

Functional Partitioning for Low Power Distributed Systems

of Systems-on-a-chip

Yunsi Fei and Niraj K. Jha
Department of Electrical Engineering, Princeton University, NJ 08544

{yfei, jha}@ee.princeton.edu

Abstract

In this paper, we present a functional partitioning method for
low power real-time distributed embedded systems whose
constituent nodes are systems-on-a-chip (SOCs). The system-
level specification is assumed to be given as a set of task graphs.
The goal is to partition the task graphs so that each partitioned
segment is implemented as an SOC and the embedded system is
realized as a distributed system of SOCs. Unlike most previous
synthesis and partitioning tools, this technique merges
partitioning and system synthesis (allocation, assignment, and
scheduling) into one integrated process; both are implemented
within a genetic algorithm. Genetic algorithms can escape local
minima and explore the partitioning and synthesis design space
efficiently. Through integration with an existing SOC synthesis
tool, the proposed partitioning technique satisfies both the hard
real-time constraints and the SOC area constraint of each
partitioned segment. Under these constraints, our tool performs
multi-objective optimization. Thus, with a single run of the tool,
it produces multiple distributed SOC-based embedded system
architectures that trade off the overall distributed system price
and power consumption. Experimental results show the efficacy
of our technique.

1 Introduction

 The ever-shrinking geometries of integrated circuits have
made it possible to implement an entire embedded system on an
SOC. However, the functionality being implemented by
embedded systems is also rapidly increasing. This frequently
necessitates realizing the functionality with a number of SOCs,
which involves functional partitioning of a system specification
and synthesis of each partition segment on a separate chip. In
single-chip synthesis, the tool may possibly optimize price, area,
and power consumption under real-time constraints. However,
for the synthesis of a distributed system of SOCs, area is also a
constraint in order to obtain satisfactory yields. Thus, after
partitioning, each segment needs to be synthesized with an SOC
that satisfies the area constraint. In addition, the real-time
constraints are not local to a single SOC. They apply to the
whole distributed system of SOCs. Thus, synthesizing and
scheduling the communication architecture among SOCs
becomes necessary to make sure that the real-time constraints
are met. This makes the problem much more complex.

 Acknowledgments: This work was supported by DARPA under
contract no. DAAB07-00-C-L516.

Design automation involving synthesis and partitioning can
be broadly classified into vertical and integrated design flows
[1]. In the vertical design flow, as shown in Figure 1(a),
functional partitioning and structural partitioning are two
possible approaches. In functional partitioning, partitioning is
done first, followed by synthesis of each partition segment. In
structural partitioning, synthesis is done first, followed by the
partitioning of the resultant structure. A detailed comparison of
these approaches, showing advantages of functional partitioning,
is given in [2]. Our approach uses functional partitioning.

The integrated design flow can be classified into three
approaches [1]: traditional heterogeneous model, strongly
integrated heterogeneous model, and the homogeneous model.
For the traditional heterogeneous model, since the partitioner
has no a priori knowledge about design parameters such as the
actual area and schedule, the focus of research is to provide

Figure 1. Synthesis and partitioning design flows

(a)

Vertical design flow

Specification Specification

Next-level
design

Functional
partitioning

System level
synthesis

Partitioning-based
exploration and

estimation

System-level design + Target
architecture

Synthesis

Structural
partitioning

Next-level design

Partition
estimates

Current
configuration

Strongly integrated design flow

(b)

Next-level design

Functional
partitioning

Synthesis

good design estimates while not performing complete synthesis.
Previous work has employed various methods to provide design
estimates at different levels of the integrated circuit design
hierarchy [4]-[8].

The strongly integrated heterogeneous model has been
presented in [1], [9]. As shown in Figure 1(b), in this model,
both the partitioning and synthesis exploration engines maintain
an identical view of the partitioned behavior. During
partitioning, the design space exploration technique performs a
global search in a four-dimensional design space, and the
partitioner always communicates any changes in the partitioned
configuration to the synthesis engines [1]. There is an
exploration control interface between the partitioner and
synthesizer.

In a homogeneous model, partitioning and synthesis
(allocation, assignment, and scheduling) are simultaneously
explored. MULTIPAR uses an integer linear programming
formulation to solve the partitioning and scheduling problems
simultaneously [10]. COBRA-ABS uses a heuristic simulated
annealing algorithm [11]. However, unification of partitioning
and synthesis into a homogeneous model leads to a large multi-
dimensional design space. The cost is generally high, either in
high run-time (COBRA-ABS) or inability to handle large
problems (MULTIPAR).

