs eIs3
a4¢ a4¢ a4¢ a4¢\a4

By putting X = 1, that is, by using the same label for all nodes, one gets back the
abstract global behaviours.

Observational Comonads. The above operation X +— DX mapping a set X to
the set of its global behaviours can be understood as a cofree construction, dual to
the free construction of a monad from a signature. In general, given an endofunctor
B on a category (with products) C a cofree B-coalgebra over an object X if it exists,
is the final coalgebra of the product endofunctor X x B mapping an object X' to the
product X x BX'. This generates a comonad D=< D, e,§ >, that is, an endofunctor
D : C — C together with two ‘operations’ ex : DX — X and dy : DX — D?*X
‘natural’ in X which make D a comonoid in a category of endofunctors on C.

Comonads cofreely generated by behaviour endofunctors are called here obser-
vational comonads. Correspondingly, of the three conditions (implicitly) arisen so
far which make of an endofunctor B a behaviour endofunctor, namely



14 Introduction

1. the coalgebras of B have a computational interpretation as operational models,
2. B has a final coalgebra (hence coinduction),

3. B preserves weak pullbacks (hence coinduction can be ‘pulled back’ to B-
bisimulation),

the second has to be generalized by requiring the existence of a final coalgebra of
the product endofunctor X x B for every object X. Correspondingly, the category
C should have finite products (including a final object 1). Since in every category
1 x X =2 X holds, one has that the final coalgebra is isomorphic to the cofree
coalgebra over 1.

As mentioned above, in the specific case of the behaviour BX = P;(Act x X),
the value of the observational comonad D at a set X is a set of (equivalence classes
of) rooted trees with nodes labelled by ‘states’ + € X. The operations of the
observational comonad D =< D, e, > permit to visit these trees: the ‘counit’ ¢ is
the operation which extracts the label of the root of a tree and the ‘comultiplication’
0 gives the remaining part of the tree.

One can form a category of D-coalgebras and, like for -algebras and the algebras
of the corresponding freely generated monad 7', one can prove that if D is cofreely
generated by an endofunctor B then this category is isomorphic to the category of
B-coalgebras. Therefore, a functorial operational semantics can be seen as a lifting
® of the syntactical monad 7" to the coalgebras of the observational comonad D. In
this form, the notion of a functorial operational semantics can be readily dualized
as follows.

Functorial Denotational Semantics.

A functorial denotational semantics for a syntax T and a (global, ob-
servable) behaviour D is a comonad ¥ which ‘lifts’ the observational
comonad D to the algebras of the syntactical monad T'.

The denotational comonad ¥ inherits the operations ¢ and ¢ of the observational
comonad D. In terms of ¥-algebras, the endofunctor ¥ maps a structure h : XX —
X to a structure Wh : ¥DX — DX which can be seen as the denotational model
on the set of global behaviours DX given by the semantics ¥ starting from the
‘assumptions’ k : XX — X.

Operational is Denotational. Now, the abstract property showing that func-
torial operational semantics are well-behaved is that there is a one-to-one corres-
pondence between operational monads ® and denotational comonads ¥ (over the



Introduction 15

same syntax and behaviour). Symbolically:

CD %CD

® Up Up v#

The category Cp is the category of coalgebras of a comonad D over C and the
‘forgetful’ functor Up : Cp — C forgets the coalgebra structure mapping a coalgebra
to its carrier. The dual holds for C* and U” : C* — C.

The mapping ® — ®° is defined by coinduction. In particular, the value of
the comonad ®© at the (trivial) final T-algebra is the coinductive extension of the
coalgebra structure obtained by applying the given operational monad ® to the
final D-coalgebra. The resulting T-algebra is the ‘canonical’ denotational model
coinduced by the operational semantics .

The essence of the above coinductive construction was already presented in
[RT94], but there the assumption was needed that observational equivalence be
a congruence (hence compositionality had already to be known) and, in order to
ensure this fact, the operational semantics was assumed to be a la GSOS. Instead,
here the functoriality of ® ensures that the construction can always take place.
Moreover, the fact that the mapping ® — ®© is a bijection immediately gives that
®? is adequate wrt ®, that is, one can recover the operational semantics from the
denotational one. Compositionality becomes here a corollary.

The bijection ‘operational <— denotational’ can be used also in the reverse
direction. The mapping ¥ +— W# gives an inductive construction of operational
models from denotational ones. This is a new principle which had been forecasted in
[RT94]. It is used here to show that basic process algebra — the ‘minimal’ language
corresponding to the behaviour BX = P;(Act x X) — is functorial. This is an
important result because the proof given here that GSOS is functorial is based on
the (mild) assumption that every set of GSOS rules embeds basic process algebra.
Correspondingly, the syntactical monad is assumed to correspond to an algebra
containing an associative, commutative, and absorptive binary operator of non-
deterministic choice. (This is one example of the advantage of working with the
T-algebras rather than with algebras of a signature.)



16 Introduction

d-algebras are ®°-coalgebras. Another way of understanding the above ad-
equacy result is by considering the category of algebras of the operational monad
®. It is shown in this thesis that the category of ®-algebras is the same as the
category of coalgebras of its coinduced denotational comonad ®°. One can take
this category as the category of models of ®: its objects carry both a T-algebra and
a D-coalgebra structure which are suitably related via ®. (Thus a ®-model carries
both a denotational and an operational structure.) The arrows of the category are
those which preserve both the algebraic and the coalgebraic structure.

The category of ®-models has both an initial and a final object: the initial ®-
model is the initial algebra of closed programs corresponding to the syntactical
monad 7', together with the operational model obtained by applying ® to the
(trivial) initial D-coalgebra; dually, the final ®-model is the final coalgebra of ab-
stract global behaviours corresponding to the observational comonad D, together
with the denotational model obtained by applying ®° to the (trivial) final T-algebra.

Now, the (both by initiality and finality) unique arrow from the initial to the
final ®-model is a mapping going from the closed program 70 to the abstract global
behaviours D1 and it necessarily is both an initial algebra semantics and a final
coalgebra semantics. This is the categorical formulation of adequacy.

Interestingly, if ® is the operational monad corresponding to a set of GSOS
rules, then the notion of a ®-model cuts down to the notion of a GSOS-model
independently introduced by Alex Simpson in [Sim95].

Adjunctions subsume induction and coinduction. It should be stressed that,
categorically, induction and coinduction are just two instances of the same notion,
namely the one of an adjunction:

If the forgetful functor mapping the algebras of an arbitrary monad 7" to their
carriers has a left adjoint, then the T-algebras come with an induction principle;
the monad T itself is defined by this adjunction. Dually, if the forgetful functor
mapping the coalgebras of a comonad D to their carriers has a right adjoint, then
the D-coalgebras come with a coinduction principle.

Every ‘canonical’ construction between two categories defines an adjunction and
every adjunction defines both a monad and a comonad. It is in this sense that
canonical constructions give rise to monads (and comonads).

Sets like recursive processes. Finally, one remark on the title of the part of
this thesis dedicated to non-well-founded sets.

It is shown in this thesis that recursive programs can be seen as coalgebras hav-
ing as carrier the set of variables involved in the recursion. As a consequence, no
(explicit) binding operator (like the operator “fix” in GSOS) is needed and the solu-
tion of a recursive program is (a recursive process) defined by coinduction. This
subsumes standard fixed point methods like least fixed points in categories of com-
plete partial orders [Plo76] or unique fixed points in categories of complete metric



Introduction 17

spaces [Niv79, BZ82].

Now, the same method is used here to treat (and trivialize!) the “Solution
Lemma” [Acz88] for defining non-well-founded sets as solution of recursive equations
involving exclusively (variables and) well-founded sets.

Historical Notes. The study of adequate denotational models for structural op-
erational semantics has been, from [BZ82| on, the central topic of Jaco de Bakker’s
Amsterdam school of semantics based on the use of metric spaces. (See [BR92, BV96]
for overviews.) The present functorial approach harvests the fruits of that work.

The main mathematical tool available in (complete) metric spaces is “Banach’s
theorem” ensuring the existence of unique fixed points of ‘contracting’ functions.
Like coalgebraic finality, Banach’s theorem, especially in its higher-order form, can
be used both for dealing with coinductive definitions and for prowving adequacy
results. (Cf [KR90].)

In particular, Banach’s theorem is used in [Rut90] for coinductively deriving
denotational models from structural operational semantics. The assumption is that
the operational rules are ‘well-behaved’ in the sense that they are in (a sub-format of)
the GSOS format [BIM88] and this implies that the coinduced models are adequate.
(A precursor of this method is presented in [Bad87], which, in turn, has been inspired
by [DG87].)

A considerable improvement of the above method is achieved in [Rut92] by treat-
ing the semantic domain of abstract global behaviours (ie the set of processes) as
a transition system and subsequently applying the operational rules to it, that is,
by treating “processes as terms”. Coinduction is dealt there by means of non-well-
founded sets and of the corresponding solution lemma; the operational rules are in
the “tyft/tyxt” format of [GV92], a more general format than the positive GSOS
used in [Rut90].

An explicit use of the finality of the greatest fixed point of the endofunctor BX =
Ps(Act x X) (under the anti-foundation axiom) is made in [Acz88] for coinductively
defining a denotational model for CCS. That example has led the author of this thesis
to try and understand the mathematics behind the “processes as terms” method
in terms of an interplay between algebraic and coalgebraic aspects. The article
[RT94] contains preliminary results in this sense, but the actual derivation of models,
although formulated coalgebraically, still relies there on the use of ‘well-behaved’
structural operational rules a la GSOS and on regarding the final coalgebra (ie the
abstract global behaviours) as a transition system.

The abstraction step from well-behaved transition systems to operational monads
has come only after Gordon Plotkin’s suggestion of working with algebras over
coalgebras rather that with algebras and coalgebras: that has proved to be the extra
‘dimension’ needed for formulating the present functorial approach to operational
semantics.



18 Introduction

Algebraic Compactness. Another way of looking at initial algebras and final
coalgebras of endofunctors F'is as data types: the initial F-algebra is the inductive
data type corresponding to the ‘type constructor’ F', while the final F'-coalgebra is
the coinductive one. For instance, the type constructor F X =1+ X yields, in Set,
the natural numbers N as inductive data type and the ‘extended natural numbers’
N U {oo} as coinductive one.

Studies on coinductive types in Set date back at least to [AMS80]. A more recent
view, put forward by Peter Freyd in [Fre91], is that data types should be defined in
algebraically compact categories, that is, in categories where endofunctors have both
initial algebras and final coalgebras which, moreover, do coincide in the sense that
they are ‘canonically isomorphic’. (See also [Fre90, Fre92].)

The archetypal example of an algebraically compact category is the category
pCpo of complete partial orders and partial ‘Scott-continuous’ functions: regarded
as an ‘order-enriched’ category, it has as endofunctors the ‘locally continuous’ ones,
which, as shown in [SP82], make it algebraically compact indeed. (See [Bar92] for
more examples.)

Instead, algebraic compactness fails in the category of sets, no matter whether
ordinary or non-well-founded sets are considered. The absence of algebraic compact-
ness in Set motivated Peter Freyd’s remark on the need for non-standard mathem-
atical foundations in computer science quoted at the beginning of this introduction.

Algebraic compactness is one of the axioms of Fiore and Plotkin’s aziomatic
domain theory [FP92, FP94, Fio96] which aims at isolating the abstract proper-
ties which a category should satisfy for hosting interpretations of programming lan-
guages. In particular, the semantic domain of a language — in the present setting the
final coalgebra of the behaviour — should ‘live’ in such a category, typically pCpo.
In contrast, the operational model of a language should carry only the structure
imposed by syntax and behaviour and thus live in a simpler category, typically Set.
This raises the problem of how to extend/lift a functorial operational semantics from
an unstructured category like Set to a category of domains like pCpo.

Towards a mathematical operational semantics

“The motivation for trying to formulate a mathematical theory of computation
is to give mathematical semantics for high-level computer languages. The
word ‘mathematical’ is to be contrasted in this context with some such term
as ‘operational’.”

Dana Scott, Outline of a Mathematical Theory of Computation

The present functorial approach shows that ‘operational’ and ‘mathematical’ are
no longer necessarily contrasting attributes for a semantics. This is achieved by
defining operational semantics in terms of abstract, mathematical notions of syntax



Introduction 19

and behaviour. Yet, considerable work remains to be done before this conceptual
achievement will be of any ‘practical’ relevance.

Firstly, the examples of behaviour considered here are all minor variations of the
endofunctor BX = Ps(Act x X), with (strong) bisimulation as the corresponding
observational equivalence. Among the other behaviours which can be described
functorially and will be treated in future work there are those for side effects, for
probabilistic computation, for trace equivalence, and for applicative languages like
the untyped lambda calculus.

The first two behaviours are similar to the one for bisimulation, while a treatment
of trace equivalence and of the lambda calculus require, for different reasons, the
ability of extending or lifting an operational monad from Set to a more structured
category, namely pCpo for the lambda calculus [Plo85] and the category of semi-
lattices and join-preserving functions for trace equivalence [HP79]. Preliminary
results on a coalgebraic treatment of trace equivalence and of the lambda calculus
are presented in [T.J93, RT94].

Secondly, a more refined notion of syntactical monads is needed in order to deal
with typed terms and with higher-order terms as introduced, eg, by variable binding
in the lambda calculus and in many imperative and concurrent languages. For
typed terms one can easily adapt the above approach using multi-sorted algebras.
(Categorically, it means to deal with a power of Set.) For higher-order terms the
plan is to consider signatures on variable sets (presheaves) rather than simple sets.
Correspondingly, one has for a function(al) not an arity but a list of numbers. The
length of the list is the number of arguments; the i-th number is the number of
variables the function(al) binds at its i-th argument. (This notion of signature is
considered, for semantics, in [Acz80], and, for syntax, in [Plo90]. Associated ideas
are the work on higher-order rewriting [K1o80], and the work on higher-order algebra
[Mei92].)

Thirdly, the above adequacy result should be strengthened by dealing also with
non-termination: when, like in the untyped lambda calculus, programs might not
terminate, adequacy imposes further requirements. For example, by using partial
functions for the denotational semantics, the interpretation of a term should be
undefined if and only if it does not terminate. This property is hard to verify
and much work has been devoted to introduce methods for simplifying this kind of
proofs. (See, eg, [Pit94b].) Therefore, a ‘meta’ adequacy result would be of a great
relevance. (A related point still to be investigated is whether there exist some extra
conditions which make a functorial operational semantics fully-abstract, but this is
much harder a result to obtain.)

Finally, the present functorial approach seems closely related to Eugenio Moggi’s
monadic approach to operational semantics [Mog91]. His examples of computational
monads do all qualify as behaviours and it would be interesting to incorporate their
extra monadic structure in this functorial framework. As a result, a general notion
of operational semantics for computational monads and a corresponding adequacy
theorem could be obtained.



20 Introduction

Synopsis

This thesis is divided in five parts: the first four parts are devoted to the functorial
approach to operational semantics, while Part V (Sets like Recursive Processes) is
a new presentation of Peter Aczel’s theory of non-well-founded sets.

In Part I, after some preliminaries, the definition of functorial operational se-
mantics is introduced. As an example, a simple deterministic language is treated
with BX =1+ Act x X as behaviour. Final coalgebras and recursive programs are
also treated.

In Part II, the general properties of functorial operational semantics are illus-
trated. In Section 6 it is shown that every operational monad coinduces an adequate
denotational model. This construction is explained in Section 7 in terms of the no-
tion of functorial denotational semantics, dual to the operational one: every oper-
ational monad ® coinduces a denotational comonad ®©. This is the basic property
of the functorial approach to operational semantics.

Section 8 shows that the mapping ® — ®© is a bijection between operational
monads and denotational comonads, which implies that ®© is always adequate wrt
®. This adequacy result is rephrased in Section 9, where it is shown that the algebras
of an operational monad ® are the same as the coalgebras of its coinduced comonad
®°. The category of ®-algebras (alias ®®-coalgebras) is then taken as the category
of ®-models, and the unique arrow from the initial to the final ®-model is both the
initial algebra and the final coalgebra semantics corresponding to ®.

Part III is dedicated to the non-deterministic behaviour BX = P(1 + Act x
X). Correspondingly, the simple deterministic language used as example in the
two previous parts can be enriched with a non-deterministic choice construct a la
CCS. In Section 10, following [HP79, Plo81a], the (non-empty) finite power-set P
is introduced as the semi-lattice monad. Next, a functorial denotational semantics
is ‘naturally’ associated to the behaviour BX = P(1 + Act x X) and its induced
operational semantics is shown to be basic process algebra [BW90]. This is used in
Section 11 to prove that GSOS is functorial, under the mild assumption that GSOS
embeds basic process algebra.

In Section 12, the observational equivalences corresponding to (arbitrary) be-
haviours B are treated using the notion of a relation lifting to a ‘B-bisimulation’
introduced in [AMS89], which, for BX = P(1 + Act x X), cuts down to Park and
Milner’s notion of a bisimulation. If the endofunctor B preserves (weak) pullbacks,
then every coinductive definition of type B can be ‘pulled back’ to a relation lifting
to a B-bisimulation, which fact is useful to reason about coinductively defined entit-
ies. Here it is shown that, as a corollary of adequacy, for every functorial operational
semantics, bisimulation (wrt to the behaviour B) is a congruence (wrt the syntax
T).

Section 13 treats the construction of cofree coalgebras for the finite power-set



Introduction 21

functor Py and for the behaviour BX = P(1 4+ Act x X). It is based on material in
[AM89] and [Bar93].

Part IV consists of a technical summary (with proofs) of the first three parts
phrased in terms of adjunctions rather than in terms of induction and coinduction.



Basic Universal Constructions

Category theory is the mathematical study of universal entities: an entity z is
universal among a family F of entities if all entities of F can be ‘reduced’ to z.
Formally, this can be expressed in a very general form by considering the family
of arrows determined by a functor F' : C — D and an object Y of the codomain
category D of F'. The family of entities is the set

F={f:FX—->YeD|XeC}

of arrows from F to Y. (Alternatively, the dual case of arrows from Y to F' can also
be considered.)

The universal among the arrows of F (if it exists!) is an arrow ey : FGY — Y
such that, for every f : FX — Y, there ezists a unique arrow f°: X — GY such
that f factorizes through ey as follows:

f=evoF(f)

Diagrammatically:

X FX
o F(f) f
v
GY FGY——=Y
€y

The object GY is unique up to isomorphism and so is the arrow ¢y (in a suitable
sense).

Particularly interesting is the case when a universal arrow from F' to Y exists
for every object Y of D: then, by universality, the operation Y — GY extends to a
functor G : D — C by putting, for every £ :Y — Y’ in D,

GY FGYy—Y vy
Gk =, (koex)’” FGk k
v
GY' FGY— =Y’
Ey!

22



Basic Universal Constructions 23

Moreover, one can check that, in this case, the arrow
Nx = (IdF)()b X - GFX

obtained by ‘reducing’ the identity on F'.X to epx, is a universal arrow from X to
G, for every object X of C:

x— "™ _GgFx FX
’ -y
g G(g ) : g

v

GY Y

Dually, a universal arrow from X to a functor G : D — C for every object X of
C, defines a functor F' : C — D and a universal arrow from F' to Y, for every Y
in C. There is thus a hidden symmetry behind the notion of a universal arrow, a
symmetry which is captured by the notion of an ‘adjunction’.

Formally, an adjunction from a category C to a category D is given by a pair
of functors F : C — D and G : D — C in opposite direction and by a ‘natural’
bijection between the arrows of type FX — Y and those of type X — GY, for
every X in C and Y in D:

#

f FX — =Y 9
| t
fb X—=GY g

The naturality of the mapping f — f” amounts to the fact that it is ‘well-behaved’
wrt both pre- and post-composition; that is, for all arrows A : X' — X in C and
k:Y — Y in D, the following two equations hold.

(foFhY =f oh (kof) =Gkof
By duality, this is equivalent to the following.
(goh) =g'oFh (Gkog)t=kog
One usually writes the above adjunction as
FAHG

and says that G is a right adjoint for F'; dually, F' is a left adjoint for G. Corres-
pondingly, f is the right adjunct of f and g* is the left adjunct of g.



24 Introduction

Now, if there exists a universal arrow ny : X — GF X from every object X of a
category C to a functor G : D — C, then G has a left adjoint, the functor F' which,
by universality, extends the operation X — FX. (And the dual holds for universal
arrows from F to the objects of D.) Conversely, every adjunction determines two
families of universal arrows

{nx = (idpx)" : X = GF X} o {ev = (idgy)": FGY = Y}y p

(See, eg, [Mac71, §IV.1, Theorems 1 and 2].)

The description of an adjunction in terms of universal arrows is procedurally very
important for the actual ‘construction’ of adjunctions. Usually, one has a simple
functor at hand, like an inclusion functor or a a functor forgetting some structure,
and one investigates the problem of the existence of a right or left adjoint to it:
if this problem can be solved then the result can be a complex construction. For
instance, the left adjoint of the forgetful functor from a category of algebras to sets
maps a set to the free algebra over it. (Adjoints, like all universals, are unique
up to isomorphism, thus one can speak of the left adjoint of a functor.) The ad-
vantage is that a complex construction is reduced to the notion of an adjoint to a
simple construction and, moreover, in this form, the same result can be understood
in different categories. For instance, one can consider algebras over complete par-
tial orders rather than over sets and the left adjoint to the corresponding forgetful
functor gives the free algebras over cpos rather than over sets. Similarly, various
topological completions like the one of metric spaces can all be understood as left
adjoints of inclusion functors. In general, every ‘canonical’ construction arises from
an adjunction.

The family {ey : FGY — Y}, . of universal arrows determined by an adjunc-
tion has the property that, for all arrows £ : Y — Y’ in D, the following diagram
commutes.

FGY—Y vy
FGk k
FGY' Y’
Eyr

(And similarly for the family {nx : X — GFX}.c.) This gives a ‘natural trans-
formation’ from the composite functor F'G' on D to the identity functor Ip.
In general, given two functors Fy, Fy : E — D, a natural transformation

Y F =

from F} to F; is a family {Jy : ;X — F;X € D | X € E} of arrows of D indexed
by the objects of E such that, for every arrow f : X — X’ in E the square in the



Basic Universal Constructions 25

following diagram commutes.

Iy
Y Y —=FY
f hf B f
Y’ Y — SFY’
Gy

For every two categories D and E one can form the functor category D® having
as objects the functors from E to D and as arrows the natural transformations
between them. Identities and composition are obtained ‘pointwise’. Thus: natural
transformations are arrows between functors, which, in turn, are arrows between
categories.

One usually omits the subscript under the identity functors and writes

n:I=GF and e FG =1

for the two natural transformations defined by an adjunction F'-G; these are the
unit and the counit of the adjunction, respectively.

Initial and final objects can be described in terms of adjunctions as follows.
Consider the trivial category 1 with only one object and one (identity) arrow. From
every category C there is a unique functor

C—1

to 1. Now, this functor has a left adjoint if and only if C has an initial object: this
left adjoint maps the unique object of 1 to the initial object of C; the counit of the
adjunction at an object X of C gives the unique arrow from the initial object to X.
Dually, the functor C — 1 has a right adjoint if and only if C has a final object and
the unit of the adjunction gives the unique arrows to this final object.

Also coproducts and products can be described in terms of adjunctions. Consider
the product category C x C having as objects and arrows pairs <X, X’ > of objects
and pairs < f, f' > of arrows of C, with componentwise composition. There is a
diagonal functor

A:C—-CxC X< X, X> fe=<ff>

‘duplicating’ the objects and the arrows of C. This diagonal functor has a left adjoint
if and only if C has (binary) coproducts; this left adjoint maps a pair < X, Y > of
objects of C to their binary coproduct X +Y and the value of the unit at <X, Y >
is the corresponding pair of injections <inlx,inry >. Dually, the right adjoint, if it
exists, gives binary products and the counit gives the corresponding projections.
The above binary product and coproduct adjunctions are instances of the follow-
ing. Consider an arbitrary small category J, that is, a category with a (small) set



26 Introduction

of objects and a (small) set of arrows. (Counterexample: Set is not small.) Next,
take the functor category

ol
having as objects the functors from J to C and as arrows the natural transformations
between them. By putting J in C” equal to the empty category 0 with no objects
one obtains a category isomorphic to 1; similarly, by putting J equal to the category

with two objects and no arrows other than the identities, one obtains a category
isomorphic to C x C:

Cc'~1 C '2CxC
Correspondingly, the two functors C — 1 and A : C — C x C can be seen as
instances of a general notion of a diagonal functor

A:C—C/

This diagonal functor maps an object X of C to a functor from J to C which, in
turn, maps every object of J to X and all arrows of J to the identity on X. The
left adjoint to this A give the ‘colimits’ of functors D : J — C and the right adjoint
gives the ‘limits’. Thus initial objects and coproducts on the one hand and final
objects and products on the other hand are, respectively, special cases of colimits
and limits, which are the most common form of universals.

As an example, consider the category J with three objects and, apart from the
identities, two arrows connecting one object to the other two:

. (_ . _> .
A functor D : J — C from J to C can be seen as a diagram D in C of ‘shape’ J:

f g9
D: Y1 Yo Y>

A natural transformation v : D = AX from such a diagram D to the constant
diagram AX : .J — C obtained by applying A to an object X of C

f g
D Y1 Yo YZ
ﬁll ﬁol l%
AX : X — X — X

can be collapsed into a ‘cocone’ over D having X as ‘vertex’:

f g9
D: Y7 Yo Y>

s
Y1 O\L/

X




Basic Universal Constructions 27

that is, a family of arrows from the objects of the diagram D to X making everything
in sight commute. (Notice that the middle arrow v : Yy — X is superfluous because
it factorizes (both) as vy o f (and as 15 0 g).)

The colimit of the diagram D is then the universal cocone over D, that is, a
cocone v : D = ColimD such that every cocone over D factorizes uniquely through
it:

ColimD

v
X

The existence and uniqueness of the ‘mediating arrow’ from the colimit of a diagram
D to the vertex X of any cocone over D expresses the universal property of the
colimit.

In general, the left adjoint of the diagonal functor A : C — C7, if it exists, maps
diagrams of shape J to their colimit object; the unit of the adjunction gives the
corresponding (universal) colimiting cocone.

The study of colimits can be reduced to the study of initial objects and ‘pushouts’,
the latter being colimits of diagrams of shape J = - < - — -. Indeed, the colimit
of any (small) diagram can be expressed in terms of combinations of (generalized)
pushouts and initial objects. For instance, the coproduct X + Y is isomorphic to
the pushout of the diagram

X< ---0---=>Y

where 0 is the initial object. Alternatively, (small) colimits can also be described
in terms of (generalized) coproducts and ‘coequalizers’, the latter being colimits of
diagrams of shape

J= =

A generalized coproduct is obtained by generalizing the two objects and no arrows
category J = - - to a category with a (small) set I of objects and no arrows. One
writes then

X

I

for the corresponding coproduct. (And, similarly, binary pushouts can be generalized
by taking (small) sets of arrows with the same domain.)

By duality, limits are right adjoints to diagonal functors and the counit gives
the limiting cones over diagrams D : J — C, that is, the universal among the cones



28 Introduction

v:AX — D. Products are limits with J = - -, while the dual of coequalizers and
pushouts are limits of

J=- ="

and

and are called equalizers and pullbacks, respectively. All limits can be described
with products and equalizers only, as well as with final objects and pullbacks only.

Notice that equalizers are ‘left-cancellable’ in the sense that, given an equalizer
m : Y — Z and two parallel arrrows f,g : X — Y, if mo f = mog then f = g;
in general, left-cancellable arrows are called monic arrows. Dually, coequalizers are
epi, ie ‘right-cancellable’. In Set the epi and the monic arrows are the surjective
and the injective functions, respectively.

Some final notational remarks. The (standard) notation for pullbacks and pushouts

is
Ys Yo——=Y>
l g and f J/
YI——=Y) Y;

respectively. Also, it is useful to introduce a special (non-standard) notation for the
injection arrows inlx : X — X +Y and inry : Y — X 4+ Y into a coproduct, namely
by adding a triangle to their ‘tails’

X X+Y=——4Y

[£,9]
f : 9
v

A

Thus the above ‘copair’ [f,g] : X +Y — Zof f: X — Z and g: Y — Z is the
universal mediating arrow from the coproduct X + Y to the vertex Z of the cocone
formed by f and g over X and Y.

Notes. The standard textbook of category theory is [Mac71], whose first six chapters
include the basic category theory used in this thesis; a useful summary (with examples
and exercises) of those chapters can be found in Part 0 of [LS86].

For an alternative, vivid presentation of category theory see [FS90]. Computer scient-
ists might want to consult also [P0i92] and [Cro93].

For the philosophical import of category theory (and of the notion of adjointness
in particular) one can consult [Law69] and other Lawvere’s writings, which are rich of
stimulating connections between disparate fields.






30



1 Initial Algebras, Induction and Program Syntax

The syntaz of a programming language is usually defined by induction on some basic
constructs o € Y. Formally, 3 is a signature and the syntax is the initial X-algebra.
Equivalently, the signature defines an endofunctor with action X = ], 5 X,
whose algebras are the same as the algebras of the signature. This leads to the
standard categorical construction of initial Y-algebras as suitable w-colimits.

Consider, as an example, a simple imperative language whose constructs are
some primitive actions a € Act, a sequential composition operator ‘;’, and an
‘inert’ program nil. Correspondingly, the (single-typed) signature X of the above
language is given by a set Act + 1 of constants (ie operators of arity 0) and an
operator of arity two.

The programs or terms ¢ induced by the above signature X and some variables

x € X are given by the grammar:
te=uwx|alnil](t;1)

Denote this set of programs by T'X. In particular, for X = 0, ie the empty set, the
set T'0 gives the closed terms of the language:

te=a|nil|(t;t)

An alternative way of describing the set 70 of closed terms is as the carrier of
the initial algebra of the signature X, that is, the initial object in the category of
Y-algebras, where Y is the above signature. In general, given a signature Y, the
category of Y-algebras has as objects pairs (X, h), where the carrier X is a set,
and the structure A is a function interpreting each operator ¢ in the signature as
a function h(o) : X — X. An arrow f : (X,h) — (Y, k) in this category is a
function f : X — Y between the underlying sets such that, for every operator ¢ in
the signature, the following diagram commutes.

ar(o)
xar() — yar(s)

ho ko

X —=Y

f

31



32 Preliminaries

That is,

f(ho)(@1, ... Tar(o)) = (ko) (fx1, ..., fTar(e))
Notice that if the arity of an operator o is zero, then X#(?) is simply 1, the singleton
set. The corresponding function ho : 1 — X maps %, the unique element of 1, into
an element of X. This gives the interpretation of a constant o in the algebra.

For any signature X, the initial algebra always exists. It is the term algebra hav-
ing as carrier the set 7'0 of closed terms over the signature and as algebra structure
the evident one which maps, for every operator o, a tuple (¢1,..., %)) of terms
into the term o(ty,. .., tu()). Indeed, given any X-algebra (X, h), there is a unique
arrow from the term algebra into (X, h), namely the function, say,

h*:7T0 — X
inductively defined as follows.
h*(o(ti, ... ta(e))) = (ho) (Wt ..., h¥ (o)

Notice that the term algebra is initial also in the category of partial X-algebras, that
is, algebras where the operators of the signature might be interpreted not only as
total but also as partial functions.

A more compact way of describing the category of -algebras is by taking the
coproduct [[,cx X that is, the disjoint union of the domains of the operations.
More formally, every signature ¥ can be seen as a functor ¥ : Set — Set (thus an
endofunctor on Set) defined on objects as follows.

X — J] x>

oeX

For example, the endofunctor corresponding to the above signature ¥ = Act U
{nil, ; } is
X =1+ (J]1) + XxX =2 1+ Act+ XxX
Act
The category of algebras of a signature is then an instance of the following more
general notion.

Let ¥ : Set — Set be any endofunctor on Set. The category of X-
algebras, denoted by Set”, has as objects pairs (X, h), with X a set
and h : XX — X a function. The arrows of the category are functions
between the underlying sets preserving the algebra structure, that is,
making the following diagram commute.

zf

YX ——=3%Y

X — =Y



Section 1 — Syntax 33

That is,
foh=koXf

Even more generality can be achieved by considering also algebras of endofunctors on
categories C other than Set. For instance, since any endofunctor corresponding to a
signature ¥ extends to the category pSet of sets and partial functions, the category
pSet” can be considered: this is the same as the category of partial X-algebras
mentioned above.

The initial object in the category of algebras of an arbitrary endofunctor X, ie
the initial Y-algebra, does not always exists, but if it does, then its structure is
an isomorphism:

Initial algebras are isomorphisms. (Lambek’s Lemma.) Let (3, )
be the initial algebra of an arbitrary endofunctor X. Then the algebra
structure ¢ : XY — Y is always an isomorphism

(UESWIE=D)) (initial X-algebra)

(To prove this notice that the initial algebra structure 1 is also a X
-algebra arrow from (XX, X)) to (3, 4).)

As mentioned in the introduction, initial algebras give a very useful induction prin-
ciple. Indeed, every algebra structure h : XX — X of an arbitrary endofunctor X
with initial algebra ¥¥ = ¥ can be inductively extended to an arrow h# : ¥ — X
by taking the unique algebra arrow from the initial algebra to the algebra (X, h):

Inductive Extension

— Th#*
¥y XX
~ h
P > X
h#

Notice this is a definition which holds in any category of algebras, thus, for instance,
also for partial X-algebras.

Next, consider the construction of initial algebras. In the general setting where
the endofunctor ¥ might not stem from a signature, the initial ¥-algebra does not
always arise from an inductive construction and might even fail to exist. But for
the so-called w-cocontinuous endofunctors, like those corresponding to signatures,
the construction of the initial algebra is inductive indeed. Here w is the category
having natural numbers as objects and arrows n — m iff n < m; that is, w =
{0 =1 —2—---}. An w-cocontinuous functor F' : C — D is then a functor



34 Preliminaries

which preserves the colimits of functors J : w — C, that is, F'Colim.J = ColimF'J.
(The categories C and D are thus supposed to have these colimits.) Notice that a

functor J : w — C is a diagram in C of the form {Cj Beoyho, B3 1.

The construction of the initial algebra of an w-cocontinuous endofunctor is the
functorial generalization of the least fixed point construction of an endofunction f
in a partial order, namely as the least upper bound ||, f"L. (This works if the
partial order has a least element | and the desired lub, and the function preserves
that lub.) A partial order is a category with at most one arrow from one object to
another. For such a category, the initial object is the least element, an endofunctor
is a monotone endofunction, and w-cocompleteness amounts to chain-completeness,
ie, to the existence of least upper bounds of w-chains. An w-cocontinuous functor
is thus a monotone function which preserves lubs of w-chains. Finally, an algebra is
a pre-fixed point fz < x and the initial algebra is the least (pre-)fixed point.

Let X be an w-cocontinuous endofunctor on Set. Consider the unique function,
say Oxp, from the initial object in Set (the empty set — denoted by 0) to the set
0. Next, consider the diagram D obtained by the iterative application of the
endofunctor ¥ to the initial function Oysy; that is, for every n in w, map the arrow
n — n+ 1 of w into X"0xy:

by , 32
0 Oxo 0 Oxo 520 Oxo

Let ¥“ be the colimit of this diagram D. Then, since the endofunctor ¥ is w-
cocontinuous, XX is the colimit of the diagram XD (which is simply D without the
first arrow). Next, consider the colimiting cocone v : D = 3¥:

2
0020 _5p Z0x0_yog ¥ 00 v

S~

vy

Vo

Without the first component 14 this is also a cocone from XD to ¥“. Then:

In the above construction, the mediating arrow from the colimit X3 of
YD into X“ gives the initial -algebra structure. This can be proved
by noticing that, for any algebra Y-algebra (X, h), a cocone from D to
X can be obtained as illustrated in the diagram below and then the
inductive extension of the algebra structure h : XX — X is given by the



Section 1 — Syntax 35

corresponding mediating arrow.

0 20 . X220
0 =0 50 20 520 =0
0x Y0x 220
X T X- »2X
h Th >2h

(This is the “Basic Lemma” from [SP82].)

Notice that the above construction applies to any category with initial object and w-
colimits. Thus, for instance, it can be applied also to w-cocontinuous endofunctors
on pSet.

Evident w-cocontinuous endofunctors are identity and constant functors, as well
as colimit functors (because of the standard “interchange of colimits”) like cop-
roducts. In Set, also finite products are w-cocontinuous (see, eg, [Mac71, Theorem
IX.2.1]), hence, since w-cocontinuousness is preserved by composition, the endofunc-
tors corresponding to signatures are w-cocontinuous. Similarly, for every signature
Y and every set X, the endofunctor

(X+X) : Set — Set

with action Y — X + XY is w-cocontinuous, hence its initial algebra exists: it is
the algebra freely generated by > on X, with as carrier T X, the set of terms
with variables x € X. Since initial algebras are isomorphisms

X+3¥XTX=T1TX
the set T X is a coproduct and its algebra structure is the copair of the injections
inly : X - TX inry : XTX - TX

The left injection is the usual insertion of variables x € X into the terms t € T'X,
which is usually left implicit. Formally, = is simply an element of the set X and it
is only after applying inlx to it that one obtains a variable. This variable-making
function is usually written as

77X:|n|XX—>TX

The other injection inry : X7T'X — T X is the operation which permits to construct
a new term given any n-ary operator o and terms %y, ...,%,; also the right injection
is usually left implicitly and one writes simply o(t1,...,t,) for the resulting term.
Like T°0, also T'X, being an initial algebra, comes with an induction principle.
and, since it is a coproduct, one can rephrase the principle as follows. For every



36 Preliminaries

Y-algebra structure h : X7 — Z and every ‘valuation’ function f : X — Z of
the variables in X as elements of the algebra (Z, h), there exists a unique function
ff: TX — Z making

commute. Omitting the injections,

Fla) = f@) and  Fo(t, o b)) = ho(F(t), -, (1)

This inductive extension of / along the valuation function f is, formally, the
inductive extension [f, h]* of the (X +X)-algebra structure on Z given by the copair

X X+3¥Z =— X7
(£, h]
f l h
v
Z

For instance, this induction principle can be used to show that the operator 1’
inductively extends to a functor T : Set — Set. Indeed, to define its action 7' f on
a function f : X — Y, take the inductive extension of inry : ¥TY — TY along the
composite inly o f:

. .

x XZOX ey MY vy

f Tf= (v o f)* STf

Y TY STY
Ny = in|y inry

To prove that this definition is functorial, ie T'(idx) = idyx and T'(go f) = TgoTf,
for g : Y — Z, one exploits the uniqueness of inductive extensions: the function
idry fits as (nx oidx)* = (nx)* and T'g o T'f fits as (nz o g o f)F.

