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Abstract

Background: Alterations at the molecular level in spermatozoa and seminal plasma can affect male fertility. The
objective of this study was to determine if analysis of differential expression of proteins in varying semen
parameters can serve as potential biomarkers for male infertility.

Methods: The differential expression of proteins in the seminal plasma of men based on sperm count and
morphology were examined utilizing proteomic tools. Subjects were categorized based on sperm concentration
and morphology into 4 groups: 1) normal sperm count and normal morphology (NN); 2) normal sperm count and
abnormal morphology (NA); 3) oligozoospermia and normal morphology (ON); and 4) oligozoospermia and
abnormal morphology (OA). Proteomic analysis was performed by LC-MS/MS followed by functional bioinformatics
analysis. Protein distribution in the NA, ON and OA groups was compared with that of the NN group.

Results: Twenty proteins were differentially expressed among the 4 groups. Among the unique proteins identified,
3 were downregulated in the NA group, 1 in the ON group and 1 in the OA group while 2 were upregulated in
the ON and OA groups. The functional analysis 1) identified biological regulation as the major processes affected
and 2) determined that most of the identified proteins were of extracellular origin.

Conclusions: We have identified proteins that are over-or underexpressed in the seminal plasma of men with poor
sperm quality. The distinct presence of some of the proteins may serve as potential biomarkers and provide insight
into the mechanistic role played by these proteins in male infertility. Further studies using Western Blot analysis are
required to validate these findings.
Background
Infertility is a major problem in 15% of couples world-
wide. Male factors may play a role in half of these cases
[1]. Most causes of male infertility are idiopathic. Semen
analysis remains the cornerstone in the evaluation of male
infertility. However, the data generated from this routine
testing do not provide any insight into the underlying
problems associated with developing spermatozoa. Sperm
morphology plays an important role in conception, and
both fertilization and pregnancy rates are affected when
morphologically normal sperms are below 5%. It is also a
reflection of poor testicular physiology and is an important
factor in male infertility [2-4]. However, a significant over-
lap of semen parameters such as sperm count, motility and
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morphology have been documented [5]. Idiopathic and un-
explained infertility cannot be diagnosed by routine sperm
function tests [6]. Similarly, oligozoospermic men may have
other underlying pathologies that may contribute to infer-
tility. Evaluation solely based on semen analysis is insuffi-
cient to determine the fertility status of the male partner.
Spermatogenesis is a complex process that involves de-

velopment of the undifferentiated germ cells into a highly
specialized spermatozoon capable of fertilizing an oocyte
[7]. Fertilization requires physical proximity of the sperm-
atozoa and the oocytes. Seminal plasma composed of
secretions from the testis, epididymis and male accessory
glands [8] provides a favorable environment and serves as
a vehicle for the spermatozoa as it travels to meet the
oocyte.
Seminal plasma contains unique proteins necessary for

sperm function and survival [9,10]. Seminal plasma pro-
teins play a variety of roles—they help protect the sperm
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by binding to the sperm surface during ejaculation and
play a key role in capacitation, acrosome reaction, and
sperm-egg fusion [11,12]. They can also modulate im-
mune response in male and female reproductive tracts,
ensuring that the most competent spermatozoa meet the
oocyte during fertilization [13]. Thus, seminal plasma
proteins can serve as important biomarkers for male
infertility [14].
Conventional 1-Dimensional gel electrophoresis studies

have provided information in relation to sperm proteins
and their function in normal and abnormal spermato-
zoa [15,16]. Advancements in mass- spectrometry and
proteomic-based techniques have made it possible to
analyze the complex protein mixtures found in tissues
and body fluids. Several attempts have been made to
identify these proteins using high-throughput techniques
such as matrix assisted laser desorption ionization –
time of flight (MALDI-TOF) mass spectrometry (MS)
and liquid chromatography – tandem mass spectrometry
(LC-MS/MS) and linear ion trap (LTQ-Orbitrap) mass
spectrometry [17-21].
Alterations at the molecular level in spermatozoa and

the seminal plasma may contribute to male infertility.
However, even after accounting for all the advances in
proteomics, there has been a great lack of detailed data
in the area of comparative analysis of seminal plasma
proteins associated with male infertility.
The objective of the present study was 1) to compare

the differential expression of proteins in the seminal
plasma from subjects with normal or abnormal sperm
concentration and sperm morphology utilizing proteomic
tools such as LC-MS/MS and 2) utilize the functional bio-
informatics analysis to identify the cellular origin and the
differentially affected processes and/or pathways of these
proteins to gain insights into the mechanistic roles played
by these proteins in effecting the observed phenotypes.
These analyses could possibly identify potential bio-
markers for male infertility.
Methods
After obtaining Institutional Review Board approval,
written consent was obtained from all subjects. Semen
samples were obtained from 64 subjects who were
healthy male volunteers of unproven fertility (n = 21)
and men presenting to our infertility clinic for evaluation
(n = 43). Semen samples were collected by masturbation
after 2–3 days of sexual abstinence. Samples with
leukocytospermia--a high concentration of white blood
cells (>1 × 106 WBC/mL)–were examined for the pres-
ence of granulocytes by the peroxidase or the Endtz test.
The patients with a positive Endtz test were excluded
from the study. Semen analysis was conducted according
to WHO criteria as described below [22].
Semen analysis
Following complete liquefaction (average time: 20 minutes
and no more than 60 min.), manual semen analysis was
performed using a MicroCell counting chamber (Vitrolife,
San Diego, CA) to determine sperm concentration and
percentage motility according to WHO guidelines [22].
Viability was determined with Eosin - Nigrosin stain.
Smears of the raw semen were stained with a Diff-Quik
kit (Baxter Healthcare Corporation, Inc., McGaw Park, IL)
for assessment of sperm morphology according to WHO
criteria [22].
After analysis of semen parameters, aliquots of the

samples were frozen at −80°C for proteomic analysis.
Preparation of samples for proteomic analysis
Samples were divided into 4 groups based only on
normal sperm concentration and normal morphology
parameters according to WHO criteria [22]. The groups
were as follows: Group 1: normal sperm count and
normal morphology (NN = 26); Group 2: normal sperm
count and abnormal morphology (NA = 22); Group 3:
oligozoospermia and normal morphology (ON = 6) and
group 4: oligozoospermia and abnormal morphology
(OA = 10).
To prepare the samples for proteomic analysis, they

