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Abstract

In this paper, we present a functional partitioning method for 
low power real-time distributed embedded systems whose 
constituent nodes are systems-on-a-chip (SOCs). The system-
level specification is assumed to be given as a set of task graphs. 
The goal is to partition the task graphs so that each partitioned 
segment is implemented as an SOC and the embedded system is 
realized as a distributed system of SOCs. Unlike most previous 
synthesis and partitioning tools, this technique merges 
partitioning and system synthesis (allocation, assignment, and 
scheduling) into one integrated process; both are implemented 
within a genetic algorithm. Genetic algorithms can escape local 
minima and explore the partitioning and synthesis design space 
efficiently. Through integration with an existing SOC synthesis 
tool, the proposed partitioning technique satisfies both the hard 
real-time constraints and the SOC area constraint of each 
partitioned segment. Under these constraints, our tool performs 
multi-objective optimization.  Thus, with a single run of the tool, 
it produces multiple distributed SOC-based embedded system 
architectures that trade off the overall distributed system price 
and power consumption. Experimental results show the efficacy 
of our technique.  
 
1 Introduction 

 The ever-shrinking geometries of integrated circuits have 
made it possible to implement an entire embedded system on an 
SOC. However, the functionality being implemented by 
embedded systems is also rapidly increasing. This frequently 
necessitates realizing the functionality with a number of SOCs, 
which involves functional partitioning of a system specification 
and synthesis of each partition segment on a separate chip. In 
single-chip synthesis, the tool may possibly optimize price, area, 
and power consumption under real-time constraints. However, 
for the synthesis of a distributed system of SOCs, area is also a 
constraint in order to obtain satisfactory yields. Thus, after 
partitioning, each segment needs to be synthesized with an SOC 
that satisfies the area constraint. In addition, the real-time 
constraints are not local to a single SOC. They apply to the 
whole distributed system of SOCs. Thus, synthesizing and 
scheduling the communication architecture among SOCs 
becomes necessary to make sure that the real-time constraints 
are met. This makes the problem much more complex.  
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Design automation involving synthesis and partitioning can 
be broadly classified into vertical and integrated design flows 
[1]. In the vertical design flow, as shown in Figure 1(a), 
functional partitioning and structural partitioning are two 
possible approaches. In functional partitioning, partitioning is 
done first, followed by synthesis of each partition segment. In 
structural partitioning, synthesis is done first, followed by the 
partitioning of the resultant structure. A detailed comparison of 
these approaches, showing advantages of functional partitioning, 
is given in [2]. Our approach uses functional partitioning.  

The integrated design flow can be classified into three 
approaches [1]: traditional heterogeneous model, strongly 
integrated heterogeneous model, and the homogeneous model. 
For the traditional heterogeneous model, since the partitioner 
has no a priori knowledge about design parameters such as the 
actual area and schedule, the focus of research is to provide 

Figure 1. Synthesis and partitioning design flows 

(a)

Vertical design flow 

Specification  Specification 

Next-level 
design 

Functional 
partitioning 

System level 
synthesis 

Partitioning-based 
exploration and 

estimation 

System-level design + Target 
architecture 

Synthesis 

Structural 
partitioning

Next-level design

Partition 
estimates 

Current 
configuration 

Strongly integrated design flow 

(b)

Next-level design 

Functional 
partitioning 

Synthesis 



 

good design estimates while not performing complete synthesis. 
Previous work has employed various methods to provide design 
estimates at different levels of the integrated circuit design 
hierarchy [4]-[8].  

The strongly integrated heterogeneous model has been 
presented in [1], [9]. As shown in Figure 1(b), in this model, 
both the partitioning and synthesis exploration engines maintain 
an identical view of the partitioned behavior. During 
partitioning, the design space exploration technique performs a 
global search in a four-dimensional design space, and the 
partitioner always communicates any changes in the partitioned 
configuration to the synthesis engines [1]. There is an 
exploration control interface between the partitioner and 
synthesizer. 

In a homogeneous model, partitioning and synthesis 
(allocation, assignment, and scheduling) are simultaneously 
explored. MULTIPAR uses an integer linear programming 
formulation to solve the partitioning and scheduling problems 
simultaneously [10]. COBRA-ABS uses a heuristic simulated 
annealing algorithm [11]. However, unification of partitioning 
and synthesis into a homogeneous model leads to a large multi-
dimensional design space. The cost is generally high, either in 
high run-time (COBRA-ABS) or inability to handle large 
problems (MULTIPAR). 

