
Functional Programs as Compressed Data

Naoki Kobayashi
Tohoku University

koba@ecei.tohoku.ac.jp

Kazutaka Matsuda
Tohoku University

kztk@kb.ecei.tohoku.ac.jp

Ayumi Shinohara
Tohoku University

ayumi@ecei.tohoku.ac.jp

1

Abstract
We propose an application of programming language techniques to
lossless data compression, where tree data are compressed as func-
tional programs that generate them. This “functional programs as
compressed data” approach has several advantages. First, it follows
from the standard argument of Kolmogorov complexity that the
size of compressed data can be optimal up to an additive constant.
Secondly, a compression algorithm is clean: it is just a sequence of
β-expansions for λ-terms. Thirdly, one can use program verifica-
tion and transformation techniques (higher-order model checking,
in particular) to apply certain operations on data without decom-
pression. In the paper, we present algorithms for data compression
and manipulation based on the approach, and prove their correct-
ness. We also report preliminary experiments on prototype data
compression/transformation systems.

1. Introduction
Data compression plays an important role in today’s information
processing technologies. Its advantages are not limited to the de-
crease of data size, which enables more data to be stored in a device.
Recent computer systems have a large memory hierarchy, from
CPU registers to several levels of cache memory, main memory,
hard disk, etc., so that decreasing the data size enables more data to
be stored in a higher level of the hierarchy, leading to more efficient
computation. Some data compression schemes allow various opera-
tions to be performed without decompression in time polynomial in
the size of the compressed data, so that one can sometimes achieve
super-polynomial speed-up by compressing data. Data compres-
sion can also be applied to knowledge discovery [10].

In this paper, we are interested in the (lossless) compression
of string/tree data as functional programs. The idea of “programs
as compressed data” can be traced back at least to Kolmogorov
complexity [20, 21], where the complexity of data is defined as the
size of the smallest program that generates the data. The use of
the λ-calculus in the context of Kolmogorov complexity has also
been studied before [37]. Despite the generality and potential of
the “functional programs as compressed data” approach, however,
it did not seem to have attracted enough attention, especially in the
programming language community.

The goal of the present paper is to show that we can use pro-
gramming language techniques, program verification/transformation
techniques in particular, to strengthen the “functional programs as
compressed data” approach, so that the approach becomes not only
of theoretical interest but potentially of practical interest. The ap-
proach has the following advantages.

1 This is an extended version of the paper that appeared in Proceedings
of ACM SIGPLAN 2012 Workshop on Partial Evaluation and Program
Manipulation (PEPM’12).

1. Generality and optimality: In principle, it subsumes arbitrary
compression schemes. Imagine some compression scheme and sup-
pose that w is the compressed form of data v in the scheme. Let
f be a functional program for decompression. Then, v can be ex-
pressed as a (closed) functional program f w. This is larger than w
only by a constant, i.e. the size of the program f . This is actually
the same as the argument for Kolmogorov complexity. We use a
functional language (or more precisely, the λ-calculus) instead of a
universal Turing machine, but it is easy to observe that the size of (a
certain binary representation of) a λ-term representing the original
data can be optimal with respect to Kolmogorov complexity, up to
an additive constant.
We can also naturally mimic popular compression schemes used in
practice. For example, consider the run-length coding. The string
“abaabaababbbb” can be compressed as [3, “aba”, 4, “b”], meaning
that the string consists of 3 repetitions of “aba” and 4 repetitions of
“b”. This can be expressed as:

(repeat 3 "aba" (repeat 4 "b" ""))
where repeat is a function that takes a non-negative integer n and
strings s1 and s2, and returns the string sn

1 s2. For another example,
consider grammar-based compression, where strings or trees are
expressed as (a restricted form of) context-free (tree) grammars [4,
13, 22]. The grammar-based compression has recently been studied
actively, and used in practice for compression of XML data [4]. For
instance, consider the tree shown in Figure 1 (which has been taken
from in [4]). It can be compressed as the following tree grammar:

S = B(B(A)) A = c(a, a) B(y) = c(A,d(A, y))

Using the λ-calculus, we can express it by:

let A = c a a in let B = λy.cA (dA y) in B(B(A))

where the sharing of the tree context λy.c(A,d(A, y)) is naturally
expressed by the λ-term. The data compression by a common pat-
tern extraction then corresponds to an inverse β-reduction step. The
previous grammar-based compression uses context-free grammars
and their variants, while the λ-calculus has at least the same expres-
sive power as higher-order grammars. Thus, as far as data compres-
sion is concerned, our approach can be considered a higher-order
extension of the grammar-based compression and can achieve a
theoretically higher compression ratio.

2. Data manipulation without decompression: Besides the com-
pression ratio and the efficiency of the compression/decompression
algorithms, an important criterion is what operations can be di-
rectly applied to compressed data without decompression.In fact,
the main strength of the grammar-based approach [4, 13, 23, 24, 29]
is that a large set of operations, such as pattern matching and string
replacement, can be performed without decompression. It is partic-
ularly important when the size of original data is too large to fit into
memory, but the size of the compressed data is small enough. As we
show in the present paper, the “functional programs as compressed
data” approach also enjoys such a property, by using program ver-
ification and transformation techniques. For example, consider a

1 2011/11/28

c

c

a a

d

c

a a

c

c

a a

d

c

a a

c

a a

Figure 1. A tree

query to ask whether a given tree T matches a given pattern P . It
can be rephrased as the query of whether the given tree T is ac-
cepted by a tree automaton MP . Then, the problem of answering
the query without decompression is: “Given a functional program
p, is the tree generated by p accepted by MP ?”. If p is a simply-
typed program, then this is just an instance of higher-order model
checking problems [15, 16, 26].
Pattern matching should often return not just a yes/no-answer, but
extra information such as the position of the first match and the
number of occurrences. Such operations can be expressed by trans-
ducers. Thus, the problem of performing such operations without
decompression can be formalized as follows (see also the diagram
in Figure 2):

“Given a tree transducer f and a functional program p that
generates a tree T , construct a program q that generates
f(T).”

Thanks to the “functional programs as compressed data” approach,
the construction of the program q is trivial: q = f̂(p), where
f̂ is a representation of transducerf as a functional program. Of
course, f̂(p) may not be an ideal representation, both in terms of the
size of the program and the efficiency for further transformations.
Fortunately, p is a tree generator and f̂ is a consumer, so that
we can apply the standard fusion transformation [8] to simplify
f̂(p). An alternative, more sophisticated approach is, as discussed
later, to extend a higher-order model checking algorithm to directly
construct q.

3. Applications to knowledge and program discovery: This is a
more speculative advantage. It is folklore that compressed data con-
tains the essence of the data, hence knowledge can be discovered by
compressing data to the extreme [10]. As we already discussed, the
use of functional programs allows us to compress data to the limit
(up to a constant factor), so that we may be able to extract knowl-
edge, represented in the form of a program, by compressing data.
In fact, consider the following Church numeral representation of
9: λs.λz.s(s(s(s(s(s(s(s(s(z))))))))). Our prototype compressor
for λ-terms produces:

(λn.λf.n(nf))(λs.λx.s(s(s(x)))).

The part λs.λx.s(s(s(x))) is the Church numeral 3, and the part
λn.λf.n(nf) is a square function for Church numerals. Thus, the
equation 32 = 9 and the square function have been automatically
discovered by compression.

In the rest of this paper, we first introduce the λ-calculus as the
language for expressing compressed data, and discuss the relation-
ship with Kolmogorov complexity in Section 2. We then describe
an algorithm for compressing trees as λ-terms in Section 3. In Sec-
tion 4, we extend and apply program verification/transformation
techniques to achieve processing of compressed trees (represented

Tree data T

Program p

decompression
(execution)

transducer f
Tree data f(T)

program
transformation

decompression
(execution)

Program q

Figure 2. Applying transducers without decompression

in the form of λ-terms) without decompression. Section 5 reports
preliminary experiments on data compression and processing. Sec-
tion 6 discusses related work and Section 7 concludes.

The main contributions of this paper are: (i) Showing that typed
λ-calculus with intersection types provides an optimal compression
size up to an additive constant (Section 2.2). (ii) Developing an al-
gorithm to compress trees as λ-terms (Section 3). (iii) Showing that
higher-order model checking can be used to answer pattern match
queries without decompression (Section 4.1). (iv) An extension of
higher-order model checking to manipulate compressed data with-
out decompression (Section 4.2). (v) Implementation and experi-
ments on the algorithms for data compression and data manipula-
tions without decompression (Section 5).

2. λ-Calculus as a Data Compression Language
2.1 Syntax

We use the λ-calculus for describing tree data and tree-generating
programs. To represent a tree, we assume a ranked alphabet (i.e.,
a mapping from a finite set of symbols to non-negative integers)
Σ. We write a, b, . . . for elements of the domain of Σ and call
them terminal symbols (or just symbols). They are used as tree
constructors below.

The set TermsΣ of λ-terms, ranged over by M , is defined by:

M ::= x | a | λx.M | M1M2.

Here, the meta-variables x and a range over variables and sym-
bols (a, b, . . .) respectively. Note that, if symbols are considered
free variables, this is exactly the syntax of the λ-calculus. As usual,
λx is a binder for the variable x, and we identify terms up to the
α-conversion. We also use the standard convention that the appli-
cation M1M2 is left-associative, and binds tighter than lambda-
abstractions, so that λx.ax x means λx.((ax) x). We sometimes
write let x = M1 in M2 for (λx.M2)M1.

The size of M , written #M , is defined by:

#x = #a = 1 #(λx.M) = #M + 1
#(M1M2) = #M1 + #M2 + 1

The set of Σ-labeled trees, written TΣ, is the least subset of λ-
terms closed under the rule:

∀M1, . . . , Mn ∈ TΣ.Σ(a) = n ⇒ a M1 · · · Mn ∈ TΣ.

(Note here that n may be 0, which constitutes the base case.) We
often use the meta-variable T to denote an element of TΣ.