Notice that a function f : X — Y can be seen as a ‘renaming’ of variables and
then the function T'f : TX — TY is the inductive extension of such a renaming
from simple variables to complex terms with variables.



Section 1 — Syntax

Another example is the definition of the operation px
extending inry : X717 X — T'X along the identity on 7°X:

rx— M oy MY srrx
N x = (idrx)* |Spx
v
TX<s—— 3¥TX
inrx

37

:TTX — TX inductively

This permits to form terms from any operator derivable from the signature. For

instance, for the above sample language, consider the

derived (unary) operator

‘a; () given any term t € TX, one can form the term a ;¢ by first applying

a; () totand then py:
a;t=px(a;(t)

Derived operators can also be seen as conterts and then the operation px is formally
needed to remove brackets after plugging terms in the holes of a context.

Notes. For a comprehensive survey on the use of Y-algebras in semantics see [MT92].



38

Preliminaries



2 Terms, Algebras and Monads

The inductive definition of the syntax of a language as a free algebra on a signature
¥ defines a ‘syntactical monad’ T. In general, every algebraic theory (3, E) defines
a monad 7" and, ‘conversely’, every monad is defined by its algebras in a categorical,
more abstract sense.

Let I be the identity functor. By definition, the insertion-of-variables function
nx = inlx : X — T'X introduced in the previous section is natural in X:

n:1=1T

Similarly, the brackets-removing function uyx : T?X — T'X is natural in X, because
it is the inductive extension of a natural transformation (the right injection inr :
YT = T) along the identity. The triple

T:<T7777H>

is a ‘monad’ on Set.

A monad in a category C is like a monoid in C® — the category hav-
ing as objects endofunctors on C and as arrows natural transforma-
tions between them: it is a triple < T, n, u > consisting of an object
T : C — C, an associative multiplication p : T? = T, and a unit
n : I = T for this multiplication. Notice that 7% = T o T, thus the com-
position of functors is used in this definition rather than their product.
Diagrammatically, the associativity and the (left and right) unit laws are
expressed as follows.

Monad Laws
7o T T2 =1L P B
uT 1 N\ w7
T? ——— T T
m

39



40 Preliminaries

In order to prove that the free ¥-algebra functor T', together with the left injection
n =inl: 1 = T as unit and the inductive extension of the right injection inr : ¥7" =
T along the identity as multiplication p : 7% = T, is a monad on Set, recall the
definition of u:

nrx inrrx

TX T2 X T2 X

N nx Yux

TX<——3TX
inrx

The commutativity of the triangle on the left shows that n and p satisfy the left
unit law. As for the right unit law, exploit the uniqueness of inductive extensions,
noticing that both the identity on 77X and the composite px 0Ty fit as the (unique!)
inductive extension nx* of inryx along nx:

X" Tx< "X vry
nx Tnx YXTnx
| rx Xy MY gpey
N\ px Lpx
X TX<— STX
nx inrx

Indeed, everything in sight in the above diagram commutes, either by definition
or by naturality (of n and inr). Similarly, one can prove the associativity law by
noticing that both composites purx o pux and T'ux o ux fit as the inductive extension

px® of inry along fx.



Section 2 — Monads 41

From adjunctions to monads. A source of monads is to be found in adjunctions:

FEvery adjunction from a category C to a category D

counit =¢: FG =1

C unit =n:1 = GF

gives rise to a monad T =< GF,n,GeF > on C.

For a proof of this fact see, eg, [Mac71, §VI.1]; here, as an example, consider again the
above term monad. Firstly, notice that the property that every ¥-algebra structure
h :¥Z — Z can be inductively extended along any function f : X — Z to a function
ft: TX — Z amounts to the fact that the forgetful functor U* : Set” — Set,
mapping Y-algebras to their carriers, has a left adjoint, namely the functor

F* : Set — Set” X (inry : 2TX — TX)
Indeed, the diagram defining f*

nx inrx

X TX STX
f S s/
i
Z<=— %7
h
can be decomposed into
X — ™ 7x = UNTX,inrx) Tx<—"% w1y
f fﬂ — szﬂ lfﬁ Efﬂ
v
Z =U®(Z,h) I=—— %7
h

which shows that F* is the left adjoint of U* and, moreover, that 7 is the unit of
the adjunction.
Next, the counit ¢ of the adjunction is id*, ie, for every Y-algebra structure
h:¥X — X,
e TX - X

is the inductive extension of h along the identity on X. Then, indeed, from F*-U>,
one gets the above monad as follows.

T=U>F* n=n L= Eine = £ = Uepy



49 Preliminaries

From monads to adjunctions

Not only every adjunction gives rise to a monad, but also, conversely, every monad
splits into an adjunction. In general, there are many categories D such that a monad
in C splits into an adjunction from C to D, but there are two canonical ones, namely
the initial and the final ones in a suitable sense. Consider the final one; it is defined
by adding some extra conditions on the objects of the category of algebras of an
endofunctor:

Let T'=<T,n,u > be a monad in a category C. The category of 7'-
algebras, denoted by C”, has as objects pairs (X, h), with X an object
of Cand h: TX — X an arrow of C such that the following diagrams
commute.

T-Algebra Laws

T°X——— =TX X—= =7TX
X h AN h
TX— =X X

The arrows of the category are those arrows of the category C which
preserve the algebra structure, that is, making the following diagram

commute.
TX L TY
h k
X Y
f

(This category is also called the Filenberg-Moore category of the monad.)

Notice that, in particular, (T X, uy) is a T-algebra for every object X in C. There-
fore, also (T?X, urx) is a T-algebra and uy is an algebra arrow between them.
Another example of a T-algebra structure is given by the above inductive exten-
sion e, : TX — X of a X-algebra structure h : XX — X along the identity on X.
Indeed, the law €, o nx = idx holds by definition, while the other law holds because



Section 2 — Monads 43
both composites €, o jux and e, o Tey, fit as the inductive extension £,* of h along ¢,

TxTX 7y

Eh

Eh Eshﬂ

as shown by the commutativity of the following two diagrams.

XX ey JMTX oy Tx X ey TX gy
Eh Ten ¥Tey, €n AN nx Ypux
x Tx< "% 1y X Tx<"% w1y
AN €n Zep AN En en

Xe ¥x XX

Y-algebras are T-algebras. The above mapping
(h:XX - X)— (65 : TX = X)

taking a Y-algebra structure on X into its coinductive extension along the identity
on X

nx inrx

X TX ¥TX

€h Yen

N\

v
X=— %X

h

is an isomorphism between the category of ¥-algebras and the algebras of its cor-
responding monad 7'.



44 Preliminaries

For the inverse of this mapping from - to T-algebras, precompose each T-
algebra (X, h) first with the right injection inry : ¥TX — TX and then with
Ynx XX = XTX

(X,h) — (X, hoinrx o ¥nx)

One half of this isomorphism is illustrated by the following diagram, which commutes
‘almost’ by definition.

nx inrx Ynx

TX YTX XX

X=— 33X

The other half of the isomorphism, namely the commutativity of

x_ TX inrx STX
AN h Sh
X TX NTX oX
h inrx Ynx

is more complex. To prove it, fill the above diagram with subdiagrams which com-
mute either by the T-algebras laws (for the algebra (X, k)) or by naturality (of the
right injection inr and of the unit 1), or by the ‘identity law’ for the monad 7"

nx ian

X TX ¥TX

-s\ —

inrx YTX
X 5 Ep,x\ 5 Ynrx
N h T’X<=—— ST?°X
ianX
iTh lETh
X TX YTX ¥X
h inrx Ynx

This concludes the proof of the isomorphism between Y- and T-algebras.

Under the above isomorphism, the free ¥-algebra structure inry : X7 X — TX
over X corresponds to the T-algebra structure puy = & : T°X — TX. (See the
concrete description of these two operations given in the previous section.) Recall
that the forgetful functor U> : Set™ — Set from the Y-algebras has a left adjoint
F*X = (X,inry : ¥TX 2 TX). Correspondingly, also the evident forgetful functor



Section 2 — Monads 45

U" : Set” — Set from the T-algebras has a left adjoint namely F7X = (X, uy :
T?X — TX) and the following two diagrams commute.

Set” = Set” Set® = Set”

A AR

Set Set

In general, the above adjunction FTHU? holds for algebras of monads on any
category C:

The adjunction FT-HU” splitting the monad 7'. The functor
F':.c—cC” X = (X, pux : T*°X - TX)

is the left adjoint of the forgetful functor UT : CT — C mapping T-
algebras to their carriers. The unit of this adjunction is the unit 7 of the
monad. As for the counit ¢ : FTUT = I, this is simply

exny =h: FTUT(X,h) = (TX, px) — (X, h)

which is a T-algebra arrow from (T'X, 1y) to (X, h) because of the very
definition of T-algebra structure. The right unit law of the monad and
the T-algebra law for the unit are then the two triangular equalities
which prove the adjunction F7HU?.

The monad arising from this adjunction is the original monad 7"
T =<Tnu>=<U"F' n, U'F'e >
Therefore:
Every monad is defined by its algebras.
Moreover, the adjunction FZ-HU? is the ‘final’ one defining the monad T'; that is,

from any adjunction
F

C

-
)

U

giving rise to the monad 7" there exists a unique ‘comparison’ functor K : D — C7
such that the following two diagrams commute.



46 Preliminaries

If e : FU = [ is the counit of the adjunction F'HU, then, for every object D of D,
KD =(UD,Uep :UFUD =TUD — UD)

When this comparison functor K is an isomorphism, then the functor U : D — C
is called monadic. Thus, for instance, the forgetful functor U> : Set™ — Set is
monadic.

In general, to prove that a functor is monadic, one can use Beck’s theorem (see,
eg, [MacT71]) stating that a functor is monadic if and only if it ‘creates’ suitable
coequalizers. In particular, this can be used to prove the following generalization of
the above correspondence between Y- and T-algebras.

Algebras are T-algebras. Given a signature ¥ and a set E of equa-
tions on the (derived) operators of the signature, consider the corres-
ponding category Set™) of Y-algebras validating the equations in F
and having as arrows functions which preserve the operators. Then,
the evident forgetful functor from Set!™® to Set has a left adjoint
and, moreover, it is monadic. Therefore, the category of algebras of the
morzad >T corresponding to this adjunction is isomorphic to the category
Set!>F),

This shows that the notion of algebras of monads encompasses the standard notion
of algebras as wvarieties, that is, as sets with operations from a signature > which
validate a set of equations F. (Eg, monoids, groups, semi-lattices, etc.)

Notice that one might want to describe the programs of a language as a free
(X, E)-algebra rather than a free Y-algebra. For instance, the behaviour of the
sequential composition operator is intended to be associative thus one can axiomatize
this directly in the syntax by adding the equation

x;(y;2)=(x;y);2

Then, there will be no distinction in the syntax anymore between the program
t; (u;v) and the program (¢ ; u) ; v, ie they will represent the same program. (An-
other example is in Section 10, where the semi-lattice laws are imposed on the
‘non-deterministic choice’ operator ‘or’.)

Equations can also be used to describe the behaviour of new operators algebra-
ically. For instance, one can define a ‘replication’ operator ‘!’ in terms of sequential
composition by means of the equation

lr =x; (o)

Thus, in general, the programs of a language might be terms of a signature X
quotiented by (the smallest congruence generated by) a set of equations E. In the
sequel, monads T corresponding to (X, F)-algebras describing the programs of a
language will be called syntactical monads.



Section 2 — Monads 47

Finally, notice that the fact that X-algebras are T-algebras holds also for arbit-
rary endofunctors ¥ : C — C which have an initial (X +X)-algebra TX 2 X+XTX
for every object X in the category C. That is, the forgetful functor U” : C* — C
has a left adjoint X — (TX,inry : ¥XTX — TX) and, moreover, it is monadic.
Thus the isomorphism of categories

Set” = Set”

is not only an instance of
Set™F) =~ Set”

but also of
Cc*=C’



48

Preliminaries



3 Operational Semantics, Transition Systems and Coalgebras

Operational models like transition systems can be seen as ‘coalgebras’ of suitable
‘behaviour’ endofunctors.

The operational semantics of a language defines how programs are to be
executed and what their observable effect is. More specifically, the operational
semantics considered here aims at specifying the actions that programs can perform,
like changing a state, and their subsequent transitions into new programs, usually
the part of the code still remaining to be executed. The result is thus a relation of
type

Programs x Actions x Programs

usually denoted element-wise as a labelled arrow of type
program —— program

Relations of this kind are called ‘labelled transition systems’ as they specify the
(labelled) transitions between programs.

In general, a transition system with labels a € A is given by a set X of states
and a family {——} , of transition relations labelled by a € A:

(X, {10

One reads
a
x —

as ‘from the state x the system can perform an action a and reach the state z”’.
Equivalently, a labelled transition system is a labelled directed graph: nodes =
states, labelled arcs = transitions.

The inert states of a transition system are those from which no action can be
performed. It is convenient to introduce an explicit predicate ‘| %’ on states to
express that one can observe that a state is inert:

xr ] *x <= xisinert
Thus a transition system is a triple
(X, {4, )

49



50 Preliminaries

In general, given an operational semantics, it might not be easy to prove things
about the behaviour of programs, like, for instance, to see whether a program is
deterministic. In order to facilitate reasoning about programs, it is convenient that
the operational semantics be structured, that is, the transition system should
be defined by induction on the program constructs (structural induction). For
example, the intended operational semantics for the simple imperative language

te=x|alnil]|(t;t)

could be specified by induction on the program constructs as follows.

Consider first the constant nil: its intended meaning is that it is the basic inert
program, that is, a program which cannot perform any action. The only rule for it
is then

nil | %

Next, every constant a in Act is an atomic program which can perform the
corresponding action @ and then become inert:

a .
a — nil

Finally, for the sequential composition operator there are three cases to be con-
sidered: (7) the first component can perform a transition; (i) the first component is
inert but the second component can perform a transition; (#i) both components are
inert. That is, using also the meta-variables u, v, etc, to range over the programs of
the language,

u—u' uwlx v ul*x vlx

a a
u;v—u ;v u;v— v u; vl ok

Let us denote the above set of rules by R. All rules of R are well-founded, hence
the least transition system closed under R does exist: this is the intended model
for R. Moreover, the rules of R are finitary, hence every transition in the intended
model can be proved in a finite number of steps.

By structural induction, one can prove that the set of states of the intended
model is the set T'0 of closed programs. Indeed, there are axioms for all constants
and if two programs u and v belong to the states of the model then also u ; v does.
Thus the intended model is of the form

(10, {—=}ace: 1#)

Another property of the above transition system which can be proved by struc-
tural induction is that it is deterministic: there is only one rule for each constant
and the three rules for sequential composition have, by induction, disjoint hypo-
theses; thus every program can perform at most one action.

A similar argument shows that every program can either perform an action or
being inert; that is, for every closed program ¢, either there exists a unique action



Section 3 — Transition Systems 51

a and a unique program t' such that t —— t' or, otherwise, ¢ | . Therefore, this
transition system (ie, the transition relation together with the predicate | *) can
then be regarded as a single total function

[-lr : TO =1+ Act x TO

For this, put
[tlr =% <= t|=* and [tlr =<a,t'> <= t 1

where, recall, ‘x’ denotes the unique element of the final object 1 in Set. In general,
this defines a one-to-one correspondence between deterministic transition systems
and ‘co-algebras’ of the endofunctor BX =1+ Act x X on Set.

Given an endofunctor B : C — C on a category C, the category of
B-coalgebras, denoted by Cp, has as objects pairs (X, k), with X an
object of C and k£ : X — BX an arrow of C. The arrows f : (X, k) —
(X' k') of Cp are the arrows f : X — X' of C which preserve the
coalgebra structure:

X — - =X

BX — sBX'
Bf

(Cf X-algebras in Section 1.)

Thus a coalgebra of the endofunctor BX =1+ Act x X is a pair (X, k), with X a

set and k a function
k: X —>1+Actx X

This can be seen as a deterministic transition system
(X A= ace s )
because of the correspondence

Tl x <= k() =x and -1 = k(r)=<a,z>



52 Preliminaries

Notions of behaviour and endofunctors. The above correspondence between
deterministic transition systems and coalgebras of the ‘behaviour’ endofunctor BX =
14+Act x X generalizes to several forms of non-deterministic transition systems. More
generally, the claim is that coalgebras are suitable to modelling the operational be-
haviour of the programs of a language. The corresponding endofunctors are called
behaviour endofunctors.

Consider transition systems without the inert predicate |x. Take the endofunctor

BX =P(Act x X)

where P : Set — Set is the (covariant) power-set endofunctor: for every set X and
function f: X =Y

PX={X"|X'cX}  (PNHX)={fz]zeX}
Then, a one-to-one correspondence between coalgebras
k:X — P(Act x X)

and transition systems
a
(X A=)
is obtained by putting

<a,1'>€k(r) &= v
Another example is obtained by restricting the above behaviour to
BX = Ps(Act x X)

where Py : Set — Set is the finite power-set endofunctor. 1ts coalgebras correspond
to ‘finitely branching transition systems’, that is transition systems which can, at
each state, choose among a finite set of transitions rather than among an arbitrarily
large one.

Notice in the two examples above that a state x is mapped by the coalgebra
structure k£ to the empty set 0 if and only if the corresponding transition system
cannot perform any transition from z. Alternatively, one can use the isomorphism

Pi(Act x X) 22 14 P(Act x X)

where P is the ‘relevant’ part of the (finite) power-set functor, mapping a set to
the set of its (finite) and non-empty subsets. The coalgebras of the behaviour
BX = 1+P(Act x X) are then finitely branching transition system with the explicit
inert predicate |*. Omitting the injections into the coproduct 1 + P(Act x X), the
correspondence is as follows.

k(z) =+ < x| * and <a,r'>€k(z) <= v



Section 3 — Transition Systems 53

Here the transition relation and the inert predicate are disjoint: if a state can
become inert then it cannot choose to perform an action. If, instead, one wants
to consider transition systems with states in which both choices are allowed the
following behaviour is to be used.

BX = P(1 + Act x X)
Omitting the injections, one has the following correspondence.
x € k(r) < x| x and <a,1'>€k(z) <= v

One step further is to consider the same behaviours as above but taken in pSets
— the category of sets and partial functions — rather than in Set. This corresponds
to considering partial transition systems, ie transition systems with states whose
behaviour might be undefined.

It should be stressed that the coalgebras of the above behaviours correspond
only as objects to transition systems: the arrows are quite different. Consider
the case of transition systems without the predicate | *. Then, following
the definition of transition systems as relations (or as graphs) the natural
definition of an arrow

(X, {L>X}Act> — (Y, {LY}ACt>

between transition systems with the same labels is as a function f: X — Y
between their states such that if z —=x ' then f(z) —=y f(z'). Instead,
regarding a transition system as a coalgebra, one has the extra condition that
the function f must be such that if f(z) —%+y y for some state y € Y, then
there exists a state 2’ € X such that z —x 2.

Therefore, a category of transition systems is different from the category of
coalgebras of the corresponding behaviour. In particular, the universals in the
two categories will be different. For instance, while the product of two trans-
ition system always exists, the product of two coalgebras does not necessarily
exist. Also, the final transition system is different from the final coalgebra.
(The latter is an object which enjoys very important semantical properties —
cf Section 5.)

The above behaviours, whose coalgebras correspond to various forms of labelled
transition systems, are suitable for modelling imperative and concurrent languages.
Instead, for modelling applicative languages, one needs behaviours involving some
form of function space functor. An example is the endofunctor

BX =1+ XY

The ‘exponent’ XY is the set of functions from Y to X. In order to avoid the usual
‘mixed variance’ problems, Y is here treated as a parameter. By putting ¥ = X
one obtains that the corresponding coalgebras are the quasi-applicative transition
systems defined in [Abr90]. The ‘exception’ 1 in the above behaviour can be used
to encode non-termination.



54 Preliminaries

For example, for X and Y both equal to the set A of closed A-terms, one can
define a coalgebra structure

ev:A—1+AN
by putting, for every A-term M € A,
ev(M) =P — N[P/x]
if M converges to ‘principal weak head normal form’ Az. N, and
ev(M) = x
otherwise.

Back now to deterministic transition systems and the corresponding behaviour
BX =1+ Act x X. Recall that the rules R for the above sample language induce
a coalgebra

[-lr : T0O — BTO

This can be seen as a special case of a general construction which, starting from a
coalgebra (ie deterministic transition system) structure k : X — BX, yields a new
coalgebra structure

[e : TX — BTX
with the set of terms T'X as carrier and which ‘conservatively extends’ the original
structure k.

Indeed, one can add, for every x € X, the value of k(x) as an axiom to the
rules in R that is, if k(z) =< a,r > then add z —* 2’ to R and if k(z) = *
then add x | *. The least transition system induced by these extended rules will
have then T'X as set of states and be deterministic, hence it can be regarded as a
coalgebra with structure [-]% : TX — 1+ Act x TX. By structural induction, one
can prove that this induced transition system/coalgebra conservatively extends
the coalgebra/transition system (X, k) in the sense that, for every z € X,

k() = [o]%
Formally, recalling that ny : X — T'X is the insertion-of-variables function which

permits to see the elements © € X as variable terms in 7°X, the above conservative
extension property amounts to the commutativity of the following diagram.

x—— "™ _rx

k [1%

BX — = BTX
Bnx

That is, the function nx : X — T'X ‘lifts’ to a coalgebra arrow
Nx : <X7 k> — (TXa [H];CZ>

for every coalgebras structure k£ on X.



Section 3 — Transition Systems 55

Notes. The importance of the correspondence between labelled transition systems and
coalgebras of the behaviour BX = P(Act x X) has been stressed by Peter Aczel in [Acz88].
(But see also [Ken87] and [Hes88].) For a comprehensive categorical (but not coalgebraic!)
treatment of labelled transition systems see [WN95].

As mentioned in the introduction, it would be interesting to sort out the relationship
between the present notion of behaviour as an endofunctor whose coalgebras are oper-
ational models and Eugenio Moggi’s notion of computation as a monad [Mog91]. The
examples of computational monads given in [Mog91] (partiality, non-determinism, side-
effects, exceptions, etc) all qualify as behaviours, and the corresponding monadic opera-
tions could play an important role in further developments. (The operations of the (finite)
non-determinism monad Py are already used in Sections 10 and 11.)



56

Preliminaries



4 Functorial Operational Semantics

In this section, a new approach to operational semantics, based on categorical no-
tions of syntax and behaviour, is introduced: an operational semantics is functorial
when it is a ‘lifting’ of the syntactical monad 7" to the coalgebras of the behaviour
endofunctor B.

Inductively, this can be obtained by defining an ‘action’ of the program con-
structs on the composite functor B1'; as an instance, the operational rules of a
simple deterministic language are shown to define such an action. More generally, a
functorial operational semantics can be obtained by defining a ‘distributive law’ of
the syntactical monad T over the behaviour functor B.

Given a syntactical monad 7" and a behaviour endofunctor B on the same cat-
egory, a functorial operational semantics wrt 7" and B is a ‘lifting’ of the monad
T to the B- coalgebras.

In general, let U : Cz — C be the forgetful functor mapping coalgebras (X, k)
to their carriers X. Then, a lifting of a monad 17'=<71,n, u> to the coalgebras of
an endofunctor B on the same category C is a monad ® such that the diagram

CB%CB

U U

C ——=C

T

commutes, making U : Cg — C a ‘map of monads’. That is, ® is a triple <®, 7, i >
such that

U = TU:Cp—C

Ung = n:U=TU

Uip = py:T°U=TU

The second and third equation imply that the unit 77 and multiplication z of ® are
the same as the unit n and multiplication p of T'=<Tn, p >, because of the very
definition of coalgebra arrows. Therefore:

(1):<(1)77771u>

57



58 Functorial Semantics

One can check that the three equations and the fact that the triple T'=<T,n, u>
is a monad imply that also the triple =< ®,n, u> is a monad.

Let us now look at the endofunctor ®. The equation U® = T'U implies that P is
completely determined by its action on the structure of coalgebras, that is, on the
arrow k : X — BX in a coalgebra (X, k):

x _Fk BX
TX— - BTX
ok

Indeed, by the definition of coalgebra arrows, the action of ® on arrows is the same
as the one of T

T
X % X' TX %TX’
! @ !
k k —_— Pk Pk
BX — > BX' BTX— SBTX'
Bf BTf

Rewriting the above action as

(X, k) B A (X', K

TUf

TU(X, k) ——=TU(X', )

(X, k) (X', k')

BTU(X,k)——=BTU(X' k')
BTUf

shows the following correspondence.

Liftings as Coactions. A lifting of an endofunctor T to the B-
coalgebras, that is, an endofunctor ® such that U® = T'U, is the same
as a coaction of B on the composite functor 7U : Cp — C, that is, a
natural transformation

TU = BTU

Finally, the conditions Un = ny and U = py amount to say that n and p lift to
natural transformations in the B-coalgebras. That is, for every coalgebra (X, k),



Section 4 — Functorial Operational Semantics 59

the two squares in the following diagram commute.

nx HXx

X TX T:X

k ok B2k

BX— = BTX<— BT’X
Bnx Bux
Inductive Functorial Operational Semantics

An inductive way of defining a functorial operational semantics is by specifying the
action of the program constructs ¥ on the ‘observables’ BT of the language, that
is, by giving a natural transformation

¢ SBT = BT

Indeed, for every B-coalgebra (X, k), the X-algebra structure ¢x = duxn) :
YX(BTX) — BTX on BT'X can be inductively extended along the composite By ok
to a coalgebra structure ¢(k) : TX — BT X

nx inrx

X TX XTX
k $(k) = (Bnx ok)* So(k)
y
BX BTX YBTX
Bnx ox

By the naturality of ¢, this definition is natural in (X, k), that is,
¢:TU = BTU

thus ¢ can be seen as an endofunctor (with the same name) on the B-coalgebras.

Moreover, the triple < QAS, n, > — where, recall, n and g are the unit and multi-
plication of the term monad 7" — is a monad on the B-coalgebras, that is, the two
squares in

X nx TX < MX T°X
k (k) ¢*(k)
BX BTX BT?*X

Bnx Bux



60 Functorial Semantics

commute. Indeed, the square corresponding to the unit 7 commutes by definition,
while the one corresponding to the multiplication x commutes because both com-
posites ¢(k) o py and Buy o ¢2(k) fit as the (unique!) inductive extension of ¢y
along ¢(k)

ianx

TX T X Y72 X
B(k) l
BTX G (k)F Se(k)F
N 1
v
BTX<  SBTX
dx
because
Tx-— X prx MTX ey Tx— X _ prx "X epry
- ~ N -
#(k) ¢ (k) 2¢° (k) o(k) N ux Sux
B’I]TX 2 BianX 2 inl’x
BTX ——= BT“X<——— Y¥BT*X BTX TX<—"—3TX
A Bpux IBux A\ p(k) (k)
BTX<— SBTX BTX<— SBTX
dx bx

Some terminology: in the sequel, a functorial operational semantics ® is also called
the operational monad ¢ and the natural transformation ¢ : BT = BT indu-
cing the operational monad ¢ is called the germ of ¢.



Section 4 — Functorial Operational Semantics 61

Operational Rules and Inductive Functorial Operational Semantics

Now the claim is that the operational rules R given in the previous section for the
simple deterministic language ¢ ::= x | a | nil | (¢; t) can be regarded as a natural
transformation

[R]:SB = BT

Moreover, by taking the composite By o [R]y : X BT = BT one obtains the germ
of an inductive functorial operational semantics which is ‘observationally equivalent’
to the operational semantics induced by the rules R. (This result is generalized in
Section 11 to the large class of ‘GSOS’ operational rules, which are suitable to model
most of imperative and concurrent programming languages.)

Recall that the algebras of the signature ¥ = ActU{nil, ; } for the above language
are the same as the algebras of the endofunctor

YX =14Act+ X xX

on Set and that the programs t are the elements of T°X, the carrier of the free
Y-algebra on X. Also, recall that the operational semantics induced by the rules
R of the language is a deterministic transition system and that there is a one-to-
one correspondence between deterministic transition systems and coalgebras of the
endofunctor

BX =14 Act x X

This correspondence says that a transition # — 2’ of a deterministic transition
system can be seen as the action x — < a,z’ > of a coalgebra structure X — BX;
similarly, the action z — * corresponds to the fact that x | * holds. Thus the
operational rules R given in the previous section can be written as follows.

nil — % a — <a,nil>
u<a,u > ursx v <a, v > U * Uk
Ui <a,u ;u> U v <a,v > U0 %k

Next, let us define the natural transformation [R]: ¥B = BT. Let r and s be
meta-variables ranging over elements of BX = 1+ Act x X, for arbitrary sets of
variables X. One has to define the value of [R]x at nil, at a, and at r ; s, for all
r,s. Omitting the subscript X, put

[R](nil) = x and [R](a) = <a,nil>
For sequential composition there are three cases to be considered, namely
1. r=<a,z>

2. r=xand s =<a,y>



62 Functorial Semantics

3. r=+%and s = %

In the second and third case one can follow the definition of R and put <a,y > and
x, respectively, for the value of [R] at r; s. Instead, in the first case, one cannot
put simply < a,x ; s> because z ; s is not of type 1. The problem is that s is of
type B rather than 7'. But notice that B can be embedded in T

The embedding v of the behaviour into the syntax. The action
* > nil <, T>—a; T

defines an injective function from BX to T'X, for every set X. It is
manifestly natural in X; call it

vy:B=T

One can then put
<a,r;vys> ifr=<a,z>
R1(r;s) =< <a,y> if r=x%and s =<a,y>
* ifr=x=s

Altogether, in a more suggestive notation:

. [R] R )
nil — % a — <a,nil>
r=<a,r> r=x s=<a,y> r=x%x S==x%
.o [l . LRI IR
rys——<a,r;ys> rys—<a,y> TS > %
This definition yields a natural transformation
[R]:YXB = BT

Indeed, the only problematic clause for the naturality of [R] is [R](r ; s)
for r =<a,x>. One has to show that, for every ‘renaming’ f : X — Y,
the following holds.

<a,r>;s ¢ >Bf <a,fx>; (Bf)(s)

[R]x [Rly

<a,r;yxs>+————= <a,(Tf)(z; yxs)>=<a, fr; yvv(Bf)(s)>
BTf
That is,
(Tf)(yxs) =1y (Bf)(s)
But this is immediate from the fact that v is a natural transformation
from B to T.



Section 4 — Functorial Operational Semantics 63

(As shown in Section 11, the argument in the above proof generalizes to any (possibly
non-deterministic) rule in the ‘GSOS-format’.)

Next, consider the germ of the functorial operational semantics corresponding
to R. It is essentially the same as [R], only it is applied to terms, hence the
multiplication p of the syntactical monad 7" is needed in order to remove brackets
from the resulting terms of terms to yield simple terms. Thus ¢® = Buo [R]|r :
YBT = BT, that is,

[Rlr

EBT:>BT2

PN

BT

Therefore:

. R PR ;
nil — % a —<a,nil>
r=<a,t> r=%x s=<a,t> r—=%x S=x

PR PR PR
r;sr—=<a,t;ys> ;s —<a,t> T8> %

The resulting ¢® : YBT = BT is the germ of a functorial operational semantics.
In particular, consider the case of closed terms 70 and write

[H] [R] - 70— BTO0

for the operational model obtained by taking the inductive extension of ¢ : X BT0 —
BTO

2] [R]

%70 SBT0
= ¢5
TO-------- ~ BT0

Then, by definition,

<a,u' 5 y[v]ry > if [u]ir) =<a,u'>
[u;v]r) = <a,v'> if [ulir) =* and [v]ir] =<a,v'>
* if [uliry = * = [v]r)

Contrast this with the operational model

[-]z : TO — BTO



64 Functorial Semantics

‘directly’ induced by the rules R on the closed terms: they are the same, except for
[u;v]r =<a,u' ;0> if [ulg =<a,u' >

In Section 6 it is shown that for every term v, the term y[v] ] exhibits the same
‘observable behaviour’ as v, under any context. Therefore, the two models [-]r and
[-Irr] are ‘observationally equivalent’. This is based on the fact that the above
natural transformation v : B = T is a ‘retraction’ for the operational semantics
induced by R. More precisely, for every coalgebra structure k£ : X — BX, the
composite arrow px oyrx : BT'X — TX is a right inverse for the operational model
[-]% : TX — BT X induced by R. Indeed, omitting, as usual, the multiplication p,

Yrx (%) = nil Ry ok and yrx(<a,t>) = a;t »&<a,t>

hence
[yrx ()]5 = * and [vrx(<a,t>)]%s =<a,t>



Section 4 — Functorial Operational Semantics 65

Semantics as a Distributive Law

The germ ¢ : X BT = BT of an inductive functorial operational semantics gg defines
a ‘distributive law’ ¢# : T'B = BT of the syntactical monad 7" over the behaviour
B. The operational monad $ can be then decomposed in terms of this distributive
law and of T itself. In turn, every distributive law A : TB = BT defines a lifting of
the monad T to the B-coalgebras.

In general, a distributive law of a monad 1T'=<7T', n, ©> over an endofunctor
B (on the same category) is a natural transformation

A:TB = BT
such that the following two diagrams commute.

g TA Ar

B TBT BT?
- w uBH HBM
TBEBT TB BT
A A

Every distributive law A : TB = BT defines an endofunctor lifting 7" to the
B-coalgebras by mapping a coalgebra (X, k) to the coalgebra (T X, Ao Tk):

x_k BX

TX TBX BTX
Tk Ax

Moreover, this is a lifting of the whole monad T'=<T, 7, u > to the B-coalgebras,
because everything in sight in the following diagram commutes (either by the nat-
urality of n and p or by distributivity).

nx

X TX X
%k
Tk
T?°BX
M/X
k TBX TAx
nBx TBTX
Ax
Arx
BX BTX BT?*X
Bnx Bux

A distributive laws can be defined from a germ ¢ : X BT = BT by taking the
inductive extension
¢* = (Bn)* : TB = BT



66 Functorial Semantics

of the germ ¢ along the natural transformation Bn: B = BT.

"5 rp—""F_ 7R

BN 6% =B | ne*

Indeed, the left triangle shows that ¢* satisfies the first of the two conditions for
being a distributive law. To prove the second, one can show that both composites
¢* o g and B o ¢k oT¢* fit as the unique inductive extension of ¢ along ¢#. (This
is very much the same as the above proof that pu lifts to a multiplication for the
inductive functorial operational semantics &)

Notice that then the action of the inductive operational monad QAS on a coalgebra
(X, k) can be decomposed into the action of the syntactical monad 7" on the structure
k, followed by the distributive law ¢# at the carrier X:

6 (X, k) = ¢% o Tk

Notes. The notion of a distributive law of a monad over an endofunctor is derived
from the more familiar notion of a distributive law of a monad 7} over another monad
T5 introduced in [Bec69]. In that paper, the equivalence is proved between distributive
laws of the monad T over the monad 75, liftings of the monad 75 to the Tj-algebras, and
actions of the monad Ty over the functor ToU't. (See also [BW85], Chapter 9.) Here
monads are lifted to coalgebras (of a functor) rather than to algebras (of a monad) and
this gives a slightly different situation, with a monad distributing over a functor (and with
distributive laws implying liftings but not vice versa). More symmetry is gained in Section
7 by considering the comonad D cofreely generated by the behaviour B.



5 Recursive Behaviours, Final Coalgebras and Coinduction

The role of final coalgebras is dual to the one played by initial algebras, and dual
are their properties and constructions. For instance, as initial algebras account for
induction, final coalgebras account for the dual notion of ‘coinduction’, which is
useful to deal with the behaviour of recursive programs. Also, as the programs of
a language may be described as the initial algebra of a signature X, the abstract
global behaviours — the ‘processes’ — of a language may be described as the final
coalgebra of a behaviour B.

Let B be an endofunctor which has a final coalgebra (ie the final object in
the corresponding category of coalgebras) and let B denote the carrier of this final
coalgebra. The structure of a final coalgebra is, like that of an initial algebra, an
isomorphism, because the notion of isomorphism is ‘self-dual’. Thus:

B = BB (final B-coalgebra)

Any coalgebra structure £ : X — BX can be ‘coinductively’ extended to an arrow
k®: X — B by taking the unique coalgebra arrow from the coalgebra (X, k) to the
final coalgebra:

Coinductive Extension

k® ~
X--------= > B
k o
BX BB
BE®

Of particular interest are the coinductive extensions of operational models. In order
to illustrate this, let us consider languages, like the one in Section 3, which have an
operational semantics yielding deterministic transition systems, that is, coalgebras
of the behaviour endofunctor

BX =1+Act x X

on Set. Thus, if 7" is the syntactical monad for the language, an operational model
is a coalgebra with structure

[]: TX — BTX

67



68 Functorial Semantics

where X is the set of variables of the language. Then, under the assumption that
the final B-coalgebra exists, the coinductive extension of this coalgebra structure
yields the

Final Coalgebra Semantics

Q@
rx. . 1 3
[-] >~
BTX = BB
B[-

of the language. Since BT X = 1+Act xT' X, this yields, for any term ¢, the following

definition. .
* if |t = *
[1° = o
<a,[t']" > if [t] =<a,t'>

(Notice that the isomorphism B = BB has been treated as an equality in order to
simplify the notation.) Thus, for instance, wrt the operational model [-] given in
Section 3, the programs a ; b and « ; nil ; b have the same final coalgebra semantics:

[a;b]® =<a,b,+>=1[a;nil;b]°

In general, under this final coalgebra semantics, a program is mapped into the stream
of actions that it can perform.

