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FUNCTIONAL POISSON APPROXIMATION IN
KANTOROVICH–RUBINSTEIN DISTANCE WITH APPLICATIONS

TO U-STATISTICS AND STOCHASTIC GEOMETRY

BY LAURENT DECREUSEFOND1,
MATTHIAS SCHULTE2 AND CHRISTOPH THÄLE3

Telecom ParisTech, Karlsruhe Institute of Technology
and Ruhr University Bochum

A Poisson or a binomial process on an abstract state space and a sym-
metric function f acting on k-tuples of its points are considered. They induce
a point process on the target space of f . The main result is a functional limit
theorem which provides an upper bound for an optimal transportation dis-
tance between the image process and a Poisson process on the target space.
The technical background are a version of Stein’s method for Poisson process
approximation, a Glauber dynamics representation for the Poisson process
and the Malliavin formalism. As applications of the main result, error bounds
for approximations of U-statistics by Poisson, compound Poisson and sta-
ble random variables are derived, and examples from stochastic geometry are
investigated.

1. Introduction. The arguably most prominent functional limit theorem is
Donsker’s invariance principle. It asserts that the distribution of a linear interpo-
lation between the points of a suitably re-scaled random walk converges to the
Wiener measure on the space of continuous functions on R+, the nonnegative
real half-line; see, for example, [24], Corollary 16.7. Besides the Wiener process,
there is another fundamental stochastic process, which plays an important role in
many branches of probability theory and its applications, namely the Poisson pro-
cess. However, functional limit theorems involving the Poisson process have found
much less attention in the literature. The aim of this paper is to provide a quantita-
tive version of a functional limit theorem for Poisson processes and to derive from
it error bounds for the probabilistic approximation of U-statistics by a Poisson, a
compound Poisson or a stable random variable. We demonstrate the versatility of
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our results by applying these bounds to functionals of random geometric graphs,
distance-power statistics, nonintersecting flat processes and random polytopes.

Let us informally describe the set-up of this paper; precise definitions and state-
ments follow in Section 3. Let (X,X ) and (Y,Y) be two measurable spaces
(satisfying some mild regularity assumptions, see below), let K1 be a proba-
bility measure on X and fix an integer k ≥ 1. Moreover, for each n ∈ N let
fn : domfn → Y be a symmetric mapping whose domain domfn is a symmetric
subset of Xk . Next, consider a collection βn = {X1, . . . ,Xn} of n ≥ k i.i.d. random
elements X1, . . . ,Xn of X with distribution K1. We apply for each n ≥ k, fn to
every k-tuple of distinct elements of βn. This induces a point process ξn on Y of
the form

ξn = 1

k!
∑

(x1,...,xk)∈βk
n,�=∩domfn

δfn(x1,...,xk),

where βk
n,�= = {(x1, . . . , xk) ∈ βk

n :xj �= xj , i �= j, i, j = 1, . . . , k} and δy stands for
the unit mass Dirac measure concentrated at y ∈ Y.

The motivation for studying the point processes ξn as defined above comes from
the theory of U-statistics and from a class of extreme value problems arising in
stochastic geometry. At first, if domfn = Xk and Y = R, the points of ξn can be
regarded as the summands of the U-statistic

Sn = 1

k!
∑

(x1,...,xk)∈βk
n,�=

fn(x1, . . . , xk).

These objects play a prominent role in large parts of probability theory and math-
ematical statistics, and an analysis of the point process of summands is helpful for
the understanding of their (asymptotic) properties. On the other hand, in several
problems arising in stochastic geometry, one is interested in extreme values of the
type

min
(x1,...,xk)∈βk

n,�=
fn(x1, . . . , xk)

in case that domfn = Xk and Y = [0,∞). Clearly, this minimum is the distance
from the origin to the first point of the point process ξn. For these reasons, a study
of the point processes ξn unifies both mentioned problems.

The intensity measure Ln of ξn is given by

Ln(A) = Eξn(A) = (n)k

k!
∫

domfn

1
(
fn(x1, . . . , xk) ∈ A

)
Kk

1
(
d(x1, . . . , xk)

)
,

A ∈ Y,

where (n)k is the descending factorial. Our main result, Theorem 3.1 below, pro-
vides an upper bound for the Kantorovich–Rubinstein distance dKR(ξn, ζ ) be-
tween ξn and a Poisson process ζ on Y with finite intensity measure M. Here, the
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Kantorovich–Rubinstein distance is a variant of an optimal transportation distance,
which measures the closeness between two point processes or, more precisely, their
distributions. In particular, we show that ξn converges in Kantorovich–Rubinstein
distance, and thus in distribution to ζ if

dTV(Ln,M) → 0 and Eξn(Y)2 → M(Y)2 + M(Y) as n → ∞,

where dTV(·, ·) denotes the total variation distance of measures on Y. More pre-
cisely, the upper bound for the Kantorovich–Rubinstein distance only depends on
dTV(Ln,M) and the first two moments of ξn(Y). This is a functional version of
the famous results by Arratia, Goldstein and Gordon [1], and Chen [14] that “two
moments suffice for Poisson approximation.”

Besides the binomial process βn of n independent and identically distributed
points, we also allow the input process to be a Poisson process on X with a σ -finite
intensity measure. In some instances, an underlying Poisson process is more natu-
ral and sometimes even unavoidable, especially if the underlying point process on
X is supposed to have infinitely many points. To exploit this flexibility, we consider
both set-ups in parallel.

Poisson process approximation has been studied by several authors by means of
Stein’s method, but to the best of our knowledge this is the first paper where the
Kantorovich–Rubinstein distance is investigated. The works of Barbour [2], Bar-
bour and Brown [4] and the last chapter of the monograph [8] of Barbour, Holst
and Janson concern Poisson process approximation in the total variation distance.
But since the total variation distance is not suitable for all problems and since the
so-called Stein magic factors do not get small if Ln(Y) is large (in contrast to clas-
sical Poisson approximation), one often uses weaker notions of distance. Starting
with the work of Barbour and Brown [4] and Barbour, Holst and Janson [8], this
has been done by Brown, Chen, Schuhmacher, Weinberg and Xia [11–13, 15, 39,
40, 42]. Our work goes in the opposite direction since the Kantorovich–Rubinstein
distance between point processes is stronger than the total variation distance in the
sense that convergence in Kantorovich–Rubinstein distance implies convergence
in total variation distance, but not vice versa. Roughly speaking and in a trans-
ferred sense, the Kantorovich–Rubinstein distance is related to the total variation
distance between point processes as the Wasserstein distance is related to the to-
tal variation distance for integer-valued random variables. Since its test functions
are allowed to take values other than zero and one, the Kantorovich–Rubinstein
distance is more sensitive to the behavior and the geometry of the compared point
processes than the total variation distance. Let us further remark that in the recent
paper [41], Schuhmacher and Stucki consider the total variation distance between
two Gibbs processes. This includes Poisson process approximation as a special
case. However, the approximated point processes of the present paper do not, in
general, satisfy the technical conditions assumed in [41] since they are not neces-
sarily hereditary.
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Besides the notion of distance and its connection to the theory of optimal trans-
portation, the other main ingredient of our approach is a functional version of
Stein’s method for Poisson process approximation. It relies on a Glauber dynamics
representation for Poisson processes and the Malliavin formalism. More precisely,
we use an integration-by-parts argument on the target space and then a commu-
tation relation between the discrete gradient on that space and the semi-group as-
sociated with the Glauber dynamics. This way we avoid the explicit computation
and investigation of a solution of the Stein equation. We would like to highlight
that our approach is generic and depends only on the underlying random structure
(here, a binomial or a Poisson process) and not on a very specific model so that
extensions to other probabilistic frameworks (such as Gaussian random measures
or Rademacher sequences) should also be possible. However, they are beyond the
scope of this paper and will be treated elsewhere.

To demonstrate the versatility of our new functional limit theorem, we consider
probabilistic approximations of U-statistics over binomial or Poisson input pro-
cesses. In a first regime, we consider the Poisson approximation of U-statistics
and provide an error bound for the Wasserstein distance. Our result improves and
extends earlier works of Barbour and Eagleson [7] and Peccati [32]. The second
regime concerns compound Poisson approximation of U-statistics in total variation
distance. Here, we do not impose any conditions on the nature of the compound
Poisson distribution, which is allowed to be discrete or continuous. In contrast,
previous results for the compound Poisson approximation via Stein’s method only
deal with the discrete case; see, for example, the work of Barbour, Chen and Loh
[5], the survey [6] of Barbour and Chryssaphinou and especially the paper [21] of
Eichelsbacher and Roos, who consider U-statistics over a binomial input process.
In this light, we generalize the results of [21] to a larger class of limiting distri-
butions and also to the case of an underlying Poisson process. In a third regime,
we use our functional limit theorem to investigate probabilistic approximations of
U-statistics by α-stable random variables with 0 < α < 1 and to derive explicit
error bounds for the Kolmogorov distance. In their previous work [17], Dabrowski
et al. also obtained α-stable limits for U-statistics from point process convergence
results. However, their technique does not allow any conclusion about a rate of
convergence.

Finally, we apply our general result to problems arising in stochastic geometry.
Random geometric graphs are one of the fundamental models of spatial stochas-
tics; see [34], for example. We derive limit theorems for several U-statistics of ran-
dom geometric graphs, where the limiting distributions are Poisson or compound
Poisson, and show a new point process limit theorem for the midpoints of short
edges. As further examples, we consider distance-power statistics with α-stable
limit distributions, midpoints between nonintersecting Poisson m-flats which are
close together and the diameter of random polytopes with vertices on the sphere.

In a natural way our paper continues the line of research on point process
convergence and extreme values initiated by the second and the third author in
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[43, 44], where the proofs are based on the main result of [32] and the underlying
point process has to be Poisson. In contrast to these previous works our technique
also allows us to deal with an underlying binomial process and delivers in both
cases bounds for the Kantorovich–Rubinstein distance. Furthermore, the bounds
derived here improve the rates of convergence of some of the scalar limit theorems
from [43, 44]. Our findings also complement the works [19] and [20] of the first
author with Joulin and Savy, concerning the Kantorovich–Rubinstein distance on
configuration spaces and related notions.

This paper is organized as follows. Before we present our main result for Pois-
son process convergence in Section 3, we recall in Section 2 some necessary no-
tation and results about point processes and also summarize some facts from con-
vex geometry which are important for our examples from stochastic geometry.
The proof of our main result in Section 6 is prepared by a brief discussion of the
underlying Stein principle in Section 4 and the Glauber dynamics, a key step in
our argument, in Section 5. Section 7 is devoted to applications of our functional
limit theorem to probabilistic approximations of U-statistics and to problems from
stochastic geometry.

2. Preliminaries. In the present section we introduce some basic notions and
notation, which are used in the text. Throughout, (�,F,P) will be an abstract
probability space, which is rich enough to carry all the random objects we deal
with. Expectation with respect to P is denoted by E.

2.1. Configuration spaces. Let (Y,Y) be a lcscH space; that is, Y is a topolog-
ical space with countable base such that every point in Y has a compact neighbor-
hood and such that any two points of Y can be separated by disjoint neighborhoods.
Such a space is separable and completely metrizable. Here, Y denotes the Borel
σ -field generated by the topology of Y. By NY we denote the space of σ -finite
counting measures (i.e., point configurations) on Y, whereas ÑY and N̂Y stand for
the sets of all locally finite (i.e., bounded on all relatively compact sets) and finite
counting measures on Y, respectively. By a slight abuse of notation we will write
y ∈ ω if y ∈ Y is charged by the measure ω and also use the set-notation ω1 ⊂ ω2
to indicate that ω1 is a sub-configuration of ω2 (with a similar meaning we also
understand ω2 \ ω1). Let NY be the σ -field on NY generated by the mappings

ψA : NY →N0 ∪ {∞}, ω 
→ ω(A),A ∈ Y,

where N0 := N ∪ {0} is the set of natural numbers including zero. We equip ÑY

and N̂Y with the corresponding trace σ -fields of NY. The σ -field of ÑY is then the
Borel σ -field for the vague topology on ÑY, which is generated by the mappings

eg : ÑY → [0,∞), ω 
→
∫
Y

g dω,

where g ≥ 0 is a continuous function on Y with compact support, and the space
ÑY equipped with the vague topology becomes a Polish space; see Theorem A2.3
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in [24]. A point process (or random counting measure) μ is a random element
in NY. By a locally finite point process and a finite point process, we mean random
elements in ÑY and N̂Y, respectively. It follows from [38], Lemma 3.1.3, that a
point process μ can almost surely be represented as

μ =
μ(Y)∑
i=1

δxi
with xi ∈ Y, i ∈N and μ(Y) ∈ N0 ∪ {∞},

where δy stands for the unit mass Dirac measure concentrated at y ∈ Y. Thus we
may interpret μ also as a random collection of points, taking into account potential
multiplicities.

2.2. Poisson processes. Let M be a σ -finite measure on Y, and let Mk stand
for its k-fold product measure. By a Poisson process on Y with intensity mea-
sure M, we understand a point process ζ with the properties that: (i) for any B ∈ Y ,
the random variable ζ(B) is Poisson distributed with mean M(B) and (ii) ζ is in-
dependently scattered; that is, for any n ∈ N and disjoint B1, . . . ,Bn ∈ Y the ran-
dom variables ζ(B1), . . . , ζ(Bn) are independent. We notice that if M is a finite
measure, ζ charges almost surely only a finite number of points in Y, whose total
number follows a Poisson distribution with mean M(Y). We will write Pζ for the
distribution of ζ on NY. In this paper we will speak about a homogeneous Pois-
son process on a set A ∈ B(Rd), where B(Rd) is the Borel σ -field on Rd , if the
intensity measure is a multiple of the restriction of the Lebesgue measure to A.
Also, if d = 1, a homogeneous Poisson process ζ on [0,∞) can be thought of as
a piecewise deterministic (pure jump) stochastic process in continuous time, start-
ing at zero and having jumps of size one and i.i.d. exponentially distributed waiting
times between the jumps. The points of discontinuity of this random process are
the jump times of ζ .

One of our main tools to deal with Poisson functionals (by these we mean real-
valued random variables depending only on a Poisson process) is the multivariate
Mecke formula [38], Corollary 3.2.3, which says that for any integer k ≥ 1 and
any measurable and nonnegative f :Yk × NY →R,

E
∑

(y1,...,yk)∈ζ k�=

f (y1, . . . , yk, ζ )

(2.1)
=

∫
Yk

Ef (y1, . . . , yk, ζ + δy1 + · · · + δyk
)Mk(d(y1, . . . , yk)

)
,

where ζ k�= is the collection of all k-tuples of distinct points charged by ζ . If the point

process ζ is simple [i.e., if ζ({y}) ∈ {0,1} almost surely for any y ∈ Y], ζ k�= can be
written as

ζ k�= = {
(y1, . . . , yk) ∈Yk :yi �= yj ∈ ζ for i �= j, i, j = 1, . . . , k

}
,
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while in the nonsimple case distinct points can have the same location. We remark
that (2.1) with k = 1 is even a characterizing property of the Poisson process ζ ; cf.
Theorem 3.2.5 of [38].