The limitation of the above homogeneous models stems
from the way partitioning and synthesis are simultaneously
tackled. In this paper, we propose a homogeneous model, which
uses an effective search algorithm, a genetic algorithm, at the
system level. In this model, partitioning is performed
simultaneously with allocation and assignment. This step yields
a distributed system of SOCs. A global schedule is then
obtained for the distributed system. Our algorithm optimizes
overall system price and power consumption under real-time and
SOC area constraints. We do not employ an exploration control
interface between partitioning and synthesis as in [1]. This leads
to an efficient and scalable algorithm which produces high-
quality distributed systems of SOCs in relatively small run-
times.

The rest of the paper is organized as follows. Section 2
provides background material and describes the system
synthesis framework on top of which the partitioner is built.
Section 3 presents the proposed framework for integrated
functional partitioning and system synthesis. Section 4 presents
a genetic algorithm for partitioning, as well as synthesis, and
their integration. Section 5 presents experimental results, and
Section 6 the conclusions.

2 Problem Definition and System Synthesis

Framework
In this section, we define the problem of functional

partitioning and some terms used in system synthesis, and also
describe the system synthesis framework.

2.1 The functional partitioning problem

At the system level, functional partitioning is the process of
dividing the system-level functional specification into several
partition segments such that each segment can be synthesized on
a separate chip.

Several basic issues need to be addressed in a functional
partitioning system [3], as shown in Figure 2. The first one deals
with the specification abstraction level, which can be system

level, behavior level, register-transfer level, or logic level. Our
work is at the system level, and the specification is in the form
of a set of task graphs, which will be described in the next
subsection. The second issue is the granularity of the functional
objects into which the input specification is decomposed. For
certain input abstraction levels, there is only one reasonable
granularity of decomposition. For example, in our partitioning
scenario, decomposition is limited to the level of a task, since a
task is the basic atomic functional block. After decomposition,
the partitioning algorithm maps the functional objects to system
components from a resource library. The partitioning result is
evaluated based on the given constraints and estimation of the
optimization objectives. Finally, the output of functional
partitioning can be used as an input to a synthesis tool for
implementing each of the partitioned segments. There should
also be a flow of control to specify the sequence of decisions
made within partitioning and designer interactions, which will
be discussed in Section 3.

Formally, the system-level constraint-driven functional
partitioning problem can be stated as follows:

Given a set of task graphs G = <V, E>, in which V (vertex)
represents tasks, E (edge) represents the data dependence
relationship and data flow between tasks, a functional partitioner
partitions G into a number of non-overlapping sub-graphs P1,
P2,…, Pl (l ≤ m, the maximum number of chips allowed) such
that Ai ≤ AC, 1≤ i ≤ l, Tj ≤ Dlj, 1≤ j ≤ k, where k is the number of
tasks with a deadline, Ai is the area of each chip, AC is the chip
area constraint, Tj is the finish time of task j with a specified
deadline Dlj; while multiple objectives, such as system price and
power, are optimized.

2.2 The system synthesis tool

Hardware-software co-synthesis is a sub-problem of SOC
synthesis. Given a system specification and resource library (the
available types of processing elements and communication
links) as inputs, a co-synthesis algorithm needs to solve the
following problems: allocation, assignment, scheduling, and
performance/power evaluation. First, the co-synthesis algorithm
selects the number and type of hardware and software
processing elements upon which the tasks will execute
(allocation). Then the algorithm assigns each task to a
processing element and each communication edge to a
communication link (assignment). Finally, schedules are
produced for both processing elements and communication
links, such that the real-time constraints for all task graphs are
met.

Optimal co-synthesis is a difficult problem, since

Specification abstraction level

Granularity

Metrics and estimations
Partitioning algorithms
Objective and closeness functions

System component allocation

Output

Figure 2. Basic functional partitioning system

allocation/assignment, and scheduling are each NP-complete for
distributed systems [12]. Hence, optimal co-synthesis based on
mixed integer linear programming or exhaustive exploration can
only be applied to problems of small size [13]. There are three
popular classes of co-synthesis heuristics: constructive, iterative,
and genetic. A constructive approach builds a system from
bottom-up, adding components to the system incrementally [14].
An iterative approach starts with a feasible solution, either
randomly produced, or obtained in a deterministic pre-
processing step [15]. It then perturbs the solution and attempts to
improve its quality iteratively. A genetic algorithm improves a
set of feasible solutions through reproduction, crossover, and
mutation [16], [22].