Next, consider the construction of the final coalgebra for the above endofunctor
BX =1+ Act x X. This is an w-continuous endofunctor, that is, it preserves
limits of functors from w* = {0 <— 1 <= 2 <— - --}. Indeed, it is made of constants, a
product, and a coproduct: constants and products (like all limit functors) are w°r-
continuous in every category; finite coproducts are we°?-continuous in Set, by the
dual of a theorem [Mac71, Theorem IX.2.1] mentioned in Section 1. By further dual
considerations, the carrier of the final coalgebra of an w°’-continuous endofunctor
B is the limit B of the following diagram obtained by iterative applications of B to
the unique function from Bl to the singleton set 1, the final object in Set.

]-Bl B]-Bl

1 Bl B%1 Bls

The isomorphism ¢ : B =~ BB giving the coalgebra structure is obtained as a
mediating arrow just like in the initial algebra construction.

This general construction of final coalgebras of w°-continuous endofunctors
yields, in the particular case considered here, the final coalgebra with carrier the
set

Act™ = T Act®

alw



Section 5 — Final Coalgebras 69

of finite (v = n) and infinite (o = w) streams of actions generated by Act, and with
structure the isomorphism

@ Act™ =2 1+ Act x Act™

This isomorphism is an operation which allows one to explore the streams w €
Act™: if w = €, the empty stream, then ¢(w) = *, otherwise w = a - w' and
p(w) = <a,w' >, that is, ¢ applied to a non-empty stream returns the first element
of the stream plus its continuation. Also notice that its inverse ¢! : 1+Act x Act™ =
Act™ is a B-algebra structure; it gives the empty stream constant € = ¢ !(x) and
the prefixing operators a - - = ¢~ '(a,-), and the identity a - ¢ = a follows from the
fact that Act x 1 = Act.

Next, the unique coalgebra arrow from a B-coalgebra (X, k) to (Act™, ) is
defined as follows. Let (X, {3}, ) be the deterministic transition system corres-
ponding to the coalgebra (X, k). (Cf Section 3.) Then, for every z € X, consider
the global behaviour of the state x in the transition system: there are three pos-
sibilities, namely either (i) the state x is inert, or (ii) the system performs a finite
sequence

A S e N

of transitions starting from the state x and then reaches an inert state x,, or (i)
the system performs an infinite sequence

an+1

al as an
T — T — e = Ly

of transitions, never reaching an inert state. Correspondingly, define the function
k®: X — Act™ by putting, for every z € X,

* if (7)
E¢(z) = { <ay,ay,..., a0, %> it (i7)
<A1, A9y e vy pyy Ay, - .- > 0 (i07)

One can check this is the desired unique coalgebra arrow from (X, k) to (Act™, ¢).

Thus the coinductive extension of a coalgebra structure is defined in terms of the
global behaviours in the corresponding transition system. The carrier of the final
coalgebra itself is the set of all possible ‘abstract global behaviours” wrt B, in which
the name of the states is irrelevant. In other words, streams are global behaviours
of deterministic transition systems with a single state.

Notice that, taking the behaviour BX = 14 Act x X in the category pSet of sets
and partial functions rather than in Set, the (carrier of the) final B-coalgebra in
pSet does not contain infinite steams but only the finite ones. Indeed, using partial
functions, the coinductive extension of a state having an infinite global behaviour
can be left undefined.

Now, the set of finite streams is the carrier of the initial B-algebra, both in Set
and pSet. Similarly, the set of natural numbers N = 1 + N is both the carrier



70 Functorial Semantics

of the initial algebra and of the final coalgebra of the endofunctor X — 1+ X on
pSet, while in Set the final coalgebra needs an extra infinity point oo. This fact
generalizes to all functors X + ],y X*(?) corresponding to signatures .

Guarded Recursion. So far, the operational interpretation of the sample lan-
guage
tu=xlalnil]|(t;1)

yields global behaviours which are always finite. In order to obtain infinite global
behaviours, let us use the variables x € X of the language and define recursive
programs as solutions of ‘term-equations’ like

r=a;x

Intuitively, the solution of the above equation should be a program having as abstract
global behaviour the infinite stream a“.

In general, not all term-equations have solutions which can be interpreted as
streams. For instance, the equation

rT=z;x
should have as solution a program which keeps on unfolding itself
T—T ;0 —>T;T;T;T — ...

never performing any action. In order to rule out this kind of equation one usually
considers only recursive definitions which are ‘guarded’, that is, equations x = ¢ in
which ¢ is of the form a ; ¢'.

Operationally, the above presentation of recursive programs can be made formal
by introducing a fized point binding operator fix: given a variable x and a ‘guarded’
term ¢t = a;t, the expression fixxz.t is then a term with operational behaviour
described by the rule

tlfixz.t/z] — u
fixe.t — u

in which the expression t[fixz.t/x] stands for the term obtained by substituting the
term fixz.t for every occurrence of x in t.

One of the advantages and novelties of the present functorial approach to oper-
ational semantics is that it allows for an elegant operational description of recursive
programs which, quite surprisingly, does not require the introduction of a binding
operator like the above fix (at least for ‘top-level’ recursive definitions). Moreover,
it allows for a general formal description of guarded recursion, independent of the
use of actions and transitions.



Section 5 — Final Coalgebras 71

Firstly, every system of term-equations

.’L‘lztl
.’L‘QZtQ

with z; € X and t; € TX, can be seen as a coalgebra of the syntax T" having as
carrier the set X = {x, zy, ...} of variables appearing in the system and as structure
the function

The generalization of allowing for systems of equations, rather than single equations
amounts to allowing for mutually recursive definitions like, eg,

xT = a;y
y = b;c;y

Next, recall the embedding v : B = T of the behaviour into the syntax, mapping
% to nil and < a,z > to a; x. Then, a system of (mutually) recursive definitions
k: X — TX is guarded if it factorizes through a coalgebra

g: X = BTX

of the composite endofunctor BT in the sense that

X—=TX

N e

BTX X

Yrx

commutes, that is, k = puy oyrxyog : X — TX, where p : 7?2 = T is the
multiplication of the syntactical monad T (cf Section 2). For instance, the above
system is guarded because the corresponding T-coalgebra factorizes through

g(z) =<a,y> g(y) =<b, c;y>

Next, given the germ
¢:XBT = BT

of an inductive functorial operational semantics, write
[-] g X = BTX

for the inductive extension g¢* of the ¥-algebra structure ¢y : X BT X — BT X along
a system
g: X - BTX



72 Functorial Semantics

of guarded recursive definitions:

x— ™ _px "™ erx
N M= [sH,
v
BTX=— YBTX
ox

Notice the left triangle tells that, up to the insertion-of-variables 7y,

[+], = 9(2)

for every x in X. In this way the variables z € X can be seen as states of a transition
systems whose behaviour is described by the semantics ¢. For instance, in the above
example, z — y and y Ly T

Then, the desired interpretation of g as a recursive process is obtained by taking
the corresponding final coalgebra semantics (g*)® = [[—]]g@ : TX — B precomposed
with the insertion-of-variables 1y : X — T'X. Write, abusing the notation, g for

this function:
g@

mA

X—=TX----"9-->B

1%

[-1, = ¢*

Thus, for the above example, one has, omitting, as usual, both the insertion-of-
variables n7x and the final coalgebra isomorphism ¢,

9%(r) = <a,9%(y)>
9®(y) = <ble;yl,’> = <beg®(y)>

that is, ¢®(x) = a(bc)¥ and g°®(y) = (be)“. (Cf the above final coalgebra semantics.)
To be formal, the functorial operational semantics of the previous section gives
[esyly = <c,rrxlyl,>
hence g% (y) =<b, ¢, [yrx [[y]]g]]g@ >. However, by ‘unfolding’ [yrx [[y]]g]]g@ by

one step
[yrxlvl,),” = ¢~ o BEL, o [vrx[Wl,l,



Section 5 — Final Coalgebras 73

and by using the fact that yrx is a retraction for the operational model

[vrx [yl 1, = Wl,

one obtains
Q Q@
9 (y) = [rxlyl,l,

Therefore, the equation
(

9%(y) =<b,¢,g%(y) >

does hold.

Notice that the above recursive definition is automatically well-defined because
of the coinduction principle given by finality. In general, final coalgebras allow
recursive constructs to be interpreted also in categories where there is no structure
to ensure the existence of (canonical) fixed points of functions. In other words, the
above interpretation of recursion by final coalgebras encompasses the traditional
methods using least fixed points in complete partial orders, or unique fixed points in
complete metric spaces, or, more recently, the solution lemma in non-well-founded
sets (see Part V), and it permits to interpret recursion in any category, including
the ordinary category of (standard) sets.

Unguarded Recursion. An alternative approach to recursive programs is ob-
tained by regarding them as (possibly) infinite terms. Representing a term as a
tree whose root is labelled by the outermost constructor of the term, one has, for
instance, that the solution of the equation

rT=x;

is an infinite tree with no leaf and all nodes labelled by * ; ’:

P
PN

Similarly, the solution of = a ; x is the infinite term represented by the following

av
TN



74 Functorial Semantics

The advantage of this approach is that it can be applied also to unguarded defin-
itions, but, in order for an infinite term to be given an operational meaning, one
needs to shift from the category of ordinary sets to categories with more structured
objects like cpos or complete metric spaces.

Coalgebraically, the idea is that, while the initial X-algebra is the set of finite
terms in Y, the final -coalgebra contains also the infinite terms. The argument
is similar to the one above showing that the final coalgebra of the behaviour X
14+ Act x X contains both finite and infinite streams, while its initial algebra only the
finite ones. Now, apart from ‘meaningless’ equations like z = x (or, more generally,
x =1y, y = x) every (possibly unguarded) system of term-equations can be seen as
a coalgebra of the composite endofunctor X7, that is, as a function

k:X —XTX

This can be made into a Y-coalgebra with carrier T'X by ‘copairing’ k£ with the
identity on X7 X using the fact that T X, since it is the carrier of the initial (X+4X)-
algebra, is a coproduct TX = X +YXTX

X TX <XTX

[k, idsTx]

l 7
v
STX
(By definition, the value of this coalgebra structure at a variable z is the same as
the value of k at x.) Abusing the notation, write

@ X — %

for the composition of the insertion-of-variables ny : X — T'X with the coinductive
extension of the copair [k,idyyrx] : TX — XTX

k@
mA
X gy MRiderx]T e
k [k, idsrx] =
STX »5
Y[k, idsrx]®

Thus, for the coalgebra structure k£ corresponding to the equation x = x ; = one has,
omitting, as usual, the final coalgebra isomorphism,

ECr = (k) ; (k%z)

which is the desired infinite term.



Section 5 — Final Coalgebras 75

Once infinite terms are introduced in the syntax, the problem arises of how to interpret
them operationally. One possible solution is to consider categories in which initial algebras
and final coalgebras coincide. Indeed, if the inverse of the initial 3-algebra isomorphism
Y'Y =3 is the final ¥-coalgebra isomorphism =D and, hence,

S=T0=%

then the interpretation of a recursive definition & is the composition of the above k¢ :
X — T'0 = X with the coinductive extension [[—]]@ : T0 = ¥ — B of the operational model
[-] : TO — BTO.

Y[k, idsrx]® N

As mentioned in Section 1, a category where the initial 3-algebra is also the final
Y-coalgebra is pSet, the category of sets and partial functions. However, like in Set, also
in pSet the object ¥ = T0 is the set of finite terms only: the arrow k¢ : X — T0 is
thus a partial function mapping to ‘undefined’ every variable whose intended solution is
an infinite term. Thus, in particular, both x = z ; z and x = a ; x would be interpreted
as undefined, which is not what one expects.

To obtain both infinite terms as elements of an initial algebra and the coincidence
of initial algebra and final coalgebras one can move from pSets to pCpo, the category
having as objects complete partial orders (possibly without a bottom element) and as
arrows partial Scott-continuous functions. The signature XX = [[, X ar(@) extends to
pPCpo but its initial algebra is the same as the one in pSets. In order to obtain infinite
terms, one needs to modify ¥ by applying to every element of the coproduct [[,cx X ar(o)
the lifting monad X — X | adding a new bottom element to a cpo. That is, take

uX = [T (x*),
gEX

In this way, the syntax will contain both partial terms of the form L ; (a ; L) and infinite
terms obtained as limit of finite terms. (Cf [Plo8la]: “Syntax considered as a cpo”.)

Notice that the behaviour BX = 1+Act x X also extends to pCpo but, in general, the
problem remains of how to extend a functorial operational semantics from sets to cpos.
This is not treated in the present study and left to future work. It shows anyway the
importance of the generality of the formulation of functorial operational semantics, where
the base category C is not necessarily Set.



76 Functorial Semantics

Notes. The standard solution of domain equations in pCpo [SP82, Plo85] has long
been known to be a final coalgebra, but this was obscured by the fact that initial algebras
and final coalgebras of (‘locally continuous’) endofunctors on pCpo do coincide in the
sense that they are ‘canonically isomorphic’. (And the same holds for ‘locally contract-
ing’ endofunctors on complete metric spaces — cf [AR89, RT93].) Correspondingly, the
availability of a coinduction principle was obscured by the use of induction and by ‘intern-
al’ properties, like the existence of least (respectively unique) fixed points of continuous
(respectively contracting) functions.

It has been Peter Aczel’s work on ‘non-well-founded sets’ [Acz88] which has brought
to light the main semantic properties of final coalgebras. (But see also [Ole82] for an early
example of coinductive definitions by means of final coalgebras.) In [RT93], a first attempt
is made towards systematizing these properties and the term ‘final (coalgebra) semantics’
is introduced. Examples of final coalgebra semantics appear in [RT94] (both with ordinary
sets and with semi-lattices), [Acz94, Bal94, HL95, Har96] (with non-well-founded sets),
[Fi093] (with complete partial orders), and [TJ93] (both with complete partial orders and
with semi-lattices).

The above coalgebraic/functorial approach to the operational semantics of recursive
programs deals neatly with top-level, mutually recursive definitions, but it ignores some
aspects of the expressivity of the ‘fix’ operation, like the ability of dealing with local
definitions and parameterized definitions: this is left to future work.



I1



78



6 The Functorial Operational Semantics is Compositional

The semantics of a programming language is called compositional when the mean-
ing of compound programs can be derived from the meaning of their subcomponents.
A typical compositional semantics is obtained by defining the meaning of a program
by induction, starting from a ‘denotation’ (o | for each n-ary program construct
o:

{o(ts, . ) ) = Qo D({# )%, (2 D7)

This is called a denotational semantics.

A complete account of the meaning of a programming language requires both
an operational and a denotational semantics. The former explains how a machine
should execute programs, specifying their executable behaviours. The latter, be-
cause of its modularity, is better suited for reasoning about programs. The two
meanings should be related in such a way that one should be able to infer from the
denotational semantics the operational behaviour of the programs — up to a suitable
abstraction. In other words, the denotational semantics of a language should be
adequate wrt the operational semantics.

In general, much work is needed to prove the adequacy of a denotational se-
mantics wrt an operational one. However, from operational semantics of transition
systems defined by operational rules satisfying suitable syntactic restrictions (eg,
the rules are in the GSOS format — see Section 11), it is possible to derive adequate
denotational semantics systematically. (Cf notes below.)

Now, the novelty of the present functorial approach to operational semantics is
that every functorial operational semantics coinduces a denotational semantics and,
moreover, this denotational semantics is adequate wrt the operational one; as a
corollary, every functorial operational semantics is compositional. Being formulated
in terms of abstract notions of syntax and behaviour, this gives a general notion of
‘well-behaved’ operational semantics, based on purely mathematical properties. This

encompasses and explains the ‘syntactic’ arguments otherwise used in the literature.
(Cf Section 11.)

Assume, as usual, the (closed) programs of the language to be interpreted are the
elements of the initial algebra of the endofunctor corresponding to some program
constructs X. That is, let 7" be the syntactical monad of the language and ¥7°0 = 70
the corresponding initial algebra of closed programs. Then, the problem of defining a
denotational semantics can be reduced to the problem of finding a suitable 3-algebra

79



80 Functorial Semantics

(D, (-)), whose carrier D is the semantic domain and whose structure
(-): XD — D

is the set of denotations. The desired denotational interpretation of the programs
is then the inductive extension of this algebra of denotations, that is, the unique
algebra arrow ( - )* from the initial algebra of programs to (- |} : ¥D — D.
Diagrammatically:

Initial Algebra Semantics

2(-p*
¥T0 XD
initial algebra | = (-] = denotations
TO -~ - - - s ~D
(-0

The restriction to closed programs is adopted only to simplify the presentation. In
general, the interpretation of programs with variables € X, that is, for the elements of
TX =2 X +XTX, is parametric in a ‘valuation’ function p : X — D mapping each variable
to an element of the semantic domain D. Indeed, the inductive extension (-)# : X — D
of the denotations (-]} : XD — D along the valuation p : X — D has the familiar clauses

(ot ta) i = (oDt DE, . {taDF)

The denotational model of a language is adequate wrt the operational one when
it contains enough information to infer the abstract behaviour of the programs. Now,
recall (from the previous section) that when the operational model of the (closed)
programs can be expressed as a coalgebra structure [-] : 70 — BT0 of a behaviour
B, then the abstract (global) behaviour of the programs is given by its coinductive
extension, that is, by the corresponding final coalgebra semantics:

final coalgebra semantics

TO---- - - - - o m o > B
[1°
-1 = | final coalgebra
BT0 - BB
B[]

Then, in this setting, a denotational model is adequate wrt an operational one when
its initial algebra semantics (- )# : T0 — D is equal to the final coalgebra semantics
[[—]]@ : T0 — B corresponding to the operational model. Thus, in particular, the



Section 6 — Compositionality 81
semantic domain D should be the carrier B of the final coalgebra of the behaviour.
Diagrammatically:

=(-)* ~
2T0 ¥B

initial algebra initial algebra semantics {-)
(-0
70 I B
[-1°

-1 final coalgebra semantics final coalgebra

~

BT0 - BB
B[]

That is, for all programs t € T0,

(t)* = [t]°

As a corollary, the equivalence relation corresponding to the final coalgebra se-
mantics is a congruence, that is, if, for e =1,...,n,

[t]¢ = [£]°
then
[o(ts, .. t)]® = [ot,, ..., t)]°

for every n-ary operator o € ¥.
The above equivalence relation

t~t = [t]° =[]°

is the observational equivalence corresponding to the operational semantics of
the language, as it is determined by the abstract global behaviour of the programs,
which is their intended observable behaviour. Now, if observational equivalence of
a language is a congruence, one can systematically derive a denotational model ad-
equate wrt the operational semantics. In turn, to ensure that the observational
equivalence is a congruence one can impose suitable syntactic restrictions on the
format of the operational rules. (Eg, GSOS — see Section 11.) This gives a satis-
factory method to derive adequate denotational models from operational semantics,
but it strongly relies on the assumption that the operational semantics is given in
terms of structural rules for transition systems.

The novelty of the present functorial approach to operational semantics is that
it gives a general notion of ‘well-behaved’ operational semantics formulated in terms
of abstract notions of syntax and behaviour: every functorial operational semantics
coinduces a denotational model adequate wrt it. As shown in Section 11, this purely
mathematical approach encompasses — and explains — the above ‘syntactic’ method.



82 Functorial Semantics

The denotational model coinduced by ®. Let us now look at the actual con-
struction of the denotations corresponding to a functorial operational semantics .
Recall that the operational monad & =< ®,n, 4> is a lifting of the syntactical monad
T'=<T,n, u> freely generated by the program constructs . It is convenient to use
the isomorphism, illustrated in Section 2, between the categories of Y-algebras and
T-algebras, and define the desired denotational model as a T-algebra rather than as
a Y-algebra. That is, let us look for an arrow

(-):TB— B

such that the following diagrams commute.

2D T(I‘[) n n 7713 [~
T7°B —— T8 B———=TB
Mgl lw N )
T B B

(-0

The idea is to exploit the fact that B =~ BB is a final coalgebra and that
the operational monad ® maps a coalgebra structure £ : X — BX to a coalgebra
structure ®k : TX — BT X. Thus, by applying ® to the final coalgebra isomorphism
P B~ BB one obtains a coalgebra structure on TB:

®y: TB — BTB

Its coinductive extension (®¢)® : TB — B

$ 2% ]

BTﬁﬁ BB
B(2y) (1)

is then the natural candidate for the desired denotational model (- : TB — B.
Let us prove, using finality, that this arrow is a T-algebra indeed. Consider first
the multiplication law:

T°B TB
ugl l (@)
TB W §



Section 6 — Compositionality 83

This is the upper side of the cube

whose vertical sides all commute:

The front side and the other (not visible) side underlying the arrow (Pp)© :
TB — B are two copies of the definition of (®¢)®, hence commute. The back
(not visible) side is the square

TZE T((bw)@ B

TB
2o o
BT?B— _BTB
BT (®¢)®

which is nothing but the image under the functor ® of, once more, the square
defining (®¢p)? : TB — B, hence, by functoriality, it commutes. Finally, the
last vertical side is a square which commutes by the fact that, by definition
of lifting of a monad, multiplication x : T? = T of the syntactical monad T
lifts to the multiplication y : ®2 = ® of the operational monad ®.

Therefore, both composites (Pp)® o pug and (Pp)® o T(Pp)® fit as the (unique!)
coinductive extension of the coalgebra structure ®%¢ : T2B — BT?B, hence they
must be the same.

The proof of the other T-algebra law




84 Functorial Semantics

is similar and follows from the fact that n : I = T lifts to the unit of the monad ®:

~

~ U ~
B ——=TB
e P

BB—— - BTB
Bng

(Notice this last commuting diagram tells us that, using the terminology of Section
3, the coalgebra (I'B, @) conservatively extends the final coalgebra (B, ¢).)

Adequacy. Now, the claim is that the initial algebra semantics induced by the
above denotational model

is the same as the final coalgebra semantics coinduced by the operational model

[-] = ®0 : T0 — BT0

That is,
T(-)* ~
T20 TB
initial algebra po initial algebra semantics {-) = (2¢)®
(-0
T0 I B
[1°
@0 =[] final coalgebra semantics ¢ final coalgebra
BT0 S BB
B[]

(Formally, the initial algebra semantics (-)* : 70 — B is the unique T-algebra arrow
from the initial T-algebra (T°0, io) to the denotational model (B, (-]}). By the isomorphism
between T'- and X-algebras, it is the same as the initial algebra semantics of the X-algebra

~

corresponding to the T-algebra (B, (®p)?).)



Section 6 — Compositionality 85

This follows from the fact that everything in sight in the diagram

T20¢ 2,\T(<I>cp)@ N

T20 T°B TB
initial algebra  po By (Pp)® = (-)
T0® o (2p)® Y
T0 TB B
@0 =[] Qp ¢ final coalgebra
BT0 BTB BB
BT0® B(®¢)“

comimutes:

The upper right square is the multiplication law (2 (2) for the T-algebra structure
(Byp)®@ :TB - B _and the lower right square is the defining square (1) of the
arrow (<I><,0)@ : TB — B. For the left squares first recall that 0 is the initial
object in the base category C. (Eg, in C = Set, 0 is the empty set.) and
also recall the convention of writing 0 : 0 — B0 for the unique arrow from
0 to B0, which, by the way, is the structure of the initial B-coalgebra. The
corresponding coinductive extension 0¢ : 0 — B makes the diagram

commute. (It is also the unique arrow from the initial object 0 to B .) Then
the lower left square commutes because it is the image under the functor ®
of the above commuting square, and the upper left square commutes by the
naturality of p: T2 = T.

That i, )
(-)* = (Pp)20T0° =[]®: 70— B

Indeed, the composite arrow (®p)® o T0¢ : TO — B is both a coalgebra arrow —
hence the coinductive extension [[—]]@ — and an algebra arrow — hence the inductive
extension (-)*.

Equivalently,

((Pp)®)* = (D)@ 0 T0® = (P0)® : T0 — B

Again, the restriction to closed programs is not essential. Given a set X of variables
with a coalgebra structure k : X — BX on it, one has that the composite (®p)® o TE? :
TX — B is both the coinductive extension ((I>k) of the operational model ®k : TX —



86 Functorial Semantics

BTX and the inductive extension (- [)f of the denotational model along the valuation
function
p=(®k)%onx:X - B

That is,
P = (k)% onx)t = (Bp)@ o TK® = (®k)® : TX — B

Example. Consider the functorial operational semantics corresponding to the
rules R for the language
te=a|nil|al(t;t)

The base category is Set. The syntactical monad T'=<T,n, u > is the one freely
generated by the endofunctor

YX=14+Act+ X x X
on Set. (Cf Section 2.) The behaviour is
BX =14Act x X

whose coalgebras are the deterministic transition systems. (Cf Section 3.) Its final
coalgebra (B, ) has as carrier B the set Act™ of finite and infinite streams of actions
in Act and the isomorphism ¢ : Act™ = 1 + Act x Act™ applied to a non-empty
stream p = a-p’ in Act™ returns a pair with first component a and second component
the continuation p’, while ¢ applied to the empty stream returns *. (Cf Section 5.)
Equivalently, the final coalgebra (Act™, @) can be seen as a deterministic transition
system with finite and infinite streams as states and with transitions p = a-p’ - p'.

Next, the set TB is the set of terms over the constructs in ¥ and with streams in
Act™ as variables. Thus, for instance, the term a ; (a - b) is in this set. (Notice the
distinction between the first ¢ which is a constant of the language and the second
a which is the first element of the stream « - b, which is a variable.) Also, all closed
terms of the language belong to the set TB and the function T0® : T0 — TB is
nothing but this inclusion.

The operational rules R for the language are the axioms

nil | * and a - nil
and the three rules for sequential composition:

u — ulx v ul*x vlx

uiv —u' v w3 v — v u; vl ok
(Cf Section 3.) These rules induce an operational model denoted by

[-]z : TO — BTO



Section 6 — Compositionality 87

such that [niljg = *, [a]r = <a,nil>, and for all terms u, v,
<a,u' ;v> if Ju]gr =<a,u'>
[u;v]r = <a,v'> if Ju]lgr =x* and [v]r =<a,v >
* if Ju]gr =*=[v]r

More generally, recall that every coalgebra structure k£ : X — BX can be seen
as a set of axioms for the variables © € X by putting

a
x —

if k(z) = <a,xz>. Then, for every such k, the above rules R induce an operational
model
[-]& : TX — BTX

which adds to the above the behaviours

for every x € X. -
Consider now the inductive functorial operational semantics ® = ¢® which the
method in Section 4 assigns to the rules R. It yields operational models

Ok = [-]fry : TX — BTX
which differ from the above [-]% only in the treatment of the first case of sequential
composition:

[u; v]]’fm = <a,u; 'YTX[[U]]IFR] > if [[u]]’fm =<a,u’ >

where, recall, the transformation v : B = T is the embedding of the behaviour
into the syntax mapping * to nil and < a,x > to a; . It is a retraction for the
operational semantics in the sense that, in particular,

[vrx[v] IFR] ]]I]?R] = [v] ]FR]

This equation allows one to use the compositionality of functorial operational se-
mantics to prove that the coinductive extension of [[—]]’fm is equal to the coinductive

extension of [-]%, that is,
() = (F%)® : TX = B

which implies that the abstract global behaviours corresponding to the former are the
same as those corresponding to the latter, so that the two models are ‘observationally
equivalent’ as claimed in Section 4. The proof is as follows.



88 Functorial Semantics

R is observationally equivalent to [R]. Recall that the definition
of coinductive extension gives, for [u ; v]]’fm =<a,u ;yrx [[v]]lfm >,

Then, it is enough to show that
("5 vrx [[U]]’Fm]]lfm

If (- : TB — B is the denotational model coinduced by the operational
monad ® = ¢®, one has, by the above adequacy result,

Q@

s yrxlelfmte)® = AIwTe)® s (e[l 1) ®) - (adeanacy)
= (D) 5 (Teltr)®D (retraction)
= (I s olfR)"

This concludes the proof.

The denotational model (- : TB — B coinduced by the operational monad & = ﬁ
is the coinductive extension of the operational model [-]%; : TB — BTB which,
from the above result that R is observationally equivalent to [R], is the same as
the coinductive extension of [-]4 : B — BT B, that is,

(-)=(1%)":TB~ B

By definition of coinductive extension, this gives, for every term t € TB,

b = { <a,(t')> if [

Thus, in particular, the nil constant is denoted by x,
{nil) =
every action a is denoted by the pair <a, * >,
(a) =<a,(nil)>=<a,*>
and the denotation of the sequential composition of two streams p and ¢ is

<a7<|p,;q[>> if p:a-p’
(psqh = <ad> if p=candg=a-¢



Section 6 — Compositionality 89

The adequacy of this denotational model wrt the operational semantics induced
by the rules R, that is, the commutativity of

T[-1% N

20 TB
110 l(l-l) = ([1%)°

T0 B

[z

tells then that
(C[IR 1D = lmo(CltD]I
for every context C[-] and term ¢. (The multiplication po : 720 — T0 is needed in

order to make of the context C[-] and of the term ¢ a term in 7°0.) In particular,
for the context with two ‘holes’ (- ; -) one has, omitting the multiplication pg, the

equation
([ulz s IR D = [us vlg

used in the above proof of the equivalence between R and [R].

Another consequence of the above adequacy is that programs with the same
abstract global behaviour can be interchanged in any context. That is, if [u] 5 =
[v], then [C[u]]ls = [C[v]]g, or, equivalently, in terms of the observational
equivalence ~ introduced earlier in this section,

u~v implies Clu]~ C[v].

Finally, notice that a denotational model is adequate also if the final coalgebra
semantics is not equal to but only ‘included’ in the initial algebra semantics; that is,
one can be more liberal and define a denotational model (D, (-)) to be adequate if
it contains B as a subalgebra and the inclusion sends the final coalgebra semantics
to the initial algebra semantics:

S

70 ——=B

[-1°



90 Functorial Semantics

Notes. The relevance of initial algebras for semantics, type theory, and algebraic spe-
cification was recognized by the ‘ADJ’ group in the mid-seventies. (Some references on
initial algebra semantics are [GTW78, MG85, Mos90, MT92].)

The idea of coupling initial algebra with final coalgebra semantics was first used in
[RT94] to give a categorical account of the method described in [Rut92] for systematically
deriving denotational models from structural operational semantics. (For precursors of
this method see [Bad87, Rut90].) This method is based on results like those in [dS85,
BIMS88, GV92, Gro93] which show that the above notion of observational equivalence
(‘strong bisimulation’) is a congruence if suitable restrictions are imposed on the syntactic
format of the rules. (Cf Section 11.) This kind of results, although of great practical
relevance, is very much dependent on the use of labelled transition systems and hard to
export to other notions of operational model. Instead here the idea is that the structural
rules correspond to the germ of an inductive functorial semantics, that is, they can be seen
as an action of the syntax on the composite functor BT, for abstract notions of syntax T’
and behaviour B.

Like in the present approach, in [RT94] the denotational model is coinduced by the
operational rules and the equivalence between initial algebra and final coalgebra semantics
is proved by means of a four-squares diagram

T20@ ~ T{- ~
25 ()

T20 T TB
initial algebra uo I {-)
70¢ Voo () X
70 ———=TB------= B
[-1= -1% ¢ final coalgebra
BT0 BTB. BB
BIo® B

The difference is that, in order to ensure the commutativity of the upper right square,
it is assumed in [RT94] that the observational equivalence coinduced by the operational
semantics is a congruence, which fact, instead, becomes here a trivial consequence of
functoriality. In fact, the functorial description of ‘well-behaved’ operational rules is the
essence of the present approach.



7 A Dual Lifting: Functorial Denotational Semantics

A functorial operational semantics is a monad lifting the syntactical monad (freely
generated by the signature) to the coalgebras of the behaviour. As shown in the
previous section, this operational monad coinduces a denotational model. In fact,
this denotational model is just one particular action of a ‘comonad’ coinduced by
the operational monad. This ‘denotational comonad’ is a lifting (to the algebras
of the syntax) of another comonad, namely the ‘observational comonad’ cofreely
generated by the behaviour.

The property that every operational monad coinduces a denotational comonad
is the basic property of the functorial approach to operational semantics. Its dual
also holds, namely every denotational comonad induces an operational monad; this
gives a useful method to derive an operational semantics from a denotational one.

The notion of comonad is dual to the one of monad: a comonad on a category
C is a triple
D=<D,e, 0>

with D an endofunctor on C
D:C—C

and with the counit ¢ and the comultiplication ¢ natural transformations
e: D=1 §:D = D*

which satisfy the following laws.

Comonad Laws

é .

_D f—— l)2 D

é 0p Vi 6 AN

D? ————=D* ID D? DI
D) ED De

A first example of a comonad is given by the observational comonad D =<
D, z,0 > cofreely generated by the behaviour endofunctor BX = 1+ Act x X on
Set. For every set X, the value of D at X is the carrier DX of the final coalgebra

DX =~ X x B(DX)

91



92 Functorial Semantics

of the endofunctor (X xB) : Set — Set. (Cf definition of TX in Section 2.) In
particular, the value of D at singleton 1 — the final object of Set — is the carrier
B = Act™ of the final B-coalgebra, because 1 x X = X. Thus D1 is the set
of abstract global behaviours corresponding to B, that is, the finite and infinite
streams generated by Act. (See Section 5.)

Now, a stream (ajas - --) can be seen as a sequence of transitions

ay a2
o —>0 — e -

in which the states have no name or, equivalently, have all the same name * € {x} =
1. Therefore, D1 is the set of global behaviours with a single state.

In general, the set DX is the set of global behaviours observable with states
x € X, that is, the finite and infinite sequences of transitions

ay a2
rX—>T1 —> Ty
with states x € X and actions a € Act. Formally, one can check that

DX =X+ J] (XxAct)®

1<a<w

The final coalgebra isomorphism DX = X xBDX splits into two projections:

fstx sndx

X=—— DX =XxBDX BDX

These are the operations which allow one to observe these global behaviours: the
first projection extracts the root of a global behaviour, the second projection gives
its continuation. For instance:

fstx sndx

X < wi)wlﬁ)l‘g"' i)l‘lﬁ)wz"'
The first projection fsty : X x BDX is the natural candidate for the value of
the counit ¢ : D = I at X:

EX:fStxiDX—)X

while the second projection can be coinductively extended to yield the comultiplic-
ation § : D = D?. Indeed, by finality, the coalgebra DX = X x BDX comes with a
cotnduction principle which can be used to extend the operator D to an endofunctor
and to define its comultiplication:

Every (X xB)-coalgebra structure Y — X xBY is a pair < f, k>, with
f:Y —- Xand £k : Y — BY. The first function can be seen as
a ‘covaluation’ function, while the second is a B-coalgebra structure.
By duality with the definition of inductive extensions along valuation



Section 7 — The Basic Property 93

functions, call the corresponding coinductive extension f’ =< f, k >©:
Y - DX

r Bf’

X DX BDX
ex = fstx sndx

the coinductive extension of k along the covaluation function f.

Then, extend D to a functor by putting, for every function f: X — Y,
Df =(foex) : DX — DY

This function Df applied to a global behaviour d, = (z % x; —2 - - ) substi-
tutes every state in d, € DX by its image under the ‘renaming’ f:

(Df)(dy) = f(x) 25 f(z1) 22 flas)---

Similarly, the value of the comultiplication 6 : D = D? at X is given by the coin-
ductive extension of the second projection sndy : DX — BDX along the identity
on DX:

d
px—"% _ Bpx
V4 L 0x = (idpx)’ | Béx
v .
DX D*Xx BD*X
EDX sndpx

The left triangle tells that € is a left counit for 6. The proof that it is also a right
counit and that ¢ is a comultiplication is dual to the proof in Section 2 for the unit
1 and the multiplication u of the syntactical monad 7.

Concretely, the comultiplication dyx : DX — D2?X maps a global behaviour
dy = (v -2 21 2 x5 --+) to a global behaviour with the same transitions but with
every state x; replaced by its whole global behaviour d;:

6x(dy) = (dp 2 dyy, 25 dyy -+ )

In general, the coinductive extension of a coalgebra structure k£ : Y — BY along
a function f : Y — X can be interpreted in terms of (deterministic) transition
systems as follows. The B-coalgebra (Y, k) is a transition system with Y as set of
states; the covaluation function f : Y — X maps every state y € Y to a state



94 Functorial Semantics

f(y) € X. Then, if the global behaviour of a state y in the transition system
corresponding to (Y, k) is the (possibly infinite) sequence

Yy

the coinductive extension f’ : Y — DX maps y to this global behaviour, but
replacing every state y; by f(y;):

P = Fly) = Fy) -2 Flya) -

As an example, let the set Y of states be the set Z of integers and let the set
Act of actions be trivial, that is, let Act be made of only one action a:

Y=2 and Act = {a}

Next, let the deterministic transition system corresponding to the coalgebra
structure k : Z — B(Z) be such that 0 is inert, a positive integer n performs
a transition to its predecessor n — 1, and a negative integer —n performs a
transition to its successor —n + 1:

04 % n—sn-—1 —n— —n+1

Now, if X is the three-elements set {0,d, O} and f: Z — {0,&, <} is the
function mapping 0 to 0, positive numbers to <, and negative numbers to &,
then the coinductive extension

f 12— D{0, %, O}

of the transition system along this covaluation function f maps every integer z
to a sequence of a-transitions of length |z| having 0 as last state and { (resp.,
&) as all other states if z is positive (resp., negative). Thus, for instance,

B =0-50-5¢-%50 ) P LN SN LN

Notice that the same set X = {0,,{} can be used to observe the global
behaviours of the above transition system in quite a different way. Consider
the function g : Z — {0, &, {} mapping odd numbers to & and even numbers
to ¢. Then the coinductive extension ¢° : Z — {0,&, {} of the transition
system along ¢ identifies n and —n. For instance:

FB) =%-50-"&-"50=g(-3)

The same identification can be obtained by setting X = 1 and thus forcing the
covaluation function to map everything to the same state ¢ € {#} = 1. Then,
the coinductive extension of k along this trivial function ¥ — 1 is nothing
but the simple coinductive extension

k®:Y - B=D1=1xBD1 = BD1 = BB
of k (see Section 5). In particular,

EOB3) = o e e e = 19(-3)



Section 7 — The Basic Property 95

Consider now, for an arbitrary comonad D =< D,e,d > in a category C, the
category Cp of D-coalgebras. It is the category of coalgebras of the endofunctor
D which ‘respect’ the counit ¢ and the comultiplication ¢ of the comonad D; that
is, its objects are pairs (X, k), with X an object of C and k : X — DX an arrow of
C satisfying the laws

X —=DX X
k Sx Va k
DX D?’X X DX

Dk EX

and its arrows f : (X, k) — (Y, h) are arrows f : X — Y of C such that Df o k =
hof.