2.3. Binomial processes. Let M1 be a probability measure on Y. A binomial
process with intensity measure M := nM1, n ∈ N, is a collection of n random
points, distributed independently according to the measure M1. This process also
arises by conditioning a Poisson process with intensity measure M on having ex-
actly n points. In this paper we shall denote the random counting measure induced
by such a binomial process by βn. We also write βk

n,�= to indicate the collection of
all k-tuples of distinct points charged by βn. Then the counterpart to the multivari-
ate Mecke formula (2.1) for a binomial process reads as follows:

E
∑

(y1,...,yk)∈βk
n, �=

f (y1, . . . , yk, βn)

(2.2)
= (n)k

∫
Yk

Ef (y1, . . . , yk, βn−k + δy1 + · · · + δyk
)Mk

1
(
d(y1, . . . , yk)

)
,

where (n)k := n(n − 1) · · · (n − k + 1) is the descending factorial and f is a real-
valued nonnegative measurable function on Yk × NY. This can easily be seen di-
rectly and is also a special case of the Georgii–Nguyen–Zessin formula, for which
we refer to [18], Proposition 15.5.II.

2.4. Probability distances. In order to compare two real-valued random vari-
ables Y1 and Y2 (or more precisely their distributions) and to measure their close-
ness, we use several probability distances in this paper. The Kolmogorov distance
of Y1 and Y2 is given by

dK(Y1, Y2) := sup
z∈R

∣∣P(Y1 ≤ z) − P(Y2 ≤ z)
∣∣,

while the total variation distance is

dTV(Y1, Y2) := sup
A∈B(R)

∣∣P(Y1 ∈ A) − P(Y2 ∈ A)
∣∣,

where, recall, B(R) stands for the Borel σ -field on R. If Y1 and Y2 are integer-
valued random variables, we can re-write their total variation distance as

dTV(Y1, Y2) = 1

2

∑
k∈Z

∣∣P(Y1 = k) − P(Y2 = k)
∣∣.

Let us denote by Lip(1) the set of all functions h :R → R whose Lipschitz con-
stant is at most one and define the Wasserstein distance of two real-valued random
variables Y1 and Y2 by

dW(Y1, Y2) := sup
h∈Lip(1)

∣∣Eh(Y1) − Eh(Y2)
∣∣.
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These probability distances all have the property that they imply convergence in
distribution, meaning that for a sequence (Yn)n∈N of random variables convergence
in distribution to another random variable Y is implied by

dI(Yn,Y ) → 0 as n → ∞, for some I ∈ {K,TV,W}.(2.3)

Moreover, for integer-valued random variables Y1 and Y2, let us mention the gen-
eral inequality

dK(Y1, Y2) ≤ dTV(Y1, Y2) ≤ dW(Y1, Y2),(2.4)

which directly follows from the definitions of the involved probability distances
and the fact that Y1 and Y2 are concentrated on the integers. Note that (2.4) does
not remain valid for general real-valued random variables.

2.5. Kantorovich–Rubinstein distance. We define the total variation distance
between two measures ν1 and ν2 on Y by

dTV(ν1, ν2) := sup
A∈Y

ν1(A),ν2(A)<∞

∣∣ν1(A) − ν2(A)
∣∣,

a notion that should not be confused with the total variation distance between ran-
dom variables introduced above. Note that dTV(ν1, ν2) can in principle take any
value in [0,∞].

We say that a map h : ÑY →R is 1-Lipschitz if∣∣h(ω1) − h(ω2)
∣∣ ≤ dTV(ω1,ω2) for all ω1,ω2 ∈ ÑY,

and denote by L1 the set of all these maps which are measurable.
The Kantorovich–Rubinstein distance between two probability measures Q1

and Q2 on NY is defined as the optimal transportation cost

dKR(Q1,Q2) := inf
C∈�(Q1,Q2)

∫
NY×NY

dTV(ω1,ω2)C
(
d(ω1,ω2)

)
(2.5)

for the cost function dTV(·, ·), where �(Q1,Q2) denotes the set of probability
measures on NY × NY with first marginal Q1 and the second marginal Q2 (i.e.,
couplings of Q1 and Q2). If Q1 and Q2 are concentrated on ÑY, there is at least
one coupling C ∈ �(Q1,Q2) for which the infimum in (2.5) is attained according
to [46], Theorem 4.1, and the Kantorovich duality theorem [46], Theorem 5.10,
says that this minimum equals

dKR(Q1,Q2) = sup
∣∣∣∣∫

ÑY

h(ω)Q1(dω) −
∫

ÑY

h(ω)Q2(dω)

∣∣∣∣,(2.6)

where the supremum is over all h ∈ L1 that are integrable with respect to
Q1 and Q2.
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By abuse of notation we will also write dKR(ζn, ζ ) instead of dKR(Qn,Q) if
the point process ζn on Y has distribution Qn for any n ≥ 1 and the point pro-
cess ζ on Y has distribution Q. Note that the integrability condition in (2.6)
is automatically fulfilled for all h ∈ L1 if Eζn(Y) < ∞ and Eζ(Y) < ∞. The
Kantorovich–Rubinstein distance is also called Wasserstein distance, Monge–
Kantorovich distance or Rubinstein distance. For a detailed discussion of the ter-
minology we refer to the bibliographic notes of Chapter 6 in [46].

The following result ensures that convergence of locally finite point processes
in Kantorovich–Rubinstein distance implies convergence in distribution.

PROPOSITION 2.1. Assume that (ζn)n∈N is a sequence of locally finite point
processes on Y and that ζ is another locally finite point process on Y such that
dKR(ζn, ζ ) → 0, as n → ∞. Then ζn converges in distribution to ζ , as n → ∞.

PROOF. The structure of the vague topology on ÑY implies that it is necessary
and sufficient to prove that for any continuous g :Y → R with compact support,
the random variables

∫
g dζn converge in distribution to

∫
g dζ ; see [24], Theo-

rem 16.16. By (2.3), it is sufficient to show that for all Borel sets B ⊂ R, we have
that

Eeg,B(ζn) → Eeg,B(ζ ) as n → ∞,

where eg,B : ÑY →R,ω 
→ 1(
∫

g dω ∈ B). To show this, we notice that for each g

and B as above the mapping eg,B belong to L1, whence∣∣Eeg,B(ζn) − Eeg,B(ζ )
∣∣ ≤ dKR(ζn, ζ ),

and the result follows. �

An alternative distance to measure the closeness of two point processes ζ1 and
ζ2 on Y is the total variation distance

dTV(ζ1, ζ2) := sup
A∈NY

∣∣P(ζ1 ∈ A) − P(ζ2 ∈ A)
∣∣.

It is always dominated by the Kantorovich–Rubinstein distance since

dTV(ζ1, ζ2) = sup
A∈NY

∣∣∣∣ inf
C∈�(ζ1,ζ2)

∫
NY×NY

1(ω1 ∈ A) − 1(ω2 ∈ A)C
(
d(ω1,ω2)

)∣∣∣∣
≤ inf

C∈�(ζ1,ζ2)

∫
NY×NY

dTV(ω1,ω2)C
(
d(ω1,ω2)

) = dKR(ζ1, ζ2).

The following example shows that convergence in Kantorovich–Rubinstein dis-
tance is strictly finer than convergence in total variation distance.



2156 L. DECREUSEFOND, M. SCHULTE AND C. THÄLE

EXAMPLE 2.2. Let ζ be a Poisson process on Y with finite intensity mea-
sure M. Let (Xi)i∈N be a sequence of independent random elements in Y with
distribution M(Y)−1M(·) and let Z be a Bernoulli random variable such that
P(Z = 1) = p for some p ∈ (0,1). Moreover, assume that ζ , (Xi)i∈N and Z are
independent. Now we consider the point process

ζn,p := ζ + 1(Z = 1)

n∑
i=1

δXi
.

Since ζ and ζn,p coincide on an event with probability 1 − p, we have that
dTV(ζ, ζn,p) ≤ p. By taking h(μ) = μ(Y) as a test function in (2.6), we deduce
that dKR(ζ, ζn,p) ≥ np. Taking pn = 1/

√
n for p shows that

dTV(ζ, ζn,pn) → 0 and dKR(ζ, ζn,pn) → ∞ as n → ∞,

so that (ζn,pn)n∈N converges to ζ in total variation distance but not in Kantorovich–
Rubinstein distance.

In the previous example the Kantorovich–Rubinstein distance is more strongly
affected by the rare event that ζ �= ζn,pn than the total variation distance, since the
class of test functions is larger and contains functions taking also values different
from zero and one. As already mentioned in the Introduction, one can say that the
difference between the Kantorovich–Rubinstein distance and the total variation
distance for point processes is similar to the difference between the Wasserstein
and the total variation distance for integer-valued random variables. As particular
example we cite the work of Barbour and Xia [10], where Poisson approximation
of random variables with respect to the Wasserstein distance has been considered,
extending previous results for the total variation distance; see also Section 7.1
below.

2.6. A discrete gradient. For a counting measure ω ∈ ÑY and a measurable
function h : ÑY →R, let us introduce the discrete gradient in direction y ∈ Y by

Dyh(ω) := h(ω + δy) − h(ω),

where we recall that δy is the unit-mass Dirac measure charging y ∈ Y. In our
notation we often suppress the dependence of Dyh(ω) on the underlying count-
ing measure ω and write Dyh. Clearly, if h ∈ L1, it holds that |Dyh| ≤ 1 for all
y ∈ Y.

2.7. Geometric preparations. For our applications in Section 7, we need some
facts from convex geometry. The Euclidean norm in Rd is denoted by ‖ · ‖. The
Euclidean distance between two sets A1,A2 ⊂ Rd is given by

dist(A1,A2) = inf
{‖x1 − x2‖ :x1 ∈ A1, x2 ∈ A2

}
.
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If A1 = {x} with x ∈ Rd , we write dist(x,A2) instead of dist({x},A2). For a mea-
surable set K ⊂ Rd , we write vol(K) for the volume (i.e., d-dimensional Lebesgue
measure) of K . For the volume of the unit ball Bd = {x ∈ Rd :‖x‖ ≤ 1} in Rd , we
introduce the abbreviation κd := vol(Bd). More generally, Bd(x, r) will denote
the closed d-dimensional ball of radius r > 0 centered at x ∈ Rd , and we write
Bd(r) instead of Bd(0, r) for short. For r ≥ 0, the Minkowski sum Kr = K + rBd

of K and rBd is the so-called r-parallel set of K . In particular, if K is a convex
set with nonempty interior, Steiner’s formula (see, e.g., [38], equation (14.5)) says
that the volume vol(Kr) is a polynomial of degree d in r . Formally,

vol(Kr) =
d∑

i=0

κd−iVi(K)rd−i .(2.7)

The coefficients V0(K), . . . , Vd(K) are the so-called intrinsic volumes of K , es-
pecially V0(K) = 1 whenever K �= ∅, V1(K) is a constant multiple of the mean
width of K , Vd−1(K) is half of the surface area of K (if K is the closure of its
interior) and Vd(K) = vol(K); cf. [38], Chapter 14.2.

For 1 ≤ m ≤ d − 1, we denote in this paper by Gd
m the space of m-dimensional

linear subspaces and by Ad
m the space of m-dimensional affine subspaces of Rd .

For L,M ∈ Gd
m let [L,M] be the subspace determinant of L and M , that is, the

2m-volume of a parallelepiped spanned by two orthonormal bases in L and in M .
In one of our examples, we will also deal with the integrated subspace determinant,
and for this reason we recall that∫

Gd
m

∫
Gd

m

[L,M]dLdM =
(d−m

m

)(d
m

) κ2
d−m

κdκd−2m

(2.8)

from [23], Lemma 4.4. Here, dL and dM indicate integration with respect to the
unique Haar probability measure on Gd

m.

3. Main results.

3.1. General estimate. Let (Y,Y) be a lcscH space, and let us fix another
lcscH space (X,X ). We adopt the notation introduced in Section 2 and denote by
NX the space of σ -finite counting measures on X.

Let μ be a point process on X with a σ -finite intensity measure K(·) := Eμ(·).
Fix an integer k ≥ 1, and let f : domf →Y be a symmetric and measurable func-
tion, where domf is a symmetric subset of Xk ; that is, if (x1, . . . , xk) ∈ domf ,
then (xσ(1), . . . , xσ(k)) ∈ domf for all permutations σ of {1, . . . , k}. We now ap-
ply f to all k-tuples of distinct points of μ contained in domf to form a point
process ξ , that is,

ξ := 1

k!
∑

(x1,...,xk)∈μk�=∩domf

δf (x1,...,xk).
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Since f is symmetric, every f (x1, . . . , xk) also appears for the k! permutations of
the argument (x1, . . . , xk). However, for each subset {x1, . . . , xk} ⊂ μ of distinct
points of μ, we assign to f (x1, . . . , xk) only multiplicity one as can be seen from
the above definition of ξ . However, ξ might still have points of multiplicity greater
than one if there are different combinations of k points in X that are mapped under
f to the same point in Y. The intensity measure of ξ is denoted by L and is given
by

L(A) = Eξ(A) = E
∑
y∈ξ

1(y ∈ A)

= 1

k!E
∑

(x1,...,xk)∈μk�=∩domf

1
(
f (x1, . . . , xk) ∈ A

)
, A ∈ Y.

In what follows, we consider for μ two different types of point processes,
namely Poisson processes and binomial processes. By η we denote a Poisson
process on X with a σ -finite intensity measure K. By βn we denote a binomial
process of n ∈ N points in X, which are independent and identically distributed in
X according to a probability measure K1 on X. Such a binomial process βn has
intensity measure K := nK1. Now the multivariate Mecke formula (2.1) and its
binomial analogue (2.2) imply that the intensity measure L of ξ is given by

L(A) = 1

k!
∫

domf
1
(
f (x1, . . . , xk) ∈ A

)
Kk(d(x1, . . . , xk)

)
, A ∈ Y,(3.1)

in the Poisson case and by

L(A) = (n)k

k!
∫

domf
1
(
f (x1, . . . , xk) ∈ A

)
Kk

1
(
d(x1, . . . , xk)

)
, A ∈ Y,(3.2)

if we start with a binomial process. (To deal with both cases simultaneously we use
the same notation for both set-ups.) Let us finally introduce r(domf ) for k ≥ 2 by

r(domf )

:= max
1≤�≤k−1

∫
X�

(∫
Xk−�

1
(
(x1, . . . , xk) ∈ domf

)
Kk−�(d(x�+1, . . . , xk)

))2

× K�(d(x1, . . . , x�)
)
,

and, for k = 1, put r(domf ) := 0. Moreover, we use the convention that (n −
k)k/(n)k := 0 if n < k.

We can now state our main result, a functional limit theorem, which provides a
bound on the Kantorovich–Rubinstein distance between ξ and a suitable Poisson
process on Y.
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THEOREM 3.1. Let ζ be a Poisson process on Y with finite intensity mea-
sure M. If ξ is induced by the Poisson process η, then

dKR(ξ, ζ ) ≤ dTV(L,M) + 2
(
Eξ(Y)2 − Eξ(Y) − (

Eξ(Y)
)2)

(3.3)

≤ dTV(L,M) + 2k+1

k! r(domf ).