We next define various terms that are used in co-synthesis.
Task graph: A task graph is a system-level description model.
It is a directed acyclic data-flow graph as shown in Figure 3. A
node in a task graph represents a coarse-grained task, e.g.,
discrete cosine transform or FFT. An edge in a task graph is
associated with communication between two tasks, and its label
denotes the amount of data that needs to be transmitted along the
edge. A task with incoming edges can only be executed after it
receives all the data from its parent tasks. For each sink task,
there is an associated deadline. Deadlines may also be specified
for some other tasks. The period associated with a task graph
denotes the interval between successive executions of the task
graph. An embedded system may be specified in terms of a set
of task graphs, each with a different period. Such a system is
called multi-rate. Deadlines may be smaller than, equal to or
greater than the periods.

Hyperperiod: In a multi-rate system, the least common multiple
(LCM) of all periods is called the hyperperiod. It is well known
that a valid system schedule can be obtained by repeatedly
executing the task graphs in the hyperperiod [17].
Resource library: There are many system components
available to execute the tasks and communication events
between tasks. A core can execute one or more tasks, and a link
(point-to-point contact or bus) allows two or more cores or
SOCs to communicate with each other. A resource library
includes cores, links and memories that will be used for SOC
synthesis. Various characteristics are specified for each core,
such as price, width, height, maximum clock frequency, a
variable indicating whether or not its communication is
buffered, and an energy consumption per cycle dedicated to
communication. For each task run on each valid core in the
resource library, the worst-case execution time and average
power consumption are specified. This information can be

obtained through the techniques such as those provided in [18]-
[21].
Our system synthesis framework: We have built our
functional partitioner on top of the system synthesis framework
shown in Figure 4 [22]. This framework employs a hierarchical
genetic algorithm. It has two loops: an outer cluster loop for
allocation and an inner architecture loop for assignment and
scheduling. A cluster of architectures contains the same
allocation, but different task assignments. The clock selection
step determines the clock frequency for each core, assuming
asynchronous communication among cores. In the initialization
step, the algorithm initializes basic data structures. In the outer
loop, it uses a genetic algorithm to change core allocations. In
the inner loop, it changes task assignments also using a genetic
algorithm. A block placement floorplanner ensures that cores
which have high communication priority are located next to
each other. A bus structure that trades off potential bus
contention for ease of routing is produced. Scheduling of tasks
and edges follows. At this point, it can be verified if the real-
time constraints are met. Finally, inferior solutions are
eliminated before evolving the set of solutions from one
generation to another. If there is no improvement for a given
number of generations, synthesis halts.

3 The Partitioning and System Synthesis
Framework
In our integrated framework, it is hard to separate the

partitioner from the system synthesizer. An overview of this
framework is given in Figure 5. We use a homogeneous
partitioning model. After partitioning, allocation, and
assignment, we can obtain a global system schedule, and then
evaluate an array of costs, such as system price, power
consumption, area constraint violation and real-time constraint
violation, etc. Hence, we do not need to build a special estimator
or exploration control interface [23] between the partitioner and

Figure 3. Task graph

t1

t2 t3

t5 t6 t4

t7

4 4

5 3

2

6 6

1

Period = 18

Deadline = 25

Deadline = 15

Clock selection

Initialization

Change core allocation by
cluster mutation and crossover

Change task assignment by
solution mutation and crossover

Floorplanning
and bus forming

Scheduling

Cost evaluation

Solution
elimination

Cluster
elimination

Halt

Cluster Loop

Architecture loop

Figure 4. System synthesis overview

synthesizer. We use a genetic algorithm to optimize system price
and power under SOC area, and real-time constraints. The
output of our integrated partitioning and synthesis framework is
distributed systems of SOCs.

The process of partitioning and synthesis is also a process of
design space exploration. If we define an SOC implementation
as a design point, then system synthesis has a three-dimensional
design space with tasks (edges), cores (buses) and time as the
three dimensions. Assignment and scheduling correspond to
projecting this space on to different two-dimensional surfaces.
In the integrated partitioning and synthesis process, the design
point is four-dimensional, with another dimension being the
partitioned segments implemented on different SOCs in the
distributed system. Although this leads to a more complex
search problem, by integrating partitioning and synthesis using a
genetic algorithm as the search and optimization engine, our
proposed technique can escape local minima and simultaneously
optimize system power and price efficiently. We discuss this
algorithm in greater detail in Section 4.2.

4 A Genetic Algorithm for Partitioning and
System Synthesis
In this section, we first describe a basic genetic algorithm,

and then show how it can be used in our context.

4.1 The genetic algorithm
There have been some studies using genetic algorithms for

the graph-partitioning problem [24]. A genetic algorithm starts
with a set of initial solutions (chromosomes), called the
population. The population evolves iteratively from generation
to generation using the following operators: mutation, crossover,
and selection. At the end, when some stopping criteria are met,
the algorithm returns the best solutions encountered till then as
the output.