were thawed, and clear seminal plasma was separated
from the sperm pellet by centrifugation at 3,000 g for
30 minutes to ensure complete removal of the cellular
components. Seminal plasma samples were pooled into
replicates (NN = 5; NA = 4; ON = 1; OA = 2). Each sam-
ple was dissolved in 98% acetonitrile containing 0.1%
trifluoroacetic acid followed by lyophilization at −80°C
under vacuum for 2 days. The lyophilized sample was
used to estimate the protein content. The samples were
first precipitated in cold acetone and centrifuged at
10,000 g for 15 minutes. The acetone was poured off,
and the protein pellet was allowed to dry at room
temperature. The protein pellet was solubilized in a buf-
fer of 6 M urea, 100 mM Tris, pH 8.0. The proteins were
then reduced by the addition of DTT (200 mM in
100 mM Tris) for 15 minutes at room temperature and
then alkylated by the addition of 200 mM iodoacetamide
(200 mM in 100 mM Tris) for 20 minutes at room
temperature. The urea concentration was then reduced
to approximately 1.2 M, and trypsin was added at a
ratio of 1:50. Digestion was carried out overnight at
room temperature. The digestion was stopped the next
morning by adding acetic acid to lower the pH to <6,
and the samples were centrifuged to remove insoluble
material. The digests were then prepared for LC-MS/MS
analysis by using PepClean C-18 spin columns to desalt
the samples, which were then brought up in 50 μL of 1%
acetic acid.
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Liquid chromatography – mass spectrometer analysis
(LC-MS/MS)
The LC-MS system is a Finnigan LTQ linear ion trap
mass spectrometer system. The high performance liquid
chromatography (HPLC) column was a self-packed
9 cm × 75 μm (internal diameter) Phenomenex Jupiter
C18 reversed-phase capillary chromatography column.
Ten μL volumes of the extract were injected, and the pep-
tides that were eluted from the column by an acetonitrile/
0.1% formic acid gradient at a flow rate of 0.25 μL/min
were introduced into the source of the mass spectrometer
on-line. The microelectrospray ion source was set at
2.5 kV. The digest was analyzed using the data-dependent
multitask capability of the instrument acquiring full scan
mass spectra to determine peptide molecular weights and
product ion spectra to determine the amino acid sequence
in successive instrument scans [23]. This mode of analysis
produces approximately 2500 collision-induced dissoci-
ation (CID) spectra of ions ranging in abundance over sev-
eral orders of magnitude. The spectral count (SC) for each
protein was determined. Normalized spectral count (NSC)
was obtained by dividing the spectral count for each pro-
tein and the total number of spectral counts identified in
the sample. The spectral counts were quantitated by tak-
ing the normalized spectral count ratio for two sets of
samples. A protein was considered to be differentially
expressed if there was at least a two-fold difference in the
spectral count ratios between the two samples.

Data analysis
All CID spectra collected in the experiment were used to
search the National Center for Biotechnology Information
(NCBI) human reference sequence database with the
search engine MASCOT (Matrix Science, Boston, MA,
www.matrixscience.com). After identification, a database
consisting of all proteins identified in these searches was
created and used for a second set of searches. These
searches were performed with a program called
SEQUEST, and the results from these SEQUEST searches
were used to determine the spectral counts. Furthermore,
functional bioinformatics analysis was done using publicly
available software packages such as Gene Ontology anno-
tations from GO Term Finder [24] and GO Term Mapper
[25], UniProt [26], STRAP [27], and BioGPS [28]) as well
as proprietary software packages (Ingenuity Pathway Ana-
lysis (IPA) from Ingenuity® Systems [29], and Metacore™
from GeneGo Inc. [30]) to identify the differentially
affected processes, pathways, interactions, and cellular
distribution of the proteins in the four study groups.

Results
Analysis of the proteins identified by LC-MS/MS
The proteins identified in the 12 replicates from NN,
NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and
Mascot score is shown in Table 1. A protein was consid-
ered significant if the SC cut off value was ≥ 10 in at
least one sample and present in at least 50% of the
samples in a group. They were considered ‘low abun-
dant’ if the SC cut-off value was ≤10 in all the samples.
The differentially expressed proteins (DEP) in the NA,
OA, and ON groups were categorized based on the NSC
ratio cut-off values of > 2 (for over-expressed) or < 0.5
(for under-expressed) in comparison to the NN group.
We identified a total of 35 proteins; of these, 10 were
classified as low abundant. Amongst the remaining 25
significantly abundant proteins (24 in NN, 23 in NA, 20
in OA, and 16 in ON), 11 were present in all the samples,
and 13 proteins were identified as unique to one or two or
three of the four samples. 20 proteins were identified as
differentially expressed in the NA, OA, and ON groups as
compared to NN group, with 2 proteins differentially
expressed in all three groups (Figure 1). The remaining
18 were present in either of the groups (Figure 2). A
detailed list of the proteins classified under these cat-
egories (Common, Unique, Significant, Low Abundant,
and Differentially Expressed) is shown in Table 2.

Identification of the common proteins
Our analyses revealed a set of 11 proteins that were
common to all the samples in the 4 groups (Table 2).
Prolactin induced protein (PIP), semenogelin II (SgII)
precursor, albumin preprotein, lactotransferrin, epididy-
mal secretory protein E1 precursor, extracellular matrix
protein 1 isoform 1 precursor, prosaposin isoform A
preprotein, cathepsin D preprotein, prostate specific
antigen isoform 1 preprotein, zinc alpha-2 glycoprotein
1, and clusterin isoform 1 were the common proteins
identified.

Identification of differentially expressed proteins
As shown in Figure 1, the DEP list encompassed pro-
teins that overlapped with other categories (common,
unique, low abundant and significant). The common
proteins that were also differentially expressed included
prostate specific antigen isoform I preprotein; zinc
alpha-2-glycoprotein 1 and clusterin isoform 1. Five low
abundant proteins (transferrin; secretory leukocyte
peptidase inhibitor precursor; ubiquitin and ribosomal
protein S27a precursor; protein tyrosine phosphatase
receptor type, sigma isoform 1 precursor, and acidic
epididymal glycoprotein-like 1 isoform 1 precursor)
were included as differentially expressed because their
NSC ratio comparison met the 2-fold cutoff criteria.
Of the 20 differentially expressed proteins, mucin 6,
gastric; orosomucoid 1 precursor and acidic epididy-
mal glycoprotein-like isoform 1 precursor were unique
proteins that were down regulated in the NA group.

http://www.matrixscience.com


Table 1 Identification of proteins in the 12 replicates from NN, NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and Mascot score

Identification LTQ

No. Protein name NCBI database index
number

Calculated MW in
kDa

PI Peptides
(%coverage)

Mascot
score

Sample NN1

semenogelin II precursor 4506885 65 9 8(10%) 9536

prolactin induced protein 4505821 16 8.2 3(20%) 5335

albumin preproprotein 4502027 71 5.9 9(22%) 4805

epididymal secretory protein E1 precursor 5453678 16 7.5 3 (21%) 794

prosaposin isoform a preproprotein 11386147 59 5 1 (2%) 658

mucin 6, gastric 151301154 263 7.2 4 (3%) 461

prostate specific antigen isoform 4 preproprotein 71834855 24 7 3 (15%) 460

armadillo repeat protein 4502247 105 6.3 3(5%) 413

cathepsin D preproprotein 4503143 45 6.1 1 (4%) 285

zinc alpha-2-glycoprotein 1 4502337 34 5.7 2 (12%) 260

cystatin S precursor 4503109 16 4.9 2 (31%) 178

ubiquitin and ribosomal protein S27a precursor 4506713 18 9.6 1 (10%) 173

clusterin isoform 1 42716297 58 6.2 3 (10%) 142

Sample NN2

prolactin-induced protein 4505821 16 8.2 10 (69%) 32886

semenogelin II precursor 4506885 65 9 17 (33%) 22468

semenogelin I isoform b preproprotein 38049014 45 9.2 13 (33%) 5388

albumin preproprotein 4502027 71 5.9 24 (54%) 15508

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 11 (61%) 5087

lactotransferrin precursor 54607120 80 8.5 22 (42%) 4281

zinc alpha-2-glycoprotein 1 4502337 34 5.7 11 (44%) 3424

cystatin S precursor 4503109 16 4.9 5 (44%) 1809

prosaposin isoform a preproprotein 11386147 59 5 9 (33%) 880

epididymal secretory protein E1 precursor 5453678 16 7.5 4 (52%) 786

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 11 (48%) 737

mucin 6, gastric 151301154 263 7.2 11 (9%) 524

extracellular matrix protein 1 isoform 1 precursor 221316614 62 6.2 7 (31%) 504

cystatin C precursor 4503107 16 9 6 (68%) 432

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 4 (40%) 411

fibronectin 1 isoform 3 preproprotein 16933542 262 5.4 8(11%) 353

cathepsin D preproprotein 4503143 45 6.1 3 (11%) 266

acid phosphatase, prostate short isoform precursor 6382064 44 5.8 2 (12%) 166

carboxypeptidase E preproprotein 4503009 53 5 5 (20%) 153

clusterin isoform 1 42716297 58 6.2 2 (7%) 106

Sample NN3

prolactin-induced protein 4505821 16 8.2 10 (66%) 24697

semenogelin II precursor 4506885 65 9 19 (35%) 13533

semenogelin I isoform b preproprotein 38049014 45 9.2 15 (39%) 2633

albumin preproprotein 4502027 71 5.9 30 (60%) 8842

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 16 (70%) 8634

lactotransferrin precursor 54607120 80 8.5 23 (49%) 4607
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Table 1 Identification of proteins in the 12 replicates from NN, NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and Mascot score (Continued)