If otherwise ξ is derived from the binomial process βn, then

dKR(ξ, ζ ) ≤ dTV(L,M) + 2
(

Eξ(Y)2 − Eξ(Y) − (n − k)k

(n)k

(
Eξ(Y)

)2
)

+ 6kk!
n

(
Eξ(Y)

)2

≤ dTV(L,M) + 2k+1

k! r(domf ) + 6kk!
n

L(Y)2.

REMARK 3.2. (i) If the underlying point process is a binomial process βn

with n points and if n < k, the point process ξ is empty with probability one and
L ≡ 0. In this case, dKR(ξ, ζ ) ≤ Eζ(Y) = dTV(L,M), and the bound on dKR(ξ, ζ )

is trivially valid. For this reason, no further restriction on n is necessary.
(ii) In the Poisson case, it can happen that L(Y) = ∞. In this case, we have

dTV(L,M) = ∞, and the bound (3.3) is trivial. Hence Theorem 3.1 is only of
interest if L(Y) < ∞, which is equivalent to Kk(domf ) < ∞, a condition which
ensures that ξ is almost surely finite.

(iii) Taking M = L in the Poisson case in Theorem 3.1 shows that

dKR(ξ, ζ ) ≤ 2
(
Eξ(Y)2 − Eξ(Y) − (

Eξ(Y)
)2) ≤ 2k+1

k! r(domf ).

In particular, if k = 1, this gives dKR(ξ, ζ ) = 0, which in view of Proposition 2.1
implies that ξ is a Poisson process. This is consistent with the well-known mapping
theorem for Poisson processes, for which we refer to [25], Chapter 2.3.

(iv) If X = Y and f :X →X is the identity, Theorem 3.1 yields that, for Poisson
processes ξ and ζ with finite intensity measures L and M, respectively,

dKR(ξ, ζ ) ≤ dTV(L,M).

In other words, the Kantorovich–Rubinstein distance between two Poisson pro-
cesses is bounded by the total variation distance of their intensity measures. For a
similar estimate in a more restricted set-up we refer to [20], Proposition 4.1.

3.2. The Euclidean case. In this subsection we shall apply our general esti-
mate of Theorem 3.1 to the important situation that the target space Y is Rd en-
dowed with the standard Borel σ -field B(Rd). This is tailored toward some of our
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applications in Section 7 and is similar to the set-up in [43, 44]. We let (X,X ) be
a lcscH space and let (ηt )t≥1 be a family of Poisson processes in X with intensity
measures Kt = tK, t ≥ 1, where K is a fixed σ -finite measure. By (βt )t≥1 we de-
note a family of binomial processes such that βt = β�t�, and β�t� is a process of
�t� points chosen independently according to a fixed probability measure K1. In
this situation we use the notation Kt := �t�K. We write (μt )t≥1 in the sequel to
indicate either (ηt )t≥1 or (βt )t≥1.

For a fixed integer k ≥ 1 we consider symmetric and measurable functions
ft :Xk → Rd , t ≥ 1. We are interested in the behavior of the derived point pro-
cesses

ξt := 1

k!
∑

(x1,...,xk)∈μk
t, �=

δft (x1,...,xk), t ≥ 1.

For this reason, we consider the re-scaled point processes

tγ • ξt := 1

k!
∑

(x1,...,xk)∈μk
t, �=

δtγ ft (x1,...,xk), t ≥ 1,

where γ ∈ R is a suitable constant. In order to compare tγ • ξt with a Poisson
process, we need to introduce the following notation. The intensity measure Lt of
the re-scaled point process tγ • ξt is given by

Lt (B) := 1

k!E
∑

(x1,...,xk)∈μk
t, �=

1
(
ft (x1, . . . , xk) ∈ t−γ B

)
, B ∈ B

(
Rd)

.

For B ∈ B(Rd) let rt (B) be given by rt (B) := 0 for k = 1 and

rt (B) := max
1≤�≤k−1

∫
X�

(∫
Xk−�

1
(
ft (x1, . . . , xk) ∈ t−γ B

)
Kk−�

t

(
d(x�+1, . . . , xk)

))2

× K�
t

(
d(x1, . . . , x�)

)
for k ≥ 2. Furthermore, for a measure ν on Rd and B ∈ B(Rd) let ν|B be the
restriction of ν to B .

COROLLARY 3.3. Let ζ be a Poisson process on Rd with intensity mea-
sure M, and let B ∈ B(Rd) be such that M(B) < ∞. If ξt is induced by a Poisson
process ηt with t ≥ 1, then

dKR
((

tγ • ξt

)|B, ζ |B)
≤ dTV

(
Lt |B,M|B) + 2

(
Eξt

(
t−γ B

)2 − Eξt

(
t−γ B

) − (
Eξt

(
t−γ B

))2)
≤ dTV

(
Lt |B,M|B) + 2k+1

k! rt (B).
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If ξt is induced by a binomial process βt with t ≥ 1, then

dKR
((

tγ • ξt

)|B, ζ |B)
≤ dTV

(
Lt |B,M|B)

+ 2
(

Eξt

(
t−γ B

)2 − Eξt

(
t−γ B

) − (�t� − k)k

(�t�)k
(
Eξt

(
t−γ B

))2
)

+ 6kk!
t

(
Eξt

(
t−γ B

))2

≤ dTV
(
Lt |B,M|B) + 2k+1

k! rt (B) + 6kk!
t

Lt (B)2.

PROOF. This is a direct consequence of Theorem 3.1 with tγ • ξt |B instead of
ξ and ζ |B instead of ζ there. �

In view of limit theorems, the most natural choice for M is to take M as the
strong limit of the measures Lt , as t → ∞. That is,

M(B) = lim
t→∞ Lt (B) for all B ∈ B

(
Rd)

.

However, we emphasize that this does not necessarily imply that dTV(Lt ,M) → 0,
as t → ∞, even though this is true for our applications presented below.

REMARK 3.4. (i) The upper bounds in Corollary 3.3 are not uniform in the
sense that they depend on the set B . This was to be expected since the re-scaled
point processes tγ • ξt can be finite for any t ≥ 1, while a realization of ζ can
charge an infinite number of points (compare with our applications in Section 7).
This is the reason for introducing the restriction to the set B , which allows us to
compare tγ • ξt |B with ζ |B using the Kantorovich–Rubinstein distance.

(ii) To allow for an easier comparison with the previous paper [43], we remark
that ibidem the Poisson case for d = 1 is considered. Moreover, the intensity mea-
sure M there is concentrated on the positive real half-axis and has the form

M(B) = ab

∫
B

1(u ≥ 0)ub−1 du, B ∈ B(R),

for some constants a, b > 0. In this case, the Poisson process ζ is a so-called
Weibull process since the distance from the origin to the closest point of ζ is
Weibull distributed with distribution function u 
→ (1 − exp(−aub))1(u > 0). We
remark that this form of M was tailored to the applications in [43]; a more general
version is stated without proof in [44].

(iii) Note that rt (B) is dominated by k!Lt (B)r̂t (B), where r̂t (B) is defined as

r̂t (B) := max
1≤�≤k−1,

(x1,...,x�)∈X�

Kk−�
t

({
(y1, . . . , yk−�) ∈ Xk−� :

ft (x1, . . . , x�, y1, . . . , yk−�) ∈ t−γ B
})
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for B ∈ B(Rd). A quantity similar to r̂t (B) has also played a prominent role in the
previous study [43]. In many applications a bound for r̂t (B) is already sufficient
in order to apply Corollary 3.3. However, there are situations for which r̂t (B) is
an increasing function in t , while rt (B) tends to zero, as t → ∞. This way [43],
Theorem 1.1, in which r̂t instead of rt appears, is not applicable in such cases,
as is erroneously done in Sections 2.5 and 2.6 ibidem. However, in these specific
cases it is readily checked that rt behaves nicely, implying that the results there are
correct.

4. A general Stein principle. This section is devoted to a more informal dis-
cussion about the method of bounding the Kantorovich–Rubinstein distance be-
tween point processes using a Stein principle. This approach is the key argument
of our proof of Theorem 3.1 in Section 6. Recall that the aim is to provide an upper
bound for the Kantorovich–Rubinstein distance between a Poisson process ζ on a
space Y with finite intensity measure M and a second point process ξ on Y, which
in turn is derived from another point process μ on a space X by a transformation.

The first part of Stein’s method consists of characterizing the target object, here
the Poisson process ζ . The method is to consider a functional operator L which, at
a formal level, satisfies for a finite point process ν the identity

E
[
LF(ν)

] = 0 for a large class of functions F : N̂Y →R(4.1)

if and only if ν is a Poisson process with intensity measure M. It is usually not
difficult to construct such an operator for a given target object. What may become
challenging, especially in infinite dimensions (compare with [3, 16, 45]), will be to
prove that the target object is the unique solution of (4.1). In our case, uniqueness
follows from the theory of spatial birth–death processes; see [35].

The second step of Stein’s method is to solve the so-called Stein equation,

LF(ω) = Eh(ζ ) − h(ω), ω ∈ N̂Y,(4.2)

for a certain class of test functions h : N̂Y → R. This means that we have to com-
pute a solution Fh for a given test function h and to evaluate LFh(ω).

A prominent way to do this is to use the so-called generator approach; see the
survey article [36] and the references cited therein. The underlying idea is to in-
terpret L as infinitesimal generator of a Markov process with the distribution of ζ

as its invariant distribution, whence L satisfies (4.1). If (Ps)s≥0 is the semi-group
associated with this Markov process, one can show that

LFh(ω) =
∫ ∞

0
LPsh(ω)ds, ω ∈ N̂Y.(4.3)

In order to compare the point process ξ with ζ , we put ω = ξ and take expectations
in (4.2) and (4.3). This leads to

Eh(ζ ) − Eh(ξ) = ELFh = E
∫ ∞

0
LPsh(ξ)ds.
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In the subsequent section, we will derive this identity rigorously. In the context of
our main result, the point process ξ is induced by an underlying point process μ

on another space X. More formally we have that ξ = T (μ), where T is a suitable
transformation, that is, a mapping from NX to N̂Y. Hence we will have to compute

E
∫ ∞

0
LPsh

(
T (μ)

)
ds.

This expression is bounded in Section 6 by exploiting the special structure of the
transformation T and the fact that μ is a Poisson or binomial process.

5. Glauber dynamics for the Poisson process. We now specialize the gen-
eral scheme outlined in Section 4 to our particular situation. Although the approach
is similar to [4], Section 2, for example, we prefer to carry out the details here since
we consider a different class of test functions, namely Lipschitz functions instead
of bounded functions. We assume the same set-up as for Theorem 3.1; that is,
ζ is a Poisson process on a lcscH space Y with a finite intensity measure M and
distribution Pζ . We now construct a Glauber dynamics for Pζ , that is a continuous-
time Markov process (G(s))s≥0 with state space N̂Y and Pζ as its stationary (i.e.,
invariant) distribution; see [35]. Its generator L is given by

Lh(ω) :=
∫
Y

h(ω + δy) − h(ω)M(dy) +
∫
Y

h(ω − δy) − h(ω)ω(dy),

(5.1)
ω ∈ N̂Y,

where h : N̂Y → R is a measurable and bounded function. According to our nota-
tional convention, L may be re-written as

Lh(ω) =
∫
Y

h(ω + δy) − h(ω)M(dy) + ∑
y∈ω

(
h(ω − δy) − h(ω)

)
.

Note that Lh(ω) is well defined for all h ∈ L1 and ω ∈ N̂Y since the Lipschitz
property implies that the integrands in (5.1) are bounded by one. Moreover, we
notice that the operator L uniquely determines the process (G(s))s≥0, which has
Pζ as its unique invariant distribution; see [18], Proposition 10.4.VII, or [35].

The Markov process (G(s))s≥0 is a spatial birth–death process in continuous
time whose dynamics can be described as follows. If at time s, the system is in
state ωs , each particle charged by ωs dies at rate 1, and a new particle is born
at y with rate M(dy). Alternatively, imagine a homogeneous Poisson process ζb

on R+ with intensity M(Y). The jump times of ζb determine the birth times of
the particles in ζ . At each jump of ζb a new particle is born and is placed in Y

according to the distribution M(·)/M(Y), independently of the current configu-
ration. Moreover, each particle has a lifetime which is exponentially distributed
with parameter 1, independent of the past and of the rest of the configuration; see
again [35].
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The semi-group (Ps)s≥0 associated with the Markov process (G(s))s≥0 is de-
fined as

Psh(ω) = E
[
h
(
G(s)

)|G(0) = ω
]
, ω ∈ N̂Y, h : ÑY →R.(5.2)

For h ∈ L1 and ω ∈ N̂Y the conditional expectation is always well defined since∣∣Psh(ω)
∣∣ = ∣∣E[

h
(
G(s)

)|G(0) = ω
]∣∣

≤ E
[∣∣h(

G(s)
) − h(ω)

∣∣|G(0) = ω
] + ∣∣h(ω)

∣∣
≤ E

[
dTV

(
G(s),ω

)|G(0) = ω
] + ∣∣h(ω)

∣∣
≤ Eζb

([0, s]) + ω(Y) + ∣∣h(ω)
∣∣ < ∞,

where ζb is the homogeneous Poisson process from the description of the birth–
death dynamics above. Below we will need the following lemmas about the pro-
cess (G(s))s≥0 and its semi-group (Ps)s≥0. The first one provides a commutation
relation between the discrete gradient and the semi-group.

LEMMA 5.1. For any s ≥ 0, ω ∈ N̂Y, y ∈ Y and h ∈ L1,

DyPsh(ω) = e−sPs(Dyh)(ω).

PROOF. To construct a sample path of (G(s))s≥0, given the initial configura-
tion G(0) = ω + δy , we have to add the independent particle y to a realization of
(G(s))s≥0 starting from the initial configuration ω. These two realizations will be
identical after the particle y has died. Thus, denoting by �(y) the lifetime of y and
using (5.2), we can write

DyPsh(ω) = E
[
h
(
G(s)

)|G(0) = ω + δy

] − E
[
h
(
G(s)

)|G(0) = ω
]

= E
[(

h
(
G(s) + δy

) − h
(
G(s)

))
1
(
�(y) ≥ s

)|G(0) = ω
]
.