If M has a β-normal form, we write [[M]] for it. In the present
paper, we are interested in the case [[M]] is a tree (i.e. an element
of TΣ). When [[M]] is a tree T , we often call M a program that
generates T , or a program for T in short. The goal of our data
compression is, given a tree T , to find a small program for T .

Example 2.1. Let T be a9(c), i.e., a(a(· · · (a
| {z }

9

(c)) · · ·)).

It is generated by the following program M :

(λn.n(n a)c)(λs.λx.s(s(s(x)))).

2 2011/11/28

Note that #T = 19 > #M = 18.
In general, the size of a program M for T can be hyper-

exponentially smaller than the size of T . For example, consider
the tree:

T := a

nz }| {
22···

2

c

It is generated by: M := (λf. f f · · · f| {z }
n

a c)(λg.λx.g(g(x))).

Example 2.2. Consider the following term, which generates a
unary tree a57(c).

let twice = λf.λx.f(f(x)) in
let b0 = λn.λs.λz.n (twice s) z in
let b1 = λn.λs.λz.n (twice s) (s z) in
let zero = λs.λz.z in

b1(b0(b0(b1(b1(b1(zero)))))) a c

The part b1(b0(b0(b1(b1(b1(zero)))))) corresponds to the binary
representation 111001 of 57, with the least significant bit first. The
last line can be replaced with:

let thrice = λf.λx.f(f(f(x))) in b1(twice b0(thrice b1(zero))) a c

b1(twice b0(thrice b1(zero))) then corresponds to the runlength
coding of the binary representation 111001.

2.2 Typing

We considered the untyped λ-calculus above, but we can actually
assume that any program that generates a tree is well-typed in the
intersection type system given below. The assumption that pro-
grams are well-typed is important for the program transformations
discussed in Section 4. The use of intersection types is important
for guaranteeing that we do not lose any expressive power for ex-
pressing finite trees: see Theorem 2.1 below.

The set of (intersection) types, ranged over by τ , is given by:

τ ::= o | τ1 ∧ · · · ∧ τk → τ

Here, k may be 0, in which case we write � → τ for τ1 ∧ · · · ∧
τk → τ . Intuitively, o describes a tree, and τ1 ∧ · · · ∧ τk → τ
describes a function that takes an element having all of the types
τ1, . . . , τk, and returns an element of type τ . We sometimes writeV

i∈{1,...,k} τi → τ for τ1 ∧ · · · ∧ τk → τ .
A type environment is a finite set of type bindings of the form

x : τ . Unlike ordinary type environments, we allow multiple oc-
currences of the same variable, like {x : o → o, x : (o → o) →
(o → o)}. We often omit { } and just write x1 : τ1, . . . , xn : τn for
{x1 : τ1, . . . , xn : τn}.

The type judgment relation is of the form Γ � M : τ where
Γ is a type environment. It is inductively defined by the following
typing rules:

Γ, x : τ � x : τ

Σ(a) = k

Γ � a : o → · · · → o| {z }
k

→ o

Γ, x : τ1, . . . , x : τn � M : τ x does not occur in Γ

Γ � λx.M : τ1 ∧ · · · ∧ τn → τ

Γ � M1 : τ1 ∧ · · · ∧ τn → τ ∀i ∈ {1, . . . , n}.Γ � M2 : τi

Γ � M1M2 : τ

It follows from the standard argument for intersection types [2,
39] that any program that generates a tree is well-typed. (Note that
even a term like (λx.c)Ω that contains the divergent term Ω is
typed, by assigning � → o to λx.c.)

Theorem 2.1. Let M be a λ-term. Then, ∅ � M : o if and only if
[[M]] is a tree.

Proof. The “only if” part follows from the facts that (i) ∅ � M : o
implies that M has a β-normal form, (ii) if M is in β-normal form
and ∅ � M : o, then M is a tree, and (iii) typing is preserved by
β-reductions. The “if” part follows from the facts that (iv) if M is
a tree, then ∅ � M : o, and (v) typing is preserved by β-expansions
(i.e. the inverse of β-reductions).

As we consider only programs representing (finite) trees, thanks
to the theorem above, we can safely assume that all the programs in
consideration are well-typed (in the intersection type system above)
in the rest of this paper. By using the standard argument for Kol-
mogorov complexity, we can show that our representation of data as
(implicitly-)typed λ-terms can be optimal up to an additive constant
with respect to Kolmogorov complexity [20, 21]: see Appendix A
for more details. A reader not familiar with Kolmogorov complex-
ity may also wish to consult [20, 21].

Example 2.3. Consider the term:

(λtwice.twice twice a c)λf.λx.f(f(x)).

The part λtwice. · · · is given the following intersection type:

(((o → o) → o → o)
∧(((o → o) → o → o) → (o → o) → o → o)) → o

2.3 Relationship with Grammar-based Compression

Grammar-based compression schemes, in which a string or a tree is
expressed as a grammar that generates it, have been actively studied
recently [4, 13, 22]. Our compression scheme using the λ-calculus
can naturally mimic grammar-based compression schemes. For ex-
ample, consider the compression scheme using context-free gram-
mars (with the restriction of cycle-freeness) or straight-line pro-
grams. A string s is expressed as a grammar of the following form:

X1 = e1, X2 = e2, · · · , Xn = en,

where ei is either a terminal symbol a, or XjXk where 1 ≤ j, k <
i. It can be expressed as

let X1 = λy.e
(y)
1 in let X2 = λy.e

(y)
2 in · · ·

let Xn = λy.e
(y)
n in Xn(e),

where e(y) is defined by: a(y) = a(y) and (XjXk)(y) =
Xj(Xk(y)). It generates s in the form of a linear tree, with e as
an end-marker. We can also express various extensions of straight-
line programs, such as context-free tree grammars [4] and collage
systems [13] as λ-terms.

Example 2.4. Fibonacci words2 are variations of Fibonacci num-
bers, obtained by replacing the addition + with the string concate-
nation, and the first and second elements with b and a. The n-th
word is expressed by the following straight-line program:

X0 = b, X1 = a, X2 = X1X0, . . . , Xn = Xn−1Xn−2.

It is encoded as:
let X0 = b in let X1 = a in let X2 = λx.X1(X0(x)) in · · ·
let Xn = λx.Xn−1(Xn−2(x)) in Xn(e)

For n = 2m, we have a more compact encoding:

let concat = λx.λy.λz.x(y(z)) in
let g = λk.λx.λy.k y (concat y x) in

twice(· · · (twice
| {z }

m

(g)) · · ·) (λx.λy.x) b a e

2 Fibonacci words and its generalization called Sturmian words have been
studied in a field called Stringology [6].

3 2011/11/28

compressTerm(M) =
let M1 = compressAsTree(M) in
let M2 = simplify(M1) in
if #M2 ≥ #M then M else compressTerm(M2)

Figure 3. Compression Algorithm for λ-terms

A similar encoding is also possible for an arbitrary number n by
using b0 and b1 in Example 2.2.

3. Compression as β-Expansions
This section discusses a compression algorithm which, given a tree
T , finds a small λ-term M such that [[M]] = T . A naive method
would be to enumerate all the λ-terms M smaller than T , and check
whether [[M]] = T . There are however obvious difficulties. First,
the number of terms smaller than T is exponential in the size of T .
Secondly, and even worse, it is in general undecidable to check
whether [[M]] = T . Even if we restrict M to the simply-typed
λ-terms, the number of reductions required to compute [[M]] is in
general non-elementary [33].

Here, we instead suggest reusing existing algorithms for (context-
free) grammar-based tree compression [4, 22], by regarding a λ-
term as a term tree (identified up to α-conversion) as follows.

x� = x a� = a (λx.M)� = λx

M �

(MN)� = @

M � N�

As we have seen in Section 2.3, compressed data in the form of a
context-free grammar can be easily translated to a λ-term. Thus,
a grammar-based tree compression algorithm can be regarded as
an algorithm for compression of λ-terms. By repeatedly applying
such an algorithm to an initial tree T , we can obtain a small λ-
term M such that [[M]] = T . (There is, however, no guarantee that
the resulting term is the smallest such M .) Note that the repeated
applications are possible because the input and output languages
for the compression algorithm are the same: the λ-calculus.

Figure 3 shows our algorithm, parametrized by two auxiliary al-
gorithms: compressAsTree and simplify . Given a λ-term M (or a
tree as a special case), we just invoke a tree compression algorithm
to obtain compressed data in the form of λ-term M1. It is then
simplified by using properties of λ-terms (such as the η-equality).
We repeat these steps until the size of a term can no longer be
reduced. (In the actual implementation, compressAsTree returns
multiple candidates, which are inspected for further compression
in a breadth-first manner. The termination condition #M2 ≥ #M
is also relaxed to deal with the case where the term size does not
monotonically decrease: See Section 5.)

Because of the repeated applications of compressAsTree ,
we can actually use the following very simple algorithm for
compressAsTree , which just finds and extracts a common tree
context, rather than more sophisticated algorithms [4, 22]. Let us
define a context with (up to) k-holes by:

C ::= []1 | · · · | []k | x | a | MC | CM | λx.C

We write C[M1, . . . , Mk] for the term obtained by replacing each
[]i in C with Mi. Note that ignoring binders, a context is just a
tree context with up to k holes. Then, compressAsTree just needs
to find (non-deterministically) contexts C0, C1, C2, C3 and terms
M1, . . . , Mk, N1, . . . , Nk such that

• (i) M = C0[C1[C2[M1, . . . , Mk], C2[N1, . . . , Nk]]] or (ii)
M = C0[C1[C2[M1, . . . , Mk]]]∧Mi = C3[C2[N1, . . . , Nk]];
and

C0

C1

C2 C2

M1 ... Mk N1 ... Nk

C0

C1

C2

M1 Mk

C3

C2

N1 Nk Ni

Figure 4. Cases where the common context C2 occurs horizontally
(left, case (i)), and vertically (right, case (ii))

• the free variables in M1, . . . , Mk, N1, . . . , Nk are not bound in
C2, and the free variables in C2 are not bound in C1.