B-coalgebras are D-coalgebras. There is an isomorphism between
the category of coalgebras of an endofunctor B and the coalgebras of
its cofreely generated comonad D. This isomorphism maps every B-
coalgebra (X, k) to the D-coalgebra with same carrier X and with struc-
ture the coinductive extension of £ along the identity on X:

k

)‘(%BX
v

7 (idx)" B(idx)’

X DX BDX
€X sndx

The inverse of this isomorphism is obtained by composing each D-coalgebra
structure £ : X — DX first with the second projection sndy : X X
BDX — BDX and then with Bey : BDX — BX. That is:

(X, k) — (X,Bex osndy ok)

The proof is simply the dual of the proof that ¥-algebras are T-algebras
given in Section 2.

Notice that, under the above isomorphism of categories, the final B-coalgebra B
BB corresponds to the cofree D-coalgebra over the final object, namely (P1, ),
just like the initial Y-algebra corresponds to (70, ug), the free T-algebra over the
initial object.

The dualities between signature and syntactical monad on the one side and be-
haviour and observational comonad on the other side can be summarized as follows.



96 Functorial Semantics

Signature ¥ : C — C Behaviour B: C — C
Algebras Coalgebras
X+XTX =TX = initial (X+X)-algebra | DX = XxBDX = final (X x B)-coalgebra
Induction (-)# Coinduction (-)®©
n=inl:I=1T e=fst: P=1
p=[id,inf]# = id* : T2 = T § =<id,snd>%=id’ : P = P?
Syntactical Monad T'=<T,7n, u> Observational Comonad D=<D,¢e, >
TX = Programs DX = Global Behaviours
c¥=cC” Cp = Cp
(T0, po) = Initial Algebra (D1,6;) = Final Coalgebra

Next, notice that the isomorphism between B- and D-coalgebras implies that
every operational monad ® =< ®, 7, u > can be seen as a lifting of the syntactical
monad T'=<T',n, u> to the coalgebras of the observational comonad D rather than
to the coalgebras of the behaviour B (and vice versa). Thus, writing Up : Cp — C
for the forgetful functor mapping a D-coalgebra (X, k) to its carrier X, one has

Operational Monad

CD —_—= CD
Up Up

C C

T

That is, for every D-coalgebra structure k£ : X — DX, one has that &k : TX —
DT X is also a D-coalgebra structure and, moreover, the two squares in the diagram

X X _rx BX 2y

k Pk D2k

DX DT X- DT?X
Dnx Dux

commute.



Section 7 — The Basic Property 97

In the above form, the definition of functorial operational semantics can be easily
dualized to yield the definition of functorial denotational semantics, namely as
a comonad ¥ lifting the observational comonad D=< D, ¢,d > to the T-algebras:

Denotational Comonad

ctr — ~— - "
g g

C ———= C

D

That is, ¥ is a comonad with counit and comultiplication inherited from the ob-
servational comonad D=<D, e, >

V=<V, e, 0>
and with ¥ : CT — C7T such that
Uy =put.ct - C

Equivalently, U is an action of the monad 7" on the composite functor DU : CT —
C, ie a natural transformation

U :TDUT = DUT

such that, for every T-algebra h : TX — X, Wh : TDX — DX is also a T-
algebra. Therefore, the fact that the counit and comultiplication of the observa-
tional comonad D lift to those of the denotational comonad ¥ is equivalent to the
commutativity of the two squares in the following diagram.

T TS
TX X TDX X _TD’Xx
h Th U2
X DX DX
EX (5)(

(Cf Section 4.)

The basic property of the functorial approach to operational semantics can now
be stated.



98 Functorial Semantics

The denotational comonad ®° coinduced by an operational monad ®.

Every operational monad ® =< ®, n, u > lifting a syntactical monad T'=<T,n, u> to
the coalgebras of an observational comonad D=< D, ¢, d > coinduces an endofunctor

¢ :C" - C"

such that ®® =< ®® ¢,§> is a denotational comonad lifting D to the T-algebras:

CI)@

Cp ——=Cp ch —~ - ¢”
Up Up — Ur ur
C —— = 20C C —=2C
T D

The endofunctor ®® on the T-algebras is defined by coinduction as follows. For
simplicity, recalling the isomorphism Cp = Cp between the categories of D- and B-
coalgebras, consider the operational monad ® to be on the B-coalgebras rather than
on the D-coalgebras. Now, one needs, for every T-algebra structure h : TX — X, a
T-algebra structure ®®h : TDX — DX. Therefore, first apply the given operational
monad ® to the B-coalgebra structure

sndy : DX — BDX
obtaining the B-coalgebra structure
®(sndy) : TDX — BTDX

and then take the coinductive extension of this coalgebra structure ®(sndy) along
the composite arrow hoTex : TDX — X

T ® snd
TX X TDX SOX  _ BTDX
h ®°h = (hoTex) B®°h
v
X DX BDX
£X sndx

That is,
®°h =<hoTex,®(sndx)>%= (hoTex)" : TDX — DX
The claim is threefold: (i) ®®h : TDX — DX is a T-algebra structure, (i)
the operation ®© is functorial, and (i) the counit and comultiplication of the
observational comonad D =< D, e,§ > lift to counit and comultiplication for ®°.
The proofs are all by coinduction.



Section 7 — The Basic Property 99

Let us start from (74), that is, from the claim that the two squares in the diagram

T TS
TX X TDX X _ TD’x
h 3% 3%
X DX DX
EX (5)(

cominute:

The left square of the above diagram commutes by definition. As for the right
square, it commutes because both composite arrows 3°%hoTs x and dx o ®%h
from TDX to X fit as the (unique!) coinductive extension

P$sndx
TDX%BTDX
Va
TDX ol B!
X))
y .
DX DX BD2X
EDX sndp x

of the coalgebra structure ®(sndx) : TDX — BTDX along the arrow ®©h :
TDX — DX. Indeed:

®sndx P sndx

TDX— = BTDX TDX— = BTDX

Va Téx BTéx 7 d9p B®@h
TDX- TD?X BT D?*X TDX DX—— - BDX
Tepx ®dsndpx sndx
o9 9% Bo®%h o9 yZ Sx Béx

DX D?X BD?%X DX D%X BD?*X

EDX sndDX EDX sndDX

Next, consider the claim (i) that the arrow ®®h : TDX — DX is a T-algebra
structure, that is,

P°hoT®h = D%ho upy and ®®honpy = idpyx



100 Functorial Semantics

The first equation holds because both ®®hoT®®h and ®®hop x fit as the coin-
ductive extension of the coalgebra structure ®?(sndy) : T?DX — BT?DX
along the arrow (hoTh)oT?cx = (hopux)oT?ex : T?DX — X

d2snd
T?DX— X BT?DX

T®%h 7 BT®®h
T2e ®2snd
T2 X X 12px X BT?DX PDX— =BTDX
‘ Psndx
Th bx
\ Tl ®2sndx )
TX TX ! B! “I2DX——=BT?DX
B h |
v kDX = Bupx
X DX BDX
EX sndX
TDX——=BTDX
P sndx
Similarly, the second equation, namely ®®h o npx = idpyx, holds because

both ®®h o npx and the identity on DX fit as the coinductive extension of
the coalgebra structure ®(sndy) : TDX — BTDX along ex = idy oex =
(honx)oex : DX — X

€ ® snd
X< Dx X BTDX
nx
TX || 'l B!
h ;
X DX BD2X
EX sndX

Finally, the claim (i7) that, for every T-algebra arrow f : (X,h) — (Y k), the

operation
T TDf
TX ———=TY TDX —= TDY
h k — °h Bk
X ——=Y DX — = DY
f ®°f=Df

is functorial amounts to

P o df =d%go f) and P%dyx =idpx

for every T-algebra arrow ¢ : (Y, k) — (Z,1). Its proof is similar to the one of (i)
and left to the reader.



Section 7 — The Basic Property 101

Notice that the above construction applies to any lifting of a (not necessarily
freely generated) monad to the coalgebras of a cofreely generated comonad on any
category.

As an example, consider the denotational comonad coinduced by the operational
monad ® = ¢R corresponding to the rule R for the sample language

tu=x|nil|al(t;t)

Thus, using the notation of Section 4, ®sndy = [[—]]?7”3?" :TDX — BTDX. As a short-
hand, write
®sndy = []x : TDX — BTDX

Next, recall the set DX is the set of global behaviours
dy = ¢ 5 11 25 29+

with z; € X; the counit ex : DX — X is the operation returning the root z of a global
behaviour d, and the second projection sndx : DX — BDX returns its continuation.

Then, the value of the corresponding coinduced denotational comonad ®© at a 7T-
algebra structure h: TX — X is

TEX

TX TDX Hx _prpx

h| ®®h=<hoTex,[]x>® |B®°eX
v

X DX BDX
EX sndX

which gives, for all global behaviours d;,d, € DX,
(®°h)(da 5 dy) = (h(x 5 y), (®h)(sndx (da) 5 dy))
if sndy (dy) is different from *. Thus, for instance, the term
dy 5 dy = (z =5 11 2 29) 5 (y )
is mapped to the global behaviour
h(z 5 y) =5 bz 5 y) 2 h(zy ;) Lyl

That is, the meaning of the sequential composition of two global behaviours d;, and d is
obtained by first concatenating d, to d, and then replacing the states x; of d, by h(z; ; y),
where y is the root of dy, while apart from y which is removed, all states of d, are left the
same.

In particular, consider X equal to the singleton 1, the final object in Set. There exists
only one function from 7'1 to 1, namely the trivial function 1 : 71 — 1 mapping every
term of T'1 to the state @ € {8} = 1. Next, the set D1 =2 1 x BD1 = BD1 is the carrier of



102 Functorial Semantics

the final coalgebra B~ BB and, moreover, the structure snd; : D1 — BD1 is isomorphic
to the final coalgebra isomorphism ¢ : B & BB. That is,

~

(D1,sndy) = (B, )

Then, the T-algebra structure ®©@1 : TD1 — D1 is isomorphic to the canonical denota-
tional model

. @
8- (%9 _p
Qo ¢
BTB BB

B(®p)®

given in the previous section.

Finally, consider the dual of the above construction, namely

The operational monad ¥# induced by a denotational comonad V.

Every denotational comonad V=< W, ¢, > lifting an observational comonad D =<
D,e,5> to the algebras of a syntactical monad T'=<T,n, > induces an endofunc-
tor

# Cp—Cp
such that U#=<U# n p> is an operational monad lifting 7" to the D-coalgebras:
U#
ch — = c* Cp —=0Cp
UT UT — Up Up
C ——=2C C ——=~C
D T

The endofunctor ¥# on the D-coalgebras is defined by induction as follows.

X X TX X wrx
k U#k =, (Dnx o k)* SU#h
'}
DX — - DTX SDTX
D77X WUinrx

That is, for every coalgebra structure k : X — DX,
U#k = [Dnx o k, U(inry)][* = (Dnx o k)*: TX — DTX

(Again, for simplicity, the denotational monad ¥ is assumed to be on the X-algebras
rather than on the isomorphic category of T-algebras.)



Section 7 — The Basic Property 103

Notes. Comonads in semantics appear in Brookes and Geva’s work [BG92], which bears
resemblance with Moggi’s work on computational monads [Mog91]. The computational
comonads defined in [BG92] are comonads D =< D, ¢, > with an extra operation v : I =
D such that

goy=id and doy=ryroy

The type D is the type of computations and the operation vy embeds data into computa-
tions. For instance, the observational comonad D cofreely generated by the endofunctor
X — 1+ X is a computational comonad as well: the set DX is the set X*° of finite and
infinite sequences of z € X and the operation v : I = D ‘saturates’ every z € X by
mapping it to the infinite sequence z*.

Brookes and Geva’s work focuses on the (‘co-Kleisli’) subcategory of cofree coalgebras
of a computational comonad rather than on the full category of coalgebras as in the present
work. It would be interesting to understand whether there is a closer relationship between
the two notions “computational comonad” and “observational comonad”.

As pointed out to this author by Axel Poigné, liftings of functors to algebras of monads
were studied in [Joh75]. In particular, Lemma 1 of [Joh75] shows that such liftings are in
one-to-one correspondence with distributive laws (cf Section 4); in particular, every lifting
of an endofunctor (thus without comonad operations!) D to the T-algebras is equivalent
to a distributive law of the monad 7' over the endofunctor D.

The systematic method introduced in this section for deriving operational models
from denotational ones is simply the dual to the already known method for deriving
denotational models from operational ones. The existence of such a method had been
forecasted in Section 5.3 of [RT94] (thanks to the mixed algebraic/coalgebraic approach
used there which already allowed for a dualization), yet it had never been described before.
(In general, one of the advantages of bringing to light the categorical structure underlying
a given phenomenon is that then the mighty duality principle can be applied.) A concrete
example of an operational monad ¥# induced by a denotational comonad ¥ is given in
Section 10, where it is used to prove that ‘basic process algebra’ is functorial.



104 Functorial Semantics



8 Operational is Denotational

The coinductive construction ® — ®© is a bijection between operational monads
and denotational comonads whose inverse is the inductive construction ¥ — U#,
The proof of this fact is given in terms of adjunctions.

Let us rephrase the inductive construction at the end of the previous section of
an operational monad ¥# from a denotational comonad V¥ in terms of adjunctions.

Recall, for every D-coalgebra structure k : X — DX, the structure ¥#k : TX —
DTX is defined as the inductive extension of k along the composite Dnx ok : X —
DTX.

nx inrx

X TX nTX
k U#k =, (Dnx o k)* SU#h
v
DX DTX SDTX
DnX Uinrx

But this is the same as saying that W#k is obtained by taking the left adjunct of
the function
Dnxok:X — DTX = U*(DTX, Vinry)

wrt the adjunction F¥4U>, where U” : Set” — Set is the forgetful functor mapping
Y-algebras to their carriers and F* : Set — Set” is its left adjoint mapping a set
X to the free Y-algebra (T'X, inrx) over X. (Cf Section 2.)

X nx TX X =" wrx
k T# U#k,= (Dnx o k)* SOk
v
DX — = DTX DIX<=———YDTX
Dnx Winrx

This is for an operational monad ¥ on the Y-algebras. If, instead, the monad
¥ is on the isomorphic categories of T-algebras, one can use the similar adjunction
FTHUT regarding DT X as carrying the T-algebra structure Upy : TDTX — DTX
and thus obtaining ®®% as the left adjunct of

Dnxok:X — DTX =U"(DTX,¥pux)

105



106 Functorial Semantics

wrt this latter adjunction. That is:

x "™ _rx TXx <X 1%
k T#E U#k,= (Dnx o k)* TU#k
v
DX —— = DTX DTX TDTX
Dnx Ypx

Next, recall that, while the syntactical monad 7" is freely generated by the signa-
ture Y, the observational comonad is cofreely generated by the behaviour B. Then,
by duality, the forgetful functor Ug : Sety — Set mapping coalgebras to their
carriers has a right adjoint, namely the functor

GB : Set — SetB X — (DX, Sndx>

mapping a set X to the cofree coalgebra over it. (This holds for arbitrary endo-
functors B : C — C, provided that the endofunctor (XxB) : C — C has a final
coalgebra for every object X in C.) Similarly, the forgetful functor Up : Cp — C
mapping the coalgebras of a comonad D =< D,e,d > to their carriers has a right
adjoint
GDIC—>CD XP—><DX,(5)(>

and the counit € : UpGp = D = I of this adjunction Up— G is simply the counit of
the comonad D. Therefore, the coinductive construction of the denotational monad
®° from an operational monad ® on the B-coalgebras

T & snd
TX X TDX SOX  BTDX
h ®%h = (ho Tex)’ B®°%h
v
X DX BDX
£x sndx

can be rephrased in terms of operational monads ® on the D-coalgebras as the right
adjunct wrt the adjunction Up—Gp of the arrow

hoTey : Up(TDX,Uby) =TDX — X

That is:
TEX ‘I’(SX
TX <————  TDX TDX —=DTDX
h ®%h ®%h =, (hoTex)’ D®°h
v \
X<=——DX DX — = D?X

EX 5X



Section 8 — Operational is Denotational 107

In order to calculate the value of this right adjunct ®@h = (h o Tex)’, one can use
the standard formula

fP=Gfonx
valid for every adjunction FHG (with unit  : I = GF'), which, pictorially, amounts
to the following bijection.

Fx—t oy
X GFX GY
x Gf

In particular, the unit itself is the right adjunct of the identity. For the adjunction
Up—Gp this gives that the unit at a coalgebra (X, k) is the structure k : X — DX
of the coalgebra itself, since, by the D-coalgebra laws,

X X—=DX
7 k k ox
X DX DX— = D%X
EX Dk
Therefore
ho TEX
TDX —=X
TDX — DIDX ——= DX
Dox D(hoTex)
and thus

®%h = (h oTe)’ = Dho DTex o ®ix

Finally, notice that, by using the adjunction, the comonad D needs not to be
cofreely generated by an endofunctor, the coinduction principle being replaced by
the more general adjunction principle. Dually, also the induction principle can be
replaced by the adjunction principle, which holds for every monad 7.



108

To summarize:

Functorial Semantics

Monad T'=<T,n, u>

Comonad D=<D,e,d>

C

- = C

FTX = (TX,px) Gp = (DX, éx)
FT4yT Up-4Gp
@

Cpo Cpo cT ® cT
Up Up vt ut
cC —  =2cC cC — =2c¢C
T D

¥# = (Dno_)t d® = (LoTe)
= WuxoTDnxoT(.) = D(.)oDTex o ®ix
#
Cp L Cp ct —— > 7
Up Up vt vt

C ——~¢C

D

Operational is Denotational.

The mapping ® +— ®° is a bijection between

operational monads and denotational comonads with ¥ — ¥# as inverse:

(I)@

CD%CD

UD UD

P #




Section 8 — Operational is Denotational 109

In order to prove that, for every D-coalgebra structure & : X — DX, one has
Pk = (®®)*k, let us first rewrite (®®)*k in terms of ®: because ®®h = DhoDTesxo
®oy for every T-algebra structure i and hence

(I)@,U/X == D,uX O DT&TX 9 q)(STX

and because
U#k = Wpyx o TDnyx o Tk

one has
(®)*k = ®°uxoTDnyoTk
= D,U/XODTSTXOQ)(STXOTDT]XOTI{Z

But then everything in sight in the following diagram commutes.

Pk
TX DTX

TDX——-TDTX——= DTDTX—=DT?X
TD77X <I>6TX DT&‘TX

(@)% k

The only non-trivial fact is the commutativity of the sub-diagram in the
middle, but this follows from the fact that it is the image under the func-
tor ® of one of the two D-coalgebra laws for the structure ®k : TX — DT X.

That is,
rx— 2% _prx r2x L%k pprx
@kl Srx ﬁ, q>2kl lMTX
DT X——>D?TX DT?X——=DTDTX
Dok DTk

This proves that ®k = (®©)#k and, by duality, ¥h = (¥#)%h,

Notes. The original proof of “operational is denotational” was more complex: the above
simplified proof is due to Bart Jacobs.



110 Functorial Semantics



9 A Category of Models

The algebras (ie the denotational models) of an operational monad ® are the same
as the coalgebras (ie the operational models) of its coinduced denotational comonad
®°. Therefore, one can define a general category of ®-models (ie ®-algebras or,
equivalently, ®®-coalgebras) where both operational and denotational aspects are
displayed: this is the proper setting for understanding the adequacy results of func-
torial semantics. In particular, the unique arrow from the initial to the final $-model
is both the initial algebra and the final coalgebra semantics corresponding to ®.

By instantiating the general definition of algebras of a monad to a monad ® =<
®,n, u> on the D-coalgebras one has that a ®-algebra has as carrier a D-coalgebra
(X, k) and as structure a D-coalgebra arrow h : ®(X, k) — (X, k) such that

3%(X, k) %@(X, k) (X, k) LR g x, k)
(X k) h AN h

If, like in functorial operational semantics, the monad @ is a lifting of a monad
T =<T,n, > to the D-coalgebras, then the structure h : ®(X, k) — (X, k) is of
the form

DI'X —= DX
Dh

Moreover, h : ®(X, k) — (X, k) is a ®-algebra structure if and only if the underlying
h:TX — X is a T-algebra structure. Indeed, for instance, the first ®-algebra law

111



112 Functorial Semantics

for h amounts to the commutativity of the following cube

5 Th
T°X—=TX

& X
O’k h

The front side and the other (not visible) side underlying h are two copies of
the definition of A, hence commute. The back (not visible) side is the image of
the front side under the functor ®, hence it commutes. The remaining vertical
side commutes because the multiplication p of T lifts to the multiplication of
®. The bottom (not visible) side is the image under the functor D of the top
side, hence to prove the commutativity of the whole cube it suffices to prove
that the top side commutes. But this is nothing but the first T-algebra law
for h.

Therefore a ®-algebra is a triple (X, k, h) with & : X — DX a D-coalgebra and
h:TX — X a T-algebra structure such that

Pk
TX —=DTX

h Dh
X— =DX
commutes.

Similarly, a ®-algebra arrow f : (X, k,h) — (Y, m,l) is an arrow f : X — Y
such that everything in sight in the diagram

dm
7y —=" _ pry
rx_®k _ prx
Y— - DY

Df

X— DX



Section 9 — Adequacy 113

commutes, but for this it suffices that

commutes, that is, f is both a D-coalgebra arrow f : (X, k) — (Y,m) and a T-
algebra arrow f: (X, h) — (Y, ).
Dually, given a lifting ¥ of a comonad D on a category of T-algebras, a W-

coalgebra is a triple (X, h, k) with h : TX — X a T-algebra and k£ : X — DX a
D-coalgebra structure such that

Tk
TX ———=TDX

X—=DX

commutes. The arrows f : (X, h, k) — (Y,l,m) of the corresponding category C'y
are again arrows f : X — Y which preserve both the T-algebra and the D-coalgebra
structure.

The claim now is that a triple (X, k, h) is a ®-algebra if and only if (X, h, k) is
a ®%-coalgebra, that is,

P-algebras are ®*-coalgebras

TX ——— = DTX TX ——>TDX
h Dh = h d°h
X—=DX X—=DX



114 Functorial Semantics

Equivalently, the claim is that the diagram

K
TX——=DTX

Tk Dh

TDX ——>= DX
®°h

commutes. But then fill this last diagram as follows and notice that all sub-diagrams
commute. ok

TX——=DTX

DTk ‘ ‘

DIDX——=DTX

Tk DTex
By Dh

TDX—— = DX

°n

The only non-trivial sub-diagram is the one corresponding to the upper left
corner but this is the image under the functor ® of one of the two D-coalgebra
laws for the structure k£ : X — DX. That is,

x_* _px rx_ ¢ _rpx
o
k l l dx — Dk l l Dy
DX — = D2X DT'X — =DTDX
Dk DTk

Thus, up to the permutation (X, k, h) — (X, h, k), for any monad @ lifting a monad
T to the coalgebras of a comonad D, the two categories of ®-algebras and ®°-

coalgebras are the same:
Cp? =CT4e

Dually, .
CT\IJ — CD v

that is, U-coalgebras are U#-algebras.

Notice that, since every monad is defined by its algebras and, dually, every
comonad is defined by its coalgebras, this gives an alternative proof that the mapping
® — ®° is a bijection with ¥ — U# as inverse.



Section 9 — Adequacy 115

®-Models. If ® is an operational monad, then the category Cp? = CT4e can be
seen as the category of models of ®:

d-Mod = Cp? = CT e

This category has both an initial and a final object which are ‘lifted’ from the initial
T'-algebra and the final D-coalgebra, respectively.

The claim is that the initial ®-model is the P-algebra
720 £2% 70 2% DTO

where, recall, the set 70 is the set of closed programs, the structure pg is the initial
T'-algebra structure, and the structure

®0 =[] : T0 — DT0

is the initial operational model corresponding to ®. Dually, the final ®-model is the
®®-coalgebra

TD1 -2 p1 224 p2y

where, recall, the set D1 is the set of abstract global behaviours, the structure 9 is
the final D-coalgebra structure, and the structure

®°1 = (-):TD1 — D1

is the denotational model coinduced by ® on the final coalgebra.

If the above holds, then one has, by the very definition of ®-algebra and ®°-
coalgebra arrows, that the unique arrow from the initial to the final ®-model is both
the initial algebra and the final coalgebra semantics corresponding to ®

TD1
T!
2°1 = (-
T20
) 5
{-p D1 o D*1

That is,
[1¢ = (-)*: T0 — D1



116 Functorial Semantics

The fact that the triple (770, p9, ®0) is the initial ®-model can be proved directly,
but it is more informative to obtain it by means of an adjunction as follows. First
notice that the ®-model (70, 19, ®0) can be obtained by applying the functor

FT : Cp — ®-Mod (X, k)~ (TX, puy, k)

to the initial D-coalgebra:

(0 - Do) ¥ (720 42 70 2% DT0)

Next, if a functor has a right adjoint, then it ‘preserves colimits’ (see, eg, §V.5 of

[MacT71]), thus, in particular, if the functor F7 has a right adjoint then it maps the
initial D-coalgebra to the initial ®-model. Now, the claim is that this right adjoint
exists and it is the functor

UT : -Mod — C), (X, h, k) = (X, k)
which forgets the T-algebra structure in a ®-model. Moreover, this adjunction
FT-HUT

is a ‘lifting’ of the adjunction FT4UT corresponding to the algebras of the monad
T (see Section 2).

Let us prove this claim in its dual form, namely that the adjunction Up-Gp,
corresponding to the coalgebras of the comonad D (see previous section), lifts to an
adjunction

Upd4Gp
between the forgetful functor
Up : ®-Mod — C* (X, k,h) — (X, h)

and the functor

Gp : C'' = ®-Mod (X,h) — (DX, 6x, ®°R)



Section 9 — Adequacy 117

The adjunction Up4 G splitting the comonad . Given a monad @ lifting
a monad T to the coalfg\e/bras of a comonad D, the composition UpGp: Cl =t
of the above functors G : C*' — Cp® = ®-Mod and Up : ®-Mod = Cp* — C”
is equal to the endofunctor ®@ : CT — CT. Indeed,
(TXx 5 x) 92 (TDX ¥4 px % prx) Y2 (DX 2% DX)

for every T-algebra structure h : TX — X. The claim is that Gp is right adjoint to
UD and the whole comonad PO =< P® ¢, > arises from the adjunction Up- GD
Moreover, the adjunction UD—| GD ‘hfts the adjunction Up<Gp (which splits the
comonad D).

cT ;_LCDQ
Gp
uT e
Up
C 1 Cp
Gp

That is,

UTU, = UpU®:Cp* —C

GpU" = U®Gp:C" - Cp
= U®:ye : DUT = UT
The first and second equation are immediate, while the third is to be checked: by
definition of T-algebra arrows, it tells that the counit of the upper adjunction is
the same as the counit € : UpGp = D = I of the lower one. That is, the claim is
that, for every T-algebra arrow f : UB(Y, k,ly = (Y,l) — (X, h), the right adjunct
ur fb f Y, k) = (DX, 6x) of UTf = f : Up(Y, k) =Y — X wrt the adjunction
Up- Gy is the unique ®-algebra arrow from (Y, k, 1) to Gp(X,h) = (DX, dx, D°h)
factorizing f through ex. Diagrammatically:

Eyr

l DI
Tf DT
Y - DY
TDXWDTDX
"gb b
e°n| 7 pgen| /P
y

DX — = DX
0x




118 Functorial Semantics

All sub-diagrams commute either by definition or because they are obtained by
applying a functor to a commuting diagram, except for

T

7y ——— =TDX
l ®®h

Y ——M = DX

fb

(and its image under D). But the commutativity of the latter follows from the fact
that both composite arrows f’ol and ®@hoT f’ fit as the (unique!) arrow (hoT'f)’ :
(TY, ®k) — (DX, 6x). (If the comonad D is cofreely generated, then this arrow is
the unique coinductive extension of ®k along the composite hoT'f : TY — X.)

This shows that G, is right adjoint to Up and that ¢ is the counit of the ad-
junction. The unit of the adjunction is obtained by taking the right adjunct of
the identity and, by the D-coalgebra laws, its value at a ®-algebra (X, k, h) is the
coalgebraic component of the ®-algebra, namely £ : X — DX.

TX TX DTX
h h Dh
V Tk Tk DTf
X X DX
A
TX =X  7TDpx TDX -—=DIDX
X
Y k k Dk
h %h %h D3°h
X <=— DX DX — = D*X
EX (5X

Finally, notice that also the comultiplication of the comonad P =< % ¢, 0>
arises from this adjunction by first taking the unit at Gp(X,h) and then apply-
ing the functor Up to it. In general, every adjunction F'4G defines a comonad
< FG, e, Fng >, where ¢ and n are the counit and the unit of the adjunction re-
spectively. (Cf Section 2 for the dual ‘every adjunction defines a monad’.)



Section 9 — Adequacy 119

To summarize, there are two adjunctions for the category of ®-models, namely

_ Up __FT
cT 1 Cp? = &-Mod = CT 4e 1 Cpo
Go UT

and the unique arrow from the initial ®-model F7(0) = (T0, ug, ®0) to the final
d-model Gp(1) = (D1, §;, ®°1) is both the initial algebra semantics induced by the
denotational model ®®1 = (-) and the final coalgebra semantics coinduced by the
operational model ®0 = [-]. Diagrammatically:

TD1 T1
T! . ‘
FT 1
%1 =(-) - 1
T30 l
p# 5 v
{-b pD1L—"t - px 1

" I
///!z[[-]] /

This is a more compact and symmetric formulation of the adequacy result given in
Section 6.

Notes. The idea that adequacy results ‘live’ in categories of “algebras over coalgebras”
is due to Gordon Plotkin and it has been fundamental for the development of the present
functorial approach to operational semantics.

Liftings of adjunctions are treated in [Joh75]. In particular, the adjunction splitting
the comonad ®© can be obtained by applying Theorem 4 of [Joh75] (see also, eg, [HJ95a]
for a 2-categorical account of this theorem).



120 Functorial Semantics



I11



122



10 Semi-Lattices, Non-Determinism and Basic Process Algebra

The ‘non-deterministic choice’ construct is understood as the union of a power-set
endofunctor, which, categorically, is a monad whose algebras are semi-lattices. This
leads to a non-deterministic behaviour endofunctor BX = P(1 4+ Act x X) whose
coalgebras are non-deterministic transition systems. A functorial denotational se-
mantics is ‘naturally’ associated to this behaviour and its induced functorial opera-
tional semantics turns out to be ‘basic process algebra’.

Let us consider programs with a non-deterministic’ behaviour. For this, let
us introduce the new construct ‘or’ of non-deterministic choice. The intended
meaning of a program worwv is that it can choose whether to behave either as the
subprogram u or as the subprogram v. The following equations should then hold in
the operational model [-]. For all programs ¢, u, v,

[(toru)orv] = [tor(uorv)] (associativity)
[uorv] = [voru] (commutativity)
[tort] = [t] (absorption)

Algebraically, a set Y with a binary operator V : Y xY — Y which is associative,
commutative, and absorptive, that is, such that for all z,y, 2 in Y,

(xVy)Vz = xV(yVz)
ztVy = yVz
ztVr = x

forms a semi-lattice; the operator V is called the join of the semi-lattice. The
program construct or should then behave as the join of a semi-lattice:

[uorv] = [u] Vv [v]

As an example of a semi-lattice, consider the set PX of the subsets of a set X:
the binary union U : PX x PX — PX is associative, commutative, and absorpt-
ive, hence (PX,U) is a semi-lattice. A similar semi-lattice is the one obtained by
considering the set

PsX = {X'C X | X' finite}

of finite subsets of a set X, as well as its ‘relevant’ part
PX = {X'C X | X' finite, X' # 0}

123



124 Functorial Semantics

obtained by omitting the empty set. This latter semi-lattice (the binary union
U:PX x PX — PX is its join) is of particular importance because it is the free
semi-lattice over X; that is, the functor

X = (PX,U)
is left adjoint to the forgetful functor
(Y,V) » Y
from the category of semi-lattices and join-preserving functions to sets.

Write SL(Set) for the category of semi-lattices with arrows f :
(X,V) — (Y,U), the join-preserving functions f : X — Y between
the underlying sets:

fxf

XxX—=YxY
\% [}

X Y

f
Equationally, for every pair (z,2') in X x X,

fleava)=fzu fa

Free semi-lattices. Recall that a functor U : D — C has a left adjoint F': C —
D if and only if there exists a natural transformation n : I = UF such that each
nx is universal from X to U. That is, for every X in C, Z in D, and f: X - UZ
there exists a unique arrow f*: FX — Z in D, such that f = Uf* o nx:

X" _urx FX
# gt
N s 1

v

Uz Z

Let now U : SL(Set) — Set be the above forgetful functor mapping semi-lattices

to their carriers and let
FX = (PX,u)

Then, for every set X, the function

{1y X > PX=UFX x> {z}



Section 10 — Semi-Lattices 125

mapping every element x of X to the corresponding singleton set {x} gives the unit
n: 1 = UF of the adjunction:

X%UFX:@( V‘X%U PX x PX
} Uf =1 7 fix g
v
Uuy,vy=Y Y Y xY

\

Indeed, for every finite subset {xy,...,z,} = {z1}U...U{z,} of X

oy, .. x,y = for V...V fo,

is the required unique join-preserving function. (The properties of the join make
bracketing irrelevant.) This shows that, for every set X, the pair (PX,U) is the free
semi-lattice on X.

As usual, the counit ¢ : FU = [ of the above adjunction can be obtained by taking for f
the identity on Y = U(Y, V). This gives a ‘big join’

V:PY =Y
mapping every finite subset of Y to the join of its elements:

ViYL, sy} =11 V... Vyy

In particular, the value of the counit at a free semi-lattice (Y,V) = (PX,U) is the ‘big
union’

U:P?*=7P

sending each set of sets into its union. Since every adjunction F4G (with unit 1 and
counit ) gives rise to a monad <GF,n,GeF >, (cf Section 2), the triple

P=<P,{-},U>
is a monad. The isomorphism of categories
SL(Set) = Set”

gives then an alternative description of semi-lattices as algebras of the monad P. (See
“Algebras are T-algebras” in Section 2 or check directly.) Similarly, one can check that
the algebras of the the unrestricted power-set monad P=<P,{-},|J> are complete semi-
lattices — semi-lattices with joins of arbitrary cardinality:

CSL(Set) = Set”

Formally, a complete semi-lattice is a partial order (Y, <) in which every subset Y C Y
has a least upper bound \/Y’, while a semi-lattice can be seen as a partial order with least



126 Functorial Semantics

upper bounds only of finite and non empty subsets. (Conversely, every semi-lattice defines
a partial order z <y <= zVy=y.)

In general, ‘k-complete’ semi-lattices can be used to define power-set monads of any
(regular) cardinality x. Semantically, the cardinality to be used depends on the kind
of non-determinism one is interested in. Here only finite determinism is studied, hence
(finite) semi-lattices are used.

Even more in general, semi-lattices give an axiomatic description of various ‘powerdo-
mains’ used in semantics. This holds because semi-lattices can be defined ‘internally’ in
any category C with binary products:

A semi-lattice in C is a pair (Y,V) with Y an object of C and V : Y X
Y — Y an arrow of C which is associative, commutative, and absorptive in
a diagrammatic sense. For instance, the commutativity of the join can be
described diagrammatically using the canonical ‘swap’ arrow

Y X Y
y SWN\
v
Y Y XY Y
fst snd
as follows.
swap

YXY ——— — Y XY
Y
Write then SL(C) for the corresponding category with as arrows the join-
preserving arrows of C.

For instance, the Plotkin powerdomain monad can be shown to arise from the semi-lattices
in a category of complete partial orders and continuous functions. (Notice, the order in-
duced by the semi-lattice structure has nothing to do with the one of the underlying
category of complete partial orders.) Similarly, the semi-lattices in a category of com-
plete metric spaces and non-distance-increasing functions give rise to the compact metric
powerdomain.



Section 10 — Basic Process Algebra 127

In order to deal with non-deterministic behaviours as introduced by the binary
choice construct ‘or’ consider the new behaviour endofunctor

B : Set — Set X = P(1+Act x X)

obtained by composing the (deterministic) behaviour endofunctor X + 14 Act x X
with the semi-lattice monad P. Its coalgebras are the finitely branching trans-
ition systems, that is, transition systems which in every state can choose among
a finite set of transitions. This finite non-determinism reflects the finiteness of the
choice construct; this restriction simplifies the presentation, but, in general, one can
consider semi-lattices (and corresponding monads) with joins of larger cardinality.

Formally, the correspondence between coalgebras (X, k) of the above behaviour
and finitely branching transition systems (X,{—"} , ., }*) is as follows. Omitting,
as usual, the injections into the coproduct 1 + Act x X,

v -2 = k(r) ><a,z'> xl*x <= kx> x

for every x € X. (Cf Section 3.) Notice that a state might both perform an action
or become inert; for instance, k(x) = {<a, 2’ >, *} corresponds to the transitions

Notice that above, and whenever convenient, the fact that x | * holds is treated as
a special transition x — x:

Tlx &= x— %

Next, consider the following ‘minimal’ language for producing behaviours of type B.

Basic Process Algebra. The basic language for the behaviour BX = P(14Act x
X)) should contain a basic inert program nil, an ‘action prefixing’ unary operator for
every a € Act, and the binary choice or. Formally, the language is defined by the
grammar

tz=x|nil|a.t](tort)
and its operational model [-] (a B-coalgebra structure on the above terms) is defined
by induction on the structure of the terms as follows.

[nil] = {x} [a.t] ={<a,t>} [uorv] = [u] U [v]
(For the treatment of the variables x see the next section.) In terms of transition
systems, this corresponds to the following set R of operational rules.

_ “ u — u u — u
nil —> * a.t—>t

a a
uorv — u' uorv — u'

(In order to simplify the notation, a transition u — u' is here intended possibly to
be of the form u — *. Thus in particular if u — * then also worv — x.)