Since �(y) is independent of everything else and is exponentially distributed with
mean one, we can continue with

DyPsh(ω) = E
[
1
(
�(y) ≥ s

)]
E

[(
h
(
G(s) + δy

) − h
(
G(s)

))|G(0) = ω
]

= e−sPs(Dyh)(ω),

where we have used (5.2) again. This completes the proof. �

LEMMA 5.2. Let ω1,ω2 ∈ N̂Y with ω2 ⊂ ω1. If h ∈ L1 and s ≥ 0, then∣∣E[
h
(
G(s)

)|G(0) = ω1
] − E

[
h
(
G(s)

)|G(0) = ω2
]∣∣ ≤ (ω1 \ ω2)(Y)e−s .
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PROOF. Recall that each particle y of the initial configuration G(0) has an
exponentially distributed lifetime �(y) with mean one. Thus since h ∈ L1, it holds
that ∣∣E[

h
(
G(s)

)|G(0) = ω1
] − E

[
h
(
G(s)

)|G(0) = ω2
]∣∣

≤ E
[∣∣∣∣h(

G(s) + ∑
y∈ω1\ω2

1
(
�(y) ≥ s

)
δy

)
− h

(
G(s)

)∣∣∣∣∣∣∣G(0) = ω2

]

≤ E
[
dTV

(
G(s) + ∑

y∈ω1\ω2

1
(
�(y) ≥ s

)
δy,G(s)

)∣∣∣G(0) = ω2

]

≤ E
∑

y∈ω1\ω2

1
(
�(y) ≥ s

)
= (ω1 \ ω2)(Y)e−s,

which proves the claim. �

LEMMA 5.3. For any ω ∈ N̂Y and h ∈ L1,

lim
s→∞Psh(ω) = Eh(ζ ) =

∫
hdPζ .

PROOF. We notice first that the expectation on the right-hand side is well de-
fined since h ∈ L1 implies that

E
∣∣h(ζ )

∣∣ ≤ E
∣∣h(ζ ) − h(∅)

∣∣ + ∣∣h(∅)
∣∣ ≤ EdTV(ζ,∅) + ∣∣h(∅)

∣∣ ≤ Eζ(Y) + ∣∣h(∅)
∣∣

= M(Y) + ∣∣h(∅)
∣∣,

where ∅ stands for the counting measure that corresponds to the empty point con-
figuration.

From Lemma 5.2 with ω1 = ω and ω2 = ∅, we have that∣∣E[
h
(
G(s)

)|G(0) = ω
] − E

[
h
(
G(s)

)|G(0) = ∅
]∣∣ ≤ ω(Y)e−s .(5.3)

The number of particles of G(s) starting from the empty configuration follows the
evolution of an M/M/∞ queue with arrival (birth) rate M(Y) and service (death)
rate 1, and thus is Poisson distributed with parameter (1−e−s)M(Y). Since the po-
sition of each of the particles is independent of everything else, G(s) has the same
distribution as a Poisson process on Y with intensity measure (1 − e−s)M. Since
ζ has the same distribution as the superposition of two independent Poisson pro-
cesses with intensity measures (1 − e−s)M and e−sM, respectively, we obtain that∣∣E[

h
(
G(s)

)|G(0) = ∅
] − Eh(ζ )

∣∣ ≤ e−sM(Y).(5.4)

Combining (5.3) and (5.4) and letting s → ∞ completes the proof. �

The next lemma, which can be seen as an integration by parts formula, is the
key for the proof of Theorem 3.1 given in Section 6 below.
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LEMMA 5.4. If h ∈ L1 and ω ∈ N̂Y, then

Eh(ζ ) − h(ω) =
∫ ∞

0
LPsh(ω)ds.(5.5)

PROOF. For an arbitrary h ∈ L1 we define hn : N̂Y →R, n ∈ N by

hn(ω) =
⎧⎪⎨⎪⎩

n, h(ω) > n,

h(ω), −n ≤ h(ω) ≤ n,

−n, h(ω) < −n.

Clearly, each of the functions hn is bounded and belongs to L1. Thus the forward-
backward equation stated as Theorem 12.22 in [24] implies that

Pthn(ω) − hn(ω) =
∫ t

0
LPshn(ω)ds, t ≥ 0.(5.6)

By construction, we have hn(ω) → h(ω), as n → ∞. The dominated convergence
theorem implies that Pshn(ω) → Psh(ω) and LPshn(ω) → LPsh(ω), as n → ∞,
for all s ≥ 0. By (5.1) and Lemma 5.1, we have that, for g = h or g = hn and s ≥ 0,∣∣LPsg(ω)

∣∣ ≤
∫
Y

e−s
∣∣Ps(Dyg)(ω)

∣∣M(dy)

+
∫
Y

e−s
∣∣Ps(Dyg)(ω − δy)

∣∣ω(dy)(5.7)

≤ e−s(M(Y) + ω(Y)
)
.

In the last step we used the fact that |Ps(Dyg)| ≤ 1. Now, a further application of
the dominated convergence theorem shows that

lim
n→∞

∫ t

0
LPshn(ω)ds =

∫ t

0
LPsh(ω)ds, t ≥ 0,

so that, letting n → ∞ in (5.6), yields

Pth(ω) − h(ω) =
∫ t

0
LPsh(ω)ds, t ≥ 0.(5.8)

Because of (5.7) and the dominated convergence theorem, the right-hand side
of (5.8) converges to the right-hand side of (5.5), as t → ∞. Together with
Lemma 5.3 for the left-hand side, this completes the proof. �

REMARK 5.5. The operator L and the associated semi-group (Ps)s≥0 on the
Poisson space can be also defined via the Wiener–Itô chaos expansion, which we
recall now for completeness. We still denote by ζ a Poisson process with intensity
measure M on a lcscH space Y. A crucial property of ζ is that any square integrable
functional F ∈ L2(Pζ ) of ζ can be written as

F = EF +
∞∑

n=1

In(fn)(5.9)
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with

fn(y1, . . . , yn) = 1

n!EDn
y1,...,yn

F (ζ ), y1, . . . , yn ∈ Y, n ≥ 1,

where Dn := D ◦ Dn−1 with D1 := D is the nth iteration of the discrete gradient
D introduced in Section 2, and where In(fn) stands for the n-fold Wiener–Itô
integral of the square integrable and symmetric function fn with respect to the
signed random measure ζ − M. Moreover, the series in (5.9) converges in L2(Pζ )

and is called the Wiener–Itô chaos expansion of F ; we refer to [29] for further
details. We can now define the Ornstein–Uhlenbeck generator L on the Poisson
space by

LF = −
∞∑

n=1

nIn(fn),

whenever F belongs to domL; that is, F is such that
∑∞

n=1 n2n!‖fn‖2
L2(Mn)

< ∞,

where ‖ · ‖L2(Mn) stands for the usual norm in L2(Mn). We remark that LF can
equivalently be written as in (5.1) as a consequence of identity (3.19) in [29]
and of the relation stated in [33], Lemma 2.11, between the discrete gradient, the
Ornstein–Uhlenbeck generator and the so-called Skorohod-integral on the Pois-
son space, another operator, which is not needed in the sequel. In [28] the rela-
tion between the inverse of the Ornstein–Uhlenbeck generator and the associated
semi-group is investigated. The semi-group (Ps)s≥0 can be written in terms of the
Wiener–Itô chaos expansion as

PsF = EF +
∞∑

n=1

e−nsIn(fn), s ≥ 0,

where F ∈ domL is assumed to have a chaotic expansion as in (5.9); see, for
example, [28], equation (3.13). Lemma 5.1 is a special case of [28], Lemma 3.1,
and Lemmas 5.2, 5.3 and 5.4 can also be derived via the approach sketched in
this remark. However, we prefer to give proofs not relying on Wiener–Itô chaos
expansions rather than on trajectorial properties.

REMARK 5.6. In [41] a spatial birth–death process is constructed whose in-
variant distribution is a Gibbs process. This includes the birth–death process in
the present paper as a special case, and the generator in [41] is a generalization
of the generator in (5.1). However, the results in [41] do not cover the results of
this section since only the test functions for the total variation distance are con-
sidered, while we use Lipschitz functions, which are needed for the Kantorovich–
Rubinstein distance.

6. Proof of Theorem 3.1. Before going into the details of the proof of The-
orem 3.1, we explain the strategy informally in case of an underlying Poisson
process η. Applying the multivariate Mecke formula (2.1) in equation (6.4) below,
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we are lead to estimate the integral with respect to Kk of

E
[
F

(
ξ(η + δx1 + · · · + δxk

) − δf (x1,...,xk)

) − F
(
ξ(η + δx1 + · · · + δxk

)
)]

,
(6.1)

x1, . . . , xk ∈ X,

with F : N̂Y →R being a certain point process functional and where we write ξ(μ)

instead of ξ to underpin the dependence of ξ on the underlying point configura-
tion μ. The difficulty comes from the fact that adding δx1 +· · ·+ δxk

to the Poisson
process η amounts not only to adding δf (x1,...,xk) to ξ(η) but also all atoms of the
form f (xi1, . . . , xi�, x̃�+1, . . . , x̃k) with � ∈ {1, . . . , k}, pairwise different indices
i1, . . . , i� ∈ {1, . . . , k} and (x̃�+1, . . . , x̃k) ∈ ηk−�

�= . We denote by ξ̂ (x1, . . . , xk, η)

the collection of these extra atoms. The difference in (6.1) is now decomposed as

E
[(

F
(
ξ(η) + ξ̂ (x1, . . . , xk, η)

) − F
(
ξ(η)

))
+ (

F
(
ξ(η)

) − F
(
ξ(η) + δf (x1,...,xk)

))
(6.2)

+ (
F

(
ξ(η) + δf (x1,...,xk)

) − F
(
ξ(η) + ξ̂ (x1, . . . , xk, η) + δf (x1,...,xk)

))]
.

The middle term in (6.2) contributes to the total variation distance of the intensity
measures in (3.3) in Theorem 3.1. Since F is Lipschitz, the expectation and the
integral with respect to x1, . . . , xk of the first and the third term in (6.2) are bounded
(up to a constant) by

E
∫
Xk

ξ̂ (x1, . . . , xk, η)(Y)Kk(d(x1, . . . , xk)
)
,

which in turn is bounded by Eξ(Y)2 − Eξ(Y) − (Eξ(Y))2 and r(domf ). This ef-
fect contributes to the second term of the bounds in Theorem 3.1. For k = 1, only
the middle term in (6.2) is present. This explains why, for k = 1, the Kantorovich–
Rubinstein distance between the transformation of a Poisson process (which is
again a Poisson process) and a second Poisson process is bounded by the total
variation distance of the intensity measures, and the second term in (3.3) in Theo-
rem 3.1 vanishes.

Throughout this section we use the same notation as in Section 3.1. Moreover,
let [k] be shorthand for {1, . . . , k}. For x = (x1, . . . , xk) ∈ Xk , I = {i1, . . . , i|I |} ⊂
[k] and z = (z1, . . . , zk−|I |) ∈ Xk−|I |, let (xI , z) = (xi1, . . . , xi|I |, z1, . . . , zk−|I |).
We prepare the proof of Theorem 3.1 with the following lemma.

LEMMA 6.1. Let the assumptions of Theorem 3.1 prevail. If ξ is induced by a
Poisson process, then

Eξ(Y)2 = 1

k!
∑

I⊂[k]

1

(k − |I |)!
∫
Xk

∫
Xk−|I |

1
(
(x1, . . . , xk) ∈ domf

)
× 1

(
(xI , z) ∈ domf

)
Kk−|I |(dz)

× Kk(d(x1, . . . , xk)
)
.
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If ξ is derived from a binomial process of n points, then

Eξ(Y)2 = 1

k!
∑

I⊂[k]

(n)2k−|I |
(k − |I |)!

∫
Xk

∫
Xk−|I |

1
(
(x1, . . . , xk) ∈ domf

)
× 1

(
(xI , z) ∈ domf

)
Kk−|I |

1 (dz)

× Kk
1
(
d(x1, . . . , xk)

)
.

PROOF. We have that

ξ(Y)2 = 1

(k!)2

( ∑
(x1,...,xk)∈μk�=

1
(
(x1, . . . , xk) ∈ domf

))2

= 1

(k!)2

∑
I⊂[k]

∑
(x1,...,xk,z)∈μ

2k−|I |
�=

k!
(k − |I |)!1

(
(x1, . . . , xk) ∈ domf

)
× 1

(
(xI , z) ∈ domf

)
,

where we have used that two points occurring in different sums can be either equal
or distinct and that domf is symmetric. Now the multivariate Mecke (2.1) and its
binomial analogue (2.2) complete the proof. �

PROOF OF THEOREM 3.1. Throughout this proof we write ξ(η) and ξ(βn) to
emphasize the dependence of ξ on the underlying point process. Whenever we do
not need special properties of η or βn, we write ξ(μ) with the dummy variable μ

standing for either η or βn. As discussed in Remark 3.2(ii), we can assume for the
Poisson case that L(Y) < ∞ and hence that ξ(η) is almost surely finite since (3.3)
is obviously true otherwise. For an underlying binomial process it is sufficient to
consider only the case n ≥ k since, otherwise, the statement is obviously true as
explained in Remark 3.2(i).

Lemma 5.4 says that for h ∈ L1 and ω ∈ N̂Y,

Eh(ζ ) − h(ω) =
∫ ∞

0
LPsh(ω)ds.(6.3)

The Stein-type identity (6.3) is the starting point for our proof. Combining (6.3)
with the representation of the generator L in (5.1), choosing ω = ξ(μ) and taking
expectations results in the following:

Eh(ζ ) − Eh
(
ξ(μ)

) = E
∫ ∞

0
LPsh

(
ξ(μ)

)
ds

= E
∫ ∞

0

∫
Y

(
Psh

(
ξ(μ) + δy

) − Psh
(
ξ(μ)

))
M(dy)ds(6.4)

+ E
∫ ∞

0

∑
y∈ξ(μ)

(
Psh

(
ξ(μ) − δy

) − Psh
(
ξ(μ)

))
ds.
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Let us denote the first and the second term on the right-hand side by T1,μ and T2,μ,
respectively. By Fubini’s theorem and the definition of ξ(μ), we obtain that

T2,μ = 1

k!
∫ ∞

0
E

∑
(x1,...,xk)∈μk�=∩domf

(
Psh

(
ξ(μ) − δf (x1,...,xk)

) − Psh
(
ξ(μ)

))
ds.

By the multivariate Mecke formula (2.1) and its analogue (2.2) for binomial pro-
cesses, we see that

T2,η = 1

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(η + δx1 + · · · + δxk

) − δf (x1,...,xk)

)
− Psh

(
ξ(η + δx1 + · · · + δxk

)
)]

× Kk(d(x1, . . . , xk)
)

ds

and

T2,βn = (n)k

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(βn−k + δx1 + · · · + δxk

) − δf (x1,...,xk)

)
− Psh

(
ξ(βn−k + δx1 + · · · + δxk

)
)]

× Kk
1
(
d(x1, . . . , xk)

)
ds.