zinc alpha-2-glycoprotein 1 4502337 34 5.7 9 (42%) 3935

epididymal secretory protein E1 precursor 5453678 16 7.5 6 (52%) 1214

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 3 (29%) 987

prosaposin isoform a preproprotein 11386147 59 5 5 (21%) 833

extracellular matrix protein 1 isoform 1 precursor 221316614 62 6.2 6 (22%) 766

cystatin S precursor 4503109 16 4.9 5 (49%) 621

beta 2 microglobulin precursor 4757826 13 6 2 (21%) 523

fibronectin 1 isoform 3 preproprotein 16933542 262 5.4 4 (2%) 410

orosomucoid 1 precursor 167857790 23 5 3 (16%) 397

cystatin C precursor 4503107 16 9 3 (26%) 301

mucin 6, gastric 151301154 263 7.2 7 (7%) 288

cathepsin D preproprotein 4503143 45 6.1 2 (11%) 228

carboxypeptidase E preproprotein 4503009 53 5 3 (16%) 193

acidic epididymal glycoprotein-like 1 isoform 1 precursor 25121982 29 5.5 2 (10%) 166

galectin 3 binding protein 5031863 66 5.1 4 (11%) 165

clusterin isoform 1 42716297 58 6.2 2 (7%) 158

acid phosphatase, prostate short isoform precursor 6382064 44 5.8 5 (16%) 128

prostaglandin (H2) D-isomerase −1 peptide 32171249 21 7.6 1 (8%) 115

Sample NN4

prolactin-induced protein 4505821 16 8.2 12 (76%) 36052

semenogelin II precursor 4506885 65 9 16 (32%) 17746

semenogelin I isoform b preproprotein 38049014 45 9.2 14 (34%) 2723

lactotransferrin precursor 54607120 80 8.5 39 (61%) 8695

albumin preproprotein 4502027 71 5.9 23 (48%) 8361

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 15 (67%) 7417

zinc alpha-2-glycoprotein 1 4502337 34 5.7 11 (38%) 3979

mucin 6, gastric 151301154 263 7.2 14 (12%) 1685

epididymal secretory protein E1 precursor 5453678 16 7.5 7 (70%) 1428

acid phosphatase, prostate short isoform precursor 6382064 44 5.8 9 (26%) 1384

clusterin isoform 1 42716297 58 6.2 6 (16%) 1148

orosomucoid 1 precursor 167857790 23 5 4 (32%) 942

orosomucoid 2 4505529 23 5 2 (12%) 207

prosaposin isoform a preproprotein 11386147 59 5 6 (27%) 941

extracellular matrix protein 1 isoform 1 precursor 221316614 62 6.2 7 (25%) 731

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 3 (29%) 635

beta 2 microglobulin precursor 4757826 13 6 2 (21%) 489

fibronectin 1 isoform 3 preproprotein 16933542 262 5.4 4 (3%) 447

cystatin C precursor 4503107 16 9 3 (26%) 391

carboxypeptidase E preproprotein 4503009 53 5 4 (14%) 358

galectin 3 binding protein 5031863 66 5.1 5 (14%) 341

transferrin 4557871 79 6.8 2 (4%) 275

acidic epididymal glycoprotein-like 1 isoform 1 precursor 25121982 29 5.5 2 (10%) 238

cystatin S precursor 4503109 16 4.9 2 (20%) 205

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 3 (12%) 187
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Table 1 Identification of proteins in the 12 replicates from NN, NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and Mascot score (Continued)

cathepsin D preproprotein 4503143 45 6.1 2 (11%) 185

prostaglandin (H2) D-isomerase −1 peptide 32171249 21 7.6 1 (8%) 133

Sample NN5

prolactin-induced protein 4505821 16 8.2 8 (44%) 15001

semenogelin II precursor 4506885 65 9 10 (14%) 7235

albumin preproprotein 4502027 71 5.9 17 (39%) 2621

epididymal secretory protein E1 precursor 5453678 16 7.5 3 (23%) 552

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 5 (22%) 539

cystatin S precursor 4503109 16 4.9 2 (23%) 332

zinc alpha-2-glycoprotein 1 4502337 34 5.7 4 (19%) 250

prosaposin isoform a preproprotein 11386147 59 5 1 (2%) 239

prostatic acid phosphatase precursor 6382064 44 5.8 2 (4%) 180

lactotransferrin 54607120 80 8.5 4 (10%) 173

clusterin isoform 1 42716297 58 6.2 2 (7%) 157

galectin 3 binding protein 5031863 66 5.1 2 (4%) 152

extracellular matrix protein 1 isoform 1 precursor 4758236 62 6.2 1 (5%) 119

Sample NA1

prolactin-induced protein 4505821 16 8.2 10 (62%) 17127

albumin preproprotein 4502027 71 5.9 36 (61%) 9157

semenogelin II precursor 4506885 65 9 22 (39%) 7469

semenogelin I isoform b preproprotein 38049014 45 9.2 19 (42%) 2622

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 14 (67%) 5287

lactotransferrin 54607120 80 8.5 19 (40%) 2696

zinc alpha-2-glycoprotein 1 4502337 34 5.7 9 (38%) 1904

epididymal secretory protein E1 precursor 5453678 16 7.5 6 (68%) 1228

extracellular matrix protein 1 isoform 1 precursor 221316614 62 6.2 6 (22%) 635

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 8 (27%) 616

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 2 (19%) 487

prosaposin isoform a preproprotein 11386147 59 5 4 (15%) 475

beta 2 microglobulin precursor 4757826 13 6 2 (21%) 400

fibronectin 1 isoform 3 preproprotein 16933542 262 5.4 7 (5%) 398

cystatin C precursor 4503107 16 9 3 (26%) 340

cystatin S precursor 4503109 16 4.9 2 (20%) 261

mucin 6, gastric isoform 1 89033736 185 6.3 4 (5%) 238

prostaglandin (H2) D-isomerase 32171249 21 7.6 1 (8%) 227

prostatic acid phosphatase precursor 6382064 44 5.8 4 (8%) 189

protein tyrosine phosphatase, receptor type, sigma isoform 1
precursor

104487006 218 6.1 5 (5%) 180

transferrin 4557871 79 6.8 3 (17%) 174

clusterin isoform 1 42716297 58 6.2 4 (11%) 171

cathepsin D preproprotein 4503143 45 6.1 1 (4%) 149

galectin 3 binding protein 5031863 66 5.1 5 (14%) 101

Sample NA2

prolactin-induced protein 4505821 16 8.2 12 (76%) 21197
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Table 1 Identification of proteins in the 12 replicates from NN, NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and Mascot score (Continued)