The limitation of the above homogeneous models stems 
from the way partitioning and synthesis are simultaneously 
tackled. In this paper, we propose a homogeneous model, which 
uses an effective search algorithm, a genetic algorithm, at the 
system level. In this model, partitioning is performed 
simultaneously with allocation and assignment. This step yields 
a distributed system of SOCs.  A global schedule is then 
obtained for the distributed system. Our algorithm optimizes 
overall system price and power consumption under real-time and 
SOC area constraints. We do not employ an exploration control 
interface between partitioning and synthesis as in [1]. This leads 
to an efficient and scalable algorithm which produces high-
quality distributed systems of SOCs in relatively small run-
times. 

The rest of the paper is organized as follows. Section 2 
provides background material and describes the system 
synthesis framework on top of which the partitioner is built. 
Section 3 presents the proposed framework for integrated 
functional partitioning and system synthesis. Section 4 presents 
a genetic algorithm for partitioning, as well as synthesis, and 
their integration. Section 5 presents experimental results, and 
Section 6 the conclusions.  

 
2 Problem Definition and System Synthesis 

Framework 
In this section, we define the problem of functional 

partitioning and some terms used in system synthesis, and also 
describe the system synthesis framework. 
 
2.1 The functional partitioning problem  

At the system level, functional partitioning is the process of 
dividing the system-level functional specification into several 
partition segments such that each segment can be synthesized on 
a separate chip. 

Several basic issues need to be addressed in a functional 
partitioning system [3], as shown in Figure 2. The first one deals 
with the specification abstraction level, which can be system 

level, behavior level, register-transfer level, or logic level. Our 
work is at the system level, and the specification is in the form 
of a set of task graphs, which will be described in the next 
subsection. The second issue is the granularity of the functional 
objects into which the input specification is decomposed. For 
certain input abstraction levels, there is only one reasonable 
granularity of decomposition. For example, in our partitioning 
scenario, decomposition is limited to the level of a task, since a 
task is the basic atomic functional block. After decomposition, 
the partitioning algorithm maps the functional objects to system 
components from a resource library. The partitioning result is 
evaluated based on the given constraints and estimation of the 
optimization objectives. Finally, the output of functional 
partitioning can be used as an input to a synthesis tool for 
implementing each of the partitioned segments. There should 
also be a flow of control to specify the sequence of decisions 
made within partitioning and designer interactions, which will 
be discussed in Section 3. 

Formally, the system-level constraint-driven functional 
partitioning problem can be stated as follows: 

Given a set of task graphs G = <V, E>, in which V (vertex) 
represents tasks, E (edge) represents the data dependence 
relationship and data flow between tasks, a functional partitioner 
partitions G into a number of non-overlapping sub-graphs P1, 
P2,…, Pl (l ≤ m, the maximum number of chips allowed) such 
that Ai ≤ AC, 1≤ i ≤ l, Tj ≤ Dlj, 1≤ j ≤ k, where k is the number of 
tasks with a deadline, Ai is the area of each chip, AC is the chip 
area constraint,  Tj is the finish time of task j with a specified 
deadline Dlj; while multiple objectives, such as system price and 
power, are optimized. 

 
2.2 The system synthesis tool 

Hardware-software co-synthesis is a sub-problem of SOC 
synthesis. Given a system specification and resource library (the 
available types of processing elements and communication 
links) as inputs, a co-synthesis algorithm needs to solve the 
following problems: allocation, assignment, scheduling, and 
performance/power evaluation. First, the co-synthesis algorithm 
selects the number and type of hardware and software 
processing elements upon which the tasks will execute 
(allocation). Then the algorithm assigns each task to a 
processing element and each communication edge to a 
communication link (assignment). Finally, schedules are 
produced for both processing elements and communication 
links, such that the real-time constraints for all task graphs are 
met.  

Optimal co-synthesis is a difficult problem, since 
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Figure 2. Basic functional partitioning system 
 



 

allocation/assignment, and scheduling are each NP-complete for 
distributed systems [12]. Hence, optimal co-synthesis based on 
mixed integer linear programming or exhaustive exploration can 
only be applied to problems of small size [13]. There are three 
popular classes of co-synthesis heuristics: constructive, iterative, 
and genetic. A constructive approach builds a system from 
bottom-up, adding components to the system incrementally [14]. 
An iterative approach starts with a feasible solution, either 
randomly produced, or obtained in a deterministic pre-
processing step [15]. It then perturbs the solution and attempts to 
improve its quality iteratively. A genetic algorithm improves a 
set of feasible solutions through reproduction, crossover, and 
mutation [16], [22]. 