Let us write ξ̂ (x1, . . . , xk,μ) for the point process

ξ̂ (x1, . . . , xk,μ) := ∑
∅ �=I�[k],z∈μ

k−|I |
�=

1

(k − |I |)!1
(
(xI , z) ∈ domf

)
δf (xI ,z)

on Y, where � denotes proper set-inclusion and where the notation (xI , z) has
been introduced before Lemma 6.1 above. Then

T2,η = 1

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(η) + ξ̂ (x1, . . . , xk, η)

)
− Psh

(
ξ(η) + ξ̂ (x1, . . . , xk, η) + δf (x1,...,xk)

)]
× Kk(d(x1, . . . , xk)

)
ds

= − 1

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(η) + δf (x1,...,xk)

) − Psh
(
ξ(η)

)]
× Kk(d(x1, . . . , xk)

)
ds

+ 1

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(η) + ξ̂ (x1, . . . , xk, η)

)
− Psh

(
ξ(η)

) + Psh
(
ξ(η) + δf (x1,...,xk)

)
− Psh

(
ξ(η) + ξ̂ (x1, . . . , xk, η) + δf (x1,...,xk)

)]
× Kk(d(x1, . . . , xk)

)
ds

=: T̂2,η + Rη
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and

T2,βn = (n)k

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(βn−k) + ξ̂ (x1, . . . , xk, βn−k)

)
− Psh

(
ξ(βn−k) + ξ̂ (x1, . . . , xk, βn−k) + δf (x1,...,xk)

)]
× Kk

1
(
d(x1, . . . , xk)

)
ds

= −(n)k

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(βn−k) + δf (x1,...,xk)

) − Psh
(
ξ(βn−k)

)]
× Kk

1
(
d(x1, . . . , xk)

)
ds

+ (n)k

k!
∫ ∞

0

∫
domf

E
[
Psh

(
ξ(βn−k) + ξ̂ (x1, . . . , xk, βn−k)

)
− Psh

(
ξ(βn−k)

) + Psh
(
ξ(βn−k) + δf (x1,...,xk)

)
− Psh

(
ξ(βn−k) + ξ̂ (x1, . . . , xk, βn−k)

+ δf (x1,...,xk)

)]
× Kk

1
(
d(x1, . . . , xk)

)
ds

=: T̂2,βn + Rβn.

Together with (6.4) and the formulas for L in (3.1) and (3.2), we see that

Eh(ζ ) − Eh
(
ξ(η)

) =
∫ ∞

0

∫
Y

E
[
DyPsh

(
ξ(η)

)]
(M − L)(dy)ds + Rη

and

Eh(ζ ) − Eh
(
ξ(βn)

)
=

∫ ∞
0

∫
Y

E
[
DyPsh

(
ξ(βn)

)]
(M − L)(dy)ds

+
∫ ∞

0

∫
Y

E
[
DyPsh

(
ξ(βn)

)] − E
[
DyPsh

(
ξ(βn−k)

)]
L(dy)ds + Rβn.

We now determine the remainder terms Rη and Rβn . For (x1, . . . , xk) ∈ domf let
us define h̃x1,...,xk

: N̂Y →R by

h̃x1,...,xk
(μ) = 1

2

(
h(μ) − h(μ + δf (x1,...,xk))

)
.

We can then rewrite Rη and Rβn as

Rη = 2

k!
∫ ∞

0

∫
domf

E
[
Psh̃x1,...,xk

(
ξ(η) + ξ̂ (x1, . . . , xk, η)

) − Psh̃x1,...,xk

(
ξ(η)

)]
× Kk(d(x1, . . . , xk)

)
ds
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and

Rβn = 2(n)k

k!
∫ ∞

0

∫
domf

E
[
Psh̃x1,...,xk

(
ξ(βn−k) + ξ̂ (x1, . . . , xk, βn−k)

)
− Psh̃x1,...,xk

(
ξ(βn−k)

)]
× Kk

1
(
d(x1, . . . , xk)

)
ds.

Because of h̃x1,...,xk
∈ L1, we obtain by the definition of the semi-group (Ps)s≥0

in (5.2) and Lemma 5.2 that

|Rη| ≤ 2

k!
∫ ∞

0

∫
domf

e−sEξ̂ (x1, . . . , xk, η)(Y)Kk(d(x1, . . . , xk)
)

ds

= 2

k!
∫

domf
Eξ̂ (x1, . . . , xk, η)(Y)Kk(d(x1, . . . , xk)

)
and

|Rβn | ≤ 2(n)k

k!
∫ ∞

0

∫
domf

e−sEξ̂ (x1, . . . , xk, βn−k)(Y)Kk
1
(
d(x1, . . . , xk)

)
ds

≤ 2(n)k

k!
∫

domf
Eξ̂ (x1, . . . , xk, βn−k)(Y)Kk

1
(
d(x1, . . . , xk)

)
.

Now, from the Mecke formula (2.1) and its analogue (2.2) for binomial processes,
it follows that

Eξ̂ (x1, . . . , xk, η)(Y)

= E
∑

∅ �=I�[k],z∈η
k−|I |
�=

1

(k − |I |)!1
(
f (xI , z) ∈ domf

)

= ∑
∅ �=I�[k]

1

(k − |I |)!
∫
Xk−|I |

1
(
(xI , z) ∈ domf

)
Kk−|I |(dz)

and

Eξ̂ (x1, . . . , xk, βn−k)(Y)

= E
∑

∅ �=I�[k],z∈β
k−|I |
n−k, �=

1

(k − |I |)!1
(
f (xI , z) ∈ domf

)
(6.5)

= ∑
∅ �=I�[k]

(n − k)k−|I |
(k − |I |)!

∫
Xk−|I |

1
(
(xI , z) ∈ domf

)
Kk−|I |

1 (dz).
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Together with Lemma 6.1, we obtain

|Rη| ≤ 2

k!
∫
Xk

∑
∅ �=I�[k]

1

(k − |I |)!
∫
Xk−|I |

1
(
(x1, . . . , xk) ∈ domf

)
× 1

(
(xI , z) ∈ domf

)
Kk−|I |(dz)

(6.6)
× Kk(d(x1, . . . , xk)

)
= 2

(
Eξ(Y)2 − L(Y) − L(Y)2) = 2

(
Eξ(Y)2 − Eξ(Y) − (

Eξ(Y)
)2)

and

|Rβn | ≤ 2

k!
∫
Xk

∑
∅ �=I�[k]

(n)k(n − k)k−|I |
(k − |I |)!

∫
Xk−|I |

1
(
(x1, . . . , xk) ∈ domf

)
× 1

(
(xI , z) ∈ domf

)
Kk−|I |

1 (dz)

× Kk
1
(
d(x1, . . . , xk)

)
(6.7)

= 2
(

Eξ(Y)2 − L(Y) − (n − k)k

(n)k
L(Y)2

)

= 2
(

Eξ(Y)2 − Eξ(Y) − (n − k)k

(n)k

(
Eξ(Y)

)2
)
.

The inequalities in (6.6) and (6.7) together with the definition of r(domf ) imply
that

|Rη| ≤ 2k+1

k! r(domf ) and |Rβn | ≤
2k+1

k! r(domf ).(6.8)

Next, it follows from Lemma 5.2 that for s ≥ 0,∣∣EDyPsh
(
ξ(μ)

)∣∣ ≤ E
[∣∣Psh

(
ξ(μ) + δy

) − Psh
(
ξ(μ)

)∣∣] ≤ e−s .(6.9)

For y1, y2 ∈Y and ξ̃ ∈ ÑY we have dTV(ξ̃ + δy1, ξ̃ + δy2) ≤ 1 so that h ∈ L1 leads
to ∣∣Dy1h(ξ̃ ) − Dy2h(ξ̃ )

∣∣ = ∣∣h(ξ̃ + δy1) − h(ξ̃ + δy2)
∣∣ ≤ 1.

Together with Lemma 5.1, we obtain that∣∣EDy1Psh
(
ξ(μ)

) − EDy2Psh
(
ξ(μ)

)∣∣
(6.10)

= e−s
∣∣EPs(Dy1h − Dy2h)

(
ξ(μ)

)∣∣ ≤ e−s

for all y1, y2 ∈ Y and s ≥ 0. The estimates in (6.9) and (6.10) show that∣∣∣∣∫ ∞
0

∫
Y

E
[
DyPsh

(
ξ(μ)

)]
(M − L)(dy)ds

∣∣∣∣ ≤ dTV(M,L)

∫ ∞
0

e−s ds

(6.11)
≤ dTV(M,L).
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Combining (6.6) and (6.8) with (6.11) completes the proof of the Poisson case.
When considering a binomial process, we additionally need to take care of the

term ∫ ∞
0

∫
Y

E
[
DyPsh

(
ξ(βn)

)] − E
[
DyPsh

(
ξ(βn−k)

)]
L(dy)ds.

For this, we use Lemma 5.1, the fact that 1
2Dyh ∈ L1 whenever h ∈ L1 and

Lemma 5.2 to obtain that∣∣E[
DyPsh

(
ξ(βn)

)] − E
[
DyPsh

(
ξ(βn−k)

)]∣∣
≤

∫
Xk

∣∣E[
DyPsh

(
ξ(βn−k + δx1 + · · · + δxk

)
)] − E

[
DyPsh

(
ξ(βn−k)

)]∣∣
× Kk

1
(
d(x1, . . . , xk)

)
=

∫
Xk

e−s
∣∣E[

Ps(Dyh)
(
ξ(βn−k) + ξ̂ (x1, . . . , xk, βn−k) + δf (x1,...,xk)

)
− Ps(Dyh)

(
ξ(βn−k)

)]∣∣
× Kk

1
(
d(x1, . . . , xk)

)
≤ 1

nk

∫
Xk

2e−2s(Eξ̂ (x1, . . . , xk, βn−k)(Y) + 1
(
(x1, . . . , xk) ∈ domf

))
× Kk(d(x1, . . . , xk)

)
for any s ≥ 0. It follows from (6.5) and (n − k)k−|I | ≤ nk−|I | that

1

nk

∫
Xk

Eξ̂ (x1, . . . , xk, βn−k)(Y)Kk(d(x1, . . . , xk)
)

≤ 1

nk

∫
Xk

∑
∅ �=I�[k]

1

(k − |I |)!
∫
Xk−|I |

1
(
(xI , z) ∈ domf

)
Kk−|I |(dz)

× Kk(d(x1, . . . , xk)
)

= 1

nk

∑
∅ �=I�[k]

1

(k − |I |)!
∫
Xk

1
(
(x1, . . . , xk) ∈ domf

)
× Kk(d(x1, . . . , xk)

)
K(X)|k|−|I |

≤ (2k − 2)

n

∫
Xk

1
(
(x1, . . . , xk) ∈ domf

)
Kk(d(x1, . . . , xk)

)
.

Now, (3.2) implies that∫
Xk

1
(
(x1, . . . , xk) ∈ domf

)
Kk(d(x1, . . . , xk)

) = k!nk

(n)k
L(Y) ≤ k!ekEξ(Y),
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where we have used that nk/(n)k ≤ kk/k! ≤ ek for n ≥ k. Hence, using that 2kek ≤
6k , we find∫ ∞

0

∫
Y

∣∣E[
DyPsh

(
ξ(βn)

)] − E
[
DyPsh

(
ξ(βn−k)

)]∣∣L(dy)ds ≤ 6kk!L(Y)2

n

= 6kk!(Eξ(Y))2

n
.

Together with (6.7), (6.8) and (6.11) this completes the proof in the binomial case.
�

REMARK 6.2. Bounds for the total variation distance between ξ and ζ that
are similar to the bounds for the Kantorovich–Rubinstein distance in Theorem 3.1
can be deduced from Theorem 2.6 in [4]. This result implies that

dTV
(
ξ(η), ζ

) ≤ 2dTV(L,M)

+ 2

k!
∫

domf
EdTV

(
ξ(η), ξ(η + δx1 + · · · + δxk

) − δf (x1,...,xk)

)
× Kk(d(x1, . . . , xk)

)
and

dTV
(
ξ(βn), ζ

)
≤ 2dTV(L,M)

+ 2(n)k

k!
∫

domf
EdTV

(
ξ(βn), ξ(βn−k + δx1 + · · · + δxk

) − δf (x1,...,xk)

)
× Kk

1
(
d(x1, . . . , xk)

)
.

Since the integrands are bounded by

Eξ̂ (x1, . . . , xk, η)(Y) and Eξ̂ (x1, . . . , xk, βn−k)(Y) + EdTV
(
ξ(βn), ξ(βn−k)

)
,

respectively, the integrals on the right-hand sides can be controlled as in the proof
of Theorem 3.1 above.

7. Applications.

7.1. Poisson approximation of U-statistics. In this subsection we present a
first application of Theorem 3.1 to U-statistics of Poisson or binomial processes.
Let (X,X ) and (Y,Y) be two lcscH spaces, and let for some fixed integer k ≥ 1,
ft :Xk →Y, t ≥ 1, be symmetric measurable functions. Furthermore, for a σ -finite
measure K and a probability measure K1 on X, we denote by ηt a Poisson process
with intensity measure Kt := tK, t ≥ 1, and by βt , t ≥ 1, a binomial process of
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�t� points with intensity measure Kt := �t�K1, respectively. If μt is either ηt or βt

and if B is a measurable subset of Y, we define the U-statistics

St (B) := 1

k!
∑

(x1,...,xk)∈μk
t,�=

1
(
ft (x1, . . . , xk) ∈ B

)
, t ≥ 1,

which count the number of k-tuples (x1, . . . , xk) ∈ μk
t,�= for which ft (x1, . . . , xk) ∈

B . To compare St (B) with a Poisson random variable, we define

rt (B) := max
1≤�≤k−1

∫
X�

(∫
Xk−�

1
(
ft (x1, . . . , xk) ∈ B

)
Kk−�

t

(
d(x�+1, . . . , xk)

))2

× K�
t

(
d(x1, . . . , x�)

)
if k > 1 and rt (B) := 0 if k = 1.

THEOREM 7.1. Let B ∈ Y , and let Z be a Poisson distributed random vari-
able with mean λ ∈ [0,∞). Suppose that ESt (B)2 < ∞. If St (B) is induced by a
Poisson process ηt with t ≥ 1, then

dW
(
St (B),Z

) ≤ ∣∣ESt (B) − λ
∣∣ + 2

(
ESt (B)2 − ESt (B) − (

ESt (B)
)2)

≤ ∣∣ESt (B) − λ
∣∣ + 2k+1

k! rt (B).

If St (B) is induced by a binomial process βt with t ≥ 1, then

dW
(
St (B),Z

) ≤ ∣∣ESt (B) − λ
∣∣ + 2

(
ESt (B)2 − ESt (B) − (�t� − k)k

(�t�)k
(
ESt (B)

)2
)

+ 6kk!
t

(
ESt (B)

)2

≤ ∣∣ESt (B) − λ
∣∣ + 2k+1

k! rt (B) + 6kk!
t

(
ESt (B)

)2
.

PROOF. We define the point processes

ξt := 1

k!
∑

(x1,...,xk)∈μk
t,�=

δft (x1,...,xk), t ≥ 1,

and denote their intensity measures by Lt , t ≥ 1. By construction, St (B) and ξt (B)

follow the same distribution. We notice that for any fixed h ∈ Lip(1) (recall that
these are all h :R → R whose Lipschitz constant is at most one) and B ∈ Y the
mapping ω 
→ h(ω(B)) from ÑY to R satisfies∣∣h(

ω1(B)
) − h

(
ω2(B)

)∣∣ ≤ ∣∣ω1(B) − ω2(B)
∣∣ ≤ dTV(ω1,ω2), ω1,ω2 ∈ ÑY,
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and thus belongs to L1. Consequently, if ζt is a Poisson process on Y with intensity
measure Lt , the definition of the Wasserstein distance and (2.6) yield

dW
(
St (B), ζt (B)

) = dW
(
ξt (B), ζt (B)

) = sup
h∈Lip(1)

∣∣Eh
(
ξt (B)

) − Eh
(
ζt (B)

)∣∣
≤ sup

g∈L1

∣∣Eg(ξt |B) − Eg(ζt |B)
∣∣ = dKR(ξt |B, ζt |B).