Here, (i) and (ii) are the cases where the common context C2 occurs
horizontally and vertically, respectively. The output is:

C0[(λf.C1[f M1 · · · Mk, f N1 · · · Nk])(λx̃.C2[x̃])]

in case (i), and

C0[(λf.C1[f M1 · · · Mi−1 M ′
i Mi+1 · · · Mk])(λx̃.C2[x̃])

where M ′
i = C3[f N1 · · · Nk] in case (ii), and x̃ denotes the

sequence x1, . . . , xk. This transformation is a restricted form of β-
expansion step: C[[N/x]M] −→ C[(λx.M)N], applicable only
when M contains two occurrences of x.

The sub-procedure compressAsTree above is highly non-
deterministic in the choice of contexts. In our prototype implemen-
tation, we pick every pair (M ′, M ′′) of subterms of M and find the
maximum common context C2 such that M ′ = C2[M1, . . . , Mk]
and M ′′ = C2[N1, . . . , Nk]. For splitting the enclosing context
into C0 and C1, we choose the largest C1 that satisfies the con-
dition on bound variables. The resulting procedure is still non-
deterministic in the choice of the pairs (M′, M ′′), and our imple-
mentation applies the depth-first search. See Section 5 for more
details.

For the simplification procedure simplify , we apply the follow-
ing rules until no more rules become applicable.

• η-conversion: λx.M x −→ M

• β-reduction when the argument is a variable: (λx.M)y −→
[y/x]M

• β-reduction for linear functions: (λx.M)N −→ [N/x]M
where x occurs at most once in M .

Example 3.1. Consider a tree a9(c). Let C0, C1, C2, C3, M1, N1

be:
C0 = []1 C1 = []1 C2 = a3[]1 C3 = []1
M1 = a6(c) N1 = a3(c)

Then, case (ii) applies and the following term is obtained:

(λf.f(f(a3(c))))λx.a3(x)

Next, we again extract the common context a3[]1, and obtain

(λg.(λf.f(f(g(c))))λx.g x)(λx.a3(x))

By using the η-equality λx.g x = g, we get:

(λg.(λf.f(f(g(c))))g)(λx.a3(x)).

As a part of the simplification procedure, we also β-reduce terms of
the form (λx.M)y and obtain: (λg.g(g(g(c))))(λx.a3(x)). In the
third iteration, we can extract the common context []1([]1([]1 []2))

4 2011/11/28

and obtain (λh.(λg.h g c)(λx.h ax))(λf.λx.f(f(f x))). By sim-
plifying the term (by η-conversion and β-reduction for the linear
function λg.h g c), we obtain:

(λh.(h (h a) c))(λf.λx.f(f(f x))).

Example 3.2. Recall the tree in Figure 1. By extracting the first
two occurrences of the common context (with zero holes) c a a,
we obtain: (λx.cx (dx (c (c a a) (d (c a a) (c a a)))))(c a a). By
further extracting the common context c a a repeatedly (and ap-
plying simplify), we get (λC.cC (dC (cC (dC C))))(c a a). By
extracting the common context a, we obtain

(λC.cC (dC (cC (dC C))))((λA.(cA A))a).

This corresponds to the DAG representation in Figure 1 of [23] and
also to the regular grammar representation in Figure 1 of [4]. By
extracting the common context λy.cC (dC y), the term is further
transformed to:

(λC.(λB.B(B(C)))(λy.cC (dC y)))((λA.(cA A))a).

This corresponds to the sharing graph representation in Figure 1 of
[23] and to the CFG representation in Figure 1 of [4].

Relationship with CFG-based Tree Compression Algorithms

As demonstrated in Example 3.2, context-free grammar-based tree
compression algorithms [4, 22] can be mimicked by our compres-
sion method based on λ-calculus. In fact, they may be viewed as
a controlled and restricted form of our compression algorithm. For
example, for efficient compression, Busatto et al. [4] impose re-
strictions on the number of holes and the size of common contexts,
and also introduce certain priorities among subterms from which
common contexts are searched. (There is also another difference
that Busatto’s algorithm finds more than two occurrences of a com-
mon context at once, but it can be mimicked by repeated applica-
tions of compressAsTreeabove.)

A more fundamental restriction of the previous approaches is
that they [4] extract only common tree contexts with first-order
types, of the form o → · · · → o → o. Because of this difference,
our compression algorithm based on the λ-calculus is more power-
ful than ordinary grammar-based compression algorithms. For ex-
ample, the compression discussed in Example 3.1 is not possible
with CFG-based compression: note that the final term cannot be
expressed by a context-free tree grammar.

Limitations

The compression algorithm sketched above is not complete: there
is a λ-term M and a tree T such that [[M]] = T but M cannot
be obtained from T by the algorithm. For example, consider the
following tree (represented as a term) T :

br (a (b (x (y (c (d e)))))) (a (b (z (c (d e)))))

It can be expressed by the following term M :

let f = λg.a (b (g (c (d e)))) in br (f λu.x(y u)) (f z),

but M cannot be obtained by our algorithm. Note that λg.a (b (g (c d e)))
is a higher-order context, having a tree context g as a hole. To en-
able the above compression, it suffices to β-expand T to:

br (a (b ((λu.x(y u)) (c (d e)))))) (a (b (z (c (d e)))))

before applying our algorithm. Such pre-processing is however
non-trivial in general.

For another example, consider the following tree (represented
as a term) T :

br (a1 (a2 · · · (an e) · · ·)) (an · · · (a2 (a1 (e))) · · ·),
which consists of a linear tree representing the sequence a1, . . . , an

and its reverse.

The following term M generates T , but the common pattern h
cannot be found by our algorithm.

let h = λa.λk.λx.λy.k (a x) (λz.y(a(z))) in
let id = λz.z in
h an(· · · (h a2 (h a1 (λx.λy.brx (y e)))) · · ·) e id

Actually, finding terms h, k, x, y such that

[[h an(· · · (h a2(ha1 k))) x y]] = T

is an instance of the higher-order matching problem [34]. Thus,
higher-order matching algorithms may be applicable to our data
compression scheme, but it is left for future work.

4. Processing of Compressed Data
This section discusses how to process compressed data without
decompression.

4.1 Pattern Matching as Higher-Order Model Checking

We first discuss the problem of answering whether [[M]] matches
P , given a program M and a regular tree pattern P . For instance,
we may wish to check whether some path from the root of the tree
[[M]] contains ab as a subpath, or check whether [[M]] contains a
subtree of the shape:

c

d

· · ·

d

· · ·
Such a pattern matching problem can be formalized as an accep-
tance problem for tree automata [5].

Below we write dom(f) for the domain of a map f .

Definition 4.1 (tree automata). A (top-down, non-deterministic)
tree automaton A is a quadruple (Σ, Q, qI , Δ), where Σ is a ranked
alphabet, Q is a set of states, qI is the initial state, and Δ(⊆ Q ×
dom(Σ)×Q∗) is a transition function, such that (q, a, q1 · · · qn) ∈
Δ implies Σ(a) = n. The reduction relation S1 −→ S2 on
subsets of Q × TΣ is defined by: S ∪ {(q, a T1 · · · Tn)} −→
S ∪ {(q1, T1), . . . , (qn, Tn)} if (q, a, q1 · · · qn) ∈ Δ. A tree T
is accepted by A if {(qI , T)} −→∗ ∅. We write L(A) for the set
of trees accepted by A.

A tree automaton A = (Σ, Q, qI , Δ) is deterministic if, for
each pair (q, a) ∈ Q × dom(Σ), there is at most one (q1, . . . , qn)
such that (q, a, q1 · · · qn) ∈ Δ.

Example 4.1. Let Σ1 = {a �→ 1, b �→ 1, e �→ 0}. Consider the
automaton A = (Σ1, {q0, q1, qf}, q0, Δ) where Δ is given by:

Δ = {(q0, a, q1), (q0, b, q0), (q1, a, q1), (q1, b, qf),
(qf , a, qf), (qf , b, qf), (qf , e, ε)}

Then, a Σ1-labeled tree T contains a subtree of the form a(b(· · ·))
if and only if T is accepted by A.

Example 4.2. Let Σ2 = {b �→ 1, c �→ 2, d �→ 1, e �→ 0}.
Consider the automaton A2 = (Σ2, {q0, q1, qf}, q0, Δ2) where
Δ2 is given by:

Δ2 = {(q0, b, q0), (q0, c, q1q1), (q0, c, q0qf), (q0, c, qfq0),
(q0, d, q0), (q1, d, qf), (qf , b, qf), (qf , c, qfqf),
(qf , d, qf), (qf , e, ε)}

Then, a Σ2-labeled tree T contains a subtree of the form
c (d · · ·) (d · · ·) if and only if T is accepted by A2.

The goal here is, given a (well-typed) program M and an au-
tomaton A, to check whether [[M]] ∈ L(A) holds. A simple de-
cision algorithm is to decompress M (i.e. fully β-reduce M) to a
tree T (= [[M]]) and run the automaton A for T . This is however

5 2011/11/28

inefficient if T is large or the reduction sequence of M is long. In-
stead, we use the type-based technique for model checking higher-

order recursion schemes [16, 38], to reduce [[M]]
?
∈ L(A) to a

type-checking problem for M . Because of subtle differences be-
tween higher-order recursion schemes [14, 26] and the language
considered here (see Remark 4.1), we give a direct construction of
the type system below.

Let A = (Σ, Q, qI , Δ) be a tree automaton. The set RTyQ of
refinement intersection types, ranged over by θ, is given by:

θ ::= q(∈ Q) | θ1 ∧ · · · ∧ θk → θ

Here, k may be 0. In θ1 ∧ · · · ∧ θk → θ, we require that θi �= θj if
i �= j. Intuitively, q describes the set of trees accepted by M from
the state q (i.e., accepted by (Σ, Q, q, Δ)). The type θ1∧· · ·∧θk →
θ describes a function that takes an element of types θ1, . . . , θk, and
returns an element of type θ.