128 Functorial Semantics

Basic process algebra is functorial. Let us prove that basic process algebra is
functorial by defining a functorial denotational semantics ¥ such that its operational
dual ¥# is equal to the operational semantics induced by the rules of basic process
algebra.

One would like to use the above rules R for defining directly the functorial oper-
ational semantics by induction on a germ ¢ : X BT = BT, for ¥ and T the signature
and the syntactical monad corresponding to basic process algebra, respectively. This
is easily done for or and nil using the union U and the termination state x available
in B = ?5(1 + Act X -), but action prefixing causes troubles. Indeed, for any object
r of type BT, a.r should be mapped by ¢ to {<a,r>}, but this is of type B*T
rather than BT. Instead, the definition of a functorial denotational semantics ¥
lifting the observational comonad D=< D, e, > to the 3- (or, equivalently, to the
T-) algebras using the rules of basic process algebra causes no problem.

Recall that, for every X, the set DX is the carrier of the final (X x B)-coalgebra:

= fst d 3
x X7 py > xxBDX "X _ BDX = P(1 + Act x DX)

As shown in Section 13, although the endofunctor P : Set — Set is not w®-
continuous, the final (X x B)-coalgebra exists, hence the observational comonad D
cofreely generated by B can be defined.

The set DX is the set of global behaviours of states © € X wrt B. These can
be seen as trees which are finitely branching, whose nodes are labelled by x € X,
and whose arcs are labelled by a € Act. The counit ex = fstxy : DX — X of the
comonad gives the label of the root node for each tree in DX and the other projection
sndy : DX — BDX gives the remaining part of the tree (and it coinductively
extends to give the comultiplication § : D = D? of the comonad D):

T

o
al An a1 an
fst /\ snd e
xz DS — xlx Tn = T1 Tn

Now, let us first lift the endofunctor D to an endofunctor ¥ on the Y-algebras
and then check that also the operations of the comonad D lift. By the equivalence
between liftings and actions illustrated in Section 7, the desired endofunctor ¥ is
the same as the action

¥ : ¥DU” = DU”

of the constructs ¥ on the composite functor DU> : Set® — Set, where U> :
Set™ — Set is the forgetful functor mapping Y-algebras to their carriers.



Section 10 — Basic Process Algebra 129

The action V. Let us consider first the case of free ¥-algebras, that
is, the action of the program constructs nil, a., and or on DT, where,
notice, an object of type DT is a tree whose nodes are labelled by terms
t of basic process algebra.

i <A>H ht AAH@

Then, in general, for every Y-algebra (X, h), the action of ¥ on DU>(X, h) =
DX is

h(a.z)
L A= A=<
nil — e

Formally, using the meta-variables p and ¢ to range over objects of type
D, ie global behaviours wrt B, the value of the natural transformation
U : XDU* = DU* at a -algebra (X, h) is defined as follows.

nil = <h(nil), {x}>
a.p  +— <h(a.(fstxp)),{<a,p>}>
porq +— <h((fstxp)or(fstyq)), (sndxp) U (sndxq) >

Naturality follows from the fact that no assumption is made on the form
of the Y-algebra (X, h).

Therefore, for every Y-algebra structure h : ¥ X — X, the structure Vh : X DX —
DX is a pair, whose first component is simply the composite function h o Xfsty =
hoYex : ¥DX — X. Writing ¥'h : ¥DX — BDX for the second component of
Wh, one has the following commuting diagram.

)
X< % wpx

h Yh U'h =sndx o Uh

X DX BDX
ex = fstx sndx

The left square is one of the two diagrams which have to commute in order for
U =< V¥, g,0 > to lift the whole comonad D =< D,s,0 >. The other diagram,



130 Functorial Semantics

namely
) .
DX - vp2x
Uh 2h

DX — = D?X
dx

also commutes, because:

The composite functions 6x o Wh and W?hoXdx both fit as the (unique!) pair
<Wh,Béx o¥'h>:XDX — D?’X

LDX
o 1 T'h
DX ! BDX
Uh ! Béx
y .
DX D%X BD?%X

epx =fstpx sndpx

Indeed, noticing that ¥’ is natural, everything in sight in the following two
diagrams commutes.

DX DX
7 un U'h 2 S w'h
DX pxSMx_ ppy 2Dxﬂzu2x BDX
2 ox Box Th w2h Y2h | By
DX- D2X BD%X DX- D?X BD%X
epx =fstpx sndpx epx =fstpx sndpx

The above shows thus that ¥ =< W, ¢, 6 > is a functorial denotational semantics
lifting D=< D, ¢, § > to the X-algebras. It induces a functorial operational semantics
U# as follows. For every D-coalgebra structure k& : X — DX, the structure U#k :
TX — DT X is the inductive extension of Winry along the composite Dnx o k:

nx = inlx inrx

X TX YTX

k T#f | TU*h
v

DX DTX YDTX

D77X Winrx



Section 10 — Basic Process Algebra 131

As shown in Section 7, the triple U#* =< U# n pn > is a lifting of the syntactical
monad T'=<T,n, u> to the coalgebras of the comonad D. For comparing it with the
operational semantics induced by basic process algebra, one has then to translate
it to a lifting to the coalgebras of the endofunctor B. For this, since B cofreely
generates D, one can use the isomorphism of categories

U : Setp = Setp (X, k) — (X, Bfstx osndx o k)
illustrated in Section 7. Thus the composite
YU*Y 1 TUp = BTUp
is of the desired form; let us check that also its ‘content’ is the right one:

Consider, without loss of generality, the case £ =0 : 0 — B0, that is, let
k be the initial B-coalgebra structure. The isomorphism 9~! maps it to
the initial D-coalgebra structure 0 : 0 — D0. Write, for simplicity,

[]y = U*(0) : TO — DT0

The claim is that, for all terms ¢,

where [t] is the operational semantics induced by the rules of basic pro-
cess algebra. Indeed, omitting the subscript 0,

Ja.t]y = (Bfstosnd)[a.t],
= Bfst(snd <a.t,{<a,[t],>}>)
Bfst{<a,[t], >}
{<a,fst]t]y >}
{<a,t>}

= [a.t]
Similarly, one can see that also

Y[uorv]y = [uorv] and J[nil]y, = [nil]

This concludes the proof that basic process algebra is functorial.



132 Functorial Semantics

The syntax as a semi-lattice. Having established that the choice construct or
of basic process algebra really behaves as the join of a semi-lattice, let us treat it
as a join also in the syntax. That is, let us consider the algebras of the signature
Y = {nil,a.(-), or } which validate the equations

(xory)orz = xor(yorz)
E = rory = yorx
rorr = x

and take for the syntactical monad for basic process algebra the monad
TE =< TE7 n, >

corresponding to the (3, F)-algebras, rather than simply to the X-algebras. In
other words, the monad 7% is the one arising from the standard adjunction between
(X, E)-algebras and sets. (See “algebras are T-algebras” in Section 2.)

For every set X, the set TxX is nothing but the quotient wrt (the congruence
relation generated by) E of the free algebra of terms over X; thus one cannot
distinguish in this syntax between, for instance, the terms v orv and v or u. Keeping
this quotient in mind, one can still regard the elements of Tg X as terms, that is, one
can use representatives rather than equivalence classes. The unit ny : X — TgX
and the multiplication ux : TgTrX — TrX are the usual operations on variables
and terms: the former is the insertion of the variables x € X into terms; the latter
maps every term ¢t € TgpTpX containing a sub-term u € TrpX as a variable to
the ‘same’ term ¢ € Tp X by removing the distinction between terms and terms as
variables. For instance,

p((a.t)orng, (worv)) = (a.t)oruorv

Now, by definition, the above denotational semantics ¥ for basic process algebra
is not only a Y-action but also a (X, E)-action; that is, for every h : ¥X — X which
validates the equations F, also Wh : ¥ DX — DX validates FE. In other words, W is
a lifting of the observational comonad D to the (3, E')-algebras.

Set(>F) %\I] Set(>F)

Set ——— = Set

D

Correspondingly, its operational dual ¥# can be seen as a lifting of the monad T
to the D-coalgebras.



Section 10 — Basic Process Algebra 133

Next, write ® for the operational monad on the B-coalgebras obtained by ap-
plying the isomorphism 9 : Set, = Setg between D- and B-coalgebras; that is,
® =9v*Y ' : TyUp = BTpUp

This coaction, because of the equation [uorv], = [u]y U [v]y, is join-preserving,
that is, the following diagram commutes.

or
TeUB TgUp x TeUp

® dx®

P(1+ActxTrUp) ——= P(1+ActxTeUs) x P(1+ActxTUg)
U

In other words, the operational semantics of basic process algebra

Setp

@\

Set

%TE

/g\

takes place in the category of semi-lattices:

/Setg\
Set (I> Set
(Te(-), o \ /BTE

L(Set)

That is,
d . <TEUB, or> = (BTEUB,U>



134 Functorial Semantics

The retraction for basic process algebra. One of the advantages of working
with the syntax as a (3, E)-algebra is that it gives a simple construction of a retrac-
tion for basic process algebra. This retraction is used in the next section to show
that a certain class of operational rules (the ‘GSOS’ rules) is functorial.

Recall, from Section 4, the embedding of the (deterministic) behaviour X
1+ Act x X into the syntax T of the language with atomic actions and sequential
composition:

y:l4+Actx (-) =T * > nil <a,r>+a;x

The term a ; x behaves like the term a.x of the above syntax T, hence one can
write equivalently

v:l+Actx (-) =Tk * > nil <a, x>+ a.v

Notice that P (1+Actx X) is the carrier of the free semi-lattice over the set 1+Actx X
and that the syntax (TxX, or) is itself a semi-lattice. Then, by taking the left
adjunct of v wrt the standard adjunction from sets to semi-lattices

U
1+Actx(-) P(1+Actx-) B———BxB

{-}
EB:
\ “’7“ S “,ﬂ x
Y 1"
v
Te

TE D — TE X TE
or

one obtains a natural transformation
v :B=P(l+Actx -)= Ty

which embeds the behaviour BX = P (1 + Act x X) into the above syntax Ty. That
is, using the meta-variables  and s to range over objects of type B,

7} = 7(x) — il
Y¥<a,2>} = v(<a,z>) = a.x
Y(rus) = (¥'r)or(yts)

Now the claim is this embedding 7* is a retraction for basic process algebra.
That is, for ® =< ®, 7, u > the above operational monad corresponding to basic
process algebra, one has that the composite ® o py, o f)/jﬁ—‘EUB is the identity natural
transformation on the functor BTrUp:

®ONUB07§WEUB:I

(Cf Section 4.) In order to prove this, notice that each v% is an arrow in SL(Set),
that is,
¥ (B,U) = (T, or)



Section 10 — Basic Process Algebra 135

Therefore, the composite

#
(BTuUpg,U) “Z% (T2Uy, or) & (TuUsg, or) =% (BTuUp, U)

is necessarily the identity on the functor (BTrUp,U) : Sety — SL(Set) because,
for every set X, there exists a unique join-preserving arrow from the free semi-lattice
(BT X,U) to itself which respects the unit of the monad P. This proves that the
composite fiy, o Vg’EUB is a retraction for the operational semantics ® induced by
basic process algebra.

The above retraction can be used to give an alternative (more direct) proof of
the functoriality of basic process algebra. For this, define the germ

¢* : BTy = BTy

of the operational semantics corresponding to the rules R of basic process algebra
as follows. For r and s meta-variables ranging over objects of type BT,

nil = {x}
o% =< a.r  — {<a,fr>}
rors — ruUs

Formally the operational monad aﬁ induced by this germ ¢% is not equal to the
above operational monad ® for basic process algebra. However, the two operational
semantics are equivalent in a suitable sense

O ~ R
as it is shown in the next section. Here already notice that

g © 'Vg’EUB is a retraction also for ¢

Notes. The interpretation of the non-deterministic choice as a semi-lattics join dates
back at least to [HPT79], where the Plotkin powerdomain is treated as the semi-lattice
monad on a category of complete partial orders.

For a textbook on various non-deterministic languages for concurrency, including basic
process algebra, see [BW90].

The above idea of quotienting of the terms (of basic process algebra) by an algebraic
congruence for defining the programs of a language is not new: it is used, for instance, in
the ‘Chemical Abstract Machine’ approach to operational semantics [BB92] and in some
presentations of the ‘r-calculus’ [Mil90].



136 Functorial Semantics



11 GSOS is Functorial

One of the largest classes of ‘well-behaved’ structural operational rules for transition
systems is the class of ‘GSOS rules’. These are rules satisfying suitable syntactic
restrictions which ensure the compositionality of the corresponding operational mod-
els. Almost all transition systems in the literature are defined by means of GSOS
rules. For instance, languages like basic process algebra, CCS, and CSP have GSOS
rules.

It is proved here that the operational semantics induced by a set of GSOS rules is
always functorial (under the mild assumption that it embeds basic process algebra).
This result shows the generality of the functorial approach to operational semantics
motivating the claim that it is a first step towards a mathematical theory of ‘well-
behaved’ operational semantics.

A GSOS rule specifies one possible transition for terms of the form o(uy,...u;),
for o a given program construct of arity [:

GSOS Rule
ij i bij i
{ui =5 vy W22, {w —$hE2,
o(uy,...,w) —= C[w, V]

The a;;’s and b;;’s are actions in Act; the u;’s and v;;’s are all distinct (meta) variables
ranging over terms, the expression C[@, 7’] is a term formed by the context C[=’]
and some (meta) variables contained in the set of w;’s and v;;’s. The expression

i
stands for ‘u; cannot perform a transition with action b;;’.

For instance, the rule
a
Uy —» U1

a
Uy 3 Ug —> VU1 ; Uz
is in GSOS, as well as the rule

a
Uy — * Uy — V9

a
Uy 5 Ug — V2

by considering that a state becomes inert u — * (ie u | *) as a special case of
transition u — v. In this way, all rules considered so-far are GSOS.

137



138 Functorial Semantics

Before setting out to prove the functoriality of GSOS, let us introduce an interme-
diate notation between transitions and actions of coalgebras (X, k) of the behaviour
endofunctor

BX = P(1 + Act x X)

k
Write z & < a,y > for k(x) 3 <a,y> and x 76 < a,-> for ‘there exists no y such
that <a,y> is in k(x)’. That is,

k
v <ay> = x-Sy T A <a,-> = 124
A GSOS rule is then of the form

1<i<] 1<i<]
{ui ~ <ay;, vy >}1§;§mi {ui o <bij, - >}1§;’§ni

o(ug,...,u)~ <a,C[W, V]>

Again, one has that u ~ x is a special case of u~ <a,u' >.

Now, the proof of the functoriality of GSOS given here is based on the assumption
that every set R of GSOS rules embeds the basic process algebra of the previous
section. This does not seem to be a serious restriction, because most of the languages
defined by means of GSOS rules do have programs behaving like nil, a.¢, and uorv.
Therefore, let us assume that the signature ¥ of the language contains the basic
inert program nil, a unary action-prefixing operator for every action in Act and the
binary non-deterministic choice ‘or’:

te=x|nil|al(tort)|o(t,...,1)

Moreover, assume that the semi-lattice laws

(xory)orz = zor(yorz)
E = rory = yorx
rorr = x

for the choice construct hold. Thus, the corresponding syntactical monad
I'=<T,n,p>

is the free <3, E >-algebra monad. (Cf Sections 2 and 10.) As a consequence, the
embedding 7% : B = Tj of the above behaviour into the syntax of basic process
algebra extends to an embedding

v:B=T

into this syntax 7. Since the rules R extend the rules of basic process algebra one
also has that this embedding is a retraction for (the operational semantics induced
by) R. (Cf previous section.)



Section 11 — GSOS 139

GSOS is natural. The claim is that every set R of GSOS rules over 1" containing
basic process algebra can be seen as a natural transformation

[R]:YB = BT

Moreover, the operational models induced by R and by [R] are ‘observationally
equivalent’ in the sense that their coinductive extensions are equal.

The definition of the transformation [R] : ¥B = BT is based on the rules R as
follows. Let the meta-variables r and s range over objects of type B = 75(1+Act X - ).
For the rules corresponding to basic process algebra, put

[R](nil) = {x} [R](a.r) = {<a,yr>} [R](rors)=rUs
and, in general, for every rule

{ui ~ <aij,vig >h 2%, {ui b <biy->hi,
o(uy,...,u) ~ <a, C[W,V]>

in R, put
<a,Clxt, P]> € [R1x(0(r1, .., 7))

it <a;j,x;;>€r;forl <i<land1l<j<m,, and, for every x € X, <b;;,z>¢&r;
for1 <i<land1 < j <mn; The only difference between R and [R] is in the use in
the latter of the embedding 7* : B = T, which is necessary in order to plug objects of
type B into the context C[=", @’]. The fact that this embedding is a retraction wrt
the operational semantics will ensure that this difference is observationally irrelevant.

To prove that the above definition of the arrow [R]x : ¥BX — BT X is natural

in X, let us first use the following more suggestive notation.

1<i<1 1<i<i
{ri > <aij, zy; >}1§;€mi {r: ? <bijv‘>}1§;'§ni

o1, ) ¥ <a, CPr, B]>

The proof that this definition is natural is a simple generalization of the one given
in Section 4 corresponding to the rules for the simple deterministic language used
there:

Naturality. The claim is that, for every ‘renaming’ f : X — Y, the
diagram

YBf
vBX — "1 _sypy

[R]x Ry

BTX— -~ BTY
BTf

commutes. Consider the case of negative premises: if there is no pair
< a,xr > in r € BX for a given action a and arbitrary € X then



140 Functorial Semantics

there is also no pair < a,y > in (Bf)(r) € BY for arbitrary y € Y.
Therefore, the problem of proving the naturality of [R] can be reduced
to the problem of proving that the following holds.

o, 1) 21 (B, (BF(m))
[R]x € Ry
5 5 Tt
<a,OB5n 8> = <a,(TH)(CHLn &) >=<a,CREBH), Fil>

BTf

But, again, like in Section 4, the equation

(TF)(CPr 2)) = CH(BF) (r), T#

is an immediate consequence of the naturality of the retraction v* from
B to T and of the GSOS condition that all variables in C[@, 7’| are of
the form u; or v;; (hence (T'f)C[...]=C[(Tf)...]).

Notice that it is very easy to violate the naturality of [R] by relaxing the assumptions on
R. For instance, one cannot drop the assumption that all meta-variables v;; on the right
hand side of the premises u; RN v;j are different. Indeed, one would then permit rules
like

U1 i) v U9 —b> (Y

o(uy,us) —= nil
which fails to be natural: under the above translation R — [R] and in absence of other
rules for the operator o, one has that o(<a,z1 >, <b,x9>) cannot perform any transition
while, by using the renaming
(@) =y = f(z2)
one has that
o(<a, f(z1)>,<b, f(x2)>) ~ <c,nil >

There exists however a useful extension of GSOS which is ‘well-behaved’ in the sense

that it induces operational models which are always compositional. It is the so-called

‘ntyft’-format (see notes below) which is obtained by allowing for whole contexts C; rather
than for simple (meta) variables to appear in the left hand side of the premises of the rules:

aij 1<i<l bij y1<i<i
{Ci = viihizizm G —AhzZi2n,

o(ug,...,u) - C

The u;’s and v;;’s are still all distinct meta-variables, but there might now appear some
extra meta-variables in the contexts C' and C;. (The induction on these rules is made more
problematic by the appearance of contexts also in the premises, hence some restriction (eg,
‘stratification’) on the use of negative premises is needed.) It is not yet clear whether these
rules fit in the present functorial approach.



Section 11 — GSOS 141

R is observationally equivalent to [R|. Like in the example in Section 4, the
transformation [R] : ¥B = BT can be made into the germ ¢* : XBT = BT
of a functorial operational semantics by composing [R| at the syntax 7" with the
behaviour B applied to the multiplication p of the syntax:

[Rlr

YBT ———BT?
N HB"
BT

Spelling out the details, this germ ¢® : Y BT = BT is defined by ‘rules’

1<i<l 1<i<i
{ri > <aiy, tij>hzizm {ri 2 <by,->hizn,

—
O—(Tla T T[) 27; <a, M(Oh/gﬂra 7>]) >

corresponding to the rules in R. The multiplication p : T? = T is formally needed
in order to remove bracketing and make of the term

—
Clyr, T]

(with as variables the terms 7&r; and t;;) a simpler term with the variables of Yk,
and t;; as variables. In the sequel, for simplicity, p is omitted.

For every set X, the function ¢% : YBTX — BTX is not only a - but also a
(3, E)-algebra structure for (BT X,U). That is, ¢”* is join-preserving. Therefore,
by the isomorphism between (X, E')- and T-algebras (cf Section 2) it can be seen as
an action of the monad 71" on the composite functor BT

¢* : TBT = BT

Then, for every coalgebra structure k¥ : X — BX, the germ ¢% induces an opera-

tional model
[-Ifry : TX — BTX

by taking the left adjunct of the composite arrow Bnyok : X — BT X = UT(BTX, ¢%)
wrt the standard adjunction FT4UT from the T-algebras to their carriers

nx nx

X TX TX T°X
k [H]IFR] [H]IFR] :: (Bnx o "f)ﬁ T[H]’FR]
v
BX ——=BTX BTX%R TBTX
Bnx ¢x

(See Section 2.)



142 Functorial Semantics

Regarding the coalgebra structure k : X — BX as a set of transitions # — 2,
with x,2' € X, one can also take the least transition system induced by these
transitions and by the rules in R and obtain another operational model

[]% : TX — BTX

The claim is that these two operational models are observationally equi-
valent in the sense that their coinductive extensions are the same; in
other words, they have the same final coalgebra semantics.

Without loss of generality, let us prove this claim taking for £ the ‘empty’ coalgebra
structure 0 : 0 — B0 as the base of the induction. Correspondingly, one has the
models

[-lz : T0O — BTO and [-lfr) : TO — BTO

with the set T0 of closed terms as carrier. The claim is that, for all closed terms t,

[tz = [tlx

Diagrammatically:

U:J)

[[]]R

[[ 1e o final coalgebra

where, recall, BX = P(1 + Act x X) and the final B-coalgebra (B, ¢) is described
in Section 13.
First notice that
[tlr ~ * = [tlry ~ *

Thus, consider, without loss of generality, only the case when ¢ might not become
inert. Then, the functions [-]5 and [-] %] are the unique functions which, for all ¢,
satisfy the coinductive definitions

[t = ¢ H{<a,[t']S>]| [t]r ~ <a,t'>}
and
[t = ¢ {<aq, [t % > | [tlir) ~ <a,t'>}

respectively, for ¢! the inverse of the final coalgebra isomorphism ¢ : B~ BB. If
one can show that, for all terms ¢, the identity

{<a, [t > | [thrr) ~ <a,t'>} = {<a, [t > | [t]r ~ <a,t'>}  (3)



Section 11 — GSOS 143

holds, then one has that, for all ¢, both

[tz = ¢ {<a [t]f%) > | [l ~ <a,t'>}

and
[llx = ¢ {<a,[t']e>][tlr ~ <a,t'>}

which, by the uniqueness of coinductive extensions, implies that they are the same.
Now, the identity (3) can be proved as follows. Notice that, by definition of [R],

—_
[tlir) ~ <a,t'> < [t]r ~ <a,C[@, T]> and t' = C[yholulry, 7]
It suffices then to show that
[Clioluliry, Pl % = [C1%, P15

For this, one can use the compositionality of functorial operational semantics (the
abstract semantics of a term is invariant under substitution of sub-terms with the
same abstract semantics) and reduce it to the problem of proving that

[Mro [wil [R] ] %z] = [ui] [©7>z1

holds. This, in turn, is a consequence of the fact that 7 is a retraction for [R], ie
[[7%07“ 1 R] =T (see previous section):

[wliz) = o B[-] ) o [u ]][R] (unfold)
= B[- ]][% [V lwilrilm)  (vetraction)
= [[%o[[uz]] m1l % (fold)

This concludes the proof.

Structural Coinduction. A more direct way of proving that the set [t]5 is equal to the set
I¢] [@R] would be to prove that the two sets are equal under the coinductive hypothesis that
the [t']3’s are equal to the [t] [@m ’s. Intuitively, this principle holds by duality wrt the
structural induction principle, the algebraic structure of the program constructs being here
replaced by the coalgebraic structure of the behaviour observations. However, a formal
foundation for this particular ‘structural coinduction principle’ is still to be investigated.



144 Functorial Semantics

Guarded Recursion in GSOS. Recall from Section 5 that every set of terms
(mutually) recursively defined by means of equations in some variables x; € X

Iy = tl[X], T = tQ[X], e

where t;[X] are elements of TX (hence might contain variables from X), can be seen
as a T-coalgebra k : X — T'X by putting k(z;) = t;[X]. (And vice versa.) Also
recall that a system of (mutually) recursive definitions & : X — TX is guarded if it
factorizes through a coalgebra

g: X = BTX =P(1+Act x TX)

of the composite endofunctor BT in the sense that

X——=TX

N

BTX?WX
Trx

commutes, that is, £ = pux o ﬂpX og: X — TX, where u : T? = T is the

multiplication of the syntactical monad T (cf Section 2) and 7% : B = T is the
retraction for basic process algebra. Clearly:

g(‘rl) = {<ai17ti1 Sy <ain7tin >}
that is, the equations x; = t; are guarded if they are of the form
x; = (a;, . t;;)or...or(a;, .t;,)

Conversely, every BT'-coalgebra can be seen as a set of mutually recursive definitions.

Now, for every set R of GSOS rules, one can take the left adjunct of every
g: X = BTX =U"(BTX, ¢¥) wrt the adjunction F"4U" from the T-algebras to
their carriers:

X L TX T‘X¢ T2 X
g H?n] H?m :: g* Tl[']]?R]
v
BTX BTX@R TBTX
ox

Then, the desired interpretation of g as a recursive process is obtained by taking the
corresponding final coalgebra semantics ([[—]]“fm)@ = ([-]%)® : TX — B precomposed



Section 11 — GSOS 145

with the insertion-of-variables 7y : X — T'X. With the usual abuse of notation,
write ¢ : X — B for this composite arrow:

g@
XM@
) [z =
BTX BB

Notice that no variable binding operator (like, eg, the operator “fix” in the original
definition of GSOS) is needed here to deal with recursion.
As an example, let R be basic process algebra together with the rules for (simple)
interleaving
Uy L) () (%) L) V2

Uy || UQL)’Ul || U9 U1 || uzi>u1 || V2

and let g be the BT-coalgebra corresponding to the guarded recursive definition
r=a.r y=(a.y)or(b.x) z=(a.z)or(b.(x | y))
in X = {z,y, z}. Write, for simplicity,
[[—]]g = [[—]]?R] :TX - BTX
and, correspondingly, let
[, = (Ffe)® = (FI%)® : TX = B

be its coinductive extension. Then, omitting, as usual, the insertion-of-variables
: X — T'X and the final coalgebra isomorphism B~ BB,

[a.1], = {<a,[ix[,],">) = {<a, [, >}
[trorts], = [ti],” U[te],”
[t 1 8a]," = {<a,[th || a1, > =2t} U {<a, [ty [[ 8], >] 2=}

@) = {<a,¢%@)>} = O

ol N
“(y) = {<a,¢%y)>}u{<b ¢%@)>} = %

9°(2) = {<a,9°(x) >} U<t [z || 4], >}



146 Functorial Semantics

GSOS models are ®-models. The functoriality of GSOS gives a systematic
method for deriving an adequate denotational model from any set R of GSOS rules.
Another systematic method proposed in the literature (see notes below) permits
to derive a proof system from any set R of GSOS rules. This proof system can
be used for proving that the programs of the language of R satisfy assertions in
Hennessy-Milner logic.

The main result on this proof system is that it is complete wrt a certain class
of ‘models’ of R. The problem arises then of finding an independent motivation for
the definition of GSOS models. It is here shown that the models of a set R of GSOS
rules are exactly the algebras of the operational monad ® induced by the rules R.
This supports the choice of that class of models as the ‘natural’ one.

A model for a set of GSOS rules R is a triple (X, h, k) with h : TX — X an
algebra vof the syntactical monad T'=<T,n, > corresponding to R and k : X —
BX =P(1+ Act x X) a B-coalgebra structure such that

o(zy,..., 1) sz <a,z' >
holds if and only if there exists a rule

1<i<] 1<i<]
{ui~ <aijvig>Hz2,,,  Awi o <by,->hzZiz.,

o(uy,...,u) ~ <a, O, V]>

in R such that
k k = o1 By
Ty~ < g5, Yij > -’17i7/’><bij;‘> C[ZII, y] xr

(Formally, this definition is obtained from the original definition of GSOS models by
using the one-to-one correspondences between (3, E)- and T-algebras and (finitely
branching) transition systems and B-coalgebras.)

Next, let ® =< ®, 7, u > be the operational monad induced by a set of GSOS
rules R. That is,

X —— =TX TX <—— X
k ok ok Tok
v
BX — =BTX BTX<——TBTX
Bnx bx

Recall, from Section 9, that an algebra of the monad ® is a triple < X, h, k>, with



Section 11 — GSOS 147

h a T-algebra and k a B-coalgebra structure over the set X such that the diagram

Pk
TX —=BTX

h Bh

X— = BX

k
commutes. But this means that
ho(xy,...,2)) Y <a, 2’ >
holds if and only if
a(xl,...,xl)f@f<a,t> and ¢+ 2

In turn, by definition of ®, the latter holds if and only if there exists a rule

{ui ~ <ag,vg >hEg,,  {w b <by,->HI2,
o(uy,...,u) ~ <a, O, V]>

in R such that
k
i B <agg,yi;> T P <bjj,-> t=C[@, 7]

Since ht = ' this proves that every GSOS model is a ®-algebra, and vice versa. In
Section 9, ®-algebras are also called ®-models, hence this result can be rephrased
formally as GSOS models are ®-models.

Notes. The notion of a GSOS model has been introduced in [Sim95]. The GSOS
rules have been defined in [BIM88], considerably extending a previous definition of ‘well-
behaved’ rules from [dS85]. More recent proposals are the tyft format [GV92] extending
GSOS without negative premises and its subsequent ntyft format [Gro93] mentioned above.
It would be interesting to understand whether the functorial approach can deal also with
these latter formats.



148 Functorial Semantics



12 Coalgebraic Bisimulations

There are several notions of observational equivalence for a transition system; the
most general one corresponds to a relation on its states called (strong) bisimulation.
The final coalgebra of the behaviour corresponding to transition systems ‘classifies’
bisimilar states in the sense that two states are bisimilar if and only if they have
the same final coalgebra semantics, ie the same abstract global behaviour. In other
words, coinduction can be ‘pulled back’ to bisimulation. As a corollary, the final
coalgebra is ‘internally fully abstract’.

Categorically, this can be generalized to every behaviour functor B preserving
‘weak pullbacks’.

Recall from Section 10 the correspondence between (finitely) non-deterministic
transition systems and coalgebras of the behaviour endofunctor

BX =P(1+ Act x X)

Recall also the notation z ~ < a,x’ > introduced in Section 11 to express that
<a,r'> € k() in a coalgebra structure k : X — P(1+Act x X); in other words, the
transition system corresponding to the coalgebra (X, k) can perform the transition
r 1.

A relation R between the carriers X and Y of two coalgebras (X, k) and (Y, ¢)
lifts to a (strong) bisimulation between the two coalgebras when, for all z in
X and y in Y such that 2Ry (ie <z,y > € R), the following three conditions are
satisfied.

1. 2% « if and only if y ~5
2. if & <a,z'> then y N <a,y' > for some y' such that 'R/

3. and, conversely, if y £ < a,y’ > then z L < a, ' > for some z’ such that 'R/

Notice that bisimulations are themselves coalgebras. Indeed, from the above condi-
tions, one can define a coalgebra structure

R:R— P(1+Act x R)

on the relation R by putting
R k ¢
TRy~ % <= -~ (<= y~ %)

149



150 Functorial Semantics

and _
R o k / L / / /
TRy ~ <a, <z’ y > < r~<a,xr> y~<ay> TRy

In the sequel, the above notion of bisimulation is also called ordinary bisimula-
tions, in order to distinguish it from the following more general notion of ‘coalgebraic
bisimulation’.

Bisimulations are coalgebras; now the question is: Is there a coalgebraic descrip-
tion of bistimulation? For this, consider the two ‘legs’r;: R — X and ro: R —» Y
obtained by composing the insertion R — X XY of the relation R into the cartesian
product X xY with the first and second projection, respectively. Now, if the relation
R lifts to an ordinary bisimulation, then its legs r; and ry lift to coalgebra arrows;
that is, the two squares in

Xy}f&}/

BR
k 7N l
J/ BT‘1 BT‘2 J/
V N\

BX BY

commute. The converse is also true; namely, if a relation lifts to a coalgebra of
the above behaviour endofunctor B in a way that its legs also lift to correspond-
ing coalgebra arrows as in the above diagram, then this relation is a bisimulation.
Indeed, the first condition is obvious, while the second and the third follow from
the commutativity of the left and the right diagram, respectively. Notice that there
might be more structures R making the above diagram commute, corresponding to
the several ways in which, in general, a relation can lift to a bisimulation.

The above diagram can be defined wrt any endofunctor B. Call the correspond-
ing notion coalgebraic bisimulation. It applies also to endofunctors on categories
other than Set, by taking a relation between two objects X and Y in a category

C to be a span
R
N
X Y

which is monic in the sense that the two legs are jointly monic in C; that is, if f
and g are two ‘parallel’” arrows such that

rrof=riog and ryof=ry0g

then f is equal to g. (To be precise, a monic span is not a relation, but just
one representative of an equivalence class (of monic spans) which forms the actual
relation — more details below.) Then, a relation R between the carriers X and Y



Section 12 — Bisimulation 151

of two coalgebras (X, k) and (Y, £) of an endofunctor B on C lifts to a coalgebraic
bisimulation if there exists a B-coalgebra structure R : R — BR which makes

R
T1Lr2
R
X ¢ Y
¢

BR
k VRN
BT‘1 BT‘2

BX BY

commute. Notice the stress is put on the fact that the legs of the relation R [ift
to coalgebra arrows, rather than on the actual (possibly not unique) coalgebraic
structure of R. Therefore, let us forget about the coalgebraic structure of R and
write

AR

to express that R is a relation between the carriers X and Y which lifts to a bisim-
ulation between the coalgebras (X, k) and (Y, /).
A canonical way of defining relations is by pullbacks: for any diagram

X Y
N
Z
the two legs of the corresponding pullback

R
L r2

XNZ/V

are jointly monic (by the universal property of the pullback). For instance, in Set,
the pullback of two functions f and g is the relation {<z,y>| fr = gy}. Another
example is given by the equality relation: the pullback

EQ(X)

€1 €2

X X
N\ v4



152 Functorial Semantics

is the equality relation on the object X in a category C with pullbacks.

The equality relation always lifts to a coalgebraic bisimulation.
Firstly, notice that the two legs e; and ey of the equality are the same.
Next, consider the ‘diagonal’ dy : X — EQ(X)

X
dx
idx v idx
EQ(X)
e1 e2
X X
AN Va
X

given by the universal property of EQ(X). (In Set, the value of the
diagonal dx at an element = of X is the pair <x,z>.) For any endo-
functor B and any B-coalgebra (X, k) since the composite e; o dy is the
identity on X, the diagram

€; k Bdx

EQx)—“—xF_px P pmgx)
€; Vi AN Be;
X BX
k

commutes; hence, the composite Bdx ok o¢; lifts the equality EQ(X) to
a bisimulation on the coalgebra (X, k):

Next, let B be an endofunctor on a category C with pullbacks. Recall that pullbacks,
like all universals, are determined by two conditions: wuniqueness and existence.
When only the existence part is known to hold one speaks of a weak pullback (and
of a weak universal in general). Now, not all pullbacks lift to B-bisimulations, but
a sufficient condition is that the functor B preserves weak pullbacks. That is, if
the image under B of a weak pullback is still a weak pullback, then every pullback in
C of arrows which are coalgebra homomorphisms lifts to a B-bisimulation. Indeed,
since pullbacks are also weak pullbacks, for all f: (X, k) — (Z,j) and g : (Y, () —



Section 12 — Bisimulation 153

(Z,7) in Cp, the ezistence of a (possibly not unique) suitable coalgebra structure

R : R — BR for the pullback R of f and ¢ in C is ensured by the weakly universal
property of the weak pullback BR:

R oo >BR

R
- - B/v%2
k
X Y BX BY
N A T
A - BZ
J

(The coalgebra structures k and ¢ turn the legs of R into a cone over the diagram
for which BR is a weak pullback.)

Pullbacks lift to ordinary bisimulations. Let us check that the behaviour
functor BX = P(1 + Act x X) preserves weak pullbacks and hence, by the above
argument, pullbacks lift to (ordinary) bisimulations.

Let us consider the functor BX = 75(Act x X); the proof carries over trivially to the
case BX = P(1 + Act x X). The problem of showing that the functor B preserves weak
pullbacks can be reduced to the problem of showing that B maps (ordinary) pullbacks to
weak pullbacks. Indeed, the following holds.

In Set, weak pullbacks embed pullbacks. That is, the diagram

is a weak pullback diagram if and only if there exists an injection m : R — W
of the pullback R = {<z,y>| fz = gy} of f and ¢ into W such that

comimutes.

Therefore, if
BR = {<a,z,y>| a € Act, fz = gy}



154 Functorial Semantics

is a weak pullback for Bf : BX — BZ and Bg : BY — BZ, the set BW inherits the
weak universality of BR by means of the mediating arrow Bm : BR — BW.

In turn, in order to prove that BR is a weak pullback for Bf and Bg it suffices to
prove that the (ordinary) pullback R’ of Bf and Bg factorizes through it in the sense that
there exists a function h : R" — BR such that r, = Br; o h:

Indeed, then every other cone (f’,g') over the co-span (Bf, Bg) factorizes through the
pullback as follows.