Now Theorem 3.1 and the observation that Lt (B) = ESt (B) imply the result for
the choice λ = ESt (B). The general case follows from the triangle inequality for
the Wasserstein distance and the fact that the Wasserstein distance between a Pois-
son random variable with mean ESt (B) and another Poisson random variable with
mean λ is bounded by |ESt (B) − λ|. �

We emphasize that Theorem 7.1 deals with Poisson approximation in Wasser-
stein distance. As already stated in (2.4), this is stronger than approximation in
total variation distance, which is usually considered in the literature; see [10] for
the only exception we are aware of. This is possible thanks to our functional limit
Theorem 3.1, which deals with the Kantorovich–Rubinstein distance rather than
the total variation distance for point processes.

The Poisson approximation in total variation distance of U-statistics over bino-
mial input was considered in [7]. If we assume that ESt (B) = λ for t ≥ 1 for the
binomial case in Theorem 7.1, we obtain up to a constant, which may depend on λ,
the same bound as in [7], Theorem 2, for the total variation distance.

In [32], an abstract bound for the Poisson approximation of Poisson functionals
(i.e., random variables depending on a Poisson process) is derived, which is also
applicable to U-statistics over Poisson input. Our Theorem 7.1 yields better rates of
convergence for this special class of Poisson functionals. In fact, the bound in [43],
Proposition 4.1, which is derived from [32], involves the square root of r̂t (B) [see
Remark 3.4(iii)], while in the bound for the Poisson case in Theorem 7.1 only
r̂t (B) enters.

To illustrate the use of Theorem 7.1 let us consider a particular example, which
will recur also in the following subsections. Let K ⊂ Rd (d ≥ 1) be a compact con-
vex set with volume one. For t ≥ 1 let ηt be a homogeneous Poisson process in K

of intensity t , and denote by βt a binomial process in K with �t� points distributed
according to the uniform distribution on K . For a family (θt )t≥1 of positive real
numbers let us construct the random geometric graph with vertex set μt , where μt

is ηt or βt , by drawing an edge between two distinct vertices y1 and y2 whenever
their Euclidean distance ‖y1 − y2‖ is bounded by θt . These random graphs are the
natural geometric counterparts to the classical Erdös–Rényi models for combinato-
rial random graphs. For background material we refer the reader to the monograph
[34] and also to the recent paper [37] as well as the references cited therein.
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For the random geometric graph introduced above, let Et be the number of
edges. Note that Et is a U-statistic of the form

Et = 1

2

∑
(y1,y2)∈μ2

t, �=

1
(‖y1 − y2‖ ≤ θt

)
.

The multivariate Mecke formula (2.1) and a computation using spherical coordi-
nates show that Et has expectation t2(κdθd

t + O(θd+1
t ))/2 in the Poisson case,

as θt → 0. For an underlying binomial process the expected number of edges is
�t�(�t� − 1)(κdθd

t + O(θd+1
t ))/2, as θt → 0. If the expectation of Et converges to

a constant, as t → ∞, Et can be well approximated by a Poisson random variable.
In contrast to [32], Theorem 5.1, whose proof involves various nontrivial compu-
tations, we can deduce a corresponding approximation result from Theorem 7.1;
the proof is postponed to Section 7.4.

COROLLARY 7.2. Assume that limt→∞ t2θd
t = λ ∈ [0,∞), and let Z be a

Poisson distributed random variable with mean κdλ/2. Then there is a constant
c > 0 only depending on the space dimension d , the set K and supt≥1 t2θd

t such
that

dW(Et ,Z) ≤ c
(∣∣t2θd

t − λ
∣∣ + t−min{2/d,1}), t ≥ 1.

REMARK 7.3. Using the classical Chen–Stein method for Poisson approxi-
mation, Theorem 3.4 in [34] delivers a version of Corollary 7.2 with the same rate
of convergence in the total variation distance in case of an underlying binomial
process. For the Poisson case, Theorem 3.12(iii) in [26] is a qualitative version of
Corollary 7.2, which has been established by the method of moments, and Theo-
rem 5.1 in [32] adds a total variation bound. Corollary 7.2 extends these results to a
stronger probability metric and at the same time improves the rates of convergence
in [32]. Namely, for space dimensions d ∈ {1,2}, Corollary 7.2 yields an upper
bound of order |t2θd

t −λ| + t−1 (for the Wasserstein distance), while Theorem 5.1
in [32] delivers an upper bound of order |t2θd

t − λ| + t−1/2 (for the total variation
distance).

7.2. Compound Poisson approximation of U-statistics. As in the previous sub-
section, we denote by μt , t ≥ 1, a Poisson process ηt or a binomial process βt on
a lcscH space X. For k ∈ N and measurable functions ht :Xk → R, t ≥ 1, we con-
sider the family of U-statistics

St := 1

k!
∑

(x1,...,xk)∈μk
t, �=

ht (x1, . . . , xk), t ≥ 1.

Since the sum runs also over all permutations of a fixed (x1, . . . , xk) ∈ μk
t,�=, we

assume without loss of generality that ht is symmetric for any t ≥ 1. For a fixed
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constant γ ∈ R and t ≥ 1, we define

Lt (A) := 1

k!E
∑

(x1,...,xk)∈μk
t, �=

1
(
ht (x1, . . . , xk) ∈ t−γ A \ {0}), A ∈ B(R),

and

rt := max
1≤�≤k−1

∫
X�

(∫
Xk−�

1
(
ht (x1, . . . , xk) �= 0

)
Kk−�

t

(
d(x�+1, . . . , xk)

))2

× K�
t

(
d(x1, . . . , x�)

)
for k ≥ 2, and put rt := 0 if k = 1. The following result compares the U-statistic St

with a compound Poisson random variable. Most of the existing literature is based
on a direct use of Stein’s method, but only for discrete compound Poisson random
variables. This approach is technically sophisticated and also needs, in general,
certain monotonicity assumptions. Moreover, there are even situations in which
the solution of the so-called Stein equation cannot be controlled appropriately,
and hence in which Stein’s method is of little use; see [9]. Being a consequence
of the functional limit theorem (Theorem 3.1), our approach circumvents such
technicalities and also allows us to deal with compound Poisson random variables
having a discrete or continuous distribution.

THEOREM 7.4. Let ζ be a Poisson process on R with a finite intensity measure
M, let Z := ∑

x∈ζ x and let γ ∈ R. Then

dTV
(
tγ St ,Z

) ≤ dTV(Lt ,M) + 2k+1

k! rt , t ≥ 1

if in the definition of St a Poisson process ηt is used, and

dTV
(
tγ St ,Z

) ≤ dTV(Lt ,M) + 2k+1

k! rt + 6kk!
t

Lt (R)2, t ≥ 1

if the underlying point process is a binomial process βt .

PROOF. We consider the point processes

tγ • ξt := 1

k!
∑

(x1,...,xk)∈μk
t, �=

1
(
ht (x1, . . . , xk) �= 0

)
δtγ ht (x1,...,xk), t ≥ 1.

It follows from the definition of the total variation distance and (2.6) that

dTV
(
tγ St ,Z

) = sup
A∈B(R)

∣∣∣∣E1
( ∑

x∈tγ •ξt

x ∈ A

)
− E1

(∑
x∈ζ

x ∈ A

)∣∣∣∣ ≤ dKR
(
tγ • ξt , ζ

)
since the maps ω → 1(

∑
x∈ω x ∈ A) belong to L1. Now Theorem 3.1 implies that

dKR
(
tγ • ξt , ζ

) ≤ dTV(Lt ,M) + 2k+1

k! rt , t ≥ 1,
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and

dKR
(
tγ • ξt , ζ

) ≤ dTV(Lt ,M) + 2k+1

k! rt + 6kk!
t

Lt (R)2, t ≥ 1,

for the Poisson and the binomial case, respectively. This completes the proof. �

REMARK 7.5. A compound Poisson random variable Z can alternatively be
written as Z = ∑N

i=1 Xi , where N is a Poisson distributed random variable and
(Xi)i∈N is a sequence of independent and identically distributed random variables
such that N and (Xi)i∈N are independent. However, the representation of Z in
terms of the Poisson process ζ fits better into our general framework.

For the compound-Poisson approximation of U-statistics in the binomial case,
a bound similar to that in Theorem 7.4 is derived in [21], Section 3.6. However,
in that paper ht is required to take values in the nonnegative integers, whereas
we do not need to impose such a condition. In addition, we are not aware of any
analogous result for an underlying Poisson process.

As an application of Theorem 7.4 we consider general edge-length functionals
of the random geometric graph introduced in the course of the previous subsection.
Fix a parameter b ∈ R, and define

L
(b)
t := 1

2

∑
(x1,x2)∈μ2

t, �=

1
(
dist(x1, x2) ≤ θt

)
dist(x1, x2)

b, t ≥ 1,

where μt stands either for a Poisson process ηt or a binomial process βt . In par-
ticular, L

(0)
t is the number of edges in the random geometric graph, and L

(1)
t is its

total edge length. As in Section 7.1, we consider the situation where the distance
parameters (θt )t≥1 are chosen in such a way that the expected number of edges
converges to a constant, as t → ∞. Recall that in Corollary 7.2 the number of
edges L

(0)
t has been approximated by a Poisson random variable. For general ex-

ponents b we approximate L
(b)
t by a suitable compound Poisson random variable.

The proof of the next result is postponed to Section 7.4 below.

COROLLARY 7.6. Fix b ∈ R, and assume that limt→∞ t2θd
t = λ ∈ [0,∞).

Define Z := ∑N
i=1 ‖Xi‖b, where N is a Poisson distributed random variable with

mean κdλ/2 and (Xi)i∈N are independent and uniformly distributed points in
Bd(λ1/d), which are independent of N . Then there is a constant c > 0 only de-
pending on the space dimension d , the set K and supt≥1 t2θd

t such that

dTV
(
t2b/dL

(b)
t ,Z

) ≤ c
(∣∣t2θd

t − λ
∣∣ + t−min{2/d,1}), t ≥ 1.

REMARK 7.7. Corollary 7.6 without a rate of convergence has been derived
in [37], Theorem 3.5, by combining a point process convergence result with the
continuous mapping theorem. Thanks to Theorem 7.4 we are able to add a rate of
convergence for the total variation distance.
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7.3. Approximation of U-statistics by α-stable random variables. Let us de-
note by μt , t ≥ 1, a Poisson process ηt or a binomial process βt as in the previous
subsections. For fixed k ∈ N and measurable functions ht :Xk →R, t ≥ 1, let

St := 1

k!
∑

(x1,...,xk)∈μk
t, �=

ht (x1, . . . , xk), t ≥ 1.

Here, we can and will assume without loss of generality that ht is symmetric
for any t ≥ 1. We are interested in the limiting behavior of these U-statistics
in situations where their summands are heavy tailed, and approximate St by an
α-stable random variable Z. Recall that this means that for any n ∈ N there
are independent copies Z1, . . . ,Zn of Z satisfying the distributional equality

n−1/α(Z1 + · · · + Zn)
D= Z. We fix α ∈ (0,1) and γ ∈ R and apply our functional

limit theorem to the point processes

tγ • ξt := 1

k!
∑

(x1,...,xk)∈μk
t, �=

1
(
ht (x1, . . . , xk) �= 0

)
δsign(ht (x1,...,xk))t

γ |ht (x1,...,xk)|−α ,

t ≥ 1,

on R, where sign(a) = 1(a ≥ 0)−1(a < 0). If μt is a binomial process, the conver-
gence of the U-statistic St to an α-stable random variable was considered in [17]
without giving rates of convergence. Thanks to our quantitative bound for the
Kantorovich–Rubinstein distance in Theorem 3.1, we are in the position to add
a rate of convergence for the Kolmogorov distance. The statement of our result is
prepared by introducing some notation. For A ∈ B(R) and t ≥ 1, we define

Lt (A) := 1

k!E
∑

(x1,...,xk)∈μk
t, �=

1
(
ht (x1, . . . , xk) �= 0

)
× 1

(
sign

(
ht (x1, . . . , xk)

)∣∣ht (x1, . . . , xk)
∣∣−α ∈ t−γ A

)
,

which is the intensity measure of tγ • ξt , and

rt (A) := max
1≤�≤k−1

∫
X�

(∫
Xk−�

1
(
ht (x1, . . . , xk) �= 0

)
× 1

(
sign

(
ht (x1, . . . , xk)

)∣∣ht (x1, . . . , xk)
∣∣−α ∈ t−γ A

)
× Kk−�

t

(
d(x�+1, . . . , xk)

))2

× K�
t

(
d(x1, . . . , x�)

)
if k ≥ 2 and rt (A) := 0 if k = 1. The following result contains a quantitative bound
for the approximation of U-statistics by an α-stable random variable with α ∈
(0,1).
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THEOREM 7.8. Let α ∈ (0,1), and let M be either the Lebesgue measure on R
or its restriction to R+. Define Z := ∑

x∈ζ sign(x)|x|−1/α , where ζ is a Poisson
process with intensity measure M. Assume that there are a constant γ ∈ R and
functions g1, g2, g3 :R2+ →R+ such that, for any a > 0 and t ≥ 1,

dTV
(
Lt |[−a,a],M|[−a,a]

) ≤ g1(a, t), rt
([−a, a]) ≤ g2(a, t)(7.1)

and

t−γ /α

k! E
∑

(x1,...,xk)∈μk
t, �=

1
(∣∣ht (x1, . . . , xk)

∣∣ < tγ/αa−1/α)∣∣ht (x1, . . . , xk)
∣∣

(7.2)
≤ g3(a, t).

Then there is a constant C > 0 only depending on α and k such that

dK
(
t−γ /αSt ,Z

) ≤ Cg(t), t ≥ 1,

where

g(t) :=

⎧⎪⎪⎨⎪⎪⎩
inf
a>0

max
{
a1/2−1/(2α), g1(a, t), g2(a, t),

√
g3(a, t)

}
, μt = ηt ,

inf
a>0

max
{
a1/2−1/(2α), g1(a, t), g2(a, t),

√
g3(a, t), a2/t

}
, μt = βt .

PROOF. For a > 0 we define the random variables

St,a := 1

k!
∑

(x1,...,xk)∈μk
t, �=

1
(∣∣ht (x1, . . . , xk)

∣∣ ≥ tγ /αa−1/α)
ht (x1, . . . , xk), t ≥ 1,

and

Za := ∑
x∈ζ

1
(|x| ≤ a

)
sign(x)|x|−1/α.