Crossover and mutation enable efficient design space
exploration. In crossover, two members are selected from a

population and features from them swapped to produce two
offspring. In mutation, a feature of a member is mutated to some
other feature with some fixed probability. This allows newer
parts of the design space to be explored. When the offspring are
included in the population, the population size increases. The
selection operator ranks the members and selects the best among
them to reduce the population size back to the original size.

Genetic algorithms excel at multi-objective optimization,
i.e., the simultaneous optimization of multiple costs, such as
price and power. Our genetic algorithm stops when the number
of generations without any improvement in solution quality
exceeds a given threshold. This is a commonly used criterion for
genetic algorithms.

4.2 A genetic algorithm for joint partitioning and

synthesis
In this subsection, we explain the manner in which solutions

are represented and optimized by a genetic algorithm for the
integrated partitioning and synthesis framework.

Our algorithm is an improved algorithm based on simulated
annealing and genetic algorithm. Hence, it is called an
evolutionary algorithm. Similar to simulated annealing, a
geometrically decreasing global temperature is maintained. The
three genetic algorithm operators are used both for partitioning
and system synthesis. The overview of the algorithm was shown
in Figure 5. There are two hierarchical loops embedded in this
framework (not shown for simplicity). Initially, we generate a
pool of solutions randomly. The solutions are encoded in strings
and classified into several clusters, each cluster having the same
allocation and partitioning, i.e., within a cluster, the instances of
each core type on each SOC is fixed. However, within a cluster,
different solutions have different assignments. Partitioning is
actually executed in two steps. In the first step, it is combined
with allocation, and in the second step with assignment. Similar
to the system synthesis framework shown in Figure 4, in the
outer cluster loop, we use the genetic operators on the allocation
and partitioning strings, and in the inner loop, we use them on
the assignment and partitioning strings. Some new solutions are
generated after these operations. Then after floorplanning, bus
formation, and global scheduling for each solution, system costs
are evaluated and the solutions ranked according to their costs.
Some inferior solutions are pruned from the pool and a new
generation of solutions emerges. In each pass of the outer loop,
the inner solution loop executes multiple times. The outer loop
continues to execute until a number of iterations has been
carried out without an improvement, at which point, the global
temperature is lowered, resulting in greedier optimization. When
a large number of iterations have passed without an
improvement in the solution quality, the algorithm is halted and
all the best solutions reported.

In the following subsections, we present the details of the
algorithm and framework.

4.2.1 Functional partitioning and allocation

We use strings to encode the mapping between cores and
SOCs, and the mapping between tasks and cores. For allocation
and the first step of partitioning, we use several integer arrays to
represent each cluster. The number of arrays is equal to the
maximum number of SOCs allowed, and the length of each
array is equal to the number of core types. An entry in the array
denotes the number of instances of the corresponding core type.

Functional partitioning
and allocation

Resource
library

(cores, buses)

Distributed systems of SOCs

Design space
exploration

Partitioning and
synthesis environment

Figure 5. Partitioning and synthesis framework

Cost calculation

Target architecture
(m SOCs)

Design constraints
(AC, Dl)

System specification (G = <V, E>)

Functional partitioning
 and assignment

Global scheduling

For example, suppose the maximum number of SOCs allowed is
three and the number of core types in the resource library is
nine. Figure 6 shows three arrays, one for each SOC. On SOC1,
represented by array S1, there is one instance of core type 2,
three instances of core type 4, and so on. The mapping between
cores and SOCs represents the first step of partitioning and
allocation.

Crossover at the cluster level operates on two randomly
selected arrays representing two clusters. An associated array of
length n is generated to indicate which entries of the two arrays
should be swapped. For example, in Figure 7, the entries for
core types 1, 2, 3 and 4 are swapped between arrays S1 and S2.

The mutation operator randomly selects an array and an
entry in this array, and changes its value, either by adding 1 or
subtracting 1. This corresponds to the addition or deletion of an
instance of that core type in the SOC. Another mutation operator
moves some cores from one SOC to another SOC. This
operation guides the allocator to place as many cores onto one
SOC as possible.

4.2.2 Functional partitioning and assignment

After allocation and the first step of partitioning, the number
and types of available cores on each SOC are known. The next
step is to assign the tasks from the task graphs to the cores.
Thus, partitioning, the mapping between tasks and SOCs, is
fulfilled by the first two steps, as shown in Figure 8.

The algorithm selects a valid core for each task (i.e., a core
which can execute the task). The assignment is encoded in a
two-dimensional vector task_pe. Assume that the system
specification has p task graphs, each with qi tasks, 1≤ i ≤ p. Then

the entry in task_pe[i][j], 1≤ i ≤ p, 1≤ j ≤ qi, is a three-tuple
index, indicating the core type, core instance and the SOC to
which the task is assigned.