We next define various terms that are used in co-synthesis. 
Task graph: A task graph is a system-level description model. 
It is a directed acyclic data-flow graph as shown in Figure 3.  A 
node in a task graph represents a coarse-grained task, e.g., 
discrete cosine transform or FFT. An edge in a task graph is 
associated with communication between two tasks, and its label 
denotes the amount of data that needs to be transmitted along the 
edge. A task with incoming edges can only be executed after it 
receives all the data from its parent tasks. For each sink task, 
there is an associated deadline. Deadlines may also be specified 
for some other tasks.  The period associated with a task graph 
denotes the interval between successive executions of the task 
graph. An embedded system may be specified in terms of a set 
of task graphs, each with a different period. Such a system is 
called multi-rate. Deadlines may be smaller than, equal to or 
greater than the periods. 

Hyperperiod: In a multi-rate system, the least common multiple 
(LCM) of all periods is called the hyperperiod. It is well known 
that a valid system schedule can be obtained by repeatedly 
executing the task graphs in the hyperperiod [17]. 
Resource library: There are many system components 
available to execute the tasks and communication events 
between tasks. A core can execute one or more tasks, and a link 
(point-to-point contact or bus) allows two or more cores or 
SOCs to communicate with each other. A resource library 
includes cores, links and memories that will be used for SOC 
synthesis. Various characteristics are specified for each core, 
such as price, width, height, maximum clock frequency, a 
variable indicating whether or not its communication is 
buffered, and an energy consumption per cycle dedicated to 
communication. For each task run on each valid core in the 
resource library, the worst-case execution time and average 
power consumption are specified. This information can be 

obtained through the techniques such as those provided in [18]-
[21]. 
Our system synthesis framework: We have built our 
functional partitioner on top of the system synthesis framework 
shown in Figure 4 [22]. This framework employs a hierarchical 
genetic algorithm. It has two loops: an outer cluster loop for 
allocation and an inner architecture loop for assignment and 
scheduling. A cluster of architectures contains the same 
allocation, but different task assignments. The clock selection 
step determines the clock frequency for each core, assuming 
asynchronous communication among cores. In the initialization 
step, the algorithm initializes basic data structures. In the outer 
loop, it uses a genetic algorithm to change core allocations. In 
the inner loop, it changes task assignments also using a genetic 
algorithm. A block placement floorplanner ensures that cores 
which have high communication priority are located next to 
each other. A bus structure that trades off potential bus 
contention for ease of routing is produced. Scheduling of tasks 
and edges follows. At this point, it can be verified if the real-
time constraints are met. Finally, inferior solutions are 
eliminated before evolving the set of solutions from one 
generation to another. If there is no improvement for a given 
number of generations, synthesis halts.  

3 The Partitioning and System Synthesis 
Framework 
In our integrated framework, it is hard to separate the 

partitioner from the system synthesizer. An overview of this 
framework is given in Figure 5. We use a homogeneous 
partitioning model. After partitioning, allocation, and 
assignment, we can obtain a global system schedule, and then 
evaluate an array of costs, such as system price, power 
consumption, area constraint violation and real-time constraint 
violation, etc. Hence, we do not need to build a special estimator 
or exploration control interface [23] between the partitioner and 
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synthesizer. We use a genetic algorithm to optimize system price 
and power under SOC area, and real-time constraints. The 
output of our integrated partitioning and synthesis framework is 
distributed systems of SOCs. 

The process of partitioning and synthesis is also a process of 
design space exploration. If we define an SOC implementation 
as a design point, then system synthesis has a three-dimensional 
design space with tasks (edges), cores (buses) and time as the 
three dimensions. Assignment and scheduling correspond to 
projecting this space on to different two-dimensional surfaces. 
In the integrated partitioning and synthesis process, the design 
point is four-dimensional, with another dimension being the 
partitioned segments implemented on different SOCs in the 
distributed system. Although this leads to a more complex 
search problem, by integrating partitioning and synthesis using a 
genetic algorithm as the search and optimization engine, our 
proposed technique can escape local minima and simultaneously 
optimize system power and price efficiently. We discuss this 
algorithm in greater detail in Section 4.2. 