BX—=BZ
Bf

Let us now try and define such a function h : R' — BR from the pullback R’ of Bf and
Bg to the image under B of the pullback R of f and g. By definition of pullbacks in Set,
the set R’ is made of those pairs

<{<aj,z; >} {<a;,y; >}j€J>
such that the index sets I and J are finite and
Bf{<ai,zi>};cr = Bg{<aj,y;i>};c;
The latter holds if and only if for every ¢ € I there exists a 7 € J such that
<ag, fr;>=<aj,gy; > (ie a; = aj, fxz; = gy;)

and, conversely, for every j € J there exists an ¢ € I such that <a;, fz; >=<a;,gy; >.
But then one can define h : R — BR as mapping every pair

{<ai7 T >}z'el R {<aj’ Yj >}jeJ

to the set
{<a;,zi,y;>| a; = aj, fz; = gy;} € BR

This gives the desired factorization. Notice that the mediating function A is not unique
and that this construction also applies to the simpler behaviour BX =1+ Act x X.



Section 12 — Bisimulation 155

The semantic import of coalgebraic bisimulation is shown by a list of properties
which relate it to final coalgebras. Omne property is that coinductive extensions
identify bisimilar elements; in particular, if two programs are bisimilar, then they
have the same final coalgebra semantics. Another way of expressing this fact is
to say that the equality on the final coalgebra lifts to the final bisimulation (in a
suitable category of relations). As a corollary, final coalgebras are internally fully-
abstract, in the sense that in a final coalgebra one cannot distinguish between
bisimilar elements; this property is also called strong extensionality.

Next, if the pullback of two coinductive extensions lifts to a bisimulation, like,
eg, when the functor B under consideration preserves weak pullbacks, then this
pullback is the greatest relation lifting to a bisimulation. Together with the above
property that coinductive extensions identify bisimilar elements, this gives that two
programs have the same final coalgebra semantics if and only if they are bisimilar.
In other words, coinduction can be ‘pulled back’ to bisimulation.

Let us look at these properties in detail.

Coinductive extensions identify bisimilar elements. That is, for any relation
R lifting to a bisimulation the following diagram commutes.

(B, )

This is a trivial consequence of the fact that both composites in the diagram are
coalgebra arrows to the final coalgebra, hence they must be the same.

Corollary (Strong Extensionality): Final coalgebras are internally fully-
abstract. That is, every relation which lifts to a bisimulation on the final coalgebra
has equal legs:



156 Functorial Semantics

The equality on the final coalgebra lifts to the final bisimulation. Consider
the category having as objects relations lifting to bisimulations of an endofunctor B
and as arrows triples of arrows <r, f, ¢ > making everything in sight in

(X', k) (', e

commute — where f and g are arrows in Cp, while r is an arrow in C. Then the
equality EQ(B) on (the carrier of) the final coalgebra is the final object of this
category. This is an immediate consequence of the fact that EQ(B) is a pullback
(in C):

R__
yN\; Tt -
“>EQ(B)
wh o N
E© ~ 2\
(B, p) (B, p)

That is, from any relation R lifting to a bisimulation there is a mediating arrow to the
equality EQ(B) on the final coalgebra because the two legs of R can be coinductively
prolonged to form a suitable cone on (the carrier of) the final coalgebra.

Greatest bisimulations. So far, we have made no distinction between relations
and monic spans (like pullbacks). To be precise, one should first define an equi-
valence relation among monic spans with a common codomain and then take the
corresponding equivalence classes as the actual relations; this equivalence relation
is defined as follows.

For any two monic spans with a common codomain

M M
X Y X Y
write
M M’
Ty Xni < y Wﬁ
X Y X Y

if there is an arrow f : M — M’ such that M; factorizes as M] o f, for both i =1



Section 12 — Bisimulation 157

and 1 = 2:
[V )
HM
m} ma
X Y

The two monic spans are then equivalent (hence represent the same relation) if the
converse also holds, that is, if also

M M
y Xni > y %
X Y X Y

The above defines a partial order ‘<’ of relations (and also of relations which lift to
bisimulations). If the cartesian product X x Y of two objects X and Y in a category
exists, then its equivalence class is the greatest relation between X and Y wrt this
partial order. If the category has finite limits, then products are pullbacks wrt the
final object; in particular,

In semantics, the ‘base’ category C should, like Set, have all finite limits. The
same cannot be said in general of the category Cp of coalgebras of the behaviour
endofunctor B. What certainly is true is that the behaviour should have a final
coalgebra, that is, the category Cpg should have a final object. Now, recall that the
coinductive extension k® : X — B of a coalgebra structure £ : X — BX is the
unique coalgebra arrow from the coalgebra (X, k) to the final coalgebra (B, ¢); then
one can take the pullback (in C) of two coinductive extensions and, if it lifts to a
bisimulation between the corresponding coalgebras

>.

(X, k)

N/\
© N\
VN

k@

(B,

~

then this is the greatest (relation lifting to a) bisimulation between the coalgebras
(X, k) and (Y, 7).



158 Functorial Semantics

Write & for the relation obtained above by ‘pulling back’ the coinductive exten-

sions of the coalgebra structures k£ and ¢. Then, in Set, if the relation %5 Nifts to a
bisimulation,

rXy = k(@) = ()
for any two elements x € X and y € Y. (The implication from left to right fol-
lows the property that coinductive extensions always identify bisimilar elements.)
Semantically, for an operational model [-] : TX — BT X with syntax 7" and beha-
viour BX = P(1 + Act x X), two programs t,# € TX are bisimilar if and only if
they have the same final coalgebra semantics:

t 34— [1° =11°

Notice the underlying assumption that the pullback [ ifts to a bisimulation on the
operational model [-]:

As shown above, pullbacks lift to ordinary bisimulations, ie to the bisimulations of
the behaviour functor BX = P(1+Act x X). As a consequence, one can thus obtain
the familiar result that the union of all bisimulations on a transition system is itself
a bisimulation.



Section 12 — Bisimulation 159

Bisimulations along arrows. The fact that coinductive extensions can be pulled
back to bisimulations can be generalized to coinductive extensions along arrows.
This leads to a new, more general notion of ordinary bisimulation in which not only
the actions but also some (properties of the) states can be observed.

Recall that final coalgebras B = BB are a special case of cofree coalgebras
DX = X x BDX (namely B = D1) and that, correspondingly, the coinduction
principle of final coalgebras generalizes to the arbitrary cofree coalgebras: for every
coalgebra structure k£ : X — BX and arrow f : X — Z one has a unique coalgebra
arrow f”: (X, k) — (DZ, sndz), namely the coinductive extension of k along f:

f Bf’

(Cf Section 7.)
Next, consider a relation R between two arrows f: X - Zand g:Y — Z
over the object Z, that is, a relation between X and Y such that the diagram

X%R&Y
N

commutes. Then, if X and Y carry coalgebra structures £ : X — BX and /: Y —
BY respectively and the relation R lifts to a bisimulation between them

R
7N
(X, k) (Y, 0)
then also the diagram
R
7N
(X, k) (Y, 0)
fb gb



160 Functorial Semantics

commutes, because both composites f* or; and ¢” o ry fit as the unique coinductive
extension of the (no matter which!) coalgebra structure on R along the composite
fori=gory: R— Z.

If pullbacks lift to B-bisimulation, then the pullback (in the base category) of
the coinductive extensions f” and ¢’ of k and £ along f and g is the greatest relation
between f and g which lifts to a bisimulation between (X, k) and (Y, ¢).

As an example, consider the simple behaviour BX = 1 + Act x X and, corres-
pondingly, ordinary bisimulation for deterministic transition systems. Let the set
Act of actions be trivial, that is, let Act be made of only one action a. Let (X, k)
and (Y, ¢) be the same coalgebra having as carrier the set Z of integers and as struc-
ture ¢ : Z — B(Z) the one corresponding to the following (deterministic) transition
system: 0 is inert, a positive integer n performs a transition to its predecessor n —1,
and a negative integer —n performs a transition to its successor —n + 1:

0] x n—n-1 —n- —n+1
(Cf Example in Section 7.) Finally, let Z be the three-elements set {0, &, {>}. Thus:
X=z=Y Z={0,%,$} Act = {a}

Now, different bisimulations are possible according to the choice of the functions
f,9:7— {0,&%,<O}. Let us fix the function g : Z — {0, &, &} to be the one mapping
odd numbers to & and even numbers to . If f is equal to g, then every number is
bisimilar to itself and to its opposite. For instance,

F3)=8-50-58&-50=g(3)

and thus —3 is bisimilar to 3 (wrt g).

The above amounts to assume that one can observe in both transition systems
whether a number is odd or even. If, instead, in the first transition system one can
observe this only for positive numbers, thus, eg, f(—n) = 0 and f(n) = g(n), then
one has that a positive number n is bisimilar to both —n and n (wrt f and g) but
its opposite —n is not bisimilar to any number in the second transition system.

Finally, if one cannot observe at all in the first transition system whether a
number is odd or even (ie f(z) = 0 for all z € Z) then only the two 0’s are bisimilar.

(Notice that the arrows f and g can be regarded as abstract interpretations of
the states.)

Another example is when one has a distinguished subset Obs(X) C X of states
which are ‘observable’. This can be expressed by taking Z = Obs(X) U {L} and
f:X — 0bs(X)U{L} to be

fz) =

z if v € Obs(X)
1 otherwise



Section 12 — Bisimulation 161

Bisimulations vs Congruences

Consider the case in which, like for the above behaviour functor, pullbacks lift
to coalgebraic bisimulations. Then, in any situation like in functorial operational
semantics

2(-)* ~
XT0 (- B
initial algebra | = -

initial algebra semantics (-)*
T0 I B

final coalgebra semantics [-]

IR

final coalgebra

[-1

BT0 - BB
BI[-]

in which both an operational and a denotational model are given and the denota-
tional model is adequate wrt the operational one in the sense that initial algebra
and final coalgebra semantics coincide, one has that ‘bisimulation is a congruence’.
That is, if

(5} [@vl,...,un[@vn
for terms u; and v;, then, for every n-ary construct o in X,

o (U, ..., uUy,) N o(vi,...,0n)

Indeed, using the hypothesis that pullbacks lift to coalgebraic bisimulations, one has
that, for all terms ¢t and ¢/,

t 3t = [1]° =[]°

hence, for e =1,...,n,
[w]® = [v:]°
and thus
[o(us, .. u)]® = (o(ur,... u,))*
= {ob(Qud?, ..., (un)?)
= (oh([wl]® -, [u]®)
= (oh([wn]® ..., [va]®)
= [o(vy,.. ,vn)]]@
Therefore,
U(ul,...,un)[[Jo(vl,...,vn)

which means that the (bisimulation) relation Jis a congruence. In general, a
relation R between the carriers X and Y of two X-algebras (X, h) and (Y,[) is a



162 Functorial Semantics

congruence when, for all x{,...,x, in X and y,...,y, in Y and n-ary construct
oin X,

if oy Ryy, ..., 00 Ry, then h(o(xy,...,x,)) RIU(o(y1,--.,Yn))

Diagrammatically, this is equivalent to saying that the relation R lifts to the -
algebras in the sense that there exists a X-algebra structure R : ¥R — R making
the following diagram commute.

In particular, if R is a X-congruence, then its inductive extension is a congruence of
the monad T freely generated by . This amounts to the well-known fact that if R
is a (3-) congruence then, for every context C[-], if ¢ R y then C[x] R C[y].

Notice that for coalgebras one speaks of relations [lifting to bisimulations while
for algebras one speaks of relations being congruences. The point is that, while there
are many ways of lifting a relation to a bisimulation, it is often the case that there
exists a unique way of lifting a relation to a congruence. This is certainly true with
pullback relations:

Pullbacks uniquely lift to T-congruences. The lifting R : TR — R
in




Section 12 — Bisimulation 163

is given by the unique mediating arrow from the cone (ho TRy, ko T Ry)
to the pullback R of f and g. The universality of R can be used to prove
that the function R : R — BR is a T-algebra structure.

One can check that the above implies that (R, E) is the pullback of f and ¢ in the
T'-algebras:
(B, B)

The fact that pullbacks of functions between carriers of algebras lift uniquely to
pullbacks (of the same functions but) in the category of algebras amounts to say
that the forgetful functor U7 : CT — C creates pullbacks. In turn, this is a
consequence of the more general fact (see, eg, §VI.2 of [MacT71]) that

The forgetful functor U’ : CT — C creates limits.

In other words, a category of algebras has the same limits as its base category.
Colimits are more difficult. Dually, a category of coalgebras has the same colimits
as its base category, ie:

The forgetful functor Up : Cgp — C creates colimits.

Instead, in general, the limits (eg, products and pullbacks) of coalgebras are dif-
ficult. This explains why there is no systematic way of lifting a pullback relation
to a bisimulation, and extra assumptions are needed like the preservation of weak
pullbacks.



164 Functorial Semantics

Notes. Preliminary material presented in this section has appeared in [RT93, RT94].
Bisimulations along arrows appear here for the first time.

The notion of an ordinary bisimulation stems from the work of Park [Par81] and Milner
[Mil80] on concurrency. Coalgebraic bisimulations were introduced in [AM89], while their
dual algebraic congruences already appear in [Man76, page 167]. An order-enriched form
of coalgebraic bisimulations is studied by Marcelo Fiore in [Fio93] (improving a previous
definition from [RT93]); Fiore’s notion cuts down, for a particular functor, to the notion
of an applicative bisimulation from [Abr90].

For a categorical definition of relations see, eg, [FS90]. When dealing with categories
other than Set like, eg, the category pCpo as in [Fi093], one might want to use a more
subtle definition of relations, considering only a class of admissible monic spans, closed
under pullbacks.

A drawback of the present definition of coalgebraic bisimulations is that it requires that
the relations live in the same category as the coalgebras. In Set this is not a problem, but
when one is working with more structured objects it might be too strong a requirement.
For instance, in categories of complete partial orders one has to consider chain-closed
relations.

Andy Pitts [Pit94a, Pit93, Pit94c| has introduced a different notion of generalized
bisimulations for the functor types most commonly used in semantics which overcomes
this problem and, moreover, it is ‘compositional’: if two composable relations are bisimu-
lations (in the sense of Pitts) wrt two different functors F' and G, then their composition
is a bisimulation wrt the composite functor F'G, which is not the case for coalgebraic
bisimulations. These two properties really make the ‘pulling back’ of coinduction to (gen-
eralized) bisimulation a useful method for reasoning about coinductively defined objects.
(Notice, however, that the actual construction of bisimulation relations can be quite in-
volved, hence it would be important to generalize to functorial operational semantics the
existing methods for constructing ordinary bisimulation like those treated in [San95].)

Pitts’ notion is implicitly based on lifting the functors to a category of relations. This
idea is formalized by Claudio Hermida and Bart Jacobs [Her93, HJ95a, HJ95b, Jac95] by
means of the categorical notion of a ‘fibration’: a category R of relations over a given
category C is a certain fibration on C; functors F' on C defined by universal properties
lift to functors F on R; a bisimulation wrt to F' is then a F- coalgebra in R. Notice that
an object of R does not need to be an object of C as well.

An alternative categorical approach to generalized bisimulations is pursued in [JNW93];
its relationship with the above approaches is still to be investigated.



13 The Observational Comonad for Bisimulation

The behaviour BX = P(1+Act x X) is not an w°-continuous endofunctor, because
the power-set functor P is not, hence its final coalgebra cannot be obtained as the
limit of the usual w°P-chain. This section illustrates two alternative methods for
establishing the existence of the final coalgebra of the finite power-set functor. The
first method, due to Peter Aczel, amounts to quotienting a weakly final coalgebra
by its greatest bisimulation.

The second method is due to Michael Barr. It amounts to finding a ‘generating
set’ for the coalgebras of the finite power-set functor, that is, a (small) set {(X;, k;)};
of coalgebras such that every coalgebra is a quotient of a coproduct of (X;, k;)’s. By
the Special Adjoint Functor Theorem (SAFT), the final coalgebra is then the greatest
quotient of the coproduct of all the (X, k;)’s.

More generally, SAFT ensures the existence of a right adjoint for the forgetful
functor mapping coalgebras to their carriers. This right adjoint maps a set to its
cofree coalgebra and the whole adjunction defines the cofree comonad for the finite
power-set functor. The same can be done with the composite behaviour functor
BX = P(1+Act x X) thus obtaining the observational comonad D for bisimulation.

For simplicity, let us consider the finite power-set functor
Ps : Set — Set X — {X'C X | X' finite}

instead of its ‘relevant’ part only, the functor P which does not produce the empty
set. The coalgebras of the finite power-set functor P; are in a one-to-one corres-
pondence with the finitely branching, directed graphs. Indeed, a coalgebra struc-
ture k : X — Pz X defines a graph with € X as nodes and with arcs x — 2’ for
every ' € k(x). That is, the children of z in the graph are the elements of the
image of x under k. Conversely, every finitely branching and directed graph defines
a Py-coalgebra:

r— 1 = 2 € k(x)
Next, if the final coalgebra Pi = PP of the finite power-set functor exists,

then every coalgebra structure k : X — P5(X) can be coinductively extended to a
function k9 : X — Py such that

K (x) = {k% (@) | @i € k(2)}

165



166 Functorial Semantics

Moreover, this coinductive extension is unique:

k© o~
X oo 2 =P,
k ~
P X PsPr
Pa(k®)

The equation
() = {k°(;) | i € k(2)}

can be seen as the recursive definition of a tree:

/.\ (for k(z) = {z1,...,24})
(zn)

KO (x) = :
E®(z1)  k%(zn

This is a rooted tree, finitely branching, and possibly of infinite depth. Neither
nodes nor arcs are labelled. The set T of these rooted finitely branching trees can
be seen as (the carrier of) a coalgebra of the finite power-set functor: every tree
7 € T is mapped to the (finite) set {r,...,7,} of children of its root:

SN, L
£ AN

This coalgebra is not a final but a weakly final coalgebra, that is, it is a coalgebra
which ensures the existence but not the uniqueness of coinductive extensions. For
example, the coalgebra structure k : X = {z, x1, x5, 2}, 24} — Ps(X)

k(x) ={zn,m} k() ={z1} k() = {a5}  k(z}) = 0= k(z3)

can be extended to both the following trees.

SN l
Loy i

Proposition. The final coalgebra of the finite power-set functor is the
set of rooted finitely branching trees quotiented by the corresponding
(greatest) coalgebraic bisimulation.



Section 13 — A Domain of Processes for Bisimulation 167

More generally, the quotient modulo bisimulation of any weakly final Ps-coalgebra
yields the final Ps-coalgebra.

Recall, from the previous section, that a relation R between the carriers X and
Y of two coalgebras (X, k) and (Y, ¢) lifts to a coalgebraic bisimulation if there exists
a coalgebra structure R on the relation making its legs coalgebra arrows:

R
T1 L r2
R
o
Pl

k\pa(r?) Pa(ra)

v N\
PrX PrY

Y

14

That is, for all x in X and y in Y such that xRy,
e if z —4 2’ then y —, ¢’ for some ¢y’ such that 'R/
e and, conversely, if y —, ¢’ then x — 2’ for some z' such that ' Ry'.

(Here the notation x —; z’ stands for ‘there is an arc from x to z’ in the graph
corresponding to the coalgebra (X, k)’.)

As shown in the previous section, the finite power-set functor preserves weak
pullbacks, hence pullbacks lift to Pz-bisimulations. As a consequence, for every Ps-
coalgebra (X k), the greatest relation on X lifting to a Ps-bisimulation exists if the
final Pgz-coalgebra exists. The argument is not circular because, later in this section,
the existence of the final Ps-coalgebra is proved by means of SAFT and without
using bisimulations.

Next, consider the quotient of a Pz-coalgebra (X, k) modulo its greatest bisim-
ulation Ry. Categorically, this amounts to taking the coequalizer q : X — X /Ry, of
the two legs ri,ry : Ry — X of the relation Ry:

T1 q

Ry——=X X/ Ry,
T2 |
H k :
V Pg(r1) v
P (Rx) =P X Pii(X/ R )
Pﬁ (1‘2) Pﬁ (q)

Notice this lifts to a coequalizer in the category of coalgebras. The coalgebra
structure for X/Ry is given by the universal property of the coequalizer. Indeed,
since the legs of the relation Ry lift to coalgebra arrows, the composite function
Pa(q) ok : X — Ps(X/Ry) equates the two legs of the relation Ry. The correspond-
ing unique mediating function from X/Ry to Ps(X/Ry) is the desired structure.
Write (X, k)/Ry, for this quotient coalgebra.



168 Functorial Semantics

Lemma. From every coalgebra there is at most one arrow to the quo-
tient coalgebra (X, k)/Ry.

Indeed, consider two coalgebra arrows f,g : (Y,¢) — (X, k)/Ry. Since,
as shown in the previous section, the equality relation always lifts to a
coalgebraic bisimulation

/E‘%\
(Y, ) (Y, )

one has that the equality on Y with as legs the composites f oej,go
es : EQ(Y) — X/Ry lifts to a bisimulation on the quotient coalgebra

(X, k)/Ry:

(Y, 0) (Y, 0)
v N
(X, k)/ Ry, (X,k)/ Rk
Therefore, for every y € Y, f(y) is bisimilar to ¢g(y). Since, by construc-
tion, the quotient (X, k)/ Ry, is strongly extensional, that is, bisimulation

is the equality, one has that f(y) is equal to g(y) for every y € Y, hence
f = ¢ and the lemma is proved. (Cf [Acz88, Theorem 2.19].)

Therefore, the quotient modulo bisimulation of a weakly final Ps-coalgebra is neces-
sarily final: the existence of an arrow from every coalgebra is guaranteed by being
the quotient of a weakly final coalgebra, the uniqueness is guaranteed by the above
property of quotients modulo bisimulation. In particular, the weakly final coalgebra
of rooted finitely branching trees can be thus quotiented by bisimulation to yield
the final coalgebra of the finite power-set functor. This concludes the proof of the
above proposition.

Notice that the finite power-set functor is not w°P-continuous, that is, the limit of the
following chain is not a fixed point for the finite power-set functor P;. (Cf Section 5.)

1 1 21
1 Pyle Tt i

Pﬁ21

Indeed: Each object P;"1 of the chain is the set of finitely branching trees with depth
at most n, quotiented by bisimulation. Correspondingly, the following sequence of trees
belong to the above chain.

AN
L i

o<—29



Section 13 — A Domain of Processes for Bisimulation 169

The problem is then that the limit has to contain the following tree with infinitely many

i

r=—0<—0<—0

e

while the final coalgebra, as shown above, contains only finitely branching trees.

The coequalizer ¢ : (X, k) — (X, k)/ Ry, of the two legs of the greatest bisimula-
tion on a coalgebra (X, k) is the ‘greatest quotient’ of (X, k). Formally, a quotient is
an equivalence class of epis, just like a relation is an equivalence class of monic spans
(see previous section). Coequalizers are always epi, ie they are ‘right-cancellable’:
given a coequalizer ¢ : X — Y and two parallel arrows f,g:Y — Z,if foqg=goq
then f = g. (This is immediate because of the universal property of coequalizers.)

Given two epis f : X - Z and g : X - Y with a common domain X put

f<g = f=Ffoyg

for some (necessarily unique and epi) arrow f’: Y — Z. The two epis are equivalent
(hence represent the same quotient) if the converse also holds, that is, if also

g<f

It is wrt this partial order on quotients that one can prove that ¢ : (X, k) —
(X, k)/Ry. is (a representative of) the greatest quotient of the coalgebra (X, k). In-
deed, since the pullback of P-coalgebra arrows lifts to coalgebraic bisimulations (see
previous section), the pullback K (f) of (two copies of) every other quotient f lifts
to a bisimulation and hence it is smaller than the relation R:

(X, k)

f
q
K(f) = < Ry (X, k)/R- - - - - - > (Y, 0)
\\ //
(X, ) /

Therefore f < g, for every quotient f: (X, k) - (Y, ¢) of (X, k).

The greatest quotient of an object can be seen as the least upper bound of all
quotients of that object. Dually, and more generally, also the greatest lower bound,
ie the intersection, of all quotients of a suitable object can be used for finding the
final object of a category.



170 Functorial Semantics

In general, the intersection of a set of quotients of an object is their pushout, if
this exists, because “pushouts of epis are epi” and “epis are closed under composi-
tion”. (See, eg, [Mac71, §V.7].) For instance, the following diagram shows that the
pushout of two epis f; and f, is their least upper bound.

Indeed, by definition of pushout, the composite f{ o f; is equal to the composite
f5 0 fo, it is an epi, and it is greater that both f; and f,. Moreover it is smaller
than every other upper bound for f; and f,, because of the universal property of
pushouts.

Even if pushouts exist, the intersection of all quotients of an object in a category
might fail to exist: one needs that the category be ‘co-well-powered’, that is, the
collection of all quotients of a given object should be a (small) set, so that its pushout
can be taken. Now, by a standard cardinality argument, for every coalgebra (X, k)
of an arbitrary endofunctor B on Set, one can form the set of its quotients, hence

Setp is co-well-powered.

for all B : Set — Set (and thus the finite power-set functor in particular).
As for pushouts, these are colimits and coalgebras inherit all colimits from their
underlying category, since, as mentioned in the previous section,

The forgetful functor Up : Cy — C creates colimits.

Therefore, since Set is cocomplete (ie it has all colimits), the category of coalgebras
of an endofunctor B on Set is also cocomplete:

Setp is cocomplete.

Now, a more general way of finding a final object in a cocomplete and co-well-
powered category is by finding a (small) set of objects {X;}, such that every object
in the category is the quotient of a coproduct of X;’s. (A set {X;}, with this property
is called a generating set for the (cocomplete) category.)



Section 13 — A Domain of Processes for Bisimulation 171

From a generating set to the final object. In a cocomplete category with
a generating set {X;},, if the intersection of all quotients ¢ : [I; X; - @ of the
coproduct [[; X; exists, then @) is the final object of the category.

Let us first check uniqueness, that is, that from every object Y there exists at
most one arrow to (). Indeed, if there were two distinct arrows one can coequalize
them. Let

q,:Q—»E

be this coequalizer. Since coequalizers are epi, the composite
[[x.>Q%E
I

would then be greater than ¢, which is a contradiction.

For the uniqueness part one only uses the fact that () is the greatest quotient of
an object. It is for the existence part that the generating set {X;}, is used. Indeed,
by definition of generating sets, every object Y is (the codomain of) a quotient

qIHXJHéY
J

of a coproduct [1; X; of elements of {X;},. Since every X, is an element of {X;},,
there is, by the universal property of the coproduct, a function from []; X; to
[1; X;, mapping each X, to the corresponding X;. (Notice that this function is not
an embedding, because there might be more copies in [[; X; of the same X;.) One
can then take the pushout

of this function and the quotient ¢’ : [[; X; - Y. Since pushouts of epis are epi, the
arrow ¢" : [[; X; —» Q' is epi, hence there exists an arrow from @' to the codomain
@ of the intersection of all quotients of [[; X;. One can then form a composite
Y — @' - @, which proves the existence of an arrow from an arbitrary Y to Q.
This concludes the proof. (Cf, eg, [Mac71, Theorem V.8.1].)



172 Functorial Semantics

A generating set for the P;-coalgebras.

The set
G={({Uk)|k:U— PU and U C w}

of Ps-coalgebras with ordinals less than or equal to w as carriers is a
(small) generating set for the category of Ps-coalgebras.

Firstly notice that, if a set U has cardinality < w, then also its set of finite subsets
P;U has cardinality < w. Therefore the above collection G really is a set (and not
a proper class).

Next, let us show that the set G is a generating set for the Ps-coalgebras. For
this, notice that, in a category which (like the one of Ps-coalgebras) is cocomplete,
a set G of objects is generating if and only if for every two parallel arrows f; and f,
such that f; # f5 there exists an arrow g from an object in G such that

fiog# faoyg

This definition is easier to check (and it makes sense also in categories which are
not cocomplete). For instance, in Set, two functions fi, fo : X — Y are distinct if
and only if there exists an x € X such that fi(z) # fo(z), therefore, the singleton
set 1 is a generator.

Two coalgebra arrows

fis fo i (Xo k) = (Y, 0)

are functions, thus also they have a distinct value at some x € X. However, the
coalgebras with carrier 1 do not suffice to form a generating set for the Ps-coalgebras,
because the discriminating = will be mapped by k: X — P X to aset {xy,..., T}
in which the x;’s are, in general, different from x.

The idea is that, since every Ps-coalgebra structure £ : X — P; X maps elements
x € X to finite subsets of X, one can start from z and recursively apply (P; of)
k to it. Thus at the first step one has {z} only, at the second {z} U {z1,..., 2},
and so on, until a subset U C X is found such that € U and k restricted to U is
a Py-coalgebra structure on U itself. Because at each step only finitely many x;’s
are added, the set U cannot be larger than w. Therefore, the coalgebra (U, k) is
isomorphic to a coalgebra in G.

Formally, given a Ps-coalgebra (X, k) and an = € X, let
U=JU,
ncw
where
UO = {l‘} Un+1 = Un U Pﬁ(k))(Un)

By definition U is a subset of X of cardinality at most w. It remains
thus only to show that, if z; € U, then k(z;) C P;U. But this follows
from the fact that x; € U implies there exists an n such that z; € U,,
hence k(z;) C U,y C U.



Section 13 — A Domain of Processes for Bisimulation 173

This concludes the proof that the above G is a generating set for the Ps-coalgebras.
(Cf [Bar93, Proposition 1.3].)

Corollary 1. The final coalgebra of the finite power-set functor is the
intersection of all quotients of the coproduct [15(U, k).

Notice that, by essentially the same argument, one can show that the set
G ={({U,k) | k:U — BU and U C w}
is a generating set for the behaviour BX = P(1 + Act x X). Thus:

Corollary 2. The final coalgebra of the behaviour BX = P(1+Act x X)
is the intersection of all quotients of the coproduct [Ig, (U, k).

Next, a category is locally small if the collection of arrows between every two
objects forms a (small) set. For instance, Set is locally small. Now, the above proof
of the existence of a final coalgebra by means of a generating set is an application
of the following general theorem.

The Special Adjoint Functor Theorem (SAFT). If D is cocom-
plete, co-well-powered, and with a (small) generating set, and if C is
locally small, then every cocontinuous functor F' : D — C has a right
adjoint.

(For a proof see, eg, [FS90] or [Mac71].)
Indeed, by instantiating the above theorem to the unique functor

SetB —1

from the coalgebras of the endofunctor BX = P(1 + Act x X) (or BX = P;X) to
the (final) category 1 with one object and one arrow (the identity), one obtains the
existence of the final B-coalgebra.

A functor which creates colimits also preserves them, that is, it is cocontinuous,
hence, for every endofunctor B on Set,

The forgetful functor Up : Sety — Set is cocontinuous.

Therefore, the Special Adjoint Functor Theorem also shows that, for every endo-
functor (like the behaviour BX = P(1 4+ Act x X) or the finite power-set functor)
whose coalgebras have a generating set,

The forgetful functor Up : Setgz — Set has a right adjoint.

This adjunction gives rise to a cofree comonad D=<D, e, >:



174 Functorial Semantics

Let Gp : Set — Setp be the right adjoint of the above forgetful functor
Up : Setp — Set. By definition of right adjoint, given a set X, a coalgebra
(Y,£), and a function f : ¥ — X there exists a unique coalgebra arrow
f? (Y, t) = GpX such that f = ex o Upf’, where ¢ : UgsGp = I is the
counit of the adjunction. (Cf Section 8.)

Write DX for the carrier of the coalgebra GpX and Ay : DX — BDX for its
structure. Then Upf® : Y — DX is the unique (X x B)-coalgebra arrow from
the coalgebra (structure) < f,£>:Y — X x BY to the coalgebra (structure)
<ex,A\x>: DX — X x BDX, which means that the latter is the (structure
of the) final (X x B)-coalgebra.

Because final coalgebras are isomorphisms, this implies that DX =2 X xBD X,
the counit at X is the first projection fstxy : DX — X and the structure
Ax : DX — BDX is the second projection.

As shown in Section 7, the operation X — DX extends to an endofunctor
D : Set — Set, and the counit € : D = I and the coinductive extension
§ : D = D? of the second projection along the identity are comonad operations
for it.

In particular, the cofree comonad corresponding to the behaviour BX = 75(1 +Act x
X) is the observational comonad for bisimulation.

Concretely, the value of the observational comonad for bisimulation at a set X
can be obtained by means of a quotient construction in terms of trees and bisimu-
lations as follows.

Let Tx be the set of trees which are coinductively generated by finitely branching
transition systems. That is, the set Ty is the set of trees which are rooted, finitely
branching, with nodes labelled by z € X, arcs labelled by a € Act, and whose
leaves are labelled by * (and the arcs to leaves are then unlabelled). These trees are
possibly of infinite depth. For instance, the following is a tree in Tx if x, 21, 2o, ...

are in X.
x
o
VN
T ¢ o L1l
Lo
T2
* aai
I

a4

This tree has root labelled by x, one leaf, and one infinite branch.

Just like the set 7 given at the beginning of this section can be seen as a coalgebra
of the finite power-set functor, this set Ty can be seen as an (X x B)-coalgebra. The
function Tx — X is the operation which, given a tree, returns the label x € X of
its root.



Section 13 — A Domain of Processes for Bisimulation 175

One can check that, with this structure, the set 7Ty is a weakly final (X xB)-
coalgebra. The final (X X B)-coalgebra (with carrier DX!) can be then obtained by
taking the quotient modulo the greatest (X x B)-bisimulation. By instantiating the
coalgebraic notion of bisimulation to the functor (X x B), one obtains relations R on
Tx such that two trees 7,79 € Tx by R (ie 1y R7y) iff the following four conditions
are satisfied.

1. The label x € X of the root of 7 is the same as the label of the root of 7»;
2. p — * if and only if 75 — x;

3. if ; - 7/ then 7, — 75 for some 75 such that 7] R 75,

4. and, conversely, if 7, —%+ 75 then 7, — 7| for some 7| such that 7| R 75.

The first clause is the one corresponding to the extra information given by the states
x € X. By putting X = 1 one recovers the ordinary notion of bisimulation between
trees (with unlabelled nodes).

Notes. The idea of defining semantics by taking quotients of transition systems (ie
coalgebras) by greatest (ordinary) bisimulations dates back at least to [Mil80]. The Final
Coalgebra Theorem in [AMS89] (based on a previous result in [Acz88]) generalizes that
idea: it shows that final coalgebras of endofunctors can be obtained by quotienting weakly
final coalgebras by the greatest (coalgebraic) congruence. This is stated for ‘set-based’
endofunctors on the category SET of classes (ie large sets — cf Part V): an endofunctor
is set-based if its value at a class X is determined by its value at the (small) subsets of
X [Acz88, Definition 6.1]. An example is the endofunctor Ps : SET — SET mapping
a class to the class of its (small) subsets, which is used in Part V. If an endofunctor
preserves weak pullbacks then the notion of a (coalgebraic) conguence cuts down to that
of a (coalgebraic) bisimulation [AM89, Proposition 6.2].

In [Bar93], the final coalgebra theorem of [Acz88] is reformulated in Set (thus without
use of classes) by replacing the set-based condition by that of ‘accessibility’, modelling
with inaccessible cardinals the size distinction between sets and classes. In particular, the
endofunctors P; and BX = P(1 + Act x X) are accessible and the above ‘construction’ of
the corresponding generating sets is a special case of that in [Bar93, Proposition 1.3].



176 Functorial Semantics



IV



178



A Summary

In this section a technical summary of the above results is given. It can be read inde-
pendently from the other sections by a reader familiar with the categorical notions of
adjunction and monad. After some preliminaries recalling the basic definitions and
facts about algebras and coalgebras, the notion of functorial denotational semantics
is introduced; as an example, basic process algebra [BW90] is defined denotationally.
Next, every functorial denotational semantics is shown to induce an operational
dual (and vice versa). (The Basic Property.) Next, several results are proved (Op-
erational is Denotational, ®-algebras are ®®-coalgebras, Adequacy Theorem) which
illustrate the adequacy of the denotational semantics ®° coinduced by a functorial
operational semantics ®. Finally, it is proved that the operational semantics induced
by GSOS rules [BIM88] is always functorial.

Algebras. The category of the algebras of a monad T'=<T,n, x> on a category
C is denoted by CT. Its objects are the arrows h : TX — X of C such that
hony =idy and ho puy = hoTh; its arrows f : (TX —= X) — (TX' 25 X') are
the arrows f: X — X'in C such that foh =h'oTf.

The evident forgetful functor U” : CT' — C has a left adjoint X — (72X £,
TX). This adjoint situation is here denoted as follows.

x—"™X  _rx Tx <X 72X
fﬂ fﬁ: Tfﬁ
f ‘
v
Y Yeo —TY

(4)

(In the sequel, f* does always denote the above left adjunct of f wrt the adjunction.
The uniqueness of f* is exploited here to prove several equalities between arrows.)
The monad defined by this adjunction is trivially equal to the original monad 7T,
hence every monad is defined by its algebras.

Given a signature ¥ and a cocomplete category C with finite products, one
can define an endofunctor (with the same name) on C as the coproduct ¥X =
[1, X*%() indexed by the operators o of the signature. Then the Y-algebras h :

$X — X form a category C” with as arrows f : (£X — X) — (2X' N X') the
arrows f: X — X' in C such that foh=h'oXf.

179



180 Functorial Semantics

Also the forgetful functor U* : C* — C has a left adjoint and, moreover, it
is monadic, ie, if T is the monad arising from this adjunction, then there is an
isomorphism of categories C* = CT making the following diagram commute.

c” = c”

Uz\ /UT

¢ (5)

For C = Set, T'X is the usual set of terms inductively defined by the operators
in ¥ and the variables x € X. In particular, 7" at the empty set 0 is the set of
closed terms. In other words, 70 is the carrier of the initial ¥-algebra 70 = T0
(Lambek’s lemma: initial algebras are always isomorphisms [SP82]) and, in general,
TX is the carrier of the initial (X+X)-algebra X+X7TX = TX. The unit ny =
inly : X — TX at X is the formal insertion of the variables x € X in the terms
t € TX and the multiplication puyx : 72X = TX is the ‘inductive extension’ of the
right injection inry. Thus, for instance, pux(o(nxti,...,nxt,)) = o(ty,...,t,). To
ease the notation, n and p is often omitted from the terms.