The mutation and crossover operators for task assignment
then operate within one cluster, on solutions containing different
assignments. For crossover, two solutions and several task
graphs are selected randomly. For each task in these graphs, the
task_pe entry is swapped between the two solutions. This
operation changes not only the assignment of task to cores, but
also the partitioning of tasks to SOCs. Mutation acts on a
randomly selected solution, by selecting a task graph and
changing the assignment of a number of its tasks. Since the
inter-SOC communication delay is much bigger and the power
consumption is greater than on-chip communication, task
assignment mutation is guided by a heuristic designed to
minimize inter-SOC communication link bandwidth
requirement. It uses a metric called distance for this purpose.
When a task is to be reassigned, all its neighbors (other tasks
with which it communicates) are checked. The distance metric
indicates the amount of communication data transmitted on the
inter-SOC link if the task were to be assigned to a core on a
particular SOC. The distance values are determined for different
SOCs on which the task can run. This array of distance values is
used to determine the attractiveness of an SOC to implement the
task in question, in order to reduce the inter-SOC
communication.

The algorithm next runs the floorplanner to place the cores
on each SOC. This gives an estimate of each SOC area. A bus-
forming algorithm is then used to form the necessary busses on
each SOC. This balances ease of routing and bus contention
[22].

4.2.3 Global scheduling

Global scheduling refers to scheduling of the distributed
system of SOCs. In the single-chip synthesis system, there is a
local scheduler which schedules the task and events on all the
cores and links (busses) in the chip. In a multi-chip system,
communications may take place between tasks assigned to cores
on different SOCs. Thus, a global schedule needs to be obtained,
based on local SOC scheduling and inter-SOC link scheduling.

Since the number of SOCs is likely to be small, we assume
that all the SOCs are connected by a global bus. Since
scheduling is NP-complete for distributed systems [12], we
resort to a heuristic list-based scheduling algorithm, which
schedules the tasks in the hyperperiod based on task priorities,
which depend on the execution time, communication time, and
deadlines [22].

4.2.4 Cost calculation

After partitioning and synthesis, we obtain a pool of
distributed systems of SOCs. The pool contains several clusters,
each of which contains several solutions. The genetic algorithm
calculates the cost of each solution, and prunes those with large
costs, thus evolving from generation to generation and exploring
the multiobjective solution space. In this subsection, we describe
the manner in which the costs are calculated.

In the single-SOC synthesis system, the total area of a single
chip is taken as one objective, and is optimized in the cost
function. In our multi-SOC partitioning and synthesis system,
area is a hard constraint. A distributed architecture is declared
invalid if any partition segment requires an SOC that does not

Figure 6. Cluster allocation encoding

0 1 0 3 0 0 2 0 1

1 0 0 0 2 0 1 0 0

0 1 0 0 0 4 0 3 0

S1:

S2:

S3:

m = 3
n = 9

1 2 3 4 5 6 7 8 9 Core type:

Figure 7. Cluster crossover

1 2 3 4 5 6 7 8 9 Core type:

0 1 0 3 0 0 2 0 1 S1 of cluster a:
swap

S2 of cluster b:

S1 of cluster a:

S2 of cluster b:

1 0 0 0 2 0 1 0 0

1 0 0 0 0 0 2 0 1

0 1 0 3 2 0 1 0 0

Figure 8. The mapping relationship between
allocation, assignment, and partitioning

SOCs Cores Tasks

Allocation Assignment

Partitioning

meet the area constraint. The area of an SOC is given by the
total rectangular area required for its block placement, which is
obtained in the inner-loop floorplanner. Compared to other
functional partitioning algorithms, which put much effort into
estimating the area of each partitioned segment from a separate
area estimator, or some incomplete lower-level synthesis, our
homogeneous partitioning/synthesis approach directly provides
an area estimation from the synthesizer to the partitioner.

The real-time constraint is also a hard constraint, which
means that the distributed system of SOCs is invalid if there is
any deadline violation. The global scheduler helps determine if
any violation occurs. However, we allow solutions with minor
area and real-time constraint violations to continue to exist in the
pool. We have found that such solutions frequently give rise to
high-quality valid solutions in later generations.

The energy consumption of the distributed architecture is the
sum of the energy consumed by all the tasks executed on all the
cores in the different SOCs in the hyperperiod, the energy
consumed in the global clock distribution and communication
networks (either on an individual SOC or the inter-SOC bus),
and the idle energy. The power consumption of the distributed
architecture is calculated by dividing the above energy
consumption by the hyperperiod as follows:

where Ti and Cj refer to tasks and cores, respectively. Details of
clock network and wire delay/energy estimation are given in
[22]. For the inter-SOC global bus, the transmission time is the
product of the number of packets and the average packet
transmission time. The energy consumed by it is the product of
its specified average power consumption and the transmission
time. The idle energy consumption of the bus is also taken into
account. The overall system price of a solution is the sum of the
prices of all the cores on all the SOCs, the inter-SOC bus price,
and the area-dependent price of the SOCs.