A refinement type environment Ψ is a finite set of type bindings
of the form x : θ, where multiple occurrences of the same variable
are allowed as in the intersection type system in Section 2.2. We
write dom(Ψ) for the set {x | x : θ ∈ Ψ} of variables. The type
judgment relation Ψ �A M : θ is defined by:

Ψ, x : θ �A x : θ

(q, a, q1 · · · qk) ∈ Δ

Ψ �A a : q1 → · · · → qk → q

Ψ, x : θ1, . . . , x : θn �A M : θ x does not occur in Ψ

Ψ �A λx.M : θ1 ∧ · · · ∧ θn → θ

Ψ �A M1 : θ1 ∧ · · · ∧ θn → θ ∀i ∈ {1, . . . , n}.Ψ �A M2 : θi

Ψ �A M1M2 : θ

Note that these typing rules are the same as those for the in-
tersection type system in Section 2.2 except the rule for constants.
The refinement type system is sound and complete for the problem
in consideration.

Theorem 4.1. Let M be a program and A = (Σ, Q, qI , Δ) be a
tree automaton. Then, [[M]] ∈ L(A) if and only if ∅ �A M : qI .

Proof. This follows from the facts that (i) for any tree T , T ∈ L(A)
if and only if ∅ �A T : qI , and that (ii) the typing is preserved by
β-reduction and its inverse.

Suppose that a derivation for ∅ � M : o is given. The result
of Tsukada and Kobayashi ([38], Theorem 5) implies that to check
whether ∅ �A M : qI holds, we just need to generate a finite set of
candidates of derivation trees for ∅ �A M : qI , and check whether
one of them is valid. To state it more formally, we need to introduce
some terminologies. The refinement relation θ :: τ is defined by:

q ∈ Q

q :: o

θ :: τ ∀j ∈ {1, . . . , m}.∃i ∈ {1, . . . , k}.θj :: τi

(θ1 ∧ · · · ∧ θm → θ) :: (τ1 ∧ · · · ∧ τk → τ)

We extend the refinement relation to the relation on type environ-
ments by:

Ψ :: Γ ⇔ ∀x : θ ∈ Ψ.∃τ.(x : τ ∈ Γ ∧ θ :: τ).

Let π and π′ be derivation trees for Ψ �A M : θ and Γ � M : τ
respectively. π is a refinement of π′, if for each node labeled by
Ψ1 �A M1 : θ1 in π, there exists a corresponding node labeled by
Γ1 � M1 : τ1 in π′ such that Ψ1 :: Γ1 and θ1 :: τ1. The following is
the result of Tsukada and Kobayashi ([38], Theorem 5), rephrased
for the language of this paper.

Theorem 4.2 ([38]). If there are derivation trees π and π′ respec-
tively for ∅ � M : o and ∅ �A M : qI , then there exists a deriva-
tion tree π′′ for ∅ �A M : qI such that π′′ is a refinement of π.

Let us define the type size of a judgment Γ � M : τ by:

#(Γ � M : τ) = #Γ + #τ
#(x1 : τ1, . . . , xn : τn) = #τ1 + · · · + #τn

#o = 1 #(τ1 ∧ · · · ∧ τk → τ) = #τ1 + · · · + #τn + #τ + 1

Define the type width of a derivation tree for Γ � M : τ as the
largest type size of a node of the derivation.

The following theorem follows immediately from Theorem 4.2
above.

Theorem 4.3. Given an automaton A and a type derivation tree

for ∅ � M : o, [[M]]
?
∈ L(A) can be decided in time linear in

the size of M , under the assumption that the size of A and the type
width of derivation trees are bounded by a constant.

Proof. Due to Theorems 4.1 and 4.2, it suffices to check whether
there exists a derivation tree π for ∅ �A M : qI that is a refinement
of the derivation tree π′ for ∅ � M : o. Since the type width of π′

is bounded by a constant, for each subterm N of M , the number
of possible judgments that can occur in π is also bounded by a
constant (although the constant can be huge). Thus, based on the
refinement typing rules, we can enumerate all the valid judgments
for N in time linear in the size of N : for example, to enumerate the
typing for M1M2, first enumerate valid typings for M1 and M2 and
combine them by using the application rule. Thus, valid typings for
M can also be enumerated in time linear in the size of M , and then
it suffices to just check whether ∅ �A M : qI is among the valid
judgments.

The fixed-parameter linear-time algorithm in the proof above
is impractical due to the huge constant factor. We can instead use
Kobayashi’s fixed-parameter linear-time algorithm for higher-order
model checking [17].3

Remark 4.1. Higher-order model checking [16, 26] usually refers
to model checking of the tree generated by a higher-order recur-
sion scheme, which can be considered a functional program. The
only differences between the language of higher-order recursion
schemes and our language are: (i) recursion schemes can be used
to describe infinite trees, while our language is only used for de-
scribing finite trees, and (ii) recursion schemes must be simply-
typed, but our language allows intersection types. Actually, our lan-
guage can be considered a restriction of the extension of recursion
schemes considered by Tsukada and Kobayashi [38].

4.2 Data Processing as Program Transformation

In the previous subsection, we considered pattern match queries to
answer just yes or no. In practice, it is often required to provide
extra information, such as the position of the first match and the
number of matching positions. Computation of such extra informa-
tion can be expressed as tree transducers [5].

Definition 4.2 (tree transducers). A (top-down, non-deterministic)
tree transducer X is a quadruple (Σ, Q, qI , Θ), where Σ is a ranked
alphabet, Q is a set of states, qI is the initial state, and Θ(⊆ Q ×
dom(Σ) × Q∗ × TermsΣ) satisfies: if (q, a, q1 · · · qn, M) ∈ Θ,
then Σ(a) = n and ∅ � M : o → · · · → o| {z }

n

→ o. The transduction

relation (q, T) −→X M is defined inductively by the rule:

(qi, Ti) −→X Mi for each i ∈ {1, . . . , n}
(q, a, q1 · · · qn, M) ∈ Θ

(q, a T1 · · · Tn) −→X M M1 · · · Mn

3 Kobayashi’s algorithm [17] is for the simply-typed λ-calculus with recur-
sion. We can however adapt it for our language with intersection types.

6 2011/11/28

We write X (T) for the set of trees {[[M]] | (qI , T) −→X M}, and
call an element of X (T) an output of the transducer X for T .

A transducer X = (Σ, Q, qI , Θ) is deterministic if, for each
pair (q, a) ∈ Q × dom(Σ), there is at most one (q1, . . . , qn, M)
such that (q, a, q1 · · · qn, M) ∈ Θ.

For a deterministic transducer, X (T) is empty or a singleton set.
When X (T) is singleton, by abuse of notation, we sometimes write
X (T) for the element of X (T).

Example 4.3. Let Σ2 = {a �→ 1, b �→ 1, s �→ 1, e �→ 0}.
Consider the transducer X = (Σ2, {q0, q1, qf}, q0, Θ) where Θ is
given by:

Θ = {(q0, b, q1, λx.x), (q0, a, q0, s), (q1, b, q1, s), (qf , e, ε, e),
(q1, a, qf , λx.e), (qf , a, qf , λx.e), (qf , b, qf , λx.e)}

Given a Σ2-labeled tree T without s, X returns the depth of the
first occurrence of a subterm of the form b(a(· · ·)) in unary rep-
resentation. For example, for T = a(b(a(a(b(b(e)))))), X (T) =
{s(e)}.

Example 4.4. Let Σ3 = {a �→ 1, b �→ 1, e �→ 0, br �→ 2}.
Consider the transducer X = (Σ3, {q0, qodd , qeven}, q0, Θ) where
Θ is given by:

Θ = {(q0, br, qoddqeven , λx.λy.br y x), (q0, br, qoddqodd , br),
(q0, br, qevenqeven , br), (q0, br, qevenqodd , br),
(qodd , a, qeven , a), (qeven , a, qodd , a), (qeven , e, ε, e)}

It takes a tree of the form br (am(e)) (an(e)) as an input, and
swaps the subtrees am(e) and an(e) only if m is odd and n is
even. It is a non-deterministic transducer, but outputs a singleton
set.

The goal of this subsection is, given a program M and a tree
transducer X , to construct a program N that produces an element of
X ([[M]]). The construction should satisfy the following properties.

1. It should be reasonably efficient (which also implies N is not
too large). In particular, it should be often faster than actually
constructing [[M]] and then applying the transducer.

2. It should be easy to apply further operations (such as pattern
matching as discussed in the previous section) on N .

A naive approach to construct N would be to express the transducer
X as a program f , and let N be f(M).4 This approach obviously
does not satisfy the second criterion, however.

We discuss an approach based on an extension of higher-order
model checking below. An alternative approach, based on fusion
transformation, is discussed in Appendix C.

4.2.1 Model Checking Approach

We can extend the higher-order model checking discussed in Sec-
tion 4.1 to compute the output of a transducer (without decom-
pression). Let X = (Σ, Q, qI , Θ) be a tree transducer. We shall
define a type-directed, non-deterministic transformation relation
Ψ �X M : θ =⇒ N , where θ is a refinement type introduced
in Section 4.1. Intuitively, it means that if the value of M is tra-
versed by transducer X as specified by θ, then the output of the
transducer is (the tree or function on trees represented by) N . As a
special case, if M represents a tree and if Ψ �X M : qI =⇒ N ,
then N is an output of X , i.e., [[N]] ∈ X ([[M]]). The relation
Ψ �X M : θ =⇒ N is inductively defined by the following rules.

4 Strictly speaking, as our language does not have deconstructors for tree
constructors a1, . . . , an ∈ dom(Σ), we need to transform M into
M ′ a1 · · · an where M ′ is a pure λ-term, and then transform it into
f M ′ a1 · · · an.