semenogelin II precursor 4506885 65 9 18 (36%) 9137

semenogelin I isoform b preproprotein 38049014 45 9.2 13 (33%) 1777

albumin preproprotein 4502027 71 5.9 26 (55%) 7695

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 16 (67%) 4963

zinc alpha-2-glycoprotein 1 4502337 34 5.7 13 (44%) 3134

lactotransferrin 54607120 80 8.5 24 (46%) 3105

epididymal secretory protein E1 precursor 5453678 16 7.5 5 (68%) 1276

prosaposin isoform a preproprotein 11386147 59 5 7 (26%) 662

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 3 (29%) 660

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 5 (20%) 612

extracellular matrix protein 1 isoform 1 precursor 4758236 62 6.2 7 (22%) 577

cystatin C precursor 4503107 16 9 3 (26%) 548

beta 2 microglobulin precursor 4757826 13 6 2 (21%) 443

prostatic acid phosphatase precursor 6382064 44 5.8 8 (18%) 410

cathepsin D preproprotein 4503143 45 6.1 5 (25%) 375

clusterin isoform 1 42716297 58 6.2 2 (7%) 308

DJ-1 protein 31543380 20 6.3 2 (26%) 279

carboxypeptidase E preproprotein 4503009 53 5 4 (19%) 278

galectin 3 binding protein 5031863 66 5.1 5 (14%) 266

cystatin S precursor 4503109 16 4.9 6 (64%) 212

CD177 molecule 110735433 47 5.6 2 (9%) 199

mucin 6, gastric isoform 1 89033736 185 6.3 3 (4%) 196

fibronectin 1 isoform 3 preproprotein 16933542 262 5.4 4 (4%) 172

secretory leukocyte peptidase inhibitor precursor 4507065 15 9.1 2 (28%) 162

cathepsin B preproprotein 4503139 38 5.8 3 (12%) 127

Sample NA3

prolactin-induced protein 4505821 16 8.2 5 (37%) 6642

semenogelin II precursor 4506885 65 9 6 (9%) 5126

albumin preproprotein 4502027 71 5.9 7 (17%) 2077

prosaposin isoform a preproprotein 11386147 59 5 2 (8%) 438

mucin 6, gastric isoform 1 89033736 185 6.3 3 (2%) 269

epididymal secretory protein E1 precursor 5453678 16 7.5 2 (21%) 210

zinc alpha-2-glycoprotein 1 4502337 34 5.7 3 (24%) 203

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 3 (13%) 141

clusterin isoform 1 42716297 58 6.2 3 (10%) 117

Sample NA4

prolactin-induced protein 4505821 16 8.2 10(76%) 22296

semenogelin II precursor 4506885 65 9 16 (30%) 11486

semenogelin I isoform b preproprotein 38049014 45 9.2 13 (33%) 3038

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 14 (67%) 3631

zinc alpha-2-glycoprotein 1 4502337 34 5.7 11 (38%) 3260

lactotransferrin 54607120 80 8.5 16 (45%) 2926

prosaposin isoform a preproprotein 11386147 59 5 5 (20%) 773

epididymal secretory protein E1 precursor 5453678 16 7.5 3 (39%) 533
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Table 1 Identification of proteins in the 12 replicates from NN, NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and Mascot score (Continued)

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 4 (12%) 506

extracellular matrix protein 1 isoform 1 precursor 4758236 62 6.2 4 (17%) 454

beta 2 microglobulin precursor 4757826 13 6 2 (21%) 388

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 3 (29%) 351

cystatin S precursor 4503109 16 4.9 5 (48%) 321

cystatin C precursor 4503107 16 9 2 (26%) 280

cathepsin D preproprotein 4503143 45 6.1 2 (11%) 200

cathepsin B preproprotein 4503139 38 5.8 2 (10%) 186

carboxypeptidase E preproprotein 4503009 53 5 3 (11%) 162

Sample OA1

prolactin-induced protein 4505821 16 8.2 12 (77%) 22670

semenogelin II precursor 4506885 65 9 19(32%) 13764

semenogelin I isoform b preproprotein 38049014 45 9.2 15 (27%) 6586

albumin preproprotein 4502027 71 5.9 26 (51%) 7715

lactotransferrin 54607120 80 8.5 28 (54%) 5063

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 11 (64%) 3309

zinc alpha-2-glycoprotein 1 4502337 34 5.7 9 (40%) 3298

ankyrin repeat domain 11 56676397 299 6.7 3 (1%) 1056

PREDICTED: mucin 6, gastric isoform 1 89033736 185 6.3 10 (14%) 808

epididymal secretory protein E1 precursor 5453678 16 7.5 7 (70%) 635

clusterin isoform 1 42716297 58 6.2 4 (13%) 512

fibronectin 1 isoform 2 preproprotein 47132551 269 5.3 10 (7%) 503

extracellular matrix protein 1 isoform 1 precursor 4758236 62 6.2 5 (28%) 420

prosaposin isoform a preproprotein 11386147 59 5 4 (18%) 407

prostatic acid phosphatase precursor 6382064 44 5.8 9 (28%) 365

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 4 (35%) 337

beta 2 microglobulin precursor – 1 peptide 4757826 13 6 1 (18%) 262

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 4 (12%) 242

transferrin 4557871 79 6.8 3 (4%) 211

cathepsin D preproprotein 4503143 45 6.1 2 (11%) 206

cystatin C precursor 4503107 16 9 5 (52%) 199

cystatin S precursor 4503109 16 4.9 6 (68%) 198

secretory leukocyte peptidase inhibitor precursor −1 peptide 4507065 15 9.1 1 (18%) 175

carboxypeptidase E preproprotein 4503009 53 5 2 (8%) 123

galectin 3 binding protein 5031863 66 5.1 3 (8%) 105

cathepsin B preproprotein 4503139 38 5.8 2 (12%) 95

expressed in prostate and testis 19923082 14 8.2 1 (10%) 86

macrophage migration inhibitory factor – 1 peptide 4505185 12 7.7 1 (9%) 84

prostaglandin (H2) D-isomerase −1 peptide 32171249 21 7.6 1 (8%) 75

Sample OA2

prolactin-induced protein 4505821 16 8.2 8 (51%) 13511

semenogelin II precursor 4506885 65 9 11 (18%) 6235

albumin preproprotein 4502027 71 5.9 10 (23%) 1848

cystatin S precursor 4503109 16 4.9 3 (28%) 522
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Table 1 Identification of proteins in the 12 replicates from NN, NA, ON and OA group showing protein name, NCBI
database index, molecular weight, peptide coverage and Mascot score (Continued)