4.2.5 Pareto-ranking of solutions and Boltzmann trials

All the solutions in the pool are ranked based on the above
cost evaluation. Since the co-synthesis problem is that of multi-
objective optimization, there are more than one cost involved.
Improving one cost often results in the degradation of another.
Most past co-synthesis systems collapse all costs into one
variable by using an array of linear weights. However, it is
difficult to select the weight array appropriately without
exploring the Pareto-optimal set of solutions, which are
solutions that can only be improved in one area by being
degraded in another. Instead, we resort to Pareto-ranking to rank
the solutions, as exp lained next.

A solution dominates another if all of its features are better.
A solution’s Pareto-rank is the number of other solutions, in the

solution pool, which do not dominate it. In Figure 9, each circle
represents a solution with its power consumption and price
projected onto two axes. The number inside the circle denotes its
Pareto-rank. At the end of the multiobjective genetic algorithm’s
run, a number of non-dominated solutions are presented, as
shown by the shaded circles in Figure 10. Although these non-
dominated solutions are not guaranteed to be Pareto-optimal,
they provide an upper bound on the Pareto-optimal set.
Solutions are selected for reproduction by conducting
Boltzmann trials between randomly selected pairs. Given a
global temperature T, a solution with rank J beats solution with

rank K with probability)1/(1 /)(TJKe −+ . Lower the
temperature, greedier the algorithm.

5 Experimental Results

In this section, we present experimental results
demonstrating the effectiveness of the integrated functional
partitioning and system synthesis framework. We have
implemented the framework in C++ and obtained the results on
a 550 MHz Pentium Pro III with 256 MB of memory running
under Linux. Since previous approaches do not solve the
problem solved in this paper, there is not a body of examples
that our framework’s performance can be compared with.
However, we have exercised the functionality of the framework
with both a real-life example and several sets of large
randomized task graphs to show that it can produce good-quality
solutions quickly.

5.1 Signal processing case study

To investigate the practicality of our functional partitioning
scheme, we ran our algorithm on a set of large task graphs
drawn from a real digital signal processing system (DSP) [25].
The task graph structure is shown in Figure 11. It processes
sonar data with five independent threads, each driven by its own
sensors. There are 120 tasks in five task graphs. The first three
task graphs are identical, with 25 tasks each; the fourth consists
of tasks 76-111, and 120; and the fifth, of tasks 112-119. The
tasks are classified into 20 distinct types according to their

dhyperperio

EnergyEnergyEnergyEnergyEnergy

Power ji
idlecommonchipcommoffchipclockCT ji

∑ ++++
= ,

__,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

18

19

20

21

22

23

24

25 17

16

15

120

76

77

78

79

88

89

80

81

82

83

91

84

85

86

87

90

94

93

92

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Figure 11. Structure of the DSP system

Figure 10. Multiobjective optimization
Price

Po
w

er

 Solution

 Pareto-optimal set

Price

Po
w

er

3

2

1

Figure 9. Pareto ranking

3

functions. For example, task 3 is an FIR filter, task 4 is an FFT
function, task 5 is a Hanning Window, etc. There are 20 distinct
types of communication edges as well, each of which transfers a
different amount of data. The number of bytes transferred on
these edges ranges from 1 to 32K. The periods of all task graphs
and deadlines of the sink tasks are set to 3 seconds. In the
resource library, we provide 10 different types of cores; each
core has different attributes. Task-dependent parameters, such as
a validity bit showing whether the task type can run on the given
core type, the maximum execution time and average power
consumption of each task on each valid core, etc., are also given.
The communication link between different SOCs is a bus, with a
packet size of 238 bits, communication speed of 40 Mbytes/s
[27], and average power consumption of 0.33 W. Although off-
chip communication is expensive both in time and power, this
problem is alleviated by the heuristic employed in our algorithm
which reduces inter-SOC communication.