Ψ, x : θ �X x : θ =⇒ xθ
(TR-VAR)

(q, a, q1 · · · qk, Nq,a,q1···qk) ∈ Θ

Ψ �X a : q1 → · · · → qk → q =⇒ Nq,a,q1···qk

(TR-CONST)

Ψ, x : θ1, . . . , x : θn �X M : θ =⇒ N x does not occur in Ψ

Ψ �X λx.M : θ1 ∧ · · · ∧ θn → θ =⇒ λxθ1 . · · ·λxθn .N
(TR-ABS)

Ψ �X M1 : θ1 ∧ · · · ∧ θn → θ ⇒ N1

∀i ∈ {1, . . . , n}.Ψ �X M2 : θi ⇒ N2,i

Ψ �X M1M2 : θ ⇒ N1 N2,1 · · · N2,n
(TR-APP)

Basically, the transformation works in a compositional manner.
Note that if we remove the part “=⇒ N”, the rules above are
essentially the same as refinement typing rules. In rule TR-CONST,
the transformation for constants is determined by the transducer. In
rule TR-APP, if the argument M2 in the original program should
have multiple refinement types θ1, . . . , θn, we separately translate
the argument M2 for each type, and duplicate the argument. Thus,
in rule TR-ABS for functions, the function λx.M of type θ1 ∧
· · · ∧ θn → θ is transformed into a function that takes multiple
arguments.

Example 4.5. Consider the following program to compute (ab)2e:

let twice = λf.λz.f(f(z)) in twice (λz.a(b(z))) e

Let us consider the transducer X given in Example 4.3. Let ρ and Ψ
be (q1 → q0) ∧ (qf → q1) → qf → q0 and twice : ρ respectively.
Then, we have:

Ψ �X twice : ρ =⇒ twiceρ

Ψ �X λz.a(b(z)) : q1 → q0 =⇒ λzq1 .s((λx.x)zq1)
Ψ �X λz.a(b(z)) : qf → q1 =⇒ λzqf .(λx.e)((λx.e)zqf)
Ψ �X e : qf =⇒ e

Thus, we get:

Ψ �X twice(λz.a(b(z)))e : q0 =⇒
twiceρ (λzq1 .s((λx.x)zq1)) (λzqf .(λx.e)((λx.e)zqf)) e

The body of twice is transformed as follows.

∅ �X λf.λz.f(f(z)) : ρ =⇒
λfq1→q0 .λfqf→q1 .λzqf .fq1→q0(fqf→q1 zqf)

Thus, after some obvious simplifications (such as (λx.e)M =β e),
we obtain the following program.

let twice = λf1.λf2.λz.f1(f2(z)) in twice (λz.s z) (λz.e) e

By evaluating it, we get (s e), which is the output of X applied to
(ab)2e.

The following theorem guarantees the correctness of the trans-
formation. A proof is given in Appendix B.

Theorem 4.4. Let X be a tree transducer. If ∅ �X M : qI =⇒ N ,
then [[N]] ∈ X ([[M]]). Conversely, if X ([[M]]) is not empty, then
there exists N such that ∅ �X M : qI =⇒ N and [[N]] ∈
X ([[M]]).

Remark 4.2. The second part of the theorem above does not guar-
antee that every element of X ([[M]]) is obtained by the transforma-
tion.

Remark 4.3. The transformation above is also applicable to an
extension of transducers called high-level transducers [7].

7 2011/11/28

Algorithm. Suppose that a derivation tree for ∅ � M : o and
a transducer X are given. Thanks to the above theorem, we can
reuse the algorithm presented in Section 4.1, to decide whether
X ([[M]]) is non-empty, and if so, output an element of X ([[M]]):
Let AX be an associated automaton (Σ, Q, qI , Δ), where Δ =
{(q, a, q1 · · · qn) | (q, a, q1 · · · qn, M ′) ∈ Θ}. Given a program
M that generates a tree, we can first check whether ∅ �AX M :
qI holds. If it does not hold, then X ([[M]]) is empty, so we are
done. Otherwise, we have a derivation tree for ∅ �AX M : qI ,
from which we can construct a derivation tree for the program
transformation relation: ∅ �X M : qI =⇒ N , and output N .

By Theorem 4.3, the above algorithm runs in time linear in the
size of M , under the assumption that the size of X and the type
width of the derivation tree for ∅ � M : o is bounded by a constant
(though the constant factor can be huge as in higher-order model
checking).

5. Implementation and Experiments
We have implemented the following two prototype systems, which
can be tested at http://www.kb.ecei.tohoku.ac.jp/~koba/
compress/.

1. A data compression system based on the algorithm described
in Section 3: It takes a tree as an input, and outputs a λ-term
that generates the tree. It is based on the algorithm described in
Section 3, but it has a few parameters to adjust heuristics: D, N, W .
D is the depth of the search of the algorithm of Figure 3. The
system first applies compressAsTree up to depth D, and returns up
to W smallest terms. The system then repeats this up to N times.
(Thus, the total search depth is N × D, but some candidates are
dropped due to the width parameter W .)

2. A system to manipulate compressed data: It takes a program
M in the form of a higher-order recursion scheme [26] and an
automaton A (or a transducer X , resp.) as input, and answers
whether [[M]] is accepted by A (or outputs a program that generates
X ([[M]])). We have implemented a new version of a higher-order
model checker based on a refinement of Kobayashi’s linear-time
algorithm [17] (as the previous model checkers [15, 17] are not
fast enough for our purpose), and then added a feature to produce
the output of a transducer based on the transformation given in
Section 4.

5.1 Compression

We report the experimental on the data compression system. The
main purposes of the experiments are: (i) to check whether inter-
esting patterns can be obtained (to confirm the third advantage dis-
cussed in Section 1), and (ii) to check whether there is an advantage
in terms of the compression ratio. As the current implementation is
naive, scalability is a secondary issue at the moment.

5.1.1 Knowledge/Program Discovery

Natural Number The first experiment is for (unary) trees of the
form an(e). For n = 9 (with parameters N = 3, D = 1, W = 4),
the output was:

let thrice = λf.λx.f(f(f(x))) in thrice(thrice a)e.

For n = 16 (with N = 10, D = 1, W = 4), the output was:

let twice = λf.λx.f(f(x)) in (twice twice) twice a e.

Here, we have renamed variables with common names such
as twice . Thus, common functions such as twice and thrice
have been automatically discovered. The part thrice(thrice a)
also corresponds to the square function for Church numerals, and
(twice twice) twice corresponds to the exponential 222

= 16.
This indicates that our algorithm can achieve hyper-exponential

compression ratio. (In fact, by running our algorithm by hand, we

get 65536 = 2222

.)

Thue-Morse Sequence Thue-Morse Sequence (A010060 in http:
//oeis.org/) tn is the 0-1 sequence generated by:

t0 = 0 tn = tn−1sn−1

where si is the sequence obtained from ti by interchanging 0s and
1s. For example, t3 = 01101001 and t4 = 0110100110010110.

We have encoded a 0-1-sequence into a unary tree consisting of
a (for 0), b (for 1), and e (for the end of the sequence): for example,
011 was represented by a (b (b e)). For the 10th sequence t10 (with
N = 20, D = 1, W = 4), the output was:

let rep = λx.λy.λz.x (y (y (x z))) in
let step = λf.λa.λb.rep (f a b) (f b a) in
let iter = step (step (step rep)) in
let t8 = iter a b in let s8 = iter b a in

t8 (s8 (s8 (t8 e)))

This is an interesting encoding of the Thue-Morse Sequence. It
is known that tn = tn−2sn−2sn−2tn−2 holds for all n ≥ 2.
The above encoding uses this recurrence equation (which has been
somehow discovered automatically from only the 10th sequence,
not from the definition of Thue-Morse Sequence!), and represents
t10 as t8s8s8t8. Using the above equation, t8 and s8 were repre-
sented by (step3 rep) a b and (step3 rep) b a respectively.

As for the compression ratio, the length of n-th Thue-Morse
Sequence is O(2n), while the size of the above representation is
O(n). For a larger k, the part stepk rep (in iter above) can further
be compressed as in the compression of natural numbers discussed
above; thus the hyper-exponential compression ratio is achieved by
our algorithm.

Fibonacci Word For the 7th Fibonacci word abaababaabaababa
ababa (with N = 10, D = 1, W = 4), one of the outputs was:

let f2 = λy.a (b y) in let f3 = λy.f2 (a y) in
let f4 = λy.f3 (f2 y)) in let f5 = λy.f4 (f3 y) in

f5 (f4 (f5 e))

This is almost the definition of Fibonacci word; the last line is
equivalent to let f6 = λy.f5 (f4 y) in f6 (f5 e). (Note again that
we have not given the definition of Fibonacci word; we have only
given the specific instance.) The system could not, however, find a
more compact representation such as the one in Example 2.4. This
is probably due to the limitation discussed at the end of Section 3,
that our compression algorithm is not powerful enough to extract
some higher-order patterns.

L-system Consider an instance of L-systems, defined by [25]:

F0 = f Fn+1 = Fn[+Fn]Fn[−Fn]Fn

where “[”, “]”, “+”, “−” and f are terminal symbols. Given the
unary tree representation of the sequence F3 (which is given in
Figure 6 of [25]), our system (with N = 50, D = 1, W = 4)
output the following program in 38 seconds:

let step = λg.λz.g(let h = λz.g(](g z)) in [(+(h([−(h z)))))
in step(step(step(f))) e.

The function step is equivalent to: λg.λz.g[+g]g[−g]g z, where the
applications are treated as right-associative here to avoid too many
parentheses. The above output is exactly (a compressed form of)
the definition of F3. The output of Sequitur [25] is more complex.

5.1.2 Compression of Real-Life Data

In this subsection, we report experiments to check whether our
compression scheme is also effective (in terms of the compression

8 2011/11/28

ratio and whether interesting patterns are discovered) for real-life
data. We have tested two kinds of data: XML data and natural
language sentences.