prostate specific antigen isoform 4 preproprotein 71834855 24 7 4 (25%) 354

prosaposin isoform a preproprotein 11386147 59 5 1 (2%) 324

clusterin isoform 1 42716297 58 6.2 3 (10%) 308

mucin 6, gastric isoform 1 89033736 185 6.3 2 (1%) 306

zinc alpha-2-glycoprotein 1 4502337 34 5.7 4 (17%) 291

epididymal secretory protein E1 precursor 5453678 16 7.5 3 (38%) 184

ankyrin repeat domain 11 56676397 299 6.7 3 (1%) 133

carboxypeptidase E preproprotein 4503009 53 5 2 (8%) 121

lactotransferrin precursor 54607120 80 8.5 3 (9%) 115

extracellular matrix protein 1 isoform 1 precursor 4758236 62 6.2 1 (5%) 108

galectin 3 binding protein 5031863 66 5.1 1 (2%) 98

cathepsin D preproprotein 4503143 45 6.1 2 (13%) 95

lactamase, beta isoform a 26051231 61 8.7 2 (10%) 90

prostatic acid phosphatase precursor 6382064 44 5.8 1 (4%) 78

Sample ON

prolactin-induced protein 4505821 16 8.2 9 (69%) 33212

semenogelin II precursor 4506885 65 9 20 (35%) 10703

semenogelin I isoform b preproprotein 38049014 45 9.2 17 ((38%) 2722

albumin preproprotein 4502027 71 5.9 25 (52%) 9519

prostate specific antigen isoform 1 preproprotein 4502173 29 7.6 14 (62%) 6487

zinc alpha-2-glycoprotein 1 4502337 34 5.7 9 (38%) 5967

lactotransferrin precursor 54607120 80 8.5 18(40%) 3770

serine proteinase inhibitor, clade A, member 1 50363217 46 5.3 4 (15%) 1138

prosaposin isoform a preproprotein 11386147 59 5 6 (26%) 1014

epididymal secretory protein E1 precursor 5453678 16 7.5 3 (39%) 937

tissue inhibitor of metalloproteinase 1 precursor 4507509 23 8.4 2 (19%) 866

extracellular matrix protein 1 isoform 1 precursor 221316614 62 6.2 3 (12%) 637

beta 2 microglobulin precursor 4757826 13 6 2 (21%) 633

mucin 6, gastric 151301154 263 7.2 5 (5%) 407

fibronectin 1 isoform 3 preproprotein 16933542 262 5.4 2 (1%) 352

cathepsin D preproprotein 4503143 45 6.1 2 (11%) 334

cystatin C precursor 4503107 16 9 3 (26%) 320

carboxypeptidase E preproprotein 4503009 53 5 3 (11%) 172

clusterin isoform 1 42716297 58 6.2 2 (7%) 147

acid phosphatase, prostate short isoform precursor 6382064 44 5.8 3 (8%) 132

secretory leukocyte peptidase inhibitor precursor 4507065 15 9.1 2 (42%) 123

protein tyrosine phosphatase, receptor type, sigma isoform 1
precursor

104487006 218 6.1 4 (3%) 112
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The proteins identified as unique and upregulated in
the OA group were: prostate specific antigen isoform
1 preprotein; semenogelin I isoform b preprotein.
Cystatin C precursor was found to be downregulated
in the OA group. The ON group showed an
upregulation of two unique proteins (zinc alpha-2
glycoprotein 1 and tissue inhibitor of metalloproteinase
1 precursor); while clusterin 1 was downregulated in
this group.
Some unique proteins were absent in some of the

groups but were differentially expressed in other groups.
These proteins included the DJ-1 protein, which was
absent in the OA groups, whereas the ankyrin repeat
domain 11 was absent in the NN group. Also included



Figure 1 Broad categorical analysis of proteomics data. Differentially expressed proteins list encompasses proteins that overlap with other
categories (common, unique, low abundant and significant) of proteins.
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in this category was orosomucoid 1 precursor, which
was found in significant abundance in the NN samples
but in low abundance in NA sample.

Identification of the low abundant proteins
Many of the identified proteins were low abundant
proteins (SC ≤10) (Table 2). Some of these proteins were
restricted to a particular group while they were absent in
other groups. Transferrin, secretory leukocyte peptidase
inhibitor precursor, ubiquitin and ribosomal protein
S27 a precursor, prostaglandin H2 D isomerase were
some of the proteins that were absent in ON group.
The CD177 molecule was absent only in the NN group;
Figure 2 Venn diagram showing distribution of 20 differentially expre
samples, NA, OA, and ON in comparison to the baseline NN sample.
while orosomucoid 2 was present only in the NN. Pro-
tein tyrosine phosphatase, receptor type, sigma isoform
1 precursor and acidic epididymal glycoprotein - like 1
isoform 1 precursor protein were absent in the OA
group.

Cellular distribution and significant biological processes
for proteins in four groups
The functional analysis revealed that most of the signifi-
cant proteins in each of the four groups (NN, NA, OA,
and ON) had a predominant cellular distribution in the
extracellular region followed by their presence in the
intracellular organelles (Figure 3). The distribution of
ssed proteins. This was based on the NSC ratio cut-off >2 across 3



Table 2 Detailed list of classification of 35 proteins based on their presence, abundance, and differential expression

No. Protein Names NCBI
Accession

No.

UniProt
Accession

No.

No. of
samples

Proteins
present in
groups

Low
abundant
proteins
(SC ≤ 10)

Differentially Expressed
Proteins (in NA, OA, and ON)

compared to NN

Significant
proteins in
groups

1 prolactin-induced protein 4505821 P12273 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

2 semenogelin II precursor 4506885 Q02383 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

3 albumin preproprotein 4502027 P02768 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

4 lactotransferrin 54607120 P02788 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

5 epididymal secretory protein
E1 precursor

5453678 P61916 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

6 extracellular matrix protein 1
isoform 1 precursor

221316614 Q16610 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

7 prosaposin isoform a
preproprotein

11386147 P07602 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

8 cathepsin D preproprotein 4503143 P07339 12 NN(5), NA
(4), OA(2),
ON(1)

NN, NA, OA,
ON

9 prostate specific antigen
isoform 1 preproprotein

4502173 Q546G3 12 NN(5), NA
(4), OA(2),
ON(1)

↑ in OA NN, NA, OA,
ON

10 zinc alpha-2-glycoprotein 1 4502337 P25311 12 NN(5), NA
(4), OA(2),
ON(1)

↑ in ON NN, NA, OA,
ON

11 clusterin isoform 1 42716297 P10909 12 NN(5), NA
(4), OA(2),
ON(1)

Low in ON ↓ in ON NN, NA, OA

12 mucin 6, gastric 151301154 Q6W4X9 11 NN(4), NA
(4), OA(2),
ON(1)

↓ in NA NN, NA, OA,
ON

13 cystatin S precursor 4503109 P01036 11 NN(4), NA
(4), OA(2),
ON(1)

Low in ON ↓ in NA, OA, ON NN, NA, OA

14 galectin 3 binding protein 5031863 Q08380 11 NN(5), NA
(3), OA(2),
ON(1)

Low in OA
and ON

↓ in OA, ON NN, NA

15 semenogelin I isoform b
preproprotein

38049014 P04279 10 NN(3), NA
(4), OA(2),
ON(1)

↑ in OA NN, NA, OA,
ON

16 prostatic acid phosphatase
precursor

6382064 P15309 10 NN(4), NA
(3), OA(2),
ON(1)

Low in ON ↓in NA, ON NN, NA, OA

17 cystatin C precursor 4503107 P01034 9 NN(4), NA
(3), OA(1),
ON(1)

↓in OA NN, NA, OA,
ON

18 tissue inhibitor of
metalloproteinase 1
precursor

4507509 Q6FGX5 8 NN(3), NA
(3), OA(1),
ON(1)

↑ in ON NN, NA, OA,
ON
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Table 2 Detailed list of classification of 35 proteins based on their presence, abundance, and differential expression
(Continued)

19 beta 2 microglobulin
precursor

4757826 P61769 8 NN(3), NA
(3), OA(1),
ON(1)

Low in OA ↓ in OA; Up in ON NN, NA, ON

20 DJ-1 protein 31543380 Q99497 6 NN(2), NA
(3), ON(1)

↑ in NA, ON NN, NA, ON

21 ankyrin repeat domain 11 56676397 Q6UB99 4 NA(1), OA
(2), ON(1)

Low in NA
and ON

↓ in OA, ON OA

22 orosomucoid 1 precursor 167857790 P02763 2 NN(2), NA
(1)

Low in NA ↓in NA NN

23 serine proteinase inhibitor,
clade A, member 1

50363217 P01009 8 NN(3), NA
(3), OA(1),
ON(1)

↑ in NA,ON; ↓ in OA NA, OA, ON

24 transferrin 4557871 Q06AH7 6 NN(2), NA
(3), OA(1)