Then, for any a > 0 and ε > 0, we find that

dK
(
t−γ /αSt ,Z

)
≤ P

(
t−γ /α|St − St,a| ≥ ε

) + dK
(
t−γ /αSt,a,Z

)
+ sup

z∈R
∣∣P(Z ≤ z) − P(Z ≤ z + ε)

∣∣
≤ P

(
t−γ /α|St − St,a| ≥ ε

) + P
(|Z − Za| ≥ ε

) + dK
(
t−γ /αSt,a,Za

)
+ 2 sup

z∈R
∣∣P(Z ≤ z) − P(Z ≤ z + ε)

∣∣.
Combining Markov’s inequality with the multivariate Mecke formula (2.1) and
assumption (7.2), we obtain that, for all ε > 0,

P
(|Z − Za| ≥ ε

) ≤ 2

ε

∫ ∞
a

x−1/α dx = 2a1−1/α

(1/α − 1)ε
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and

P
(
t−γ /α|St − St,a| ≥ ε

) ≤ g3(a, t)

ε
.

As α-stable random variable, Z has a bounded density; see [47], page 13. Hence
there is a constant Cα > 0 only depending on α such that

sup
z∈R

∣∣P(Z ≤ z) − P(Z ≤ z + ε)
∣∣ ≤ Cαε, ε ≥ 0.

It follows from the definition of the Kolmogorov distance and (2.6) that

dK
(
t−γ /αSt,a,Za

) = sup
z∈R

∣∣∣∣P( ∑
x∈tγ •ξt

1
(
x ∈ [−a, a]) sign(x)|x|−1/α ≤ z

)

− P
(∑

x∈ζ

1
(
x ∈ [−a, a]) sign(x)|x|−1/α ≤ z

)∣∣∣∣
≤ dKR

(
tγ • ξt |[−a,a], ζ |[−a,a]

)
.

Now we consider the Poisson case and the binomial case separately. For an under-
lying Poisson process, Theorem 3.1 and the assumptions in (7.1) show that

dKR
(
tγ • ξt |[−a,a], ζ |[−a,a]

) ≤ g1(a, t) + 2k+1

k! g2(a, t), t ≥ 1.

Combining this with the previous estimates, we see that

dK
(
t−γ /αSt ,Z

) ≤ 2a1−1/α

(1/α − 1)ε
+ g3(a, t)

ε
+ 2Cαε + g1(a, t) + 2k+1

k! g2(a, t).

Thus choosing ε =
√

max{a1−1/α, g3(a, t)} yields the assertion. For the binomial
case, Theorem 3.1 and the assumptions in (7.1) imply that

dK(St,a,Za) ≤ 2a1−1/α

(1/α − 1)ε
+ g3(a, t)

ε
+ 2Cαε + g1(a, t)

+ 2k+1

k! g2(a, t) + 6kk!
t

(
8a2 + 2g1(a, t)2)

,

where we have used that Lt ([−a, a])2 ≤ (2a +g1(a, t))2 ≤ 8a2 +2g1(a, t)2. Now
the same choice for ε as in the Poisson case and the fact that the Kolmogorov
distance is bounded by one complete the proof. �

REMARK 7.9. For all choices of α ∈ (0,2] there are α-stable random vari-
ables, and one can think of U-statistics converging to such variables. For α ∈ (1,2]
and the binomial case this problem was considered in [17, 22, 30]. A tech-
nique similar to that used in the proof of Theorem 7.8 should also be appli-
cable if α ∈ (1,2]. In this case the limiting random variable is given by Z :=
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lima→∞ Za − EZa , whence an additional centering is necessary. In order to derive
bounds similar to those of Theorem 7.8, one has to control the distance between
Z and Za , which might be difficult to tackle. We would like to mention that the
bounds derived in [22] also involve a quantity similar to dK(Z,Za).

To give an application of Theorem 7.8, let us consider the following distance-
power statistics, which are closely related to the edge functionals of random geo-
metric graphs considered above. Let for some d ≥ 1, K ⊂Rd be a compact convex
set with volume one, and let K be the restriction of the Lebesgue measure to K .
Let ηt be a Poisson process in K with intensity measure Kt = tK, t ≥ 1, and let
βt , t ≥ 1 be a binomial process of �t� points, which are independent and uniformly
distributed in K . Our aim is to investigate the limiting behavior of the U-statistics

St := 1

2

∑
(x1,x2)∈μk

t, �=

dist(x1, x2)
−τ , t ≥ 1,

where τ > 0 and μt stands for ηt or βt . The following result, whose proof will be
given in Section 7.4 below, deals with the case τ > d .

COROLLARY 7.10. Let τ > d , let ζ be a homogeneous Poisson process on
R+ with intensity one and let Z := (κd/2)τ/d ∑

x∈ζ x−τ/d . Then there is a constant
C > 0 only depending on K , τ and d such that

dK
(
t−2τ/dSt ,Z

) ≤ Ct�, t ≥ 1,

with

� := inf
u>0

max
{

1

2
u − τ

2d
u,2u − 1, u + 1

d
u − 2

d

}
.

EXAMPLE 7.11. To have a more specific example, take τ = 2d in Corol-
lary 7.6, in which case � has the form

� = inf
u>0

max
{
−u

2
,2u − 1, u + u − 2

d

}
.

For d ∈ {1,2} the infimum is attained at u = 2
5 , giving that � = −1

5 . For d ≥ 3, the
infimum is attained at u = 4

3d+2 so that � = − 2
3d+2 in this case. Thus

dK
(
t−4St ,Z

) ≤
{

Ct−1/5, d ∈ {1,2},
Ct−2/(3d+2), d ≥ 3,

where the 1/2-stable random variable Z is of the form Z = cd

∑
x∈ζ x−2 for a

unit-intensity homogeneous Poisson process ζ on R+ and with cd = κ2
d/4. The
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distribution of Z can be characterized more explicitly. Namely, applying [24],
Lemma 12.2(i), we see that for all t ∈ R,

E exp(itZ) = E exp
(
itcd

∑
x∈ζ

x−2
)

= exp
(∫ ∞

0

(
eitcdx−2 − 1

)
dx

)

= exp(−√−itπcd),

where i is the imaginary unit. This is the characteristic function of a cen-
tred Lévy distribution with scale parameter πcd/2. Thus Z has density x 
→
1
2

√
cd/x3 exp(−πcd/(4x))1(x > 0).

REMARK 7.12. Note that if τ < d/2, then St satisfies a central limit theorem
as shown in Theorem 3.1 of [37]. Moreover, the choice d/2 ≤ τ ≤ d corresponds
to the situation α ∈ [1,2], to which Remark 7.9 applies.

7.4. Random geometric graphs. Let K ⊂ Rd (d ≥ 1) be a compact convex set
with volume one. For t ≥ 1 let μt either be a homogeneous Poisson process ηt of
intensity t ≥ 1 in K or a binomial process βt of �t� independent and uniformly
distributed points in K , and let (θt )t≥1 be a family of positive real numbers. Based
on this data we construct a random geometric graph as explained in Section 7.1. In
contrast to Corollaries 7.2 and 7.6, where limt→∞ t2θd

t = λ ∈ [0,∞), we assume
at first that limt→∞ t2θd

t = ∞ and are interested in the point process ξt,a on K

defined by

ξt,a := 1

2

∑
(x,y)∈μ2

t, �=

1
(‖x − y‖ ≤ min

{
θt , t

−2/da
})

δ(x+y)/2

for some a > 0. In other words, ξt,a charges the collection of all midpoints of edges
of the random geometric graph whose length does not exceed t−2/da.

THEOREM 7.13. Let a > 0, let ζ be a Poisson process on K with intensity
measure κd

2 advol|K and let ξt,a be constructed from a Poisson process ηt or a
binomial process βt with t ≥ 1. Also suppose that limt→∞ t2θd

t = ∞. Then t0 :=
sup{t ≥ 1 : t2θd

t < ad} ∪ {1} < ∞, and there is a constant C > 0 only depending
on a, d and K such that

dKR(ξt,a, ζ ) ≤ Ct−min{2/d,1}, t > t0.

The rest of this subsection is devoted to the proofs of Theorem 7.13 as well as
Corollaries 7.2, 7.6 and 7.10. We prepare with the following lemma. In order to
deal with the Poisson and the binomial case in parallel, we define χ(t) = t2 and
χ̃ (t) = t3 if μt = ηt and χ(t) = �t�(�t� − 1) and χ̃ (t) = (�t�)3 if μt = βt .
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LEMMA 7.14. There is a constant CK > 0 only depending on d and K such
that ∣∣∣∣1

2
E

∑
(x,y)∈μ2

t, �=

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)

− κd

2
vol(B)t2d

∫ ∞
0

1(r ∈ Ã)rd−1 dr

∣∣∣∣(7.3)

≤ 2CKκdt2(
ãd+1 + ã2d) + κd

2
t ãd

for all Borel sets B ⊂ K and Ã ⊂ [0, ã] with ã > 0. Moreover,

χ̃(t)

∫
K

(∫
K

1
(
(x + y)/2 ∈ B,‖x − y‖ ≤ u

)
dx

)2

dy ≤ 8t3κ2
du2d(7.4)

for all Borel sets B ⊂ K and u ≥ 0.

PROOF. By the multivariate Mecke formula (2.1) for the Poisson process and
its analogue (2.2) for the binomial case, we obtain that

1

2
E

∑
(x,y)∈μ2

t, �=

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)

= χ(t)

2

∫
K

∫
K

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)
dx dy

= χ(t)

2

∫
Rd

∫
Rd

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)
dx dy

− χ(t)

2

∫
(Rd )2\K2

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)
d(x, y).

To the first term in the last expression we apply the change of variables u = x − y,
v = (x + y)/2, which has Jacobian one, and spherical coordinates to see that

χ(t)

2

∫
Rd

∫
Rd

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)
dx dy

= χ(t)

2

∫
Rd

∫
Rd

1
(
v ∈ B,‖u‖ ∈ Ã

)
dudv

= χ(t)

2
vol(B)dκd

∫ ∞
0

1(r ∈ Ã)rd−1 dr.

A straightforward compuatation shows that∣∣∣∣(t2 − χ(t)
)

vol(B)
κd

2
d

∫ ∞
0

1(r ∈ Ã)rd−1 dr

∣∣∣∣ ≤ κd

2
t ãd .
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For the second term we have, independently of B , the upper bound

χ(t)

2

∫
(Rd )2\K2

1
(
(x + y)/2 ∈ B,‖x − y‖ ∈ Ã

)
d(x, y)

≤ 2t2 vol
({

x ∈ Rd \ K : dist(x,K) ≤ ã
})

κdãd .

From Steiner’s formula (2.7) it follows that there is a constant CK > 0 only de-
pending on d and K such that

vol
({

x ∈ Rd \ K : dist(x,K) ≤ ã
}) ≤ CK

(
ã + ãd)

.

Combining these estimates yields the first bound. On the other hand, we have

χ̃ (t)

∫
K

(∫
K

1
(
(x + y)/2 ∈ B,‖x − y‖ ≤ u

)
dx

)2

dy ≤ 8t3
∫
K

(
κdud)2 dy

= 8t3κ2
du2d,

which is the second bound. �

PROOF OF THEOREM 7.13. Due to our assumption that limt→∞ t2θd
t = ∞,

we have that t0 := sup{t ≥ 1 : t2θd
t < ad} ∪ {1} < ∞. Note that min{θt , t

−2/da} =
t−2/da for t > t0. We denote by Lt,a the intensity measure of ξt,a . For t > t0 the
choice Ã = [0,min{θt , t

−2/da}] = [0, t−2/da] in (7.3) leads to∣∣∣∣Lt,a(B) − κd

2
vol(B)t2(

t−2/da
)d ∣∣∣∣

≤ 2CKκdt2(
t−2−2/dad+1 + t−4a2d) + κd

2
t−1ad

so that dTV(Lt,a,
κd

2 advol|K) ≤ C1t
−min{2/d,1} for t > t0 with a constant C1 > 0

only depending on a, d and K . Moreover, there is a constant C2 > 0 only depend-
ing on a, d and K such that Lt,a(K) ≤ C2 for all t > t0. Inequality (7.4) implies
that for t > t0,

χ̃ (t)

∫
K

(∫
K

1
(‖x − y‖ ≤ min

{
θt , t

−2/da
})

dx

)2

dy ≤ 8t3κ2
d

(
t−2/da

)2d

= 8κ2
da2d t−1.

Now, application of Theorem 3.1 completes the proof. �

PROOF OF COROLLARY 7.2. The choice B = K and Ã = [0, θt ] in (7.3) leads
to∣∣∣∣EEt − κd

2
λ

∣∣∣∣ ≤
∣∣∣∣κd

2
λ − κd

2
t2θd

t

∣∣∣∣ + ∣∣∣∣EEt − κd

2
t2θd

t

∣∣∣∣
≤ κd

2

∣∣λ − t2θd
t

∣∣ + 2CKκdt2(
θd+1
t + θ2d

t

) + κd

2
tθd

t
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≤ κd

2

∣∣λ − t2θd
t

∣∣ + 2CKκd

(
(supt≥1 t2θd

t )1+1/d

t2/d
+ (supt≥1 t2θd

t )2

t2

)

+ κd

2

supt≥1 t2θd
t

t

for t ≥ 1, which also implies that EEt is bounded by a constant only depending
on d , K and supt≥1 t2θd

t for t ≥ 1. It follows from (7.4) that

χ̃ (t)

∫
K

(∫
K

1
(‖x − y‖ ≤ θt

)
dx

)2

dy ≤ 8t3κ2
d θ2d

t ≤ 8κ2
d

(supt≥1 t2θd
t )2

t
.

Now, the assertion is a consequence of Theorem 7.1. �

PROOF OF COROLLARY 7.6. We assume that b �= 0 in the following since for
b = 0 the assertion follows from Corollary 7.2. For a Borel set A ⊂ [0,∞) we
define A1/b := {a1/b :a ∈ A \ {0}}. Hence we have that

Lt (A) := 1

k!E
∑

(x,y)∈μ2
t, �=

1
(‖x − y‖ ≤ θt ,‖x − y‖b ∈ t−2b/dA \ {0})

= 1

k!E
∑

(x,y)∈μ2
t, �=

1
(‖x − y‖ ∈ t−2/dA1/b ∩ [0, θt ]).

Moreover, we define

M(A) := κd

2
d

∫ λ1/d

0
1
(
r ∈ A1/b)

rd−1 dr, A ∈ B(R).

For a Borel set A ⊂ [0,∞), inequality (7.3) with B = K and Ã = t−2/dA1/b ∩
[0, θt ] implies that∣∣Lt (A) − M(A)

∣∣
≤

∣∣∣∣κd

2
t2d

∫ ∞
0

1
(
r ∈ t−2/dA1/b ∩ [0, θt ])rd−1 dr

− κd

2
d

∫ λ1/d

0
1
(
r ∈ A1/b)

rd−1 dr

∣∣∣∣
+ 2CKκdt2(

θd+1
t + θ2d

t

) + κd

2
tθd

t

≤ κd

2

∣∣λ − t2θd
t

∣∣ + 2CKκd

(
(supt≥1 t2θd

t )1+1/d

t2/d
+ (supt≥1 t2θd

t )2

t2

)

+ κd

2

supt≥1 t2θd
t

t
.
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Hence there are constants C1,C2 > 0 only depending on d , K and supt≥1 t2θd
t

such that dTV(Lt ,M) ≤ C1t
−min{2/d,1} for t ≥ 1 and Lt (R) ≤ C2 for t ≥ 1. It

follows from (7.4) that

χ̃ (t)

∫
K

(∫
K

1
(‖x − y‖ ≤ θt

)
dx

)2

dy ≤ 8t3κ2
d θ2d

t ≤ 8κ2
d

(supt≥1 t2θd
t )2

t
.