To evaluate the effectiveness of compression, we compared the
outputs of our compression system with those of grammar-based
tree compression tool TreeRePair [22] (http://code.google.
com/p/treerepair/). The sizes of compressed data were simi-
lar for the experiments below, and we could not observe a clear
advantage over TreeRePair.5 Potential reasons for the lack of clear
advantages are: (i) Natural language sentences may not have much
redundancy, (ii) the data in the experiments are too small to benefit
from extraction of higher-order structures, and (iii) our compres-
sion algorithm is not good enough to extract complex higher-order
structures (recall Section 3).

Our system could, however, find some interesting higher-order
patterns, as reported below.

XML Data of Wikipedia We tested the structure of the first 11280
lines (1% in lines) of enwik8, which is the target data of Hutter
Prize6, a compression competition. As in the experiments for tree
compression in [4, 22], we removed PCData and attributes and used
the binary-tree encoding.

In the output of our system, the higher-order pattern twice was
extracted to compress the repetition such as <namespace/> . . .
<namespace/> appearing in the tree. In addition, the following
flipped version of the combinator B (λf.λg.λx.f (g x)) was ex-
tracted.

Q = λf.λg.λx.g (f x)

With these functions, we can compress a term like

let h1 = λx.f1 (g x) in . . . let hn = λx.fn (g x) in hn

with 2n edges into

let Q = λf.λg.λx.g (f x) in let g′ = Q g in
let h1 = g′ f1 in . . . let hn = g′ fn in hn

with n + 3 edges.

English Text We examined a part of (simple) English text ex-
tracted from the article of “Jupiter” in Simple-English version
of Wikipedia http://simple.wikipedia.org/wiki/Jupiter.
The text had 1017 words including punctuations; e.g., “Jupiter’s”
is considered as 3 words “Jupiter”, an apostrophe, and “s”. The
text was encoded as a unary tree, whose node is labelled by a word
instead of a character.

In addition to frequently-appearing phrases such as “million
miles away”, “in 1979.”, and “km/h”, interesting higher-order pat-
terns were extracted, such as:

let s = λy.APOS (“s” y) in let possessive = Q s in . . .

The pattern Q s = λn.λy.n(APOS (“s” y)) expresses the posses-
sive form “A’s B”. The combinators B and Q were also extracted.

TreeRePair compressed the XML corresponding to the text to a
grammar with 915 edges. Here we encoded a text to a horizontal se-
quence of elements enclosed with root element, e.g., “This is good.”
is encoded to <root><This/><is/><good/><PERIOD></root> .
When we fed the output of TreeRePair to our system, the output had
892 edges. This size reduction was mainly caused by introduction
of the combinators B and Q.

5 We omit size data here, since for a fair comparison, we need to encode
both λ-terms and grammars into bit strings. Note however that if we first
use TreeRePair before applying our system, the result cannot be worse than
that of TreeRePair.
6 http://prize.hutter1.net/

English-French Translation We have also tested our system to
compress a sequence of pairs of an English sentence and its French
translation. We have taken simple English sentences from a text-
book used in an English course of a kindergarten and prepared
their French translations by using Google translation (http://
translate.google.com/). Given an input containing:

pair(I(like(him(period))))(Je(le(aime(bien(period)))))

and

pair(I(like(her(period))))(Je(la(aime(bien(period))))),

our system produced the following output:

let xE = λz.pair (I(like(z(period)))) in
let xF = λz.(Je(z(aime(bien(period))))) in
· · · (xE him (xF (le))) · · · (xE her (xF (la))) · · ·

Thus, the correspondences like “him” vs “le”, “her” vs “la”, and “I
like xxx” vs “Je xxx aime bien” have been discovered. Other word-
word or phrase-phrase correspondences that have been found from
a sequence of 14 pairs of sentences include: “plays with a ...” vs
“joue avec un ...”, “friend” vs “ami”, “ball” vs “ballon”, etc.

5.2 Data Processing

We have applied various pattern match queries and transformations
to Fibonacci words, to check the scalability of our system with
respect to the size of compressed data. Table 1 shows the results.
The 2mth Fibonacci words (for m = 4, 6, 8, 10, 12, 14) were
represented by using the encoding of Example 2.4. The size of the
representation of the n-th Fibonacci word is O(log n) (or O(m)).
The queries and transformations are: Q1: contains aa, Q2: contains
no bb, Q3: contains no aaa, T1: the first occurrence of aab, T2:
count the number of ab, T3: replace ab with bb, TQ3: T3 followed
by query “contains bbb?”). In the row TQ3, the times do not
contain those for applying T3 (which are shown in the row T3).
All the experiments were conducted on a machine with Intel(R)
Xeon(R) CPU with 3Ghz and 8GB memory.

Our system based on higher-order model checking could quickly
answer pattern match queries or apply transformations. The in-
crease of the time with respect to m varies depending on the query
or transformation, but an exponential slowdown was not observed
for any of the queries and transformations. Note that the length of
n-th Fibonacci word is greater than 1.6n−1, so that it is impossible
to actually (no matter whether eagerly or lazily) construct the word
and then apply a pattern match query or transformation. Even with
the grammar-based compression based on context-free grammars,
the size of the representation of n-th Fibonacci word is O(n); thus
our approach (which runs in time O(log n)) is exponentially faster
than the grammar-based approach for this experiment. Our sys-
tem was relatively slower for TQ3. This is probably because the
transformation T3 increased the arity of functions, which had a bad
effect on model checking. It may be possible to reduce this prob-
lem by post-processing the output of the transformation using other
program transformation techniques.

To check the scalability of our system with respect to the size of
patterns, we have also tested our system for the following larger
queries on 1024th Fibonacci words: Q4: contains abaababaab,
and Q5: contains no abababaaba. The times to answer the queries
were 0.51 and 0.44 seconds respectively.

It should be noted however that the above result is an extreme
case that shows the advantage of our approach. When the effect
of compression is small as in the experiments in Section 5.1.2,
the advantage of compressing data and manipulating them without
decompression can be easily offset by the inefficiency of the current
higher-order model checker.

9 2011/11/28

m=4 m=6 m=8 m=10 m=12 m=14
Q1 0.12 0.12 0.12 0.26 0.27 0.27
Q2 0.03 0.03 0.04 0.12 0.12 0.12
Q3 0.14 0.14 0.14 0.14 0.14 0.14
T1 0.13 0.13 0.13 0.27 0.27 0.27
T2 0.04 0.04 0.12 0.12 0.13 0.13
T3 0.04 0.04 0.12 0.12 0.13 0.13
TQ3 0.47 0.62 1.32 1.53 1.84 2.09

Table 1. Times for processing queries and transformations on
2mth Fibonacci words, measured in seconds.

6. Related Work
The idea of compressing strings or tree data as functional programs
is probably not new; in fact, Tromp [37] studied Kolmogorov com-
plexity in the setting of λ-calculus. We are, however, not aware of
any serious previous studies of the approach that propose data com-
pression/manipulation algorithms with a similar capability.

In the context of higher-order model checking, Broadbent et
al. ([3], Corollary 3) showed that if t is the tree generated by
an order-n higher-order recursion scheme and I is a well-formed
MSO-interpretation, I(t) can be generated by an order-(n + 1) re-
cursion scheme. As a higher-order recursion scheme can be viewed
as a simply-typed λ-term (with recursion) and a transducer can be
expressed as a MSO-interpretation, this gives another procedure for
the data transformation discussed in Section 4.2 (for the case where
the program M is simply-typed). Their transformation is however
indirect and quite complex, as it goes via collapsible higher-order
pushdown automata [9]. Their transformation also increases the or-
der of the program, as opposed to our transformation given in Sec-
tion 4.2.1. Thus, we think their transformation is mainly of theoret-
ical interest (indeed, it has never been implemented).

As discussed in Section 2.3, our approach to compress data
as functional programs can be regarded as a generalization of
grammar-based compression [1, 4, 22, 25, 28, 30, 31]. Since the
problem of computing the smallest CFG that exactly generates w
is known to be NP-hard [35], various heuristic compression algo-
rithms have been proposed, including Re-pair [19, 22]. Processing
of compressed data without decompression has been a hot topic of
studies in the grammar-based compression, and our result in Sec-
tion 4 can be considered a generalization of it to higher-order gram-
mars. In the context of CFG-based compression, however, more
operations can be performed without decompression, including the
equivalence checking (“given two compressed strings, do they rep-
resent the same string?”) [27] and compressed pattern matching
(“given a compressed string and a compressed pattern, does the
string match the pattern?”) [12]. It is left for future work to investi-
gate whether those operations extend to higher-order grammars.

Our experiment to discover knowledge from the compression
of English-French translation, discussed in Section 5.1, appears to
be related to studies of example-based machine translation [32],
in particular, automatic extraction of translation templates from a
bilingual corpus [11]. Nevill-Manning and Witten [25] also report
inference of hierarchical (not higher-order, in the sense of the
present paper) structures by grammar-based compression.

We have not discussed the issue of how to compactly represent
a λ-term (obtained by our compression algorithm) as a bit string.
Tromp [37] gave a few schemes for representing untyped λ-terms
as bit strings. Vytiniotis and Kennedy [40] introduced a game-
based method for representing simply-typed λ-terms as bit-strings.

7. Conclusion
We have studied the approach of compressing data as functional
programs, and shown that programming language techniques can
be used for compressing and manipulating data. In particular, we
have extended a higher-order model checking algorithm to trans-
form compressed data without decompression. The prototype com-
pression and transformation systems have been implemented and
interesting experimental results have been obtained. Larger experi-
ments are left for future work.

Acknowledgments We would like to thank Tatsunari Nakajima,
Kunihiko Sadakane, Kazuya Yaguchi, and anonymous referees for
discussions and comments. This work was partially supported by
Kakenhi 23220001.

References
[1] A. Apostolico and S. Lonardi. Some theory and proactive of greedy

off-line textual substitution. In Data Compression Conference 1998
(DCC98), pages 119–128, 1998.

[2] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. J. Symb. Log.,
48(4):931–940, 1983.

[3] C. H. Broadbent, A. Carayol, C.-H. L. Ong, and O. Serre. Recursion
schemes and logical reflection. In Proceedings of LICS 2010, pages
120–129. IEEE Computer Society Press, 2010.