Low
abundant

↑ in NA, OA NONE

25 secretory leukocyte
peptidase inhibitor precursor

4507065 P03973 5 NN(1), NA
(3), OA(1)

Low
abundant

↑ in NA, OA NONE

26 ubiquitin and ribosomal
protein S27a precursor

4506713 P62979 4 NN(2), NA
(1), OA(1)

Low
abundant

↓ in NA, OA NONE

27 protein tyrosine
phosphatase, receptor type,
sigma isoform 1 precursor

104487006 Q13332 4 NN(1), NA
(2), ON(1)

Low
abundant

↑ in NA, ON NONE

28 acidic epididymal
glycoprotein-like 1 isoform 1
precursor

25121982 P54107 3 NN(2), NA
(1)

Low
abundant

↓in NA NONE

29 prostaglandin H2 D-
isomerase

32171249 P41222 5 NN(2), NA
(2), OA(1)

Low
abundant

NONE

30 cathepsin B preproprotein 4503139 P07858 6 NN(3), NA
(3)

Low
abundant

NONE

31 expressed in prostate and
testis

19923082 Q8WXA2 4 NN(2), NA
(1), OA(1)

Low
abundant

NONE

32 orosomucoid 2 4505529 P19652 1 NN(1) Low
abundant

NONE

33 CD177 molecule 110735433 Q8N6Q3 3 NA(1), OA
(1), ON(1n
with (1))

Low
abundant

NONE

34 carboxypeptidase E
preproprotein

4503009 P16870 9 NN(3), NA
(3), OA(2),
ON(1)

Low in OA
and ON

NN, NA

35 fibronectin 1 isoform 2
preproprotein

47132551 P02751 10 NN(4), NA
(4), OA(1),
ON(1)

Low in ON NN, NA, OA

NN = normal sperm count and normal morphology; NA = normal sperm count and abnormal morphology; ON = oligozoospermia and normal morphology;
OA = oligozoospermia and abnormal morphology; number in the parenthesis indicates the number of samples.
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proteins in the NA group was comparable in most of the
cases to the NN group but was different from the ON
and OA groups. The OA group showed only ~15% of
the proteins localized in the plasma membrane region
compared to the other groups, with the maximum num-
ber of proteins (~20%) localized in the lysosomal and
vacuolar regions. The ON group showed the least distri-
bution of proteins in the nuclear region compared to the
extracellular region.
The functional analysis of the significant proteins in

each of the groups revealed that most of the proteins
involved in the biological process were regulatory in
function (Figure 4). Based on the distribution pattern of
the regulatory proteins, the OA groups showed the least
involvement of proteins (60%) in regulation compared
with 70% - 75% seen in the NN, NA and ON groups. A
smaller number of proteins were involved in other func-
tional processes such as protein complex assembly, cell
morphogenesis, membrane organization, protein matur-
ation and trafficking in all the 4 groups. Interestingly,
none of the proteins in the ON group were involved in
any of these processes. Importantly, of all the major



Figure 3 Functional annotations from consolidated findings using publicly available software tools (GO term mapper, GO term finder,
UniProtKB, STRAP, BioGPS) and proprietary pathway software packages (Ingenuity Pathway Analysis and Metacore™) showing cellular
distribution of significant proteins in NN, NA, OA, and ON groups.
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processes represented, the OA groups showed the lowest
distribution of signal transduction proteins (15%) and
had little or no role in neurological system processing,
membrane organization and protein maturation.

Comparison of cellular distribution and biological
processes amongst the common, DEP, and low abundant
proteins
A detailed evaluation of the cellular localization of the
common, DEP and low abundant proteins is shown in
Figure 5. A higher distribution of the common proteins
was seen in the majority of cellular compartments
Figure 4 Functional annotations from consolidated findings using pu
UniProtKB, STRAP, BioGPS) and proprietary pathway software packag
biological processes of significant proteins in NN, NA, OA and ON gro
compared to DEP and low abundance proteins. The
extracellular region showed the highest distribution
(91%) of the common proteins whereas they were
absent in the ribosomal and endosomal regions. Higher
distribution of differentially expressed proteins was seen
in the cytosolic and Golgi regions compared to the
common or low abundance proteins. The low abundant
proteins were absent in the protein complex and
secretory granular region but their localization was
found to be high in the nuclear and endosomal regions.
A comparative analysis of the proteins involved in

various biological processes in the three groups are
blicly available software tools (GO term mapper, GO term finder,
es (Ingenuity Pathway Analysis and Metacore™) showing
up.



Figure 5 Functional annotations from consolidated findings using publicly available software tools (GO term mapper, GO term finder,
UniProtKB, STRAP, BioGPS) and proprietary pathway software packages (Ingenuity Pathway Analysis and Metacore™) showing
comparison of cellular distribution amongst the proteins in Common, DEP, and Low abundant category.
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shown in Figure 6. The proteins commonly expressed in
all 4 groups played a significant role in many of the bio-
logical processes such as cellular development, molecu-
lar transport, and stress response, interactions with cells
and organisms, cellular processes and in processes relat-
ing to the immune system. Compared with the common
proteins, DEP were comparable for the regulatory pro-
cesses, but were reduced in all biological processes.
Higher distribution was seen in protein metabolic
process, vesicle mediated transport, defense response
and cellular protein modification process. The low abun-
dant proteins were seen to be involved mainly in protein
Figure 6 Functional annotations from consolidated findings using pu
UniProtKB, STRAP, BioGPS) and proprietary pathway software packag
Comparison of Biological Processes amongst the proteins in Common
metabolism, vesicle-mediated transport and defense
response.

Pathways and network analysis using IPA and metacore™
Based on the dataset derived from common, DEP and
low abundance proteins, pathways, biological functions
and networks of interactions were derived utilizing the
two proprietary pathway packages, IPA and Metacore™.
The important processes affected by common proteins
were lipid metabolism (epididymal secretory protein E1
precursor, prosaposin isoform A preprotein, clusterin
isoform 1, lactotransferrin and cathepsin D preprotein),
blicly available software tools (GO term mapper, GO term finder,
es (Ingenuity Pathway Analysis and Metacore™) showing
, DEP, and Low abundant category.
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cell death and survival (cathepsin D preprotein, lacto-
transferrin, clusterin isoform 1, prosaposin isoform A
preprotein and prostate specific antigen isoform 1
preprotein), and cellular development (clusterin isoform
1, prostate specific antigen isoform 1 preprotein, lacto-
transferrin, extracellular matrix protein 1 isoform 1 pre-
cursor, cathepsin D preprotein and epididymal secretory
protein E1 precursor).
The important processes affected by DEP showed a

higher involvement in carbohydrate metabolism and
nephrosis (ankyrin repeat domain 11, beta 2 microglobulin
(B2MG) precursor, clusterin isoform 1, cystatin C pre-
cursor, prostate specific antigen isoform 1 preprotein,
DJ-1 protein, protein tyrosine phosphatase, receptor
type, sigma isoform 1 precursor, transferrin). The major
pathways involved are proteolysis (extracellular matrix;
ECM), remodeling and connective tissue degradation,
immune response, clathrin-mediated endocytosis sig-
naling, lipid antigen presentation by CD1, and intrinsic
prothrombin activation pathway. Similarly, in the low
abundant proteins the top biological functions included
the cellular development, growth proliferation, DNA
replication, recombination, and repair (prostaglandin (H2)
D-isomerase, protein tyrosine phosphatase, receptor type,
sigma isoform 1 precursor and transferrin).
We also studied the major biological functions of the