Now, application of Theorem 7.4 completes the proof. �

PROOF OF COROLLARY 7.10. In the following, we check that the assump-
tions of Theorem 7.8 are satisfied with ht (x, y) = (2/κd)τ/d‖x − y‖−τ with
α = d/τ and γ = 2. For a Borel set A ⊂ [0,∞) and t ≥ 1 we have that

Lt (A) := 1

2
E

∑
(x,y)∈μ2

t, �=

1
(
κd‖x − y‖d/2 ∈ t−2A

)

= 1

2
E

∑
(x,y)∈μ2

t, �=

1
(‖x − y‖ ∈ (2/κd)1/d t−2/dA1/d)

with A1/d := {x1/d :x ∈ A}. In the following let M be the restriction of the
Lebesgue measure to R+, and let a > 0. Since

κd

2
t2d

∫ ∞
0

1
(
r ∈ (2/κd)1/d t−2/d(

A ∩ [0, a])1/d)
rd−1 dr

= κd

2
t2

∫ ∞
0

1
(
u ∈ (2/κd)t−2(

A ∩ [0, a])) du =
∫ ∞

0
1
(
u ∈ A ∩ [0, a]) du

= M|[0,a](A),

application of (7.3) with B = K and Ã = (2/κd)1/d t−2/d(A∩[0, a])1/d yields that∣∣Lt |[0,a](A) − M|[0,a](A)
∣∣ ≤ 2CKκdt2(

cd+1
a t−2−2/d + c2d

a t−4) + κd

2
t−1cd

a

with ca = (2a/κd)1/d . Consequently, there is a constant C1 > 0 only depending on
d and K such that

dTV
(
Lt |[0,a],M|[0,a]

) ≤ C1
(
a1+1/d t−2/d + a2t−2 + at−1) =: g1(a, t), t ≥ 1.

It follows from (7.4) that

χ̃(t)

∫
K

(∫
K

1
(
κd‖x − y‖d/2 ≤ t−2a

)
dx

)2

dy

= χ̃ (t)

∫
K

(∫
K

1
(‖x − y‖ ≤ (2/κd)1/d t−2/da1/d)

dx

)2

dy

≤ 8t3κ2
d (2/κd)2t−4a2 = 32t−1a2 =: g2(a, t).
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Moreover, we have that

t−2τ/d

2
E

∑
(x,y)∈μ2

t, �=

1
(
(2/κd)τ/d‖x − y‖−τ ≤ t2τ/da−τ/d)

(2/κd)τ/d‖x − y‖−τ

≤ dκd(2/κd)τ/d t2−2τ/d
∫ ∞
(κd/2)1/d t−2/da1/d

r−τ rd−1 dr

= dκd

τ − d
(κd/2)1−2τ/da1−τ/d =: g3(a, t).

Now, Theorem 7.8 completes the proof. �

7.5. Proximity of Poisson flats. For a space dimension d ≥ 2 and a dimension
parameter m ≥ 1 satisfying m < d/2, we investigate the mutual arrangement of
the flats of a Poisson m-flat process, that is, a Poisson process on the space of
m-dimensional affine subspaces of Rd , which are called m-flats. In order to define
such a Poisson m-flat process in a rigorous way, recall that Gd

m and Ad
m stand

for the space of m-dimensional linear and m-dimensional affine subspaces of Rd ,
respectively. Let Q be a probability measure on Gd

m with the property that two
independent random subspaces L,M ∈ Gd

m with distribution Q are almost surely
in general position, meaning that the dimension of the linear hull of L and M is
2m with probability one. Note that this is satisfied, for example, if Q is absolutely
continuous with respect to the unique Haar probability measure on Gd

m; cf. [38],
Theorem 4.4.5(c). The measure Q induces a translation-invariant measure Kt on
Ad

m via ∫
Ad

m

g(E)Kt (dE) = t

∫
Gd

m

∫
E⊥

0

g(E0 + x)volE⊥
0
(dx)Q(dE0),(7.5)

where t ≥ 1 is an intensity parameter, g ≥ 0 is a measurable function on Ad
m and

volE⊥
0

denotes the Lebesgue measure on E⊥
0 , the orthogonal complement of E0.

We use the convention K := K1 and can re-write Kt as Kt = tK. We now consider
a Poisson process ηt with intensity measure Kt . This is what is usually called a
Poisson m-flat process in stochastic geometry [38], Chapter 4.4. One particular
problem for such m-flat processes is to describe the mutual arrangement of the
flats in space. Since m < d/2, any two different flats E,F of ηt do not intersect
each other with probability one. Thus they have a well-defined distance dist(E,F ),
and we denote by m(E,F) the midpoint of the almost surely uniquely determined
line segment realizing this distance (the perpendicular of E and F ). We are inter-
ested here in the point process of the midpoints m(E,F) such that the flats E,F

are close together, and m(E,F) is in a compact convex set K ⊂ Rd of volume
0 < vol(K) < ∞. To the best of our knowledge, Theorem 7.15 is the first result
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describing its asymptotic behavior, as t → ∞. To do so, we define for t ≥ 1 and
a > 0, ξt,a on K by

ξt,a := 1

2

∑
(E,F )∈η2

t, �=

δm(E,F )1
(
dist(E,F ) ≤ at−2/(d−2m),m(E,F ) ∈ K

)
.

The intensity measure Lt,a(B) of ξt,a for a Borel set B ⊂ K is given by

Lt,a(B) = t2

2

∫
Ad

m

∫
Ad

m

1
(
m(E,F) ∈ B,dist(E,F ) ≤ at−2/(d−2m))K(dE)K(dF)

due to the multivariate Mecke formula (2.1). It follows from [44], Theorem 1 (it is
readily checked that the identity there extends from compact convex sets to general
Borel sets) that

Lt,a(B) = t2

2
κd−2m

(
at−2/(d−2m))d−2m vol(B)

∫
Gd

k

∫
Gd

k

[M,L]Q(dL)Q(dM),

where [M,L] stands for the subspace determinant of M and L introduced in Sec-
tion 2. This leads to

Lt,a(B) = κd−2m

2
vol(B)ad−2m

∫
Gd

m

∫
Gd

m

[L,M]Q(dL)Q(dM).

Now, putting

C := κd−2m

2

∫
Gd

m

∫
Gd

m

[L,M]Q(dL)Q(dM),(7.6)

we see that

dTV
(
Lt,a,C ad−2mvol|K) = 0,

where vol|K stands for the restriction of the Lebesgue measure on Rd to K . More-
over, the proof of [44], Theorem 3, shows that there is a constant Ĉ > 0 only
depending on a, d , m, Q and K such that

r̂t := sup
E∈Ad

m

t

∫
Ad

m

1
(
m(E,F) ∈ K,dist(E,F ) ≤ at−2/(d−2m))K(dF) ≤ Ĉt−1.

From this we conclude that

rt := t3
∫
Ad

m

(∫
Ad

m

1
(
m(E,F) ∈ K,dist(E,F ) ≤ at−2/(d−2m))K(dE)

)2

K(dF)

≤ 2ĈLt,a(K)t−1

and in view of Theorem 3.1 the following result for the midpoint process ξt,a .
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THEOREM 7.15. Let a > 0, and let ζ be a Poisson process with intensity
measure C ad−2mvol|K , where C is as at (7.6). Then there is a constant C > 0
depending on a, d , m, Q and K such that

dKR(ξt,a, ζ ) ≤ Ct−1, t ≥ 1.

REMARK 7.16. (i) Note that because of (2.8), the constant C takes the par-
ticularly appealing form

C = 1

2

(d−m
m

)(d
m

) κ2
d−m

κd

if Q is the invariant Haar probability measure on Gd
m (or, equivalently, if the m-flat

process is stationary and isotropic; see [38]).
(ii) As opposed to our previous applications, we do not consider a binomial

counterpart to Theorem 7.15. The reason for that is that there is no normalization,
which would turn the measure K1 defined at (7.5) into a probability measure.

(iii) Theorem 7.15 extends Theorem 7.13 from m = 0 (which has been excluded
here for technical reasons) to arbitrary m satisfying m < d/2. However, due to the
slightly different set-ups (an underlying point process on the compact set K vs.
a point process on the noncompact space Ad

m), there are boundary effects in the
context of Theorem 7.13, implying that the total variation distance dTV(Lt,a,M) is
not identically zero there. These boundary effects are not present for m ≥ 1, which
eventually leads to the rate O(t−1) for the Kantorovich–Rubinstein distance in this
case.

7.6. Random polytopes with vertices on the sphere. Let Sd−1 be the unit
sphere of dimension d − 1 (d ≥ 2). Let μt be a Poisson process ηt on Sd−1 whose
intensity measure is a constant multiple t ≥ 1 of the normalized spherical Lebesgue
measure or a binomial process βt of �t� independent and uniformly chosen points
on Sd−1. The convex hull conv(μt ) of μt is a random polytope with vertices on
Sd−1, and we denote by Dt the diameter of conv(μt ), that is,

Dt := max
(x,y)∈μ2

t, �=
‖x − y‖.

More generally, define the point process of all reversed interpoint distances by

ξt = 1

2

∑
(x,y)∈μ2

t, �=

δ2−‖x−y‖.

Clearly, Dt is then two minus the distance from the origin to the closest point of ξt .
We define

Lt (A) := 1

2
E

∑
(x,y)∈μ2

t, �=

1
(
t4/(d−1)(2 − ‖x − y‖) ∈ A

)
, A ⊂ R+ Borel.
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FIG. 1. Illustration of the argument used in the derivation of Theorem 7.17.

Let χ(t) := t2 in the Poisson case and χ(t) := �t�(�t� − 1) in the binomial case.
Applying the Mecke formula (2.1) or its analogue (2.2) for binomial processes,
respectively, we see that

Lt

([0, a])
= χ(t)

2(dκd)2

∫
Sd−1

∫
Sd−1

1
(‖x − y‖ ≥ 2 − at−4/(d−1))Hd−1(dx)Hd−1(dy),

where dκd is the surface area of Sd−1 and Hd−1 stands for the (d −1)-dimensional
Hausdorff measure. For fixed y ∈ Sd−1, the indicator function is one if and only
if the point x is contained in a certain spherical cap Sd−1 ∩ Bd(−y, r) centered
at the antipodal point −y of y, whose radius r has to be determined. For this, we
refer to Figure 1 and notice that (2 − s)2 + r2 = 4 so that r = √

4s − s2. Hence the
(d − 1)-dimensional volume of Sd−1 ∩ Bd(−y, r) is given by

(d − 1)κd−1

∫ 2s−s2/2

0

(
2h − h2)(d−3)/2 dh,

independently of y. Using the substitution h = 2ut−4/(d−1) − u2t−8/(d−1)/2, this
means that

Lt

([0, a]) = χ(t)

2dκd

(d − 1)κd−1

∫ 2at−4/(d−1)−a2t−8/(d−1)/2

0

(
2h − h2)(d−3)/2 dh

= χ(t)

2dκd

(d − 1)κd−1

∫ a

0

(
4ut−4/(d−1) − u2t−8/(d−1)

− (
2ut−4/(d−1) − u2t−8/(d−1)/2

)2)(d−3)/2

× (
2t−4/(d−1) − ut−8/(d−1)) du

= 1

2dκd

χ(t)

t2 (d − 1)κd−1

×
∫ a

0

(
4u − u2t−4/(d−1) − t−4/(d−1)(2u − u2t−4/(d−1)/2

)2)(d−3)/2

× (
2 − ut−4/(d−1)) du.
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Hence we have for any Borel set A ⊂ R+ that

Lt (A) = (d − 1)κd−1

2dκd

χ(t)

t2

×
∫
A

(
4u − u2t−4/(d−1) − t−4/(d−1)(2u − u2t−4/(d−1)/2

)2)(d−3)/2

× (
2 − ut−4/(d−1)) du.

The measure Lt converges, as t → ∞ and in the strong sense, to a measure M on
R+ given by

M(A) := d − 1

dκd

κd−12d−3
∫
A

u(d−3)/2 du, A ⊂ R+ Borel.(7.7)

Moreover, for any bounded Borel set B ⊂ R+ there is a constant c1,B > 0 only
depending on B and the space dimension d such that

dTV(Lt |B,M|B) ≤ c1,Bt−min{4/(d−1),1}, t ≥ 1.

Here, we have used that |χ(t)/t2 − 1| ≤ t−1 for t ≥ 1. Let χ̃ (t) := t in the Poisson
case and χ̃ (t) := �t� in the binomial case. The same arguments as above also show
that

r̂t (B) := sup
x∈Sd−1

χ̃ (t)

dκd

∫
Sd−1

1
(
2 − ‖x − y‖ ∈ t−4/(d−1)B

)
Hd−1(dy) ≤ c2,B t−1

with a constant c2,B > 0 only depending on B and d so that 2Lt (B)r̂t (B) ≤
2c2,BLt (B)t−1. Combining Corollary 3.3 and Remark 3.4(iii), we conclude the
following result.

THEOREM 7.17. Let ζ be a Poisson process on R+ with intensity measure
given by (7.7), and let ξt be derived from a Poisson process ηt or a binomial process
βt on Sd−1. Then, for any bounded Borel set B ⊂R+ there is a constant CB,d > 0
only depending on B and d such that

dKR
((

t4/(d−1) • ξt

)|B, ζ |B) ≤ CB,d t−min{4/(d−1),1}, t ≥ 1.

In particular, for the diameter Dt of the random polytope, constructed from a Pois-
son process ηt or a binomial process βt , we have∣∣P(

t4/(d−1)(2 − Dt) > a
) − e−(1/(dκd))κd−12d−2a(d−1)/2 ∣∣ ≤ Ca,d t−min{4/(d−1),1},

t ≥ 1,

with a constant Ca,d > 0 only depending on a > 0 and d .
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REMARK 7.18. The limiting distribution for the diameter is also derived
in [31], Theorem 5.2, and [27], Theorem 3.1, where the latter allows the under-
lying random points to have distributions different from the uniform distribution.
While the result in [31] does not give any rates of convergence, in [27], Theo-
rem 3.1, it has erroneously been claimed that the rate of convergence for Dt to its
limiting Weibull random variable is of order t−1. However, in our notation the rate
of convergence stated in (2.5) in [27] concerns only the difference to a Weibull
random variable with parameter Lt ([0, a]) and not to a Weibull random variable
with parameter M([0, a]) as stated by the authors. For the difference to a Weibull
random variable with parameter Lt ([0, a]), our result also yields a rate of order
t−1 since dTV(Lt |[0,a],Lt |[0,a]) = 0 in this case.
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