Cores on

SOC1
Cores on

SOC2
Cores on

SOC3

System
price
($)

Power
dissipation

(mW)

Sol 1 2 Core1, 1 Core8,
1 Core10

1 Core7,
1 Core10 1 Core3 878 443.3

Sol 2 2 Core1, 1 Core3,
1 Core8, 1 Core10

1 Core7,
1 Core10 1 Core3 1050 437.8

Sol 3
2 Core2, 1 Core4,
1 Core6, 1 Core7,

2 Core10

1 Core3,
1 Core7 2 Core6 1297 421.9

We specify the maximum number of SOCs to be three, and
the area constraint of each SOC to be 360 mm2. Our framework
yields three non-dominated solutions, as shown in Table 1. Price
and power are optimized under hard real-time constraints and
SOC area constraint. As one can see, among the different
solutions, as the system price goes up, the power dissipation
decreases, indicating a trade-off between the two. A system
designer can choose one of these three solutions.

5.2 Results on randomized task graphs

We also used our framework to synthesize various
randomized task graphs. The set of task graphs for each example
was generated using TGFF [26], which is a randomized task
graph and core generator that has been used by many
researchers. TGFF generates the task graphs from a template by
varying the seed for the random number generator per template.
The parameters that need to be defined include the number of
task graphs, average period and deadline, types and attributes of
cores, whether a task type can be run on a given core type, etc.
There are some SOC-specific features in the template, related to
wire bit-width, floorplanning, inter-chip link, etc. For our
experiments, we targeted large multi-rate task graphs. Each
example contains ten task graphs with an average of 15 tasks
and a variability of 12 tasks per task graph. The average task
transition time task_trans_time, which includes communication
and computation time, is set and the deadline of each sink task is
equal to (depth+1)⋅task_trans_time, where depth is the number
of tasks from the root of the task graph to the sink task. There
are 15 core types, which have an average price of 100 USD with
a variability of 80 USD. Each core has an average width and
height of 6 mm and a variability of 3 mm, and a maximum
frequency of 50 MHz with a variability of 25 MHz. There are 15
communication edge types, which require an average of 809.6

KB with a variability of 600 KB of data to be transferred
between tasks. Tasks require an average of 16,000 cycles to
execute with a variability of 15,000 cycles. Tasks dissipate an
average energy of 4 nJ per cycle with a variability of 3.5 nJ per
cycle. We use an SOC area constraint of 70 mm2. The
communication link is the same as the one in Section 5.1. Table
2 shows the results. The first column depicts the seed number.
The second column shows the system price of various non-
dominated solutions obtained. The third column gives the
system power dissipation, and the last column shows the CPU
time. For examples 1, 9 and 12, no valid solutions were found.
Note that a valid solution is not guaranteed to exist for all TGFF
task graphs.

Example System
price ($)

Power
dissipation (mW)

CPU time
(min)

533 684.3 2
 538 544.9

68.4

332 343.3 21.9 3
 399 323.9

413 610.2 41.4
545 251.3

4

 621 235.2

5 418 123.9 33.3
6 894 1513.1 126.1
7 307 345.3 20.7
8 459 797.1 50.4
10 659 193.9 19.3
11 456 98.0 66.9
13 463 91.7 39.8
14 493 385.1 54.0

395 977.3
422 906.1

460 791.9
560 446.9
569 413.5

15

638 377.9

34.2

Table 2. Experimental results for randomized task graphs

Table 1. Experimental results for DSP example

350 400 450 500 550 600 650
200

300

400

500

600

700

800

900

1000

1100

Po
w

er
 (m

W
)

Price ($) Figure 12. Solutions for Example 15

In Figure 12, we plot the price and power consumption of
the six solutions for Example 15. The trade-off between power
and price can be clearly seen.

6 Conclusions

In this paper, we presented an efficient method for functional
partitioning integrated with a system synthesis algorithm for
core-based, multi-chip, low-power, real-time, multi-rate,
heterogeneous embedded systems. Under area and real-time
constraints, the algorithm explores the design space efficiently
and provides a set of non-dominated solutions to the designer
which trade system price for power dissipation.

Our integrated framework shows that the homogeneous
partitioning model is a viable one for obtaining low power
distributed systems of SOCs. Experimental results indicate that
high-quality solutions can be obtained in reasonable run-times.

References
[1] S. Govindarajan, V. Srinivasan, P. Lakshmikanthan, and

R. Vemuri, “A technique for dynamic high-level
exploration during behavioral partitioning for multi-
device architectures,” in Proc. Int. Conf. VLSI Design,
pp. 212-219, Jan. 2000.

[2] F. Vahid, T. Le, and Y. Hsu, “Functional partitioning
improvement over structure partitioning for packaging
constraints and synthesis: Tool performance,” ACM
Trans. Design Automation Electronic Systems, vol. 3, no.
2, pp. 181-208, Apr. 1998.

[3] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong,
Specification and Design of Embedded Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1994.

[4] M. C. McFarland, “Computer-aided partitioning of
behavioral hardware descriptions,” in Proc. Design
Automation Conf., pp. 472-478, June 1983.