DEP in each of the 3 groups and found that free radical
scavenging was the topmost function in the NA group,
while cell-to-cell signaling and interaction were seen in
all 3 groups. Genes that encode for 7 differentially
expressed proteins (cysteine-rich secretory protein 1,
clusterin, prostatic acid phosphatase (PAP), mucin 6, pros-
tate specific antigen (PSA), zinc alpha-2-glycoprotein 1,
and DJ-1) are known to be regulated by androgen recep-
tor. The transcriptional network showed the activation
of prostate induction by the androgen receptor signaling
pathway. DJ-1 protein, protein tyrosine phosphatase,
receptor type, sigma isoform 1 precursor and transferrin
were observed to interact with other proteins in the
pathway database and affect processes related to cellular
function and maintenance. Similarly, in the OA group,
prostate specific antigen isoform 1 preprotein and
transferrin formed the topmost network, encompassing
key processes such as gene expression, tissue morphology
and cell cycle. The ON group showed immunological dis-
ease, antigen presentation, cell-to-cell signaling and inter-
action (B2MG precursor, DJ-1 protein, receptor type,
sigma isoform 1 precursor) as the key processes affected
in its topmost network

Discussion
Seminal plasma is a mixture of secretions of several male
accessory glands, including prostate, seminal vesicles,
epididymis and Cowper’s gland. Prostate gland is a major
contributor to seminal plasma. It is a very rich source of
protein with concentration ranges from 35 to 55 g/l
[9,10]. It provides a safe environment for spermatozoa to
carry out their physiological functions. Understanding
the protein profile of human seminal plasma is import-
ant because it has a profound impact on sperm physi-
ology and thus may affect sperm functioning [31].
In this novel study, we identified 35 proteins based on

SEQUEST scoring in the seminal plasma of men with
varying semen parameters and categorized them into
common, differentially expressed, and low abundant
proteins. The large variation in the number of proteins
identified by any given technique depends mainly on the
sample preparation and mass spectrometry technology
available [32-36]. Recently, the LTQ-Orbitrap mass
spectrometer has become the cutting-edge instrument
for LC/MDS/MS based approaches to characterize the
seminal proteome. In our study, we used in-solution
digestion of proteins with the online LC-MS system.
Seminal plasma from different subsets was pooled to
form 4 distinct study groups. There are numerous stud-
ies in the proteomic literature that refer to the benefits
of pooling samples where it may not be feasible to
analyze individual samples due to limitations of the sample
or the study design [8,17,37,38].
Of the 11 proteins found in all the samples, 9 were

associated with sperm function, and the common pro-
teins comprised the majority of the secretions of the
prostate gland, the seminal vesicles and epididymis.
Some of the proteins or their isoforms detected in the
seminal plasma were zinc alpha-2-glycoprotein 1, clusterin,
lactotransferrin, prostate specific antigen. These were simi-
lar to those reported by Utleg et al. [39].
Prostate specific antigen is a serine protease that

cleaves semenogelin by hydrolysis and thus liquefies the
semen coagulum and facilitates sperm motility and cap-
acitation [40,41]. Our study showed that prostate specific
antigen isoform I preprotein was one of the common
proteins, thus indicating its importance in all the 4
groups. Prolactin-induced protein (PIP) and Sg II are
important common proteins that have a profound im-
pact on sperm physiology. PIP has specificity to fibro-
nectin and constitutes about 1% of seminal coagulum
[42]. It may play a vital role in fibronectin breakdown
during liquefaction. Viscous samples have been reported
to show reduced amounts of PIP and PIP precursor,
which may also be a contributory factor towards incom-
plete liquefaction [43]. Both Sg I and II are the major
proteins of the coagulum. They represent 20-40% of the
seminal plasma proteins. Studies have shown increased
Sg concentrations in asthenozoospermic men [44,45].
Our study showed that both prolactin and semenogelin
II were in all samples but they were not differentially
expressed, indicating that men with low sperm count or
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abnormal morphology may not be affected by these pro-
teins—a conclusion also made by Milardi et al. [18].
Epididymal secretory protein E I precursor, albumin

preprotein, lactotransferrin, extracellular matrix protein
E1 precursor, prosaposin isoform a preprotein, cathepsin
D preprotein were some of the commonly expressed
proteins that were not differentially expressed in any of
the groups, suggesting that these proteins may not play
a significant role in sperm concentration or morphology.
The highest percentage of the common proteins was

seen in the extracellular region (Figure 5). Human sem-
inal plasma proteins can bind to sperm surface proteins
in the ejaculate and form a protective layer around the
spermatozoon [12] as well as a sperm reservoir in the
oviduct [46]. It is likely that the extracellular origin of
most of the common proteins may play a key role in the
binding activity of the proteins. The absence of common
proteins in the ribosomal and endosomal region (Figure 5)
suggests a relatively low involvement in protein metab-
olism, as also seen by the low distribution of common
proteins in the ‘protein metabolic process’ category,
(Figure 6). Zinc alpha-2 glycoprotein and clusterin play
a role in signal transduction while lactotransferrin is a
transport and structural protein [39]. Prostate specific
antigen has been shown to have enzymatic activity. Our
results show a high distribution of signal transducing
protein among the common proteins, suggesting the
importance of clusterin, isoform 1 and zinc alpha-2
glycoprotein 1 (Figure 6). This was also confirmed from
the pathway and network analysis, which also
highlighted the role these proteins play in molecular
transport, cell death and survival and lipid metabolism.
A clear overlap was observed for some of the differen-

tially expressed proteins. These included the prostate spe-
cific antigen isoform 1 preprotein, zinc alpha 2 glycoprotein
1, and clusterin isoform 1. While semenogelin II precursor
was seen in common proteins, the semenogelin I isoform b
preprotein was found to be upregulated in the OA group.
This suggests that it may contribute to the low motility
seen in this group compared to other groups.
Clusterin isoform was downregulated in the ON

group. This is an interesting finding, given that clusterin
isoform 1 has been shown to be downregulated in pros-
tate cancer. The proteome of the seminal fluid is largely
attributed to secretions from the prostate gland, and
approximately 10% is contributed by the testis and the
epididymis [8].
Prostate gland is a major contributor to seminal plasma.

Furthermore, one of the proteins - prostatic acid phos-
phatase (PAP) was significantly increased in azoospermic
men compared to oligozoospermic men and asthenozoo-
spermic men [10]. In our study, PAP levels were down
regulated in the NA and ON groups. PAP levels have also
been reported to correlate with sperm concentration
[47-49]. Patients with severe oligozoospermia (<1 × 106)
were also shown to have increased levels of seminal PAP
[50]. PAP is produced in the prostate gland and is present
in the seminal fluid at a concentration of 1 mg/mL. It is
an important tumor marker and acts as a negative growth
regulator in prostate cancer [51].
A proteomic analysis of seminal fluid, rather than

blood, has been proposed as as a better starting point to
identify changes that may serve as specific and sensitive
markers of prostate dysfunction [17]. These authors iden-
tified more than 100 proteins such as PSA, semenogelin I
and II, clusterin etc. which have been shown to affect
sperm quality.
The increased expression of semenogelin I in the OA

group suggests that the accessory gland secretions have
a profound impact on oligozoospermic men with abnor-
mal morphology. Wang et al. reported semenogelin I
and mucin were not differentially expressed and there-
fore had no effect in asthenozoospermic men [21]. Our
study also included the differentially expressed proteins,
especially DJ-1 secreted from the testis, epididymis and
prostate [39,52]. DJ-1 has a high level of expression in
the testis. We found DJ-1 to be overexpressed in the NA
and ON groups. We also documented that orosomucoid 1
precursor was downregulated in the NA group whereas
expression of orosomucoid 2 was comparable in all
groups, though it was present in low abundance. However,
Wang et al. reported the overexpression of orosomucoid 1
and orosomucoid 2 in asthenozoospermic patients [21].
These proteins have also been found in high abundance in
post vasectomy patients [8].
B2MG was found to be under-expressed in OA while

over-expressed in the ON samples. B2MG is present in
all nucleated cells. It is one of the two polypeptide
chains of the major histocompatiblity complex (MHC)
class I molecule. In humans B2MG is coded by the B2M
gene. It is a marker of cellular immune system. It is a
naturally occurring protein and can detect certain types
of tumor cells in the blood and kidney, and some inflam-
matory and autoimmune disorders [53,54]. In our study
as well as that reported by Fung et al. [17], many of the
proteins in the seminal plasma were identified to be fore-
runners of prostate disease, suggesting a pathogenic role
for B2MG [55,56]. Similarly high levels of B2MG were
reported in the seminal plasma of azoospermic men com-
pared to controls [10,57,58]. An inverse correlation was
reported between B2MG levels in seminal fluid and sperm
count [10].
Similary, we reported the underexpression of galectin