[4] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representa-
tion of XML document trees. Inf. Syst., 33(4-5):456–474, 2008.

[5] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques and
applications. Available on: http://www.grappa.univ-lille3.
fr/tata, 2007. release October, 12th 2007.

[6] M. Crochemore and W. Rytter. Jewels of Stringology. World Scien-
tific, 2002.

[7] J. Engelfriet and H. Vogler. High level tree transducers and iterated
pushdown tree transducers. Acta Inf., 26(1/2):131–192, 1988.

[8] A. J. Gill, J. Launchbury, and S. L. Peyton-Jones. A short cut to
deforestation. In FPCA, pages 223–232, 1993.

[9] M. Hague, A. Murawski, C.-H. L. Ong, and O. Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of LICS
2008, pages 452–461. IEEE Computer Society, 2008.

[10] M. Hutter. Universal Artificial Intelligence: Sequential Decisions
based on Algorithmic Probability. Springer-Verlag, Berlin, 2004.

[11] H. Kaji, Y. Kida, and Y. Morimoto. Learning translation templates
from bilingual text. In COLING, pages 672–678, 1992.

[12] M. Karpinski, W. Rytter, and A. Shinohara. An efficient pattern
matching algorithm for strings with short description. Nordic Journal
on Computing, 4(2):129–144, 1997.

[13] T. Kida, T. Matsumoto, Y. Shibata, M. Takeda, A. Shinohara, and
S. Arikawa. Collage system: a unifying framework for compressed
pattern matching. Theor. Comput. Sci., 1(298):253–272, 2003.

[14] T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown
trees are easy. In Proceedings of FOSSACS 2002, volume 2303 of
LNCS, pages 205–222. Springer-Verlag, 2002.

[15] N. Kobayashi. Model-checking higher-order functions. In Proceed-
ings of PPDP 2009, pages 25–36. ACM Press, 2009.

[16] N. Kobayashi. Types and higher-order recursion schemes for verifi-
cation of higher-order programs. In Proc. of POPL, pages 416–428,
2009.

[17] N. Kobayashi. A practical linear time algorithm for trivial automata
model checking of higher-order recursion schemes. In Proceedings
of FOSSACS 2011, volume 6604 of LNCS, pages 260–274. Springer-
Verlag, 2011.

[18] N. Kobayashi and C.-H. L. Ong. Complexity of model checking re-
cursion schemes for fragments of the modal mu-calculus. In Proceed-

10 2011/11/28

ings of ICALP 2009, volume 5556 of LNCS, pages 223–234. Springer-
Verlag, 2009.

[19] N. J. Larsson and A. Moffat. Offline dictionary-based compression. In
Proc. Data Compression Conference ’99 (DCC’99), page 296. IEEE
Computer Society, 1999.

[20] M. Li and P. M. B. Vitányi. Kolmogorov complexity and its appli-
cations. In Handbook of Theoretical Computer Science, Volume A:
Algorithms and Complexity, pages 187–254. The MIT Press, 1990.

[21] M. Li and P. M. B. Vitányi. An introduction to Kolmogorov complexity
and its applications (3rd ed.). Texts in computer science. Springer-
Verlag, 2009.

[22] M. Lohrey, S. Maneth, and R. Mennicke. Tree structure compression
with repair. In 2011 Data Compression Conference (DCC 2011),
pages 353–362. IEEE Computer Society, 2011.

[23] S. Maneth and G. Busatto. Tree transducers and tree compressions.
In Proceedings of FOSSACS 2004, volume 2987 of LNCS, pages 363–
377. Springer-Verlag, 2004.

[24] W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and
K. Hashimoto. Efficient algorithms to compute compressed longest
common substrings and compressed palindromes. Theor. Comput.
Sci., 410(8-10):900–913, 2009.

[25] C. G. Nevill-Manning and I. H. Witten. Compression and explanation
using hierarchical grammars. Comput. J., 40(2/3):103–116, 1997.

[26] C.-H. L. Ong. On model-checking trees generated by higher-order
recursion schemes. In LICS 2006, pages 81–90. IEEE Computer
Society Press, 2006.

[27] W. Plandowski. Testing equivalence of morphisms on context-free
languages. In ESA’94, volume 855 of LNCS, pages 460–470. Springer-
Verlag, 1994.

[28] W. Rytter. Application of Lempel-Ziv factorization to the approxi-
mation of grammar-based compression. Theor. Comput. Sci., 302(1-
3):211–222, 2003.

[29] W. Rytter. Grammar compression, LZ-encodings, and string algo-
rithms with implicit input. In ICALP’04, volume 3142 of LNCS, pages
15–27. Springer-Verlag, 2004.

[30] H. Sakamoto. A fully linear-time approximation algorithm for
grammar-based compression. Journal of Discrete Algorithms, 3(2-
4):416–430, 2005.

[31] H. Sakamoto, S. Maruyama, T. Kida, and S. Shimozono. A space-
saving approximation algorithm for grammar-based compression. IE-
ICE Trans. on Information and Systems, E92-D(2):158–165, 2009.

[32] H. L. Somers. Review article: Example-based machine translation.
Machine Translation, 14(2):113–157, 1999.

[33] R. Statman. The typed lambda-calculus is not elementary recursive.
Theor. Comput. Sci., 9:73–81, 1979.

[34] C. Stirling. Decidability of higher-order matching. Logical Methods
in Computer Science, 5(3), 2009.

[35] J. Storer. NP-completeness results concerning data compression.
Technical Report 234, Department of Electrical Engineering and Com-
puter Science, Princeton University, Princeton, N.J., 1997.

[36] A. Takano and E. Meijer. Shortcut deforestation in calculational form.
In Proceedings of the seventh international conference on Functional
programming languages and computer architecture, FPCA ’95, pages
306–313, New York, NY, USA, 1995. ACM.

[37] J. Tromp. Binary lambda calculus and combinatory logic. In C. S.
Claude, editor, Randomness And Complexity, from Leibniz To Chaitin,
pages 237–260. World Scientific Publishing Company, 2008.

[38] T. Tsukada and N. Kobayashi. Untyped recursion schemes and infinite
intersection types. In Proceedings of FOSSACS 2010, volume 6014 of
LNCS, pages 343–357. Springer-Verlag, 2010.

[39] S. van Bakel. Intersection type assignment systems. Theor. Comput.
Sci., 151(2):385–435, 1995.

[40] D. Vytiniotis and A. Kennedy. Functional pearl: every bit counts. In
Proceedings of ICFP 2010, pages 15–26, 2010.

11 2011/11/28

Appendix

A. Relationship with Kolmogorov Complexity
As already discussed in Section 1, the “functional programs as
compressed data” approach provides a universal compression
scheme, in the sense that any compressed data can be expressed in
the form of (typed) λ-terms. As sketched below, our representation
of compressed data in the form of λ-terms is optimal with respect
to Kolmogorov complexity, up to an additive constant [20, 21].

Let U be a universal Turing machine. Kolmogorov complex-
ity [20, 21] of a binary string (an element of {0, 1}∗) v, written
K(v), is defined by:

K(v) := min{|w| | w ∈ {0, 1}∗, U(w) = v}.
Here, |w| is the length of w. Since the λ-calculus is Turing com-
plete, there exists a λ-term Uλ such that U(w) = v if and only if
[[Uλ(ŵ)]] = v̂. Here, ŵ is an encoding of a binary string w into a λ-
term such that the size of ŵ is linear in |w|; One can, for example,
use the encoding of [37]. Define Kλ,#(v) by:

Kλ,#(v) := min{#M | [[M]] = v̂}.
Then, by the existence of Uλ above, there exist c1 and c2 such that

∀v ∈ {0, 1}∗.Kλ,#(v) ≤ c1K(v) + c2.

Here, c1 is a constant such that ∀w ∈ {0, 1}∗.#ŵ ≤ c1|w|, which
depends on the encoding ŵ.

For a more precise comparison of the size of the λ-term Uλ(ŵ)
with Kolmogorov complexity, we need to encode the λ-term into a
bit string. Given a λ-term of the form M ŵ (where w is a bit string),
let us write BM ŵ for the following bit-string:

Part A 0 Part B w

where Part A is the unary encoding of the length of Part B and
Part B is some encoding of M into a bit string (such as Tromp’s
one [37]).

Let Kλ,#′(v) be:

Kλ,#′(v) := min{|BM ŵ| | [[M ŵ]] = v̂}.
Then, Kλ,#′(v) ≤ |BUλ ŵ| = K(v) + 1 + 2c, where w is a bit
string such that U(w) = v with |w| = K(v), and c is the length of
the encoding of Uλ into a bit string. As c is independent of v, the
result implies that our “compressed data as functional programs”
approach achieve an optimal compression size up to an additive
constant.

B. Proof of Theorem 4.4
Lemma B.1. If ∅ �X M : q =⇒ N , then ∅ � M : o and
∅ � N : o.

Proof. ∅ � M : o follows immediately from the facts that ∅ �X
M : q =⇒ N implies ∅ �AX M : q and that the type system
for Γ � M : τ is actually the special case for the refinement type
system where the underlying automaton is A = (Σ, {o}, o, Δ)
with Δ = {(o, a, oΣ(a)) | a ∈ dom(Σ)}.

To show ∅ � N : o, we prepare the following generalized
lemma:

If Ψ �X M : θ =⇒ N , then Ψ� �AX N : θ�. (**)

Here, the translation ·� is defined by:

q� = o

(θ1 ∧ · · · ∧ θk → θ)� = θ1
� → · · · → θk

� → θ�

(x1 : θ1, . . . , xk : θk)� = x1,θ1 : θ1
�, . . . , xk,θk

: θk
�

(**) follows by straightforward induction on the derivation of
Ψ �X M : θ =⇒ N .