4 A Genetic Algorithm for Partitioning and 
System Synthesis 
In this section, we first describe a basic genetic algorithm, 

and then show how it can be used in our context. 
 

4.1 The genetic algorithm 
There have been some studies using genetic algorithms for 

the graph-partitioning problem [24]. A genetic algorithm starts 
with a set of initial solutions (chromosomes), called the 
population. The population evolves iteratively from generation 
to generation using the following operators: mutation, crossover, 
and selection. At the end, when some stopping criteria are met, 
the algorithm returns the best solutions encountered till then as 
the output.   

Crossover and mutation enable efficient design space 
exploration. In crossover, two members are selected from a 

population and features from them swapped to produce two 
offspring. In mutation, a feature of a member is mutated to some 
other feature with some fixed probability. This allows newer 
parts of the design space to be explored. When the offspring are 
included in the population, the population size increases. The 
selection operator ranks the members and selects the best among 
them to reduce the population size back to the original size. 

Genetic algorithms excel at multi-objective optimization, 
i.e., the simultaneous optimization of multiple costs, such as 
price and power. Our genetic algorithm stops when the number 
of generations without any improvement in solution quality 
exceeds a given threshold. This is a commonly used criterion for 
genetic algorithms. 

 
4.2 A genetic algorithm for joint partitioning and 

synthesis 
In this subsection, we explain the manner in which solutions 

are represented and optimized by a genetic algorithm for the 
integrated partitioning and synthesis framework.  

Our algorithm is an improved algorithm based on simulated 
annealing and genetic algorithm. Hence, it is called an 
evolutionary algorithm. Similar to simulated annealing, a 
geometrically decreasing global temperature is maintained. The 
three genetic algorithm operators are used both for partitioning 
and system synthesis. The overview of the algorithm was shown 
in Figure 5. There are two hierarchical loops embedded in this 
framework (not shown for simplicity). Initially, we generate a 
pool of solutions randomly. The solutions are encoded in strings 
and classified into several clusters, each cluster having the same 
allocation and partitioning, i.e., within a cluster, the instances of 
each core type on each SOC is fixed. However, within a cluster, 
different solutions have different assignments. Partitioning is 
actually executed in two steps. In the first step, it is combined 
with allocation, and in the second step with assignment. Similar 
to the system synthesis framework shown in Figure 4, in the 
outer cluster loop, we use the genetic operators on the allocation 
and partitioning strings, and in the inner loop, we use them on 
the assignment and partitioning strings. Some new solutions are 
generated after these operations. Then after floorplanning, bus 
formation, and global scheduling for each solution, system costs 
are evaluated and the solutions ranked according to their costs. 
Some inferior solutions are pruned from the pool and a new 
generation of solutions emerges. In each pass of the outer loop, 
the inner solution loop executes multiple times. The outer loop 
continues to execute until a number of iterations has been 
carried out without an improvement, at which point, the global 
temperature is lowered, resulting in greedier optimization. When 
a large number of iterations have passed without an 
improvement in the solution quality, the algorithm is halted and 
all the best solutions reported.  

In the following subsections, we present the details of the 
algorithm and framework. 

 
4.2.1 Functional partitioning and allocation  

We use strings to encode the mapping between cores and 
SOCs, and the mapping between tasks and cores. For allocation 
and the first step of partitioning, we use several integer arrays to 
represent each cluster. The number of arrays is equal to the 
maximum number of SOCs allowed, and the length of each 
array is equal to the number of core types. An entry in the array 
denotes the number of instances of the corresponding core type. 
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For example, suppose the maximum number of SOCs allowed is 
three and the number of core types in the resource library is 
nine. Figure 6 shows three arrays, one for each SOC. On SOC1, 
represented by array S1, there is one instance of core type 2, 
three instances of core type 4, and so on. The mapping between 
cores and SOCs represents the first step of partitioning and 
allocation. 

Crossover at the cluster level operates on two randomly 
selected arrays representing two clusters. An associated array of 
length n is generated to indicate which entries of the two arrays 
should be swapped. For example, in Figure 7, the entries for 
core types 1, 2, 3 and 4 are swapped between arrays S1 and S2. 

The mutation operator randomly selects an array and an 
entry in this array, and changes its value, either by adding 1 or 
subtracting 1. This corresponds to the addition or deletion of an 
instance of that core type in the SOC. Another mutation operator 
moves some cores from one SOC to another SOC. This 
operation guides the allocator to place as many cores onto one 
SOC as possible. 