[5] E. D. Lagnese and D. E. Thomas, “Architectural
partitioning for system level synthesis of integrated
circuits,” IEEE Trans. Computer-Aided Design, vol. 10,
no. 7, pp. 847-860, July 1991.

[6] R. Gupta and G. De Micheli, “Partitioning of functional
models of synchronous digital system,” in Proc. Int.
Conf. Computer-Aided Design, pp. 216-219, Nov. 1990.

[7] F. Vahid and D. D. Gajski, “Specification partitioning
for system design,” in Proc. Design Automation Conf.,
pp. 219-224, June 1992.

[8] K. Kucukcakar and A. C. Parker, “CHOP: A constraint-
driven system-level partitioner,” in Proc. Design
Automation Conf., pp. 514-519, June 1991.

[9] V. Srinivasan, S. Radhakrishnan, and R. Vemuri,
“Hardware software partitioning with integrated
hardware design space exploration,” in Proc. Design
Automation & Test in Europe Conf., pp. 23-26, Feb.
1998.

[10] Y. Chen, Y. Hsu, and C. King, “MULTIPAR:
Behavioral partition for synthesizing multiprocessor
architectures,” IEEE Trans. VLSI Systems, vol. 2, no. 1,
pp. 21-32, Mar. 1994.

[11] A. A. Duncan, D. C. Hendry, and P. Gray, “An overview
of the COBRA-ABS high-level synthesis system for
multi-FPGA systems,” in Proc. FPGAs for Custom
Computing Machines, pp. 106-115, Apr. 1998.

[12] M. R. Garey and D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman and Company, NY, 1979.

[13] S. Prakash and A. C. Parker, “SOS: Synthesis of
application-specific heterogeneous multiprocessor
systems,” Parallel & Distributed Computing, pp. 338-
351, 1992.

[14] B. P. Dave, G. Lakshminarayana, and N. K. Jha,
“COSYN: Hardware-software co-synthesis of
heterogeneous distributed embedded systems,” IEEE
Trans. VLSI Systems, vol. 7, no. 1, pp. 92-104, Mar.
1999.

[15] T. Y. Yen, Hardware-Software Co-Synthesis of
Distributed Embedded Systems, PhD thesis, Dept. of
Electrical Eng., Princeton University, June 1996.

[16] D. Saha, R. S. Mitra, and A. Basu, “Hardware software
partitioning using genetic algorithm,” in Proc. Int. Conf.
VLSI design, pp. 155-160, Jan. 1997.

[17] E. L. Lawler and C. U. Martel, “Scheduling periodically
occurring tasks on multiple processors,” Information
Processing Letters, vol. 7, pp. 9-12, Feb. 1981.

[18] S. Malik, M. Martonosi, and Y.-T. Li, “Static timing
analysis of embedded software,” in Proc. Design
Automation Conf., pp. 147-152, June 1997.

[19] K. S. Khouri, G. Lakshminarayana, and N. K. Jha,
“High-level synthesis of low power control-flow
intensive circuits,” IEEE Trans. Computer-Aided
Design, vol. 18, no. 12, pp. 1715-1729, Dec. 1999.

[20] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of
embedded software: A first step toward software power
optimization,” IEEE Trans. VLSI Systems, vol. 2, no. 4,
pp. 437-445, Apr. 1994.

[21] S. Gupta and F. Najm, “Power modeling for high-level
power estimation,” IEEE Trans. VLSI Systems, vol. 8,
no. 1, pp. 18-29, Feb. 2000.

[22] R. P. Dick and N. K. Jha, “MOCSYN: Multiobjective
core-based single-chip system synthesis,” in Proc.
Design Automation & Test in Europe Conf., pp. 263-270,
Mar. 1999.

[23] S. Govindarajan and R. Vemuri, “Tightly integrated
design space exploration with spatial and temporal
partitioning in SPARCS,” in Proc. Int. Conf. Field-
Programmable Logic & Applications, Aug. 2000.

[24] T. N. Bui and B. R. Moon, “Genetic algorithm and graph
partitioning,” IEEE Trans. Computers, vol. 45, no. 7, pp.
841-855, July 1996.

[25] C. M. Woodside and G. G. Monforton, “Fast allocation
of processes in distributed and parallel systems,” IEEE
Trans. Parallel & Distr. Syst., vol. 4, no. 2, pp. 164-174,
Feb. 1993.

[26] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: Task
graphs for free,” in Proc. Int. Workshop
Hardware/Software Codesign, pp. 97-101, Mar. 1998.

[27] VIC068A: VMEbus Interface Controller,
http://www.cypress.com/cypress/prodgate/busi/vic068a.h
tml.