In the sequel, also (X, E)-algebras are considered, ie Y-algebras which satisfy
some equations E on the operators derivable from the signature. The forgetful
functor from the corresponding category Set ™% has a left adjoint and it is monadic,
hence

Set™F) =~ Set” (6)

for the corresponding monad 7'. For instance, consider semi-lattices with a least
element, ie let X contain only a binary operator V and a constant L and let E be
the associativity, commutativity, and associativity axioms for V and the unit axiom
for L wrt V. Then Set!™ is isomorphic to the category of algebras of the monad
<P, {-},U>, where PX is the set of finite subsets of X.

If the operators of ¥ are the constructs of a programming language then, an
algebra h : TY — Y of the corresponding syntactical monad 1" is a denotational
model of the language and it induces an initial algebra semantics [GTWT78|, namely
the unique arrow h# : T0O — Y from the initial algebra o : 7?0 — T0 to h: TY —
Y:

h*(o(t1, ... ty)) = h(o(h*ty, ..., h*t,))

Coalgebras. Dually, let Cp denote the category of coalgebras of an endofunctor
k

B on C, having as objects arrows k£ : X — BX in C and as arrows f : (X —
BX) — (X' LN BX') those arrows f : X — X' in C such that fok' = Bf o k.
Every finitely branching labelled transition system [Plo81b]

(X, {—}

a€Act>

can be seen as a coalgebra k : X — BX of the behaviour endofunctor BX =
Pa(Act x X) on Set [Acz88]:

T -1 < <a,r'>€ k() (7)



Part IV — Summary 181

Notice that although the category of B-coalgebras has the same objects as the
standard category of transition systems [WN95], the arrows are different.

The final B-coalgebra D1 = B(D1) exists [AM89] and, correspondingly, every
operational model, ie coalgebra (ie transition system) [-] : 7X — BTX on the
syntax, coinduces a final coalgebra semantics [RT93], namely the unique arrow [[—]]@
TX — D1 from [-] to the final coalgebra. Up to the isomorphism D1 = B(D1),

[1]° = {<a,[t']®>|<a,t'> € [t]}

The existence of this final coalgebra is a corollary of the fact that the forgetful
functor Up : Setp — Set has a right adjoint [Bar93]. In general, for any endofunctor
on a complete category C, if the forgetful functor U : Cg — C has a right adjoint
then it is comonadic, ie the coalgebras of the corresponding comonad D=<D, e, >
are isomorphic to the B-coalgebras:

Cz=Cp (8)

(A coalgebra of the comonad D is an arrow k : X — DX in C such that exok = idx
and dx o k = Dk o k.) Correspondingly, the forgetful functor Up : Cp — C has a

right adjoint X s (DX 2% D2X):

X X—>DX
f i i Df
v
X<=——DY DY D*Y
z z )

To every endofunctor B corresponds a notion of B-bisimulation [AM89] which,
for BX = Pgz(Act x X), specializes to the ordinary bisimulation [Par81]. Final coal-
gebras are internally fully-abstract in the sense that their greatest B-bisimulation
(exists and) is an equality relation; moreover, if B (like the above behaviour) pre-
serves weak pullbacks, then the kernel pair of the final coalgebra semantics is the
greatest B-bisimulation (on the B-coalgebra under consideration) [RT93]. One can
prove that the final coalgebra of the behaviour BX = P;(Act x X) is the set of
rooted finitely branching trees quotiented by its greatest bisimulation.

In general, for an endofunctor B to qualify as a behaviour its corresponding
notion of bisimulation should be a significant notion of observational equivalence;
moreover, it should preserve weak pullbacks, and the forgetful functor Ug : Cp — C
should have a right adjoint. The corresponding comonad D is then an observational
comonad.



182 Functorial Semantics

Functorial Denotational Semantics

Given an observational comonad D =< D,e,§ > and a syntactical monad T =<
T,7n, >, a functorial denotational semantics is a comonad V¥ lifting the co-
monad D to the T-algebras:

That is, ¥ is a triple < W, &, 6> such that
Ulv = pur:Cc"—-cC
UTg Eyr DUT = UT
Ut = 6yr: DUT = D?UT

In other words, UT : C*' — C is a ‘map of monads’.

The second and third equation imply that the counit £ and comultiplication o of
¥ are the same as those of D=< D, e, >, because of the very definition of coalgebra
arrows. Therefore:

V=<, e, 0>

One can check that the three equations and the fact that the triple < P,e,d > is
a comonad imply that also the triple ¥ =< ¥, ¢, > is a comonad. Also, the first
equation is equivalent to ¥ being an action of 7 on DUT : CT — C, ie a natural
transformation

U :TDUT = DUT

such that, for every T-algebra h: TX — X, Vh:TDX — DX is also a T-algebra.
(See, eg, [BW85] for the equivalence between liftings and actions.) Then, the second
and third equations are equivalent to the fact that, for every h : TX — X, the
following diagram commutes.

rx< X ppx 10X _ppeyx
h Wh w2p
X DX DIX
EX (5)(
That is,
exoWh = hoTex (10)

Sy oWh = U?hoTéy (11)



Part IV — Summary 183

As an example, consider the following functorial denotational semantics for basic
process algebra [BW90]. The base category C is Set. The syntactical monad T is
the one freely generated by the constructs ¥ = {nil,a., or}, ie

t:x=nil|a.t|tort

The observational comonad D =< D,¢e,0 > is cofreely generated by the behaviour
BY = P;(Act x Y'). The set DX is the carrier of the final (X x B)-coalgebra:

= f
x X =" p v~ xeppx Y _Bpx

and it is a set of (finitely branching) trees whose nodes are labelled by x € X and
whose arcs are labelled by a € Act. The operation ex = fstx : DX — X gives the
label of the root node for each tree in DX and the other operation sndx : DX —
BDX = Ps(Act x DX) gives the remaining part of the tree (and it coinductively
extends to give the counit 6 : D = D? of the comonad D):

A/\%%% A

Using (5), one can define ¥ as an action of X rather than of 7. That is, ¥ : YPU* =
DU?. Then, for every h: ¥X — X, define the action of the constant nil as the tree
with only one node and label h(nil), and the action of ‘a.” and ‘or’ as follows.

WA=k AA-R

Formally, using the meta-variables p and ¢ to range over the elements of DT X,
for every X, ¥ is defined as follows.

nil  —  <h(nil),d>
a.p = <h(a.(fstp)),{<a,p>}>
porqg +— <h((fstp)or(fstq)), (sndp) U (sndq) >

Therefore, the Y-algebra Wh : ¥DX — DX is a pair, whose first component is
simply the composite function h o Xfsty, ie, up to (5), the equation (10) holds,
because fsty = ex. Also (11) holds, because both dx o Wh and ¥?h o Xdy fit as the
(unique!) pair < Wh, Box osndy o Wh >. Therefore, U =< W, ¢,6 > is a functorial
denotational semantics for the above signature ¥ and behaviour B.



184 Functorial Semantics

A Dual Lifting: Functorial Operational Semantics

The definition of functorial operational semantics is the dual of the one of
functorial denotational semantics: it is a monad ® =< ®, n, ;> lifting the syntactical
monad T'=<T,n, u> to the D-coalgebras. That is, a coaction

®:TUp = DTUp

of the comonad D on TUp : Cp — C such that, for every D-coalgebra k : X — DX,
the following diagram commutes.

X X _rx< BX oy
k ok 2k

DX DT X- DT?X
Dnx Dpx

The Basic Property. Every functorial denotational semantics ¥ defines a func-
torial operational semantics whose action V# : TUp = DTUp is defined by means
of the adjunction (4) as follows.

x ™ _rx TX<HX 72X
k W# U#k'= (Dnx o k)b |TU#k
v
DX— = DTX DT X<— TDTX
Dnx Y x
That is
)
\I]# = (D77 o _ )n

Dually, every functorial operational semantics ® defines, by means of (9) a functorial

denotational semantics
D¢ = (_oTe)

Proof. Naturality follows from universality. Next, U#ko iy is equal to Dyuy o U#%k
because both fit as the (unique!) T-algebra arrow

(U*k)E (72X M5 TX) - (TDTX 2% DTX)

obtained by taking the left adjunct of ¥#£ wrt the adjunction (4). Similarly, U#k :
TX — DTX is a D-coalgebra: to prove that epx o U#k is equal to the identity idyx
on 7'X notice that both fit as ng(, since ny = nx oidy = nx o (ex o k); and to prove
that DU#k o U#k is equal to d7x o U#k notice that both fit as (D?ny o (Dkok))* =
(D*nx o (6x o k)™ a

For the denotational semantics ¥ in the above example one has the following
induced operational semantics ¥#. Using the isomorphisms (5) (to move from ¥- to



Part IV — Summary 185

T-actions) and (8) (to move from D- to B-coactions), obtain V# : TUp = BT Ug.
Consider, for simplicity, the case of the ‘empty’ coalgebra 0 : 0 — B0 given by the
initial function into B0 and put

[]y = U*(0) : TO — BT0

Up to (7), this is the transition system induced by ¥ on the closed program ¢ € T0
of basic process algebra. Spelling out the details, one can obtain

[nil], =0
la.t]y = {<a,t>}
[tiorta]y = [taly Ulta]y
Using (7), this really yields basic process algebra:
nil -~
a.t —>t

tiorty —>t ift; > torty —t

Operational is Denotational

The mapping ® — ® is a bijection between operational monads and denotational
comonads with ¥ — U# as inverse:

CDLCD

CcC ——=~¢C

Proof. Everything in sight in the following diagram commutes.

TX bk DT'X

I px Dux
2
rx_ Tnx _ppx *F_prex
Dux
Tkl Tok DT®k N

TDX—— >TDTX—=DTDTX—>DT?X
TDnx ®oTx DTerx

(@°)*k



186 Functorial Semantics

Indeed, the value of the unit of the adjunction (9) at a coalgebra (X, k) is its
structure k£ : X — DX, thus, in particular, its value at (I'DX, ®dy) is Pdy :
TDX — DT DX, hence:

®®h = (hoTex) = D(hoTey) o ®5x = Dho DTey o By

Dually:
U#k = Wpuyx o TDnx o Tk
Therefore:
(®°)*k = ®%uxoTDnyoTk
= Dpux o DTerx o ®dpy o TDnyx o Tk
This proves the commutativity of the lower subdiagram in the above diagram. The
other non-immediate fact is the commutativity of the subdiagram in the middle,
but this follows from the fact that it is the image under the functor ® of one of the
two D-coalgebra laws for the structure ®k : TX — DT X. That is,

rx_ ¢ _prx r2x %k _rprx

” l lm X ml .

DT X—=D?T'X DT2X— = DTDTX
Dok DT®k

This proves that ®k = (®°)#k and, by duality, Uh = (¥#)®h,

®-Algebras are ®®-coalgebras

The algebras of an operational monad ® and the coalgebras of its coinduced denota-
tional comonad ® are respectively of the form

TX LDTX TX LTDX
h Dh h %
X DX X DX

where h : TX — X is a T-algebra and k : X — DX is a D-coalgebra. For both,
the arrows are those between their carriers (hence in C) which are simultaneously
T-algebra (hence in CT) and D-coalgebra (hence in Cp) arrows.

The claim is that Dh o ®k is equal to ®®h o Tk. Indeed, everything in sight in
the following diagram commutes.

x— 2  _prx
DTk I

DI'DX—=DTX

Tk DTex
Dy Dh

TDX— DX
%



Part IV — Summary 187

The only non-trivial sub-diagram is the one corresponding to the upper left
corner but this is the image under the functor ® of one of the two D-coalgebra
laws for the structure k : X — DX. That is,

x_* _ px rx_ ¥ _rpx
o
k l l dx — Dk l l Dy
DX — = D?X DTX — =DTDX
Dk DTk

Thus, up to the permutation (X, k, h) — (X, h, k), for any monad & lifting a monad
T to the coalgebras of a comonad D, the two categories of ®-algebras and ®©-
coalgebras are the same:

Cp?=CTs0

Dually, .
CTq; — CD\II

that is, U-coalgebras are VU#-algebras.

Adequacy

If ® is an operational monad, then the category Cp® = C’ e can be seen as the
category of models of &:

d-Mod = Cp? = CT e

This category has both an initial and a final object which are ‘lifted’ from the initial
T-algebra and the final D-coalgebra, respectively.

Lemma. The forgetful functor Up : Cp® — C” with action (TX - X - DX)—
(T'X — X) has a right adjoint, namely

TX rox—2X _prpx
nl  Gp_  |a@ph D3
X DX—  -D?X
0x

Dually, UT : CTy — C) has a left adjoint

(X -5 Dx) A5 (12X 25 Tx Y prX)

Proof. The counit of the adjunction is simply the counit € of D, ie it is lifted from
the adjunction (9). O



188 Functorial Semantics

Thus there are two adjunctions for the category of ®-models, namely

Up FT
(o L Cp? = &-Mod = C" 4e 1 Cpo
Go uT

Hence, FT maps the (trivial) initial D-coalgebra to the initial ®-model:

(0 - Do) v (720 X% T0 2% DT0)

Dually, Gp maps the (trivial) final T-algebra to the final ®-model:

(T1 -5 1) 92 (7p1 2% p1 2% p2y)

Then, by definition of ®-algebra (alias ®-model) arrow, the following holds.

Adequacy Theorem. The unique (both by initiality and finality) arrow from
ﬁ(O) to Gp(1) is both the nitial algebra semantics from the closed programs T0
to the domain D1 with denotations ®“1, and the final coalgebra semantics from the
transition system ®0 on the closed programs to the set of most abstract observations
D1. O

Since by ‘pulling back’ this final coalgebra semantics one obtains the greatest B-
bisimulation, the fact that it is also an initial algebra semantics gives the following

Corollary. B-bisimulation is a congruence wrt &.

GSOS is Functorial

First a preliminary remark. Notice that, in the operational semantics [-], given
above for basic process algebra, the construct or behaves as the join U of the semi-
lattice Ps(Act x T'). Thus the above W can also be seen as a lifting of B to the
(X, E)-algebras, where E are the semi-lattice laws for the binary operator or (ie or
is required to be associative, commutative, and absorptive). For simplicity, let us
keep the notation T'=<T,n, u > also for the monad corresponding to the (3, E)-
algebras.

(Thus TX is now the quotient wrt (the congruence relation generated by) E
of the (previous) free algebra of terms over X; thus one cannot distinguish in this
syntax between, for instance, the terms ¢, orts and tyort;. Keeping this quotient
in mind, one can still regard the elements of T X as terms, that is, one can use
representatives rather than equivalence classes.)

One can then embed the behaviour BX = Ps(Act x X) into this new syntax
T by mapping () to nil, {<a,z>} to a.z, and U to or. This defines a natural
transformation

vy:B=T



Part IV — Summary 189

injective in each component. It is a retraction for the above basic process algebra
U# in the sense that the composite ¥# o y0 vy : BT = BT is the identity natural
transformation on BT'.

This retraction 7y is important because it permits to regard every set R of ‘GSOS’
rules containing basic process algebra as a natural transformation [R] : ¥B = BT.
A GSOS rule specifies one possible transition for terms of the form o(uy, ... ),
for o a given program construct of arity [:

aij 1<i<li bijgy1<i<l
{us = v hZzm,  {w —Ahin,

o(uy,...,w) —= C[w, v]

(12)

The a;;’s and b;;’s are actions in Act; the u;’s and v;;’s are all distinct (meta) variables
ranging over terms, the expression C[@, 7’] is a term formed by the context C[=']
and some (meta) variables contained in the set of w;’s and v;;’s.

Clearly, the rules of basic process algebra are in GSOS. Let us assume that
every set R of GSOS rules conservatively extends basic process algebra. Therefore,
the corresponding syntactical monad 7' contains terms nil, a.t,t; orty, and or is a
semi-lattice join, hence the above retraction v : B = T is a retraction also for (the
operational semantics induced by the rules) R.

Then, using the meta-variables r; to range over the elements of BX = P;(Act x
X), define [R]x : ¥BX — BTX by putting, for every rule (12) in R,

<a, C[’?ﬁ, 7}] >c [R]X(U(Tl, ... ,7“[))
if {<a;j, x;;>€ Tz}E;Sng and, for every x € X, {<b;j,z>¢ rl}gglm
The claim now is that this really defines a natural transformation

[R]:YB = BT

ie for every ‘variable renaming’ f: X =Y, BT fo [R|x = [R]y o XBf.

Consider the case of negative premises: if there is no pair <b;;,2> in r; € BX
for any « € X, then there is also no pair <b;;,y> in (Bf)(r;) € BY for arbitrary
y € Y. Assume thus only positive premises in the rule. Then the following lemma
suffices to prove the claim.

Substitution Lemma. (Tf)(C[7x7, @]) = Cly (B)(r), F]

Proof. It is an immediate consequence of the naturality of the retraction v from B
to T and of the GSOS condition that the variables of C[@, ©’] are contained in the
set of u;’s and v; ;’s (hence (T'f)C[...]=CTf)...]). O

Next, this natural transformation [R| : ¥B = BT can be made into an action
of ¥ on BT

wBT Rt g2 BX pr



190 Functorial Semantics

This family of Y-algebras validates the semi-lattice laws, thus, using (6), it can also
be seen as an action
¢* : TBT = BT

of the syntactical monad 7. Then, like in the basic property, one can obtain an
operational monad @ lifting the monad 7" to the B-coalgebras (instead of to the
D-coalgebras) by putting ® = (Bno _), ie

x X TX TX <FX 72X
k ok ®k'= (Bnx o k)t |T®k
y
BX— - BTX BT X<———TBTX
Bnx ox

(Notice the coalgebra k : X — BX can be seen, by (7), as a set of “0-rules” in the
sense of [BIM88].)

Theorem.
The operational semantics induced by R is observationally equivalent to ®.

Proof. Consider, without loss of generality, the case of closed terms 70. Call
[-lr : T0 — BTO the coalgebra corresponding, via (7), to the transition system
induced by R starting from the empty transition system (ie from the coalgebra
0:0 — B0). Similarly, put [-];r] = ®0 : 70 — BT0. The claim is that the final

coalgebra semantics [-]5 : (70 m BT0) — (D1 = BD1) and [-] [%1 : (T0 Hlaﬂ

BT0) — (D1 = BD1) are the same. The idea is that the final coalgebra semantics
abstracts from the actual name of the states and just looks at the actions which can
be performed. Then, since <a,t'> € [t]z] iff there exists a context C[@’, 7] and
terms u;’s and v;;’s such that <a, C[W, 7] > € [t]g and ' = C[yro[u][r), 7], the
theorem follows from the following

—
Lemma. [Clyro[u]rz], 7]]](%1 = [C[w, V]H%ﬂ

Proof. From the second corollary of the main theorem, the final coalgebra semantics
I-] %] : T0O — D1 is also an initial algebra semantics (wrt the denotations ®©1),

hence [-] %ﬂ is compositional and the lemma can be reduced to

[vro[ui] [R] | [%] = [ui] (%

which is a consequence of the fact that 7 is a retraction for (basic process algebra
and hence, as one can check, for) [-]rz]. O

Notice that [-] %] : TO — D1 is the unique arrow from the initial to the final
®-algebra.



Part IV — Summary 191

GSOS models are ®-models. Spelling out the definition of ®-models (alias ®-
algebras) for the operational monad ® corresponding to a set R of GSOS rules, one

obtains those
TX I x % Bx

such that h: TX — X validates the T-algebra laws and such that
<CL,.TI> S (k o h)(O’(l‘l, R ,.ZL‘l))

iff there exists a rule (12) in R such that <a,;,y;; >€ k(z;), 2’ = h(C[Z, 7)), and,
for all y € X, <b;j,y >¢ k(z;). Up to the isomorphisms (5) and (7), this is the
definition of GSOS models given in [Sim95].

Guarded Recursion, coalgebraically. Every set of terms (mutually) recursively
defined by means of equations in some variables z; € X

xry = tl[X]J Ty = tZ[X]J s

where t;[X] are elements of TX (hence might contain variables from X), can be seen
as a T-coalgebra k : X — TX by putting k(x;) = t;[X]. (And vice versa.) In order
to interpret the recursive terms z; = ¢;[X| operationally, the usual requirement is
that they are guarded, that is, every term ¢; is of the form (a;, .¢;,) or ... or (a;, -;,)-
Notice then, that if all terms in a recursive definition are guarded, the corresponding
coalgebra k : X — T X always factorizes through a BT-coalgebra g : X — BT X =
Ps(Act x TX) as follows.

k=puxoyrxog: X =-TX

Clearly, g(z;) = {<a;,ti,>,...,<a;,,t;, >}. Conversely, every BT-coalgebra can
be seen as a set of mutually recursive definitions.

Now, one can take the left adjunct wrt the adjunction (4) of every g : X — BT X
using a given set of GSOS rules R:

x X TX TX<HX 72X
g g _
i) Higy=¢ T[-1;
y
BT X BTX<¢—R TBTX
X

Then the final coalgebra semantics ([[—]]“fm)@ : TX — D1 from the resulting coal-
gebra [-]7 : TX — BTX to the final coalgebra D1 = BDI1 gives the desired
interpretation of g as a recursive process. Notice that no variable binding operator
(like, eg, “fix’ in [BIM88]) is (explicitly) needed here.



192 Functorial Semantics

Example. Let R be basic process algebra together with the rules for (simple)
interleaving
u — u' v -0

ullv—=ulv ulv—5u | v

and let g be the BT-coalgebra corresponding to the guarded recursive definition
r=a.r y=(a.y)or(b.x)

in X = {x,y}. (Notice that the x’s and y’s in the interleaving rules are meta-
variables not to be confused with the actual variables x,y used in the recursive
definition.) Writing, for simplicity,

[ = [l : TX = BTX

and letting [-]® : 7X — D1 be the un1que ®-algebra arrow from 72X 2% TX — el

BTX to the final ®-algebra T'D1 —) D1 = BD1, one has, omitting the insertion-
of-variables 7x and the final coalgebra isomorphism D1 = BD1,

[«] = {<a,[2]°>} = ol s
[v]® = {<a,[y]®>, <b,[2]°>} = %
[t

|t1—)t, }U
>| ty—th}
= [t]°Uft]® = @@1([[t1]]@ or [t2] %)
| ¢ ]] >[ ==t }U
|| t]° >| ty——th}

= e°1([n]° || [6]°)

Final Remarks. The retraction v : B = T gives a general way of dealing with
guarded recursion, but it is not clear whether its use and the assumption that the
rules conservatively extend basic process algebra are really necessary to present
GSOS functorially. At the moment, basic process algebra, with its natural denota-
tional definition, seems to be the language for the behaviour BX = Pg(Act x X)
(somewhat like the untyped lambda-calculus is the language for a suitable function
space functor [Sco80]), while all other GSOS rules seem to be intrinsically operational
and in a less direct correspondence with the behaviour, although denotationally well-
behaved.



vV

Sets like Recursive Processes



194



Synopsis

This part is devoted to a coalgebraic presentation of Peter Aczel’s theory of “non-
well-founded sets” [Acz88]. A categorical duality is proved between the ‘anti-
foundation axiom’ giving non-well-founded sets and the ‘foundation axiom’: it is
shown that the former is equivalent to postulating that ‘the universe V = PsV is
a final coalgebra’, while the latter is equivalent to ‘V = PgV is an initial algebra’.
(The endofunctor Ps maps a class to the class of its (small) subsets.)

The semantic motivation for the use of anti-foundation is that it permits to prove
the “Special Final Coalgebra Theorem” [Acz88] which states that, under mild as-
sumptions, the greatest fixed point of an endofunctor on (possibly non-well-founded)
sets is a final coalgebra.

The special final coalgebra theorem is stated in terms of the “Solution Lemma”
[Acz88]. The final coalgebra presentation of anti-foundation adopted here renders
this lemma (and its equivalence with anti-foundation) trivial. Correspondingly, the
‘uniformity on maps’ condition which an endofunctor has to satisfy in order for the
special final coalgebra theorem to hold can be formulated in a more transparent way
than in [Acz88].

Note. A preliminary version of this part has appeared as [RT93, §4].

195



196 Sets like Processes



Basic Set Theory

One way of understanding the abstract notion of set is as a collection x such that
its elements have “no internal structure whatsoever” and x itself has “no internal
structure except for equality and inequality of pairs of elements”. (Cf [Law76, page
119].) Axiomatically, this corresponds to taking the membership relation ‘€’ as the
only primitive notion of set theory and to postulating the following ‘extensionality
axiom’, the first axiom of set theory.

Extensionality:
Two sets are equal iff they have the same elements.

Next, for every property P in a (first-order) language with membership and equality
only, one would like the collection {x | P(z)} of sets which have the property P to
be a set. However, Russel’s paradoxical set {z | ¢ x} shows that this ‘strong
comprehension axiom’ cannot be stated in its full generality. One needs to consider
properties relative to the elements of an already defined set. This leads to the
‘comprehension axiom’, the second axiom of set theory.

Comprehension:
For every property P and every set v, the collection
{z |P(z) ANz € v}
is a set.

As comprehension can be applied only to members of already defined sets, it is
necessary to postulate the existence of some sets, either primitive or derived by
applying some basic operators:

Empty Set:
There exists a set 0 with no elements.

Paring, Union, Power Set:

{z,y}, Uz, P(x) are all sets, for x,y sets.

197



198 Sets like Processes

As usual, Uz and P(z) stand for the collection of all members of members of x and
the collection of all subsets of x, respectively. In turn, the subset relation ‘C’ can
be derived from the membership relation:

rCy <= YW (ver=>vey)

By means of the union operator one can define an operator s acting as successor as
follows: s(z) = xU{x}. The existence of an infinite set can be stated by postulating
the existence of a set containing the natural numbers. That is:

Infinity:

There exists a set containing 0 and closed under the successor
operator s.

(The axioms above, as well as those given in the sequel, are written for convenience
in natural language but note that they can also be expressed in the language of set
theory — see, eg, [LevT79].)

Further useful notions can be derived from the above axioms, like, for instance,
the notion of ordered pair:

<w,y>= {z,{z,y}}

A formal definition of function can then be given as a collection f of ordered pairs
such that for every z there exists a unique y with <x,y>¢€ f. Two more axioms
about functions are then usually added:

Replacement:

The image of a set under a function is a set.

Choice:

Every surjective function has a ‘right inverse’.

A right inverse for a function f : a — b is a function g : b — a such that f o g is the
identity on b. The above axiom of choice is equivalent to postulate that for every
set a there exists a choice function, that is, a function f such that, for every z € a,
f(z) € x.

The above axioms (extensionality, comprehension, empty set, pairing, union,
power set, infinity, replacement, choice) are the basic axioms of set theory; let us
call the theory associated with (ie, the collection of all sentences derivable from)
them basic set theory and the corresponding category of sets and functions Set.
(Basic set theory is usually called ZFC~ in the literature — see, eg, [Lev79].)



Part V — Basic Set Theory 199

Classes

Even though the collection {x | P(x)} of all sets « having a given property P might
not be a set, it can still be of interest for set theory. Such ‘specifiable’ collections
are called classes. Clearly, a set is a class, but the converse is not true, in which
case one speaks of a proper class. (Also the terminology ‘large set’, vs ‘small set’,
is used.) In the sequel, lower case letters are used for (small) sets and capital letters
for classes.

The equality between classes is determined by their small elements. That is, two
classes X = {x | P(z)} and Y = {z | P'(x)} are equal if and only if P and P’ hold
for the same (small) sets.

An example of a proper class is the universe of sets, namely the collection of
all sets:

V = {z |z =2z}

(Since the property = = x trivially holds for all sets, the class V' is the collection
of all sets indeed.) Notice that different properties may specify the same class. For
instance, any property other than ‘x = 2’ which holds for all sets can be used to
specify the universe.

Next, let SET be the category of classes and (class) functions corresponding to
basic set theory. The claim is that the universe V' can be seen as the carrier of
both an algebra and a coalgebra structure of a suitable power-set endofunctor Ps
on SET.

Recall, from Section 10, that semi-lattices with sets as carriers and with arbitrary
sets of joins give rise (by adjunction) to the power-set endofunctor P : Set — Set
and that, similarly, semi-lattices with finite joins give rise to the finite power-set
functor P; : Set — Set. By considering semi-lattices with classes as carriers and
joins of sets of classes one obtains then the following endofunctor on SET:

Ps : SET — SET X—{x|zisaset A x C X}

Notice that only (small) subsets are taken into consideration. This makes possible
that V' be a fixed point of the power-set functor (which, by cardinality reasons,
would not be the case if one would consider the collection of all subclasses of a
given class):

The universe V is a fixed point V =PsV.

Indeed, V is the largest class. Thus, since PsV is itself a class, PsV C V.
For the converse it is sufficient to prove that every set x is a subset of
V. That is, for every y € x, y is also in V. This is immediate from the
fact that y is a set.

Therefore, the identity on V' can be seen both as a Ps-algebra and as a Pg-coalgebra
structure for V.



Well-Founded Sets and Foundation

From the axioms of basic set theory alone it is not possible to draw a canonical
picture of what the universe looks like, a picture independent of the specific inter-
pretation one might give to the theory. This was felt as a problem already in the
early developments of set theory. The solution was found in the ‘foundation axiom’,
which was then added to basic set theory. This axiom restricts the universe to the
‘smallest’ of all possible ones. Then the picture arises of a universe in which sets are
hereditarily constructed from the empty set, by iterative applications of the power-
set, operator. Every set has a rank, namely the stage at which it appears in such a
‘cumulative hierarchy’.

In this section it is proved that the foundation axiom is equivalent to postulating
that the universe V' = PV is the initial algebra of the power-set endofunctor Ps on
SET.

A set x is well-founded wrt the membership relation ‘€’ if either it is empty or
has a least element wrt €. In other words, there is no infinitely descending chain of
elements starting from x. Correspondingly, let the class

W = {z | z is well-founded wrt the relation € }

be the universe of well-founded sets.
The ‘foundations axiom’ amounts to postulating that all sets in the universe V'
are well-founded, that is,

Foundation Axiom:
V=W

Now, notice that the class PsW of (small) subsets of well-founded sets is the
same as W, because the elements of a well-founded set are themselves well-founded.
Thus

PsW =W

and the identity on W can be seen as a Ps-algebra structure.

The universe of well-founded sets is the initial Ps-algebra.

For every Ps-algebra structure h : Ps X — X there exists a unique

200



Part V — Well-Founded Sets 201

function h# : W — X such that the following diagram commutes.

Ps(h*)
PsW—mm—=Ps X

That is,
h*(0) = h(0)
W {xi}; = hih*(zi)};

The proof is by straightforward induction on the (well-founded!) mem-
bership relation €.

An immediate consequence of the initiality of W is the existence of a ‘rank’ function,
mapping every well-founded set to a suitable ‘ordinal’. An ordinal is a well-founded
set which is totally ordered by the membership relation and which is ‘transitive’.
(A transitive set is a set x such that every element y € z is also a subset y C x.)
Correspondingly, one can form the class O of all ordinals, which is a subclass of W.

If @ and 3 are two ordinals such that § € «, one usually writes § < «. The first
ordinals are: 0, s(0), s%(0), etc. The first limit ordinal is w = U, cy $"(0), which,
by the infinity axiom, is indeed a set. In general, because every ordinal is totally
ordered by €, the union U {ca;}; of a set {a;}; of ordinals is the least upper bound
of the a;’s. As a consequence, the union operator is a Ps-algebra structure on the
class O of ordinals:

U:Ps(0) =0 {ait; = U{ai},

The inductive extension rank = [J* : W — 0 of this algebra structure on is the
function assigning a ‘rank’ to every well-founded set. This can be thought of as the
stage at which a well-founded set is constructed in an ideal construction starting
from the empty set and then iteratively applying the power-set functor Ps:

rank(0) = 0
rank{z;}, = U{rank(z;)};

Another consequence of the initiality of W is that W = PsWV is the least (pre-)
fixed point for Ps:
W = |fp[735]

That is, for every class X such that PsX C X, one has that W C X. Indeed,
regarding the inclusion of PsX into X as a function x : Ps X < X, one has that its
inductive extension x# : W — X is of the following form.

k*(0) = 0
“#{xi}l = ’f{’f#(xi)}l



202 Sets like Processes

Then, to see that x* is the inclusion of W into X, it suffices to notice that the
power-set functor

Ps ‘preserves inclusion functions’

that is, if © : X — Y is the inclusion of a subclass X of Y into Y, then the function
Ps(1) : PsX — PsY is the inclusion of PsX into PsY .

Usually, initial algebras are unique up to isomorphism, but in this setting one
has a stronger result:

Ps X = X is the initial Ps-algebra <— X =W

That is, any other initial algebra which is a (strict) fixed point of Ps is not only
isomorphic but equal to W. In order to prove this, ie the non-trivial implication
from left to right, one can use very much the same argument as the one used above
to prove that W is the least fixed point of Ps.

Therefore, by replacing X by Y in the above equivalence, one has that the
foundation axiom ‘V = W’ is equivalent to postulating that the universe V' is the
initial algebra of the power-set functor:

Foundation is Initiality:

V=W <= PsV =1V is the initial Ps-algebra.



Anti-Foundation and Finality

Not all sets occurring in the mathematical practice are well-founded. A typical
example is given by recursive processes as occurring in the semantics of programming
languages. (Cf Section 5.) In order to ensure the existence of non-well-founded sets,
one can postulate the ‘anti-foundation axiom’.

In this section, ‘anti-foundation’ is shown to be the dual of the initial algebra
formulation of ‘foundation’:

Foundation: PsV =V is an initial Pg-algebra.
Anti-Foundation: V =PV is a final Ps-coalgebra.

That is, anti-foundation postulates that the universe is the ‘largest’ possible one,
while foundation postulates that it is the ‘smallest’.

Let us consider the existence of the final coalgebra for the endofunctor
Ps : SET — SET X—{x|zisaset A z C X}

where, recall SET is the category of classes (ie large sets) which are definable within
basic set theory. The proof that a final coalgebra for this functor exists can be carried
out very much the same way as for the finite power-set functor

Ps - Set — Set z+— {y | yis finite A y Cx}

As shown in Section 13, the coalgebras of this finite power-set functor are the same
as the directed finitely branching graphs and the final coalgebra is the set of rooted
finitely branching trees (possibly of infinite depth) quotiented by Pj-bisimulation.

Correspondingly, the coalgebras of the power-set functor Ps are the same as the
directed ‘locally small’ graphs and the final coalgebra is the class of rooted ‘locally
small’ trees (possibly of infinite depth) quotiented by Ps-bisimulation. A (possibly
large) graph is locally small if the collection of children of every node is a (small)
set. Thus locally small graphs are in between large graphs (with a class of nodes
each possibly having a class of children) and small graphs (with a set of nodes and
a set of arcs).

Peter Aczel’s original formulation of the anti-foundation axiom is in terms of
small graphs and ‘decorations’. A decoration for (the graph corresponding to) a

203



204 Sets like Processes

Ps- coalgebra (X, k) is a coalgebra arrow from (X, k) to V = PV

X f

v
k I

Ps X PsV

Ps f

That is, a function f from X to the universe V' such that, for every x € X,

fla) ={f(«") | «" € k(2)}

In terms of graphs, this corresponds to a function mapping every node to a set in
the following way.
fl@) ={f() |z — '}

Therefore, by definition of final coalgebra, the coalgebra V = PsV is final if and
only if every (directed) locally small graph has a unique decoration. Now, the claim
is that ‘locally small’ can be replaced by ‘small’ in the above equivalence. That is,
every locally small graph has a unique decoration if (and only if) every small graph
has a unique decoration. Indeed:

(By contradiction.) Assume that every small graph has a unique decor-
ation and that there are two distinct decorations f and g of (a coalgebra
(X, k) corresponding to) a locally small graph. Then there is a node
x € X such that

f(@) # g9(x)
Now, the subgraph of (X, k) accessible from x is not only locally small
but also (totally) small, that is, there are only set-many nodes accessible
from x, because every node has only set-many children. But then f and
g are both decorations for this small subgraph, which, by hypothesis,
implies that

f(x) = g(z)
(The same argument can be used to prove that the class of small Ps-

coalgebras forms a generating class for the Ps-coalgebras. (Cf Section
13.))

As a consequence, the postulate 'V = PsV is a final Ps-coalgebra’ is equivalent to
Peter Aczel’s original formulation of anti-foundation:

Anti-Foundation Axiom:
Every directed small graph has a unique decoration.

That is,



Part V — Non-Well-Founded Sets 205

Anti-Foundation is Finality:

Every directed small graph has a unique decoration if and only
if V ="PsV is a final Ps-coalgebra.

Notice that no axiom is needed in order to obtain a unique decoration for a
well-founded graph: One can check that the class WG of well-founded directed small
graphs is a (strict) fixed point for the power-set functor Ps, and, moreover, that
Ps(WG) = WG is an initial Ps-algebra. Therefore WG is isomorphic to the universe
of well-founded sets W and the image under this isomorphism of a well-founded
graph is its unique decoration. (Cf “Mostowski’s collapsing lemma” in [Acz88].)

When anti-foundation is postulated also non-well-founded graph have a unique
decoration, but the converse is not true anymore. That is, there exist (non-well-
founded) sets which ‘decorate’ different graphs. An example is the archetypal non-
well-founded set, namely the self-singleton set

Q= {0}

which is a member (and the only member) of itself. If anti-foundation is assumed,
then both the root of the graph with one node and one arc

O

and the root of the graph consisting in one infinite path
oo —>0—3 .-

are necessarily mapped to €2 by the corresponding unique decorations.

Notes. Aczel’s anti-foundation axiom is equivalent to Forti and Honsell’s “X;-axiom”
[FH83|.

Besides applications in the semantics of programming languages (eg, [Acz88, Muk91,
RT93, Acz94, Bal94, HL95, Har96]), non-well-founded sets have been extensively used in
Situation Theory (eg, [BE8T]), where they are better known as hypersets. (Correspond-
ingly, models of the universe of non-well-founded sets are also called hyperuniverses.)



206 Sets like Processes

Reasoning about non-well-founded sets: bisimulation. By the extensional-
ity axiom, the equality between two sets is determined by the membership relation.
One of the consequences of foundation is that, since then the membership relation
is well-founded, one can use induction to reason about (the equality between) sets.
Categorically, this induction principle follows from the fact that foundation postu-
lates that the universe is an initial algebra. Dually, anti-foundation, by postulating
that the universe is a final coalgebra, gives a coinduction principle for reasoning
about (possibly non-well-founded) sets.

