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Summary. We propose a class of semiparametric functional regression models to describe the
influence of vector-valued covariates on a sample of response curves. Each observed curve is
viewed as the realization of a random process, composed of an overall mean function and ran-
dom components. The finite dimensional covariates influence the random components of the
eigenfunction expansion through single-index models that include unknown smooth link and
variance functions. The parametric components of the single-index models are estimated via
quasi-score estimating equations with link and variance functions being estimated nonparamet-
rically. We obtain several basic asymptotic results. The functional regression models proposed
are illustrated with the analysis of a data set consisting of egg laying curves for 1000 female
Mediterranean fruit-flies (medflies).
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1. Introduction

Methods for the analysis of data which consist of curves or similar infinite dimensional objects
are in demand, as the collection of data of this type is becoming increasingly common. Curve
data are being collected for instance in endocrinological (Brumback and Rice, 1998) and in
growth studies (Gasser et al., 1984; Gasser and Kneip, 1995; Kneip and Gasser, 1992). Over-
views of different methods and approaches that have been used for functions viewed as data can
be found in Ramsay and Silverman (1997, 2002).
The point of view that we adopt here is that each observed curve is a realization of a stochastic

process reflecting the random nature of the individual curves contained in a sample of curves.
For curve data this approach was pioneered by Castro et al. (1986) and was further developed in
the seminal work of Rice and Silverman (1991), who emphasized the importance of smoothing.
For many applications, it is of particular interest to model the relationship between covariates
or associated variables as predictors and a response curve obtained for each subject. The incor-
poration of covariate effects in the form of time shifts was considered previously in Capra and
Müller (1997), where a covariate Z is assumed to influence the timescale via a multiplicative
scheme, t′ = ψ.Z/t, for an unknown but smooth function ψ that can be estimated from the
sample of curves. Other recent approaches for incorporating covariates into functional data
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models include the development of functional analysis-of-variance approaches (Brumback and
Rice, 1998; Staniswalis and Lee, 1998) and adaptations of varying-coefficient regressionmodels
(Hoover et al., 1998). A related random-effects model where the observed curves are assumed
to be regression splines with random coefficients has been proposed in recent work of Shi et al.
(1996) and Rice and Wu (2001).
Our starting-point is a sample of stochastic processesXi.t/, i = 1, . . . ,n, t ∈ T , where T is an

interval. In practice, processes Xi are usually recorded on a grid of time points tij, 1 � j � mi,
where we assume that these are equidistant or if not equidistant then on a regular grid gener-
ated by a design density. For each process Xi, we observe a vector of covariates or associated
variables Zi, Zi ∈ Rp, p � 1. The observations {Zi,Xi.·/} are assumed to be independent and
identically distributed. The processes Xi.·/ assume the role of response curves, which are influ-
enced by predictors Zi. It is assumed that the overall mean function µ.·/ and the eigenfunctions
or principal component functions ρk.·/, k = 1, 2, . . . , defined via the autocovariance structure
of processes Xi (see Appendix A for details) do not depend on the covariates Zi, whereas the
principal components (also called principal component scores) and the conditional means of
the processes Xi do. The case of a high dimensional covariate vector Zi is handled by reducing
the covariate vector to a single index. This single index is then embedded in a semiparametric
quasi-likelihood regression (SPQR) model. We use the quasi-likelihood with unknown link and
variance function estimation orQLUE approach (see Chiou andMüller (1998)), which provides
an estimating equation with nonparametrically estimated components, asymptotic distribution
theory and an algorithm for fitting the parametric and nonparametric components. We demon-
strate the effectiveness of the proposed semiparametric approach through fertility data where
the sample of curves consists of the daily egg production observed individually for each of 1000
female Mediterranean fruit-flies (medflies); for an illustration, see Fig. 1.
The paper is organized as follows: The proposed functional smooth random-effects model for

modelling covariate effects on curve data is presented in Section 2. The estimation of the com-
ponents of the model, smoothing procedures and asymptotic results are discussed in Section 3.
Applying this approach to the egg laying data is the theme of Section 4, which also includes a
discussion of various practical issues such as the choice of the number of eigenfunctions and
smoothing parameters. Additional technical material such as process representations in terms
of eigenfunctions, proofs and details on the estimating equations for SPQR can be found in
Appendices A–C.

2. Functional smooth random-effects model

Principal components analysis of data vectors is a commonly used multivariate technique. An
analysis of a sample of curvesmay be carried out in a similar way. Castro et al. (1986) defined the
concept of the best K-dimensional linear model for stochastic processes and showed that this
model corresponds to the first K terms of the Karhunen–Loève expansion, which is based on
the eigenfunctions of the covariance kernel of the process. Rice and Silverman (1991) discussed
the application of smoothing techniques for implementing this concept in curve data analysis
and proposed a leave one curve out cross-validation technique to select smoothing parameters.
The predictor variable Z ∈ Rp is observed along with the process X.t/, t ∈ T , where T is an

interval. We assume that Z influences the random components Ak in the following class of
functional smooth random-effects models (model 1).

Given a smooth function µ.t/, t ∈ T , random variables Ak, k = 1, 2, . . . , and eigenfunc-
tions ρk : T → R, let
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Fig. 1. 20 randomly selected smoothed egg laying curves for each of the four quartiles of the total number
of eggs: (a) first quartile; (b) second quartile; (c) third quartile; (d) fourth quartile

X.t/ = µ.t/ +
∞∑
k=1

Ak ρk.t/,

and assume for the observed random curves, conditional on the covariates,

µZ.t/ = E{X.t/|Z} = µ.t/ +
∞∑
k=1

E.Ak|Z/ ρk.t/:

The following assumptions are made.

(a) There is an integer K < ∞ such that the eigenvalues λk = E.A2
k/ (see equation (17) in

Appendix A) satisfy λk < ∞ for k = 1, . . . ,K, and λk = 0, for k > K, implying that only
the first K terms of the expansion above matter.

(b) The eigenfunctions ρk.·/ are orthonormal in L2.[0,T ]/ and are twice continuously differ-
entiable.

(c) For all k and l, using the Kronecker symbol δkl = 1 if k = l and δkl = 0 if k 	= l,
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E.Ak/ = 0 and cov.Ak,Al/ = λkδkl:

From assumption (c), we find for the conditional covariance (and setting s