 
4.2.2 Functional partitioning and assignment 

After allocation and the first step of partitioning, the number 
and types of available cores on each SOC are known. The next 
step is to assign the tasks from the task graphs to the cores. 
Thus, partitioning, the mapping between tasks and SOCs, is 
fulfilled by the first two steps, as shown in Figure 8. 

The algorithm selects a valid core for each task (i.e., a core 
which can execute the task). The assignment is encoded in a 
two-dimensional vector task_pe. Assume that the system 
specification has p task graphs, each with qi tasks, 1≤ i ≤ p. Then 

the entry in task_pe[i][j], 1≤ i ≤ p,  1≤ j ≤ qi, is a three-tuple 
index, indicating the core type, core instance and the SOC to 
which the task is assigned. 

The mutation and crossover operators for task assignment 
then operate within one cluster, on solutions containing different 
assignments. For crossover, two solutions and several task 
graphs are selected randomly. For each task in these graphs, the 
task_pe entry is swapped between the two solutions. This 
operation changes not only the assignment of task to cores, but 
also the partitioning of tasks to SOCs. Mutation acts on a 
randomly selected solution, by selecting a task graph and 
changing the assignment of a number of its tasks. Since the 
inter-SOC communication delay is much bigger and the power 
consumption is greater than on-chip communication, task 
assignment mutation is guided by a heuristic designed to 
minimize inter-SOC communication link bandwidth 
requirement. It uses a metric called distance for this purpose. 
When a task is to be reassigned, all its neighbors (other tasks 
with which it communicates) are checked. The distance metric 
indicates the amount of communication data transmitted on the 
inter-SOC link if the task were to be assigned to a core on a 
particular SOC. The distance values are determined for different 
SOCs on which the task can run. This array of distance values is 
used to determine the attractiveness of an SOC to implement the 
task in question, in order to reduce the inter-SOC 
communication. 

The algorithm next runs the floorplanner to place the cores 
on each SOC. This gives an estimate of each SOC area. A bus-
forming algorithm is then used to form the necessary busses on 
each SOC. This balances ease of routing and bus contention 
[22]. 

 
4.2.3 Global scheduling 

Global scheduling refers to scheduling of the distributed 
system of SOCs. In the single-chip synthesis system, there is a 
local scheduler which schedules the task and events on all the 
cores and links (busses) in the chip. In a multi-chip system, 
communications may take place between tasks assigned to cores 
on different SOCs. Thus, a global schedule needs to be obtained, 
based on local SOC scheduling and inter-SOC link scheduling. 

Since the number of SOCs is likely to be small, we assume 
that all the SOCs are connected by a global bus. Since 
scheduling is NP-complete for distributed systems [12], we 
resort to a heuristic list-based scheduling algorithm, which 
schedules the tasks in the hyperperiod based on task priorities, 
which depend on the execution time, communication time, and 
deadlines [22]. 

 
4.2.4 Cost calculation 

After partitioning and synthesis, we obtain a pool of 
distributed systems of SOCs. The pool contains several clusters, 
each of which contains several solutions. The genetic algorithm 
calculates the cost of each solution, and prunes those with large 
costs, thus evolving from generation to generation and exploring 
the multiobjective solution space. In this subsection, we describe 
the manner in which the costs are calculated. 

In the single-SOC synthesis system, the total area of a single 
chip is taken as one objective, and is optimized in the cost 
function. In our multi-SOC partitioning and synthesis system, 
area is a hard constraint. A distributed architecture is declared 
invalid if any partition segment requires an SOC that does not 
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meet the area constraint. The area of an SOC is given by the 
total rectangular area required for its block placement, which is 
obtained in the inner-loop floorplanner. Compared to other 
functional partitioning algorithms, which put much effort into 
estimating the area of each partitioned segment from a separate 
area estimator, or some incomplete lower-level synthesis, our 
homogeneous partitioning/synthesis approach directly provides 
an area estimation from the synthesizer to the partitioner. 

The real-time constraint is also a hard constraint, which 
means that the distributed system of SOCs is invalid if there is 
any deadline violation. The global scheduler helps determine if 
any violation occurs. However, we allow solutions with minor 
area and real-time constraint violations to continue to exist in the 
pool. We have found that such solutions frequently give rise to 
high-quality valid solutions in later generations. 