Now, as shown in Section 12, if an endofunctor preserves weak pullbacks then
coinduction (wrt its final coalgebra) can be ‘pulled back’ to the corresponding coal-
gebraic notion of bisimulation. In particular, the power-set functor Ps does preserve
weak pullbacks; the proof is essentially the same as the one given in Section 12 for
the behaviour BX = P(1+4 Act x X). Therefore, two sets are equal if and only they
are Ps-bisimilar. (Cf [Acz88] for this “Strong extensionality”.)

By instantiating the general definition of coalgebraic bisimulation (Section 12)
to the Ps-coalgebras one has that a (possibly large) relation on the carrier X of a
coalgebra (X, k) lifts to a Ps-bisimulation when, for all x;, x5 € X such that x; Rx,,

o if x; — 2 then xy — }, for some 2, such that z| R 2,
e and, conversely, if z9 — 27, then z7 — 2 for some 2/ such that =} R z7,.

(Here the notation z — 2/ stands for ‘there is an arc from x to 2z’ in the graph
corresponding to the coalgebra (X, k)’.)

In particular, a relation R on the universe V lifts to a Ps-bisimulation if, for
every set r and y such that xRy, for every ' € x there exists a ¥y’ € y such that
'R vy’ and, conversely, for every y € y there exists an =’ € x such that 'R v/’
Therefore, by strong extensionality,

r=19y <= there exists a relation R such that:
e IRy
o Vi'eux ey ’RY
e Yy ey dx'eux, 2’RY



Systems of Set-Equations as Coalgebras

The self-singleton non-well-founded set 2 = {Q2} can be seen as the unique solution
of the ‘set-equation’
r = {z}

In general, all non-well-founded sets arise from systems of set-equations with, on
the left hand side, variables x € X, and, on the right hand side, well-founded sets,
possibly containing variables from X. This is the content of the “Solution Lemma”.

In this section an elementary presentation of the solution lemma is given by
means of the coalgebraic account of anti-foundation (and the initial algebra present-
ation of well-founded sets). This follows the coalgebraic treatment of recursive
programs given in Section 5.

The definition of the universe of well founded sets W can be made parametric:
for every (possibly large) set X, the expanded universe of well-founded sets
WX is the class of all well-founded sets with variable x+ € X. That is, every set
in WX is either empty, or an element of X, or it has a least element wrt the
membership relation €. For X = 0 this yields the standard universe W0 of well-
founded sets. Thus, in the sequel, W stands for an operator mapping a (large) set
to the corresponding expanded universe of well-founded sets, rather than for the
simple universe of well-founded sets.

The fact that W0 is the least (strict) fixed point of the power-set functor Ps and
that PsW0 = WO is an initial Ps-algebra generalizes as follows: the class WX is
the least (strict) fixed point of the endofunctor X +Ps(-) on SET and

X+PsWX =WX

is an initial algebra for this endofunctor. As usual, this initiality can be used to
extend the operator W to a functor (cf Section 1):

= i | i
D L WX = X4+PsW X =" powx
f W=y o f,inry]* PsW f
v
Y WY =Y+PsWY =< PsWY
ny = in|y inry

That is, for every function f : X — Y, the function Wf : WX — WY is the in-
ductive extension of the algebra structure inry : PsWY — WY along the composite

207



208 Sets like Processes

nyof: X — WY, where the left injection 7y = inly : ¥ — WY is the usual
insertion-of-variables function. In other words,

W is freely generated by Ps.

Now, the idea is that a system of ‘set-equations’ like, eg,

T = {.T,{y}}
y = {y,0}

can be seen as a function k£ mapping the variables z,y,... € X of the system to
elements of PsW X, ie sets of well-founded sets possibly with variables in X. For
instance, the above system corresponds to a function k : {z,y} = X — PsWX
mapping z to {z,{y}} and y to {y,0}. Therefore, in general, a system of set-
equations in X is a coalgebra (X, k) of the composite endofunctor PsW on SET.
In order to solve a system of set-equations (X, k) one can (postulate anti-foundation
and) use the finality of the universe V' = PsV. For this, one first needs to extend the
PsW -coalgebra structure k : X — PsW X to a Ps-coalgebra structure as follows.
Since WX = X 4+ PsW.X is a coproduct, one can form the copair of k£ and the
identity id on PsW X

X WX APsW X

[k, id]

Ay
v
PsW X

This is a Ps-coalgebra structure behaving as £ on x € X and as the identity on
v € PsWX. Its coinductive extension k = [k,id]® : WX — V wrt the final Ps-
coalgebra V' = PV is then the (unique) solution of the system k: X — PsWX
of set-equations:

X——=WX----=----- >V
k [k, id] |
PsWX— =PsV
Psk

Omitting, as usual, the injections, and letting v and v’ range over objects of type
PsW, one has that B B
k(xz) ={k(v) |v € ha}

and B B
k(v) ={k(@') | v' € v}



Part V — Solution Lemma

209

For example, the unique solution of equation k(z) = {z} is the self-singleton

(non-well-founded) set
k(x) = {k(2)}

that is, k(z) = 2. Similarly, the solution of the above system

k(z) ={z,{y}} k(y)={y,0}
E(x) = {k(x), {k(y)}}
ky) = {k

In terms of graphs, the sets k(z) and k(y) correspond to

ON
O\ ON

and i

respectively.

The Solution Lemma is equivalent to Anti-Foundation. The
above property that every system of set-equations has a unique solution,
is called the solution lemma in [Acz88]. (See also [BE87, Chapter
3].) It is obtained assuming the anti-foundation axiom. Conversely,
postulating the solution lemma, one can prove that V = PsV is the final
Ps-coalgebra. Indeed, for every Ps-coalgebra (X, k), one obtains

nx Ps(nx) ok
X WX .
k [Ps(nx) o k,id] ||
Ps X- PsW X PsV
Ps(nx) Ps(Ps(nx) o k)

The desired coinductive extension of the coalgebra structure £ : X —
Ps X is given by the composite coalgebra arrow

K¢ =Ps(nx)okony : X =V

Notice that, assuming anti-foundation, the upper rectangle in the following diagram



210 Sets like Processes

commutes, because all other sub-diagrams commute.

k
PsWXLPSV
inrx //
/ 7

WX |4

) )

PsWX——=PsV
Psk

Therefore, the solution k : WX — V of a system of set equations (X, k) is not only
a Ps-coalgebra arrow but also a Ps-algebra arrow from (WX inry) to PsV = V.
The algebra (WX, inrx) is a free Ps-algebra over X.

The Substitution Lemma from Freeness. In the present approach, the proof
of the solution lemma is trivial. The original proof, instead, makes use of a substi-
tution lemma [Acz88|. This lemma asserts that, for every function f : X — V|
there exists a unique extension f*: WX — V of f to WX = X +PsW X such that,
omitting the injections,

and

fiw) = {FH() | V' € v}
Now, also this becomes trivial here, because of the initial algebra presentation of
the expanded universe of well-founded sets W.X. Indeed, the desired function f* :

WX — V is the inductive extension of the Ps-algebra structure PsV = V along
f: X — V. That is:

nx ian

X WX PsW X
f ifﬁ Psfn
v
14 — PsV

Notice that, in contrast with [Acz88], anti-foundation is not used here.

Notes. In general, every free Ps-algebra over a (possibly large) set X can be used to
model the universe of Zermelo-Fraenkel set theory expanded with elements of X as atoms.
This fact can be seen as an instance of a more general result in [JM95] (Theorem I1.5.5)
stated in terms of free “Zermelo-Fraenkel algebras” and intuitionistic set theory.



From Greatest Fixed Points to Final Coalgebras

The greatest (strict) fixed point V' = PsV of the power-set functor Ps can be seen
as the final coalgebra of the restriction of the functor Ps to the subcategory SET -
of inclusion functions. Anti-foundation postulates that this final coalgebra lifts to
a final coalgebra in SET. If an endofunctor is ‘uniform on maps’, then, assuming
anti-foundation, its final coalgebra in the subcategory SET - also lifts to a final
coalgebra in SET. This is the content of the “Special Final Coalgebra Theorem”.

In this section, a new formalization of the notion of uniformity on maps in terms
of natural transformations is given. The proof of the theorem is then rephrased in
terms of this definition.

Let F' be an endofunctor on SET. A post-fixed point X C F X for F' can be seen
as an inclusion function X< F X, hence as an F'-coalgebra structure on X. If the
endofunctor F' preserves inclusion functions, ie F' applied to XY is an inclusion
FX—FY, then one can restrict F' to the subcategory SET - of classes and inclusion
functions. The post-fixed points of F' are then its coalgebras in this subcategory. In
particular, the final F-coalgebra in SET, if it exists, is the greatest (post-)fixed
point

gfp£'] = F(gfplF])

of F. The claim is that if F' is ‘uniform on maps’ then, assuming anti-foundation,
gfp[F] = F(gfp[F]) is also a final coalgebra.

Intuitively, an endofunctor on SET is uniform on maps if it is completely de-
termined by its action on objects (ie classes). Most of endofunctors are thus uniform
on maps. For instance, consider the endofunctor X +— A x X mapping a class X to
its product with a fixed class A. Given a function f : X — Y, the value of A x f at
an element <a,z> of A x X is the pair <a, f(z) > € A x Y which is obtained by
applying f to the z € X in Ax X. This suggests that the class X should be regarded
as a class of variables and that, in general, the action of a functor F' uniform on
maps on a function f should simply be the substitution of the variables x occurring
in FX by f(x).

Formally, this can be expressed by means of the expanded universe of well-
founded sets WX = X + PsW X. What one needs is a natural transformation

p: F=PsW

which, for every X, ‘embeds’ F'X into PsW X — the class of sets of (well-founded)
sets having x € X as variables.

211



212 Sets like Processes

Naturality amounts to having, for every function f : X — Y, the following
diagram commute.

Ff
FX FY
x l lpy
PsWX PsWY
PsW f

It should be an ‘embedding’ in the sense that, for every X and for every v € F X, by
‘forgetting’ the distinction between variables and sets in px (v) € PsW X one should
get back the original set v. This operation of forgetting the distinction between
variables and sets in objects of type PsIW can be made formal as follows.

Consider the inductive extension ey : WV — V of the Ps-algebra structure
PsV =V along the identity on V:

nv ian

Vv A% PsWV
N\ eV Ps(ev)
v
|4 = PV

Omitting, as usual, the injections, one has that, for every v € WV ey (v) =vifvisa
variable and ey (v) = {ey(v;)}; if v = {v;};. Then, an endofunctor F' : SET — SET
is uniform on maps if there exists a natural transformation

p: F = PsW
such that
FVe SV
pv |
PsW V- PsV
Ps(ev)
commutes.

Before setting out to prove the special final coalgebra theorem, notice that, since
W is freely generated by Ps, the forgetful functor mapping Ps-algebras to their
carriers is right adjoint to the functor mapping a class X to the (free) Ps-algebra
with carrier WX and structure

inry : PsWX - WX

(Cf Section 2.) The other injection nx = inly : X — WX is the unit of the
adjunction at X, while the value of the counit at an algebra (Y, h) is given by the



Part V. — Special Final Coalgebra Theorem 213

inductive extension of the right injection inry : PsWY — WY along the identity on
Y.

Thus, in particular, the above function ey : WV — V is the value of the counit
at the algebra PsV = V. (Formally, ¢, = Ueipgv=v) = €mpsv=v), Where U is
the forgetful functor mapping algebras to their carriers.) By adjunction, there is a
bijection (natural in X and (Y, h)) between functions f : X — Y and Ps-algebra
arrows g : (WX inrx) — (Y, h). This bijection maps f to

fl=cypoWf

and ¢ to
g =Ugonx =gonx

The Special Final Coalgebra Theorem. Let F' be a endofunctor on
SET which cuts down to an endofunctor on the subcategory SET - of
inclusion functions.

If F'is uniform on maps, then, assuming anti-foundation, its final coal-
gebra

gfp[F] = F(gfp[F])

in SET - lifts to a final F-coalgebra in SET.

Proof: Consider an F-coalgebra structure
k:X —FX

By uniformity on maps, there exists a function py : FX — PsW X, hence k can be
made into a system of set-equations in X by composing it with py. Take its solution
px ok : WX —V and define a function f from X to V' as the right adjunct of this
solution wrt the above adjunction; that is,

f=(pxok) =pxokony:X =V



214 Sets like Processes

Diagrammatically:
f=(pxoky
X— WX -------- >V
nx pxok
k| lpx ok, id] |
FX—=PsWX PsV
px Ps(px o k)

The claim is that, under the above hypotheses, f is an F-coalgebra arrow from
(X, k) to gfp[F] = F(gfp[F]), that is, the diagram

x— I gfp[F]

k I

FXTF(gfp[F])

commutes. More precisely: Let Y be the image under f of X. The function f :
X — V can be factorized, like every function in SET, as

xlyov
The claim is then as follows.
The class Y is a post-fixed point for F',ie Y C FY, and f is a coalgebra
arrow from (X, k) to Y—=FY ie

f

X——=Y

)

FX— =FY
Ff

commutes.

If the above holds, since F' cuts down to an endofunctor on the subcategory SET -
of inclusions, the composition of f the inclusion Y<gfp[F| of Y into the greatest
fixed point of F'is an F'-coalgebra arrow:

X ! Yc gfp[F]
kl l I
FX Fyc F(gfp[F1])

Ff



Part V. — Special Final Coalgebra Theorem 215

In order to prove the above claim, notice that everything in sight in the following
diagram commutes.

f
/////’7—\\7\\\
X W f v
nx
k| lox okid]

Fx—PX
Ff

In particular, the outer diagram does commute, hence:

f

X— ==Y

N

k 1%

FX——=FY
Ff

Therefore, for all x € X,
flz) = (Ffok)(z)
which implies that the image Y of X under f is included in the image of F'.X under

Ff, hence
Y CFY

and f is a coalgebra arrow from (X, k) to Y—FY.

Therefore, for every F-coalgebra (X, k), there exists a coalgebra arrow to gfp[F] =
F(gfp[F]). Moreover, this arrows is unique. Indeed, the above arguments also show
that every coalgebra arrow from (X, k) to gfp[F| = F(gfp[F]) fits as the right ad-
junct (px o lc)b of the unique solution of a system of set-equations, hence it is unique.
This concludes the proof.



216 Sets like Processes

Notes. An alternative (but more restrictive) form of the special final coalgebra theorem
in the standard category of ordinary sets is presented in [Pau95].

The special final coalgebra theorem is the ‘dual’ of the standard fact that least (strict)
fixed points of most endofunctors on SET are initial algebras. (Cf [Acz88, Theorem
7.6].) It gives an elementary way of finding final coalgebras, at the price of assuming
anti-foundation. For instance, under foundation, the endofunctor BX = Act x X has the
empty set 0 as the unique fixed point, while, under anti-foundation, the empty set is the
least fixed point and the set Act® of infinite words over the alphabet Act is the greatest
fixed point of B: the special final coalgebra theorem tells then that Act” = Act x Act? is
a final B-coalgebra.

Notice that one can prove the (non-strict!) fixed point Act” = Act x Act” is a final
B-coalgebra in Set, independently of the use of anti-foundation. In general, as shown in
[AM89], endofunctors to which the special final coalgebra theorem applies always have
a final coalgebra in the category of ordinary (possibly large) sets. Thus, unless one is
really interested in strict fixed points B = BB rather than fixed points up to isomorphism
B BB the interest can be shifted from non-well-founded sets and greatest fixed points
to ordinary sets and final coalgebras.



Bibliography

[Abr90]

[Acz80]

[Acz88|
[Acz94]

[AMS0]

[AMS82]

[AMS8Y]

[ARS9)

[Bad87]

[Bal94]

[Bar92]

[Bar93]

[BBY2]

Samson Abramsky. The lazy lambda calculus. In D.A. Turner, editor, Research
Topics in Functional Programming, pages 65-116. Addison-Wesley, 1990.

Peter Aczel. Frege structures and the notions of proposition, truth and set. In
J. Barwise et al., editors, The Kleene Symposium, pages 31-60. North-Holland,
1980.

Peter Aczel. Non-well-founded sets. Number 14 in Lecture Notes. CSLI, 1988.

Peter Aczel. Final universes of processes. In Mathematical Foundations of Pro-
gramming Semantics, Proc. 9th Int. Conf., New Orleans, LA, USA, April 1993,
volume 802 of LNCS, pages 1-28. Springer-Verlag, 1994.

M.A. Arbib and E.G. Manes. The greatest fixpoint approach to data types.
In Proc. of the 3rd workshop meeting on Categorical and Algebraic Methods in
Computer Science and System Theory, 1980. See also [AMS82].

M.A. Arbib and E.G. Manes. Parametrized data types do not need highly con-
strained parameters. Information and Control, 52:139-158, 1982.

P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt et al., editors,
Proc. category theory and computer science, volume 389 of LNCS, pages 357—-365.
Springer-Verlag, 1989.

P.H.M. America and J.J.M.M. Rutten. Solving reflexive domain equations in a
category of complete metric spaces. Journal of Computer and System Sciences,
39(3):343-375, 1989.

Eric Badouel. Une construction systématique de modéles & partir de spécifications
opérationnelles structurelles. Technical Report INRIA 764, IRISA, Rennes, 1987.

M. Baldamus. A non-well-founded sets semantics for observation congruence over
full CCS. Tech. rep. Berlin University of Technology, 1994.

Michael Barr. Algebraically compact functors. Journal of Pure and Applied
Algebra, 82:211-231, 1992.

Michael Barr. Terminal coalgebras in well-founded set theory. Theoretical Com-
puter Science, 144(2):299-315, 1993.

G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical Computer
Science, 96:217-248, 1992.

217



218

[BES7]

[Bec69]

[BG92]

[BIMSS]

[BR92]

[BV96]
[BW85]

[BW90]

[BZ82]

[Cro93]

[DG87]

[DGYO]

[dS85)

[FH83]

[Fio93]

Bibliography

J. Barwise and J. Etchemendy. The Liar: An Essay in Truth and Circularity.
Oxford University Press, 1987.

Jon Beck. Distributive laws. In B. Eckmann, editor, Seminar on Triples and
Categorical Homology Theory, volume 80 of Lecture Notes in Mathematics, pages
119-140. Springer-Verlag, 1969.

S. Brookes and S. Geva. Computational comonads and intensional semantics.
In M.P. Fourman, P.T. Johnstone, and A.M. Pitts, editors, Applications of cat-
egories in computer science, volume 177 of London Mathematical Society Lecture
Note Series. Cambridge University Press, 1992.

B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced: preliminary
report. In Proc. Third IEEE Symp. on Logic In Computer Science, pages 229—
239, 1988.

J.W. de Bakker and J. Rutten, editors. Ten Years of Concurrency Semantics.
World Scientific, 1992. Selected papers of the Amsterdam Concurrency Group.

J.W. de Bakker and E. de Vink. Control Flow Semantics. The MIT Press, 1996.
M. Barr and C. Wells. Toposes, Triples and Theories. Springer-Verlag, 1985.

J.C.M. Baeten and W.P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer science. Cambridge University Press, 1990.

J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of
concurrency. Information and Control, 54:70-120, 1982.

R.L. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cam-
bridge Univ. Press, 1993.

Ph. Darondeau and B. Gamatié. A fully observational model for infinite beha-
viours of communicating systems. In Proc. TAPSOFT/CAAP’87, volume 249 of
LNCS, pages 153-168. Springer-Verlag, 1987. See also [DG90].

Ph. Darondeau and B. Gamatié. Infinitary behaviours and infinitary observa-
tions. Fundamenta Informaticae, XI111:353-386, 1990.

R. de Simone. Higher level synchronising devices in MEIJE-SCCS. Theoretical
Computer Science, 37:245-267, 1985.

M. Forti and F. Honsell. Set theory with free construction principles. Annali
Scuola Normale Superiore, Pisa, X(3):493-522, 1983.

Marcelo Fiore. A coinduction principle for recursive data types based on bisim-
ulation. In Proc. Eighth IEEE Symp. on Logic In Computer Science, 1993. To
appear in Information and Computation.



Bibliography 219

[Fio96]

[FP92)

[FPY4]

[Fre90]

[Fre91]

[Fre92]

[FS90]
[Gro93|

Marcelo Fiore. Axiomatic domain theory in categories of partial maps. To be pub-
lished by Cambridge University Press in the Distinguished Dissertations Series.
(Ph.D. thesis, 1994. Technical report ECS-LFCS-94-307, Department of Com-
puter Science, University of Edinburgh), 1996.

M.P. Fiore and G.D. Plotkin. On compactness and Cpo-enriched categories. In
G. Winskel, editor, Proceedings of the CLICS Workshop (23-27 March 1992),
volume 397-11 of DAIMI PB, pages 571-584. Computer Science Department,
Aarhus University, May 1992.

M.P. Fiore and G.D. Plotkin. An axiomatisation of computationally adequate
domain-theoretic models of FPC. In 9" LICS Conf., pages 92-102. IEEE, Com-
puter Society Press, 1994.

Peter Freyd. Recursive types reduced to inductive types. In Proc. Fifth IEEE
Symp. on Logic In Computer Science, pages 498-507. IEEE Computer Society
Press, 1990.

Peter Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio,
and G. Rosolini, editors, Category Theory - Proc. of the Int’l Conf. held in Como,
Italy, July 1990, volume 1488 of Lecture Notes in Mathematics, pages 95-104.
Springer-Verlag, 1991.

Peter Freyd. Remarks on algebraically compact categories. In H.P. Fourman, P.T.
Johnstone, and A.M. Pitts, editors, Applications of Category Theory in computer
science, volume 177 of London Mathematical Society Lecture Notes Series, pages
95-106. Cambridge University Press, 1992.

Peter Freyd and Andre Scedrov. Categories, Allegories. North-Holland, 1990.

J.F. Groote. Transition system specifications with negative premises. Theoretical
Computer Science, 118(2):263-299, 1993.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An initial algebra approach

[GV92]

[Har96]

[Her93|

[Hes88]

to the specification, correctness and implementation of abstract data types. In
R.T. Yeh, editor, Current Trends in Programming Methodology, volume IV, pages
80-149. Prentice Hall, 1978.

J.F. Groote and F. Vaandrager. Structured operational semantics and bisimula-
tion as a congruence. Information and Computation, 100(2):202-260, 1992.

Chrysafis Hartonas. Semantics for finite delay. To appear in Theoretical Computer
Science, 1996.

C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis,
Univ. Edinburgh, 1993. Techn. rep. LFCS-93-277. Also available as Aarhus Univ.
DAIMI Techn. rep. PB-462.

W.H. Hesselink. Deadlock and fairness in morphisms of transition systems. The-
oretical Computer Science, 59:235-257, 1988.



220

[HJ95a]

[HJ95b]

[HL95)

[HP79]

[Jac95]

[TMY5]

Bibliography

C. Hermida and B. Jacobs. An algebraic view of structural induction. In
L. Pacholski and J. Tiuryn, editors, Computer Science Logic 1994, volume 933
of LNCS, pages 412-426. Springer-Verlag, 1995.

C. Hermida and B. Jacobs. Induction and coinduction via subset types and
quotient types. In Informal Proceedings of the Joint CLICS-TYPES Workshop
on Categories and Type Theory. Prog. Meth. Group, Report 85, Goteborg Univ.
and Chalmers Univ. of Techn., 1995.

F. Honsell and M. Lenisa. Final semantics for untyped A-calculus. In M. Dezani-
Ciancaglini and G.D. Plotkin, editors, Typed Lambda calculi and applications :
second international conference, volume 902 of LNCS. Springer-Verlag, 1995.

M.C.B. Hennessy and G.D. Plotkin. Full abstraction for a simple parallel pro-
gramming language. In J. Be¢var, editor, Proc. 8th Int’l Symp. on Mathematical
Foundations of Computer Science, volume 74 of LNCS, pages 108-120. Springer-
Verlag, 1979.

Bart Jacobs. Mongruences and cofree coalgebras. In V.S. Alagar and M. Nivat,
editors, Algebraic Methods and Software Technology, volume 936 of LNCS, pages
245-260. Springer-Verlag, 1995.

A. Joyal and I. Moerdijk. Algebraic Set Theory, volume 220 of London Mathem-
atical Society Lecture Note Series. Cambridge University Press, 1995.

[JNW93] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation and open maps. In Proc.

[Joh75]

[Ken87]

[K1080]

[KRYO]

[Law69]

[Law76]

[LevT79]

Eighth IEEE Symp. on Logic In Computer Science, pages 418,427, 1993.

P.T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London
Math. Soc., 7:294-297, 1975.

R.E. Kent. The metric closure powerspace construction. In M. Main et al.,
editors, Mathematical Foundations of Programming Semantics, Proc. 3rd Int.
Conf., volume 298 of LNCS, pages 173-199. Springer-Verlag, 1987.

Jan Willem Klop. Combinatory Reduction Systems, volume 127 of Mathematical
Centre Tracts. CWI, Amsterdam, 1980. PhD Thesis.

J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency se-
mantics. Theoretical Computer Science, 76:179-122, 1990.

F. William Lawvere. Adjointness in foundation. Dialectica, 23(3/4):281-296,
1969.

F. William Lawvere. Variable quantities and variable structure in topoi. In
A. Heller and M. Tierney, editors, Algebra, Topology, and Category Theory, pages
101-131. Academic Press, 1976.

Azriel Levy. Basic Set Theory. Perspectives in Mathematical Logic. Springer-
Verlag, 1979.



Bibliography 221

[LS86]

[MacT71]

[Mac86]

[Man76]

[Mei92]

[MG85]

[Mil80]

[Mil90]

[Mog91]

[Mos90]

[MT92]

[Muk91]

[Niv79]

[Ole82]

[Par81]

J. Lambek and P.J. Scott. Introduction to higher order categorical logic, volume 7
of Cambridge studies in advanced mathematics. Cambridge University Press,
1986.

Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of
Graduate Texts in Mathematics. Springer-Verlag, 1971.

Saunders Mac Lane. Mathematics: Form and Function. Springer-Verlag, 1986.

E.G. Manes. Algebraic Theories, volume 26 of Graduate Texts in Mathematics.
Springer-Verlag, 1976.

Karl Meinke. Universal algebra in higher types. Theoretical Computer Science,
100:385-417, 1992.

J. Meseguer and J.A. Goguen. Initiality, induction, and computability. In
M. Nivat and J.C. Reynolds, editors, Algebraic Methods in Semantics, pages
459-541. Cambridge University Press, 1985.

R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer-
Verlag, 1980.

R. Milner. Functions as processes. In M.S. Paterson, editor, Proc. of 17th ICALP,
1990.

Eugenio Moggi. Notions of computation and monads. Information and Compu-
tation, 93:55-92, 1991.

Peter D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, pages
575—631. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.

K. Meinke and J.V. Tucker. Universal algebra. In S. Abramsky et al., editors,
Handbook of logic in computer science, volume 1, pages 189-411. Clarendon Press,
Oxford, 1992.

Kuniaki Mukai. Constraint Logic Programming and the Unification of Informa-
tion. PhD thesis, Tokio Institute of Technology, April 1991.

M. Nivat. Infinite words, infinite trees, infinite computations. In J.W. de Bak-
ker and J. van Leeuwen, editors, Foundations of Computer Science III, Part 2,
volume 109 of Math. Centre Tracts, pages 3-52, 1979.

Frank J. Oles. A category-theoretic approach to the semantics of programming
languages. PhD thesis, School of Computer and Information Science, Syracuse
University, August 1982.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Proceedings 5th GI Conference, volume 104 of LNCS, pages 167-183.
Springer-Verlag, 1981.



222

[Pau95]

[Pit93]

[Pit94al

[Pit94b]

[Pit94c]

[Plo76]

[Plo81al

[Plo81b]

[P1o85]

[P1090]

[P0i92]

[RT93]

[RT94]

Bibliography

Lawrence C. Paulson. A concrete final coalgebra theorem for ZF set theory. In
P. Dybjer et al., editors, Types for Proofs and Programs ’94, volume 996 of LNCS,
pages 120-139. Springer-Verlag, 1995.

Andrew Pitts. Relational properties of domains. Technical Report 321, Cam-
bridge Univ. Computer Laboratory, December 1993. To appear in Information
and Computation.

Andrew Pitts. A co-induction principle for recursively defined domains. Theor-
etical Computer Science, 124:195-219, 1994.

Andrew Pitts. Computational adequacy via ‘mixed’ inductive definitions. In
Mathematical Foundations of Programming Semantics, Proc. 9th Int. Conf., New
Orleans, LA, USA, April 1993, volume 802 of LNCS, pages 72-82. Springer-
Verlag, 1994.

Andrew Pitts. Some notes on inductive and co-inductive techniques in the se-
mantics of functional programs. Notes Series BRICS-NS-94-5, BRICS, Depart-
ment of Computer Science, University of Aarhus, December 1994.

Gordon Plotkin. A powerdomain construction. SIAM J. Comput., 5:452-487,
1976.

Gordon Plotkin. Post-graduate lecture notes in advanced domain theory (incor-
porating the “Pisa Notes”). Department of Computer Science, Univ. of Edin-
burgh, 1981.

Gordon Plotkin. A structured approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

Gordon Plotkin. Lectures on predomains and partial functions. CSLI, 1985.

Gordon Plotkin. An illative theory of relations. In R Cooper et al., editors,
Situation Theory and its Applications, number 22 in CSLI Lecture Notes, pages
133-146. Stanford University, 1990.

Axel Poigné. Basic category theory. In S. Abramsky et al., editors, Handbook
of logic in computer science, volume 1, pages 413-640. Clarendon Press, Oxford,
1992.

J. Rutten and D. Turi. On the foundations of final semantics: non-standard sets,
metric spaces, partial orders. In J. de Bakker et al., editors, Proc. of the REX
workshop Semantics — Foundations and Applications, volume 666 of LNCS, pages
477-530. Springer-Verlag, 1993.

J. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concur-
rency. In J. de Bakker et al., editors, Proc. of the REX workshop A Decade of
Concurrency — Reflections and Perspectives, volume 803 of LNCS, pages 530-582.
Springer-Verlag, 1994.



Bibliography 223

[Rut90]

[Rut92]

[San95)

[ScoT0]

[Sco80]

[Sim95]

[SP82]

[TJ93]

[Win93]

[WN95]

J. Rutten. Deriving denotational models for bisimulation from Structured Opera-
tional Semantics. In M. Broy and C.B. Jones, editors, Programming concepts and
methods, proceedings of the IFIP Working Group 2.2/2.3 Working Conference,
pages 155-177. North-Holland, 1990.

Jan Rutten. Processes as terms: non-well-founded models for bisimulation. Math-
ematical Structures in Computer Science, 2:257-275, 1992.

Davide Sangiorgi. On the proof method for bisimulation. In J. Wiedermann
and P. Haiek, editors, Proc. MF(CS’95, volume 969 of LNCS, pages 479-488.
Springer-Verlag, 1995.

Dana Scott. Outline of a mathematical theory of computation. In Proc. jth
Annual Princeton Conference on Inf. Sciences and Systems, pages 169-176, 1970.

Dana Scott. Relating theories of the A-calculus. In J.R. Hindley and J.P. Seldin,
editors, To H.B. Curry: Essays on combinatory logic, lambda calculus and form-
alism, pages 403-450. Academic Press, 1980.

Alex Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for
an arbitrary GSOS. In Proc. Tenth IEEE Symp. on Logic In Computer Science,
1995.

M. Smyth and G. Plotkin. The category-theoretic solution of recursive domain
equations. SIAM J. Comput., 11:761-783, 1982.

D. Turi and B. Jacobs. On final semantics for applicative and non-deterministic
languages. Fifth Biennal Meeting on Category Theory and Computer Science,
Amsterdam, September 1993.

Glynn Winskel. The Formal Semantics of Programming Languages. The MIT
Press, 1993.

G. Winskel and M. Nielsen. Models for concurrency. In S. Abramsky et al., edit-
ors, Handbook of logic in computer science, volume 4. Clarendon Press, Oxford,
1995.



Index

abstract interpretation, 160
action
— of a monad on a functor, 97
operational lifting as —, 59
adequacy, 84
adequate denotational model, 80
adequate denotational semantics, 79
adjoint
left —, 23
right —, 23
special — functor theorem, 173
adjunct
left —, 23
right —, 23
adjunction, 23
— F*HUZ*, 41
— F'4U", 45
— FTHUT, 116
— Up-Gp, 106, 173
— UpdGp, 117
— UpdGp, 106
algebra
®-algebra, 112
d-algebras are ®®-coalgebras, 113
Y-algebra, 31, 32
Y-algebras are T'-algebras, 43
T-algebra, 42

— laws, 42
— for monad, 42
free Zermelo-Fraenkel —, 210
freely generated —, 35
initial —, 33

— semantics, 80, 90
initial algebras are isos, 33
algebraic compactness, 18

224

anti-foundation axiom, 204
axiomatic domain theory, 18

basic process algebra, 127
basic property
— of functorial operational semantics,

91
Beck’s theorem, 46
behaviour
global —, 69

abstract —, 69

behaviour (endofunctor) B, 52
bisimulation

(strong) —, 149

— along arrows, 159

coalgebraic —, 150

greatest (relation lifting to a) —, 157

ordinary —, 150

carrier, 31

category
— of algebras of a monad, 42
Eilenberg-Moore —, 42

small —, 25
choice

non-deterministic —, 123
class, 199

proper —, 199
co-well-powered category, 170
coaction

operational lifting as —, 58
coalgebra

B-coalgebra, 51
B-coalgebras are D-coalgebras, 95
W-coalgebra, 113



Index

U-coalgebras are U#-algebras, 114

D-coalgebra, 95
— laws, 95
— for a comonad, 95

cofreely generated —, 91

final —, 67
— semantics, 68
cocone, 26
colimiting —, 27
coequalizer, 27
coinduction

structural —, 143
coinductive extension, 67

— along an arrow, 93
colimit, 27

creation of —, 163, 170
comonad, 91

— from adjunction, 118

— laws, 91

coinduced denotational — ®<, 98
computational —, 103
denotational —, 97

observational —, 91, 174
comultiplication ¢ (of a comonad), 91

cone, 27
limiting —, 27
congruence, 81, 162
context, 37
copair, 28
coproduct, 25
counit
— of a comonad, 91
— of an adjunction, 25
covaluation function, 92
creation
— of colimits, 163, 170
— of limits, 163
— of pullbacks, 163

data type
(co-)inductive —, 18
decoration (of a graph), 203
denotational
— comonad, 97
coinduced — ®©, 98
— semantics, 79

functorial —, 97
diagram, 26
distributive law, 65, 103
domain

semantic —, 80
duality principle, 2

endofunctor, 32

locally continuous —, 76
locally contracting —, 76

epi arrow, 28

equality relation (categorically), 152

equalizer, 28
equivalence
observational —, 81

final coalgebra semantics, 68

fixed point
— operator, 70
forgetful functor

— from B-coalgebras, 57

— from X-algebras, 41

— from D-coalgebras, 96

— from T-algebras, 45
foundation axiom, 200
full-abstraction

internal —, 155
functor

w-cocontinuous —, 33

— category, 25

225

— preserving inclusion functions, 202

— uniform on maps, 212

comparison —, 45
diagonal —, 26
monadic —, 46

set-based —, 175

generating set, 170
germ of a semantics, 60
GSOS

— model, 146

— rule, 137

hyperset, 205
hyperuniverse, 205

induction



226

structural —, 50
inductive extension, 33

— along an arrow, 36
initial algebra semantics, 80, 90
injection (in a coproduct), 25
interleaving, 145
intersection

— of quotients, 169

join
— of a semi-lattice, 123
join-preserving function, 124

lambda calculus, 54
leg (of a relation), 150
lemma
solution —, 209
substitution —, 210

lifting

— of a monad, 57
limit, 27

creation of —, 163

locally small
— category, 173
— graph, 203

mediating arrow, 27
model

— of an operational monad, 115, 187

final —, 115
initial —, 115
monad, 39
— from adjunction, 41
— laws, 39
computational —, 55

induced operational — ¥# 102

map of monads, 57
operational —, 60, 96
syntactical —, 46
monic
— arrow, 28
jointly — arrows, 150
multiplication p (of a monad), 39

natural transformation, 24
non-determinism, 123
non-deterministic choice, 123

observational equivalence, 81
operational
— model, 49
— monad, 60, 96
induced — ¥#, 102
— rule
ntyft —, 140
tyft —, 147
GSOS —, 137
— semantics, 49
functorial —, 57
ordinal, 201

partial order

— of relations, 157
product, 25
program, 31
programs

guarded —, 71

guarded — (in GSOS), 144
projection (of a product), 25
pullback, 28

creation of —, 163
relation by —, 151
weak —, 152

weak — preservation, 152
pushout, 27
(notation), 28

quotient, 169

rank of a well-founded set, 201
relation, 150

Index

— between arrows over an object, 159

legs of a —, 150
retraction -y, 64
Russel’s paradox, 197

SAFT, 173
self-singleton set €2, 205
semantics
compositional —, 79
denotational —, 79
final coalgebra —, 68
initial algebra —, 80, 90
operational —, 49
semi-lattice, 123



Index

complete —, 125
internal —, 126
set
— transitive, 201
set-based endofunctor, 175
set-equations
solution of a system of —, 208
system of —, 208
signature, 31
solution lemma, 209
span
monic —, 150
special
— adjoint functor theorem, 173
— final coalgebra theorem, 213

Special Adjoint Functor Theorem (SAFT),

173

state of a transition system, 49

inert —, 49
strong extensionality, 155, 168
structure

— of an algebra, 31
structured operational semantics, 50
substitution lemma, 210
syntactical monad, 46

term, 31
closed —, 31

transition, 49

transition system, 49
— as coalgebra, 52
conservative extension of a —, 54
deterministic —, 50

— as coalgebra, 51

finitely branching, 127
finitely branching —, 52
quasi-applicative —, 53

unit
— of a monad, 39
— of an adjunction, 25

universal
— arrow, 22
weak —, 152
universe

— (V) of sets, 199

— (W) of well-founded sets, 200
valuation function, 36

weak
— pullback, 152
— universal, 152
weakly final
— coalgebra, 166

227