3 binding protein in oligozoospermic group. Galectin-3
is a carbohydrate-binding protein whose expression level
has been shown to correlate with metastatic potential in
a number of different types of tumors. Galectin-3 is
downregulated in prostate cancer. The altered
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downregulation pattern of galectin-3 observed between
tumor stages suggests different roles for galectin-3 in the
progression of prostate cancer [59].
TIMP 1 can inhibit tumor growth, invasion and me-

tastasis through their matrix metalloproteinases (MMP)
inhibitory activity [60,61]. TIMPs play an inhibitory role,
and any imbalance between the two may result in pro-
gression of the disease [62]. TIMP was found to be over-
expressed in the ON group.
Amongst the proteins that were uniquely under-

expressed in the OA group was ankyrin repeat domain
11 (ANKRD11). Ankyrins function as adaptor proteins
[63,64] and play a vital role in membrane skeleton
organization, ionic transport, maintenance of cell polar-
ity as well as cell-cell adhesion regulation. Data suggest
that ANKRD11 may act as a tumor suppressor [65]. It’s
presence in the semen samples has not been well docu-
mented, but it is likely that its overexpression in
oligozoospermic men may play a role in apoptosis.
Clusterin isoform 1 can be both pro- and antiapoptotic
depending upon the isoform expressed [66,67]. It plays a
key role in signal transduction and is involved in apop-
tosis of spermatocytes, sperm maturation, and
spermiation. Low signal transducing proteins were seen
in the OA group compared with the other groups, as
shown in Figure 4.
Compared with the proteins involved in stress response,

as elucidated from GO annotations (Figure 4), the NA and
ON groups had a higher distribution of stress proteins
such as DJ-1 whereas a lower distribution of this protein
was seen in OA group. DJ-1 protein is a multifunctional,
highly conserved antioxidant protein and is upregulated in
hyperglycemia [68,69]. It is mainly involved in the control
of oxidative stress and is downregulated in the seminal
plasma of asthenozoospermic men [21]. DJ-1 is activated
in stress conditions, but with higher levels of stress (as
seen in OA), there is depletion of antioxidant levels and
low expression of DJ-1 protein. Furthermore, the major
biological function that comes into focus through IPA in
the NA group is free-radical scavenging activity. This fur-
ther supports the fact that DJ-1 was activated in the NA
group. Significant proteins were distributed in the lyso-
somal and vacuolar regions in higher amounts in the OA
group (Figure 3), suggesting that proteins with phagocytic
activity may be activated in stress conditions. Previous
studies have reported reduced levels of DJ-1 in sperm in
response to toxic exposure of male rats to ornidazole and
epichlorhydrin [70].
Utleg et al. categorized prostatic acid phosphatase

(PAP) precursor as an enzymatic protein, and the pres-
ence of this protein in our study suggests that it plays a
similar role [39]. The distribution pattern of immune
system response in all the groups is shown in Figure 4.
It is likely that B2MG is the major protein in immune
response and that low levels of this protein are seen in
stress conditions. Low distribution of B2MG in DEP
compared to normal and low abundant proteins further
suggests that in addition to B2MG, there are other pro-
teins that also play a key role in immune system processes.
We further validated this observation from the pathway
analysis, which showed that that the common protein
prosaposin isoform, a preprotein, is involved in lipid anti-
gen presentation by CD1.
We observed overlapping of differentially expressed

proteins with the low abundant proteins in our study.
These included transferrin, secretory leukocyte peptidase
inhibitor precursor, ubiquitin and ribosomal protein
S27a precursor, protein tyrosine phosphatase, receptor
type, sigma isoform 1 precursor and acidic epidiymal
glycoprotein- like 1 isoform 1 precursor. Of these pro-
teins, protein tyrosine phosphatase, receptor type, sigma
isoform 1 precursor, acidic epididymal glycoprotein-like
isoform 1 precursor were amongst the low abundant
proteins. Protein tyrosine phosphatase, receptor type,
sigma isoform 1 precursor were upregulated while acidic
epididymal glycoprotein-like isoform 1 precursor was
down regulated in the NA group. The acidic epididymal
glycoprotein like I isoform I precursor is a member of
the cysteine - rich secretory protein (CRISP) family and
is encoded by the gene CRISP-I. It is expressed in the
epididymis and is secreted into the epididymal lumen. It
binds to the post acrosomal region of the head, where it
may play a role in sperm-egg fusion. The reported low
abundance of acidic epididymal glycoprotein like I iso-
form I precursor protein is concordant with the findings
of Batruch et al. who also reported its low abundance in
the seminal plasma of post vasectomy patients compared
to controls [8].
Transferrin is one of the serum proteins that has been

characterized in the seminal plasma, but its role in male
infertility is unclear [20]. Our study showed this protein
was present in low levels in the NN group but was up
regulated in NA and OA groups. Prostaglandin H2 D
isomerase, cathepsin B preprotein, orosomucoid 2 and
the CD177 molecule were the low abundant proteins that
were not differentially expressed in any of the groups. In
our study, CD177 was absent in the NN group but present
in all the other groups although they were not
differentially expressed. Our findings are consistent with
previous publications that reported low concentrations of
CD177 in fertile men (control samples) compared to
postvasectomy men [8] but are contrary to the findings of
Wang et al. who reported upregulation of CD177 in
asthenozoospermic patients [21]. Cathepsin B preprotein
was present in the NN and NA groups, showing its speci-
ficity to the normal sperm count while prostaglandin H2
D isomerase was absent in the ON group. Cathepsin B
preprotein found in the lysosomal region is a thiol
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protease believed to participate in intracellular degrad-
ation. It has also been implicated in tumor invasion and
metastasis. The prostaglandin (H2) D-isomerase is
expressed in the testis, epididymis and prostate and is se-
creted into the seminal fluid. It binds small non-substrate
lipophilic molecules and may act as a scavenger for harm-
ful hydrophobic molecules. The prostaglandin (H2) D-
isomerase and cathepsin B protein are potentially involved
in biological processes such as vesicle-mediated transport
and defense response. The low abundant proteins showed
a marked distribution in the extracellular region and may
play a regulatory role. The major pathways in which the
low abundant proteins were involved were prostanoid bio-
synthesis and eicosanoid signaling and acute phase re-
sponse signaling, but the distribution of signal
transduction proteins was decreased in low abundant
proteins.
Conclusions
In the present study, we have identified proteins that are
common, unique, and differentially expressed in 4 study
groups. Twenty proteins were differentially expressed in
the seminal plasma of men with poor sperm quality. We
have highlighted the distribution pattern of these pro-
teins in cell organelles and described their biological
processes. We have also illustrated the high involvement
of proteins in cellular development signal transduction.
The overexpression or underexpression of these proteins
in the 4 groups illustrates their role in male infertility.
Our findings from the bioinformatic analysis shows that
stress proteins such as DJ-1 are differentially regulated
and expressed in the different study groups, suggesting
that some of these proteins may serve as a potential bio-
markers in identifying the mechanistic role in men with
poor sperm quality.
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