The energy consumption of the distributed architecture is the 
sum of the energy consumed by all the tasks executed on all the 
cores in the different SOCs in the hyperperiod, the energy 
consumed in the global clock distribution and communication 
networks (either on an individual SOC or the inter-SOC bus), 
and the idle energy. The power consumption of the distributed 
architecture is calculated by dividing the above energy 
consumption by the hyperperiod as follows:  

where Ti and Cj refer to tasks and cores, respectively. Details of 
clock network and wire delay/energy estimation are given in 
[22]. For the inter-SOC global bus, the transmission time is the 
product of the number of packets and the average packet 
transmission time. The energy consumed by it is the product of 
its specified average power consumption and the transmission 
time. The idle energy consumption of the bus is also taken into 
account. The overall system price of a solution is the sum of the 
prices of all the cores on all the SOCs, the inter-SOC bus price, 
and the area-dependent price of the SOCs. 

 
4.2.5 Pareto-ranking of solutions and Boltzmann trials 

All the solutions in the pool are ranked based on the above 
cost evaluation. Since the co-synthesis problem is that of multi-
objective optimization, there are more than one cost involved. 
Improving one cost often results in the degradation of another. 
Most past co-synthesis systems collapse all costs into one 
variable by using an array of linear weights. However, it is 
difficult to select the weight array appropriately without 
exploring the Pareto-optimal set of solutions, which are 
solutions that can only be improved in one area by being 
degraded in another. Instead, we resort to Pareto-ranking to rank 
the solutions, as exp lained next. 

A solution dominates another if all of its features are better. 
A solution’s Pareto-rank is the number of other solutions, in the 

solution pool, which do not dominate it. In Figure 9, each circle 
represents a solution with its power consumption and price 
projected onto two axes. The number inside the circle denotes its 
Pareto-rank. At the end of the multiobjective genetic algorithm’s 
run, a number of non-dominated solutions are presented, as 
shown by the shaded circles in Figure 10. Although these non-
dominated solutions are not guaranteed to be Pareto-optimal, 
they provide an upper bound on the Pareto-optimal set. 
Solutions are selected for reproduction by conducting 
Boltzmann trials between randomly selected pairs. Given a 
global temperature T, a solution with rank J beats solution with 

rank K with probability )1/(1 /)( TJKe −+ .  Lower the 
temperature, greedier the algorithm.  
 
5 Experimental Results  

In this section, we present experimental results 
demonstrating the effectiveness of the integrated functional 
partitioning and system synthesis framework. We have 
implemented the framework in C++ and obtained the results on 
a 550 MHz Pentium Pro III with 256 MB of memory running 
under Linux. Since previous approaches do not solve the 
problem solved in this paper, there is not a body of examples 
that our framework’s performance can be compared with. 
However, we have exercised the functionality of the framework 
with both a real-life example and several sets of large 
randomized task graphs to show that it can produce good-quality 
solutions quickly.  

 
5.1 Signal processing case study 

To investigate the practicality of our functional partitioning 
scheme, we ran our algorithm on a set of large task graphs 
drawn from a real digital signal processing system (DSP) [25]. 
The task graph structure is shown in Figure 11. It processes 
sonar data with five independent threads, each driven by its own 
sensors. There are 120 tasks in five task graphs. The first three 
task graphs are identical, with 25 tasks each; the fourth consists 
of tasks 76-111, and 120; and the fifth, of tasks 112-119.  The 
tasks are classified into 20 distinct types according to their 
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functions. For example, task 3 is an FIR filter, task 4 is an FFT 
function, task 5 is a Hanning Window, etc. There are 20 distinct 
types of communication edges as well, each of which transfers a 
different amount of data. The number of bytes transferred on 
these edges ranges from 1 to 32K. The periods of all task graphs 
and deadlines of the sink tasks are set to 3 seconds. In the 
resource library, we provide 10 different types of cores; each 
core has different attributes. Task-dependent parameters, such as 
a validity bit showing whether the task type can run on the given 
core type, the maximum execution time and average power 
consumption of each task on each valid core, etc., are also given. 
The communication link between different SOCs is a bus, with a 
packet size of 238 bits, communication speed of 40 Mbytes/s 
[27], and average power consumption of 0.33 W. Although off-
chip communication is expensive both in time and power, this 
problem is alleviated by the heuristic employed in our algorithm 
which reduces inter-SOC communication. 