Lemma B.2. Suppose that Ψ, x : θ1, . . . , x : θk �X M : θ =⇒ N
and Ψ �X M0 : θi =⇒ Ni for each i ∈ {1, . . . , k}, with x �∈
dom(Ψ). Then Ψ �X [M0/x]M1 : θ1 =⇒ [N1/xθ1 , . . . , Nk/xθk

]N .

Proof. The derivation for
Ψ �X [M0/x]M1 : θ1 =⇒ [N1/xθ1 , . . . , Nk/xθk

]N can be
obtained from that for Ψ, x : θ1, . . . , x : θk �X M : θ =⇒ N ,
by replacing each leaf Ψ, Ψ′, x : θ1, . . . , x : θk �X x : θi =⇒ xθi

of the derivation with Ψ, Ψ′ �X M0 : θi =⇒ Ni.

Lemma B.3. If Ψ �X M : θ =⇒ N and M −→β M ′, then there
exists N ′ such that N −→∗

β N ′ and Ψ �X M ′ : θ =⇒ N ′.

Proof. This follows by induction on the derivation of M −→β M ′.
Since the induction steps are trivial, we show only the base case,
where M = (λx.M1)M2 and M ′ = [M2/x]M1. Suppose Ψ �X
M : θ =⇒ N . Then, we have:

N = (λxθ1 , . . . , xθk
.N1)N2,1 · · · N2,k

Ψ �X M2 : θi =⇒ N2,i for each i ∈ {1, . . . , k}
Ψ, x : θ1, . . . , x : θk �X M1 : θ =⇒ N1

Let N ′ be [N2,1/xθ1 , . . . , N2,k/xθk
]N1. By Lemma B.2, we have

Ψ �X M ′ : θ =⇒ N ′. Furthermore, N −→∗
β N ′ holds as

required.

Lemma B.4. If Ψ �X M ′ : θ =⇒ N ′ and M −→β M ′, then
there exists N such that Ψ �X M : θ =⇒ N .

Proof. The proof proceeds by induction on the derivation of
M −→β M ′. As the induction steps are straightforward, we dis-
cuss only the base case, where M = (λx.M1)M2 and M ′ =
[M2/x]M1. Suppose Ψ �X M ′ : θ =⇒ N ′. From the deriva-
tion of Ψ �X M ′ : θ =⇒ N ′, we can construct a deriva-
tion for Ψ, x : θ1, . . . , x : θk �X M1 =⇒ N1 by replacing
subderivations of the form Ψ, Ψ′ �X M2 : θi =⇒ N2,i,j

with those for Ψ, Ψ′, x : θ1, . . . , x : θk �X x =⇒ xθi . For
each i ∈ {1, . . . , k}, choose one such N2,i,j and let it be
N2,i. Let N be (λxθ1 , . . . , xθk

.N1)N2,1 · · · N2,k . Then, we have
Ψ �X M : θ =⇒ N as required.

Lemma B.5. Let T be a Σ-labeled tree. Then, ∅ �X T : q =⇒ N
if and only if (q, T) −→X N .

Proof. This follows by induction on the structure of T . Suppose
T = aT1 . . . Tk with Σ(a) = k. If ∅ �X T : q =⇒ N , then we
have:

N = Mq,a,q1···qk N1 · · · Nk

(q, a, q1 · · · qk, Mq,a,q1···qk) ∈ ΘX
∅ �X Ti : qi =⇒ Ni for each i ∈ {1, . . . , k}

By the induction hypothesis, we get (qi, Ti) −→X Ni. Thus, we
have (q, T) −→X N .

Conversely, suppose (q, T) −→X N . Then, we have:

N = Mq,a,q1···qk N1 · · · Nk

(q, a, q1 · · · qk, Mq,a,q1···qk) ∈ ΘX
(qi, Ti) −→X Ni

By the induction hypothesis, we get ∅ �X Ti : qi =⇒ Ni for each
i ∈ {1, . . . , k}. Thus, we have ∅ �X T : q =⇒ N as required.

12 2011/11/28

Proof of Theorem 4.4. Suppose ∅ �X M : qI =⇒ N . By
Lemma B.1 and Theorem 2.1, there exists T (= [[M]]) such that
M −→∗

β T . By Lemma B.3, there exists N ′ such that N −→∗
β N ′

and ∅ �X T : qI =⇒ N ′. By Lemma B.5, we have (qI , T) −→X
N ′, which implies [[N ′]] ∈ X ([[M]]). By the condition N −→∗

β

N ′, we have [[N]] = [[N ′]] ∈ X ([[M]]), as required.
Conversely, suppose that T ∈ X ([[M]]). By the definition of

X ([[M]]), there exists N ′ such that (qI , [[M]]) −→X N ′. By
Lemma B.5, we have ∅ �X [[M]] : qI =⇒ N ′. By Lemma B.4,
there exists N such that ∅ �X M : qI =⇒ N . By the first part of
this theorem, we have [[N]] ∈ X ([[M]]) as required.

C. Fusion Approach
We discuss another approach, based on the idea of shortcut fu-
sion [8, 36]. Recall that the goal was to construct a program N that
produces X ([[M]]). Here, we can regard M as a tree generator, and
transducer X as a tree consumer. Thus, by using shortcut fusion, we
can construct a program N that computes X ([[M]]) without con-
structing the intermediate data [[M]]. For the sake of simplicity, we
assume below that the transducer X = (Σ, Q, q0, Θ) is determin-
istic and total, i.e., for each (q, a) ∈ Q× dom(Σ), there is exactly
one (q1, . . . , qk, M) such that (q, a, q1 · · · qk, M) ∈ Θ.

A (deterministic and total) transducer X = (Σ, Q, q0, Θ)
(where Q = {q0, . . . , qn−1}) can be viewed as the following ho-
momorphism h from o (i.e., the set of Σ-labeled trees) to Q → o:

h (a x1 . . . xk) = fa (h x1) . . . (h xk) (Σ(a) = k)

Here, fa is given by:

fa g1 · · · gk q =
case q of

q0 ⇒ M0 (g1 q0,1) · · · (gk q0,k)
| · · ·
| qn−1 ⇒ Mn−1 (g1 qn−1,1) · · · (gk qn−1,k)

where (qi, a, qi,1 · · · qi,k, Mi) ∈ Θ. By using Church encod-
ing, qi can be encoded as the function λq0, . . . , qn−1.qi. (Here,
λx0, . . . , xn−1.M is an abbreviated form of λx0. · · ·λxn−1.M .)
Thus, fa above becomes:

λg1, . . . , gk.λq.
q (M0 (g1 q′0,1) · · · (gk q′0,k)) · · ·

(Mn−1 (g1 q′n−1,1) · · · (gk q′n−1,k)),

of type τh → · · · → τh| {z }
k

→ τh, where τh = (o → · · · → o| {z }
n

→

o) → o and q′i,j = λq0, . . . , qn−1.qi,j . It is easy to verify that, for
every Σ-labelled tree T , [[h(T)λq0, . . . , qn−1.q0]] = X (T) holds.

Now, extend h to the homomorphism on λ-terms by:

h(x) = x h(a) = fa

h(M1M2) = h(M1)h(M2) h(λx.M) = λx.h(M)

h just replaces each tree constructor a with fa. Then, N =
h(M)λq0, . . . , qn−1.q0 is what we want.

Theorem C.1. Suppose that M is a program of type o. Let X =
(Σ, Q, q0, Θ) be a deterministic and total transducer, and let h be
the homomorphism as defined above. Then, we have:

[[h(M)λq0, . . . , qn−1.q0]] = X ([[M]]).

Proof. Let T = [[M]], i.e., M −→∗
β T . As M does not have

tree destructors, we have h(M) −→∗
β h(T). Thus, we get N =

h(M)λq0, . . . , qn−1.q0 −→∗
β h(T)λq0, . . . , qn−1.q0 −→∗

β X (T)
as required.

We used syntactic reasoning in the above proof. Alternatively,
we can use semantic techniques [8, 36].

We have assumed above that X is deterministic and total. To
remove the assumption, it suffices to extend h to a homomorphism
from o to Q → 2o.

Example C.1. Recall Example 4.5. With the fusion-based ap-
proach, we get the following program as the output of transforma-
tion:

let q′0 = λq0, q1, qf .q0 in
let q′1 = λq0, q1, qf .q1 in
let q′f = λq0, q1, qf .qf in
let fa = λg.λq.q (s(g q′0)) ((λx.e)(g q′f)) ((λx.e)(g q′f)) in
let fb = λg.λq.q ((λx.x)(g q′1)) (s(g q′1)) ((λx.e)(g q′f)) in
let fe = λq.q ⊥⊥ e in
let twice = λf.λz.f(f(z)) in twice(λz.fa(fb(z))) fe q′0

Here, ⊥ is a special tree constructor denoting an undefined tree,
introduced to make X total.

Remark C.1. There are trade-offs between the two approaches
(model checking and fusion approaches).

• As is clear from Examples 4.5 and C.1, the model checking ap-
proach reduces the program more aggressively than the fusion
approach, which just postpones the computation involved in the
transducer.

• The model checking approach runs in time linear in the program
size only under the assumption that the type width for the
type derivation of the program is fixed. The constant factor
can be huge, although it does not always show up according
to experiments. The fusion approach runs in time linear in the
program size unconditionally.

• The fusion approach raises the order of the program (where the
order of a program is the largest order of the type of a function;
the order of a type is defined by: order (o) = 0, order (τ1 ∧
· · · ∧ τk → τ) = max(order (τ1) + 1, . . . , order (τk) +
1, order (τ))) by two. This can have a very bad effect on further
pattern match queries or data manipulations based on higher-
order model checking (described in Section 4.1). The model
checking approach does not raise the order, although it may
raise the arity of functions (e.g., in Example 4.5, the func-
tion twice takes three arguments after the transformation). Note
that for higher-order model checking, the order of programs is
the most important factor that affects the worst-case complex-
ity [18, 26].

Because of the first and last points, we think the model checking
approach is preferable, and the fusion approach (or the other naive
approaches discussed at the beginning of Section 4.1) should be
used only when the model checking approach is too slow.

13 2011/11/28