 

 
Cores on 

SOC1 
Cores on 

SOC2 
Cores on 

SOC3 

System 
price 
($) 

Power 
dissipation 

(mW) 

Sol 1 2 Core1, 1 Core8, 
1 Core10 

1 Core7,  
1 Core10 1 Core3 878 443.3 

Sol 2 2 Core1, 1 Core3, 
1 Core8, 1 Core10

1 Core7,  
1 Core10 1 Core3 1050 437.8 

Sol 3 
2 Core2, 1 Core4, 
1 Core6, 1 Core7, 

2 Core10 

1 Core3,  
1 Core7 2 Core6 1297 421.9 

We specify the maximum number of SOCs to be three, and 
the area constraint of each SOC to be 360 mm2. Our framework 
yields three non-dominated solutions, as shown in Table 1. Price 
and power are optimized under hard real-time constraints and 
SOC area constraint. As one can see, among the different 
solutions, as the system price goes up, the power dissipation 
decreases, indicating a trade-off between the two. A system 
designer can choose one of these three solutions. 

 
5.2 Results on randomized task graphs 

We also used our framework to synthesize various 
randomized task graphs. The set of task graphs for each example 
was generated using TGFF [26], which is a randomized task 
graph and core generator that has been used by many 
researchers.  TGFF generates the task graphs from a template by 
varying the seed for the random number generator per template. 
The parameters that need to be defined include the number of 
task graphs, average period and deadline, types and attributes of 
cores, whether a task type can be run on a given core type, etc. 
There are some SOC-specific features in the template, related to 
wire bit-width, floorplanning, inter-chip link, etc. For our 
experiments, we targeted large multi-rate task graphs. Each 
example contains ten task graphs with an average of 15 tasks 
and a variability of 12 tasks per task graph. The average task 
transition time task_trans_time, which includes communication 
and computation time, is set and the deadline of each sink task is 
equal to (depth+1)⋅task_trans_time, where depth is the number 
of tasks from the root of the task graph to the sink task. There 
are 15 core types, which have an average price of 100 USD with 
a variability of 80 USD. Each core has an average width and 
height of 6 mm and a variability of 3 mm, and a maximum 
frequency of 50 MHz with a variability of 25 MHz. There are 15 
communication edge types, which require an average of 809.6 

KB with a variability of 600 KB of data to be transferred 
between tasks. Tasks require an average of 16,000 cycles to 
execute with a variability of 15,000 cycles.  Tasks dissipate an 
average energy of 4 nJ per cycle with a variability of 3.5 nJ per 
cycle. We use an SOC area constraint of 70 mm2. The 
communication link is the same as the one in Section 5.1.  Table 
2 shows the results. The first column depicts the seed number. 
The second column shows the system price of various non-
dominated solutions obtained. The third column gives the 
system power dissipation, and the last column shows the CPU 
time. For examples 1, 9 and 12, no valid solutions were found. 
Note that a valid solution is not guaranteed to exist for all TGFF 
task graphs. 

 

Example System 
price ($) 

Power 
dissipation (mW)

CPU time 
(min) 

533 684.3 2 
 538 544.9 

68.4 
 

332 343.3 21.9 3 
 399 323.9  

413 610.2 41.4 
545 251.3  

4 
 
 621 235.2  

5 418 123.9 33.3 
6 894 1513.1 126.1 
7 307 345.3 20.7 
8 459 797.1 50.4 
10 659 193.9 19.3 
11 456 98.0 66.9 
13 463 91.7 39.8 
14 493 385.1 54.0 

395 977.3 
422 906.1 

460 791.9 
560 446.9 
569 413.5 

15 
 
 
 
 
 

638 377.9 

34.2 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Experimental results for randomized task graphs 

Table 1. Experimental results for DSP example 
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In Figure 12, we plot the price and power consumption of 
the six solutions for Example 15. The trade-off between power 
and price can be clearly seen.  

 
6    Conclusions  

In this paper, we presented an efficient method for functional 
partitioning integrated with a system synthesis algorithm for 
core-based, multi-chip, low-power, real-time, multi-rate, 
heterogeneous embedded systems.  Under area and real-time 
constraints, the algorithm explores the design space efficiently 
and provides a set of non-dominated solutions to the designer 
which trade system price for power dissipation.  

Our integrated framework shows that the homogeneous 
partitioning model is a viable one for obtaining low power 
distributed systems of SOCs. Experimental results indicate that 
high-quality solutions can be obtained in reasonable run-times.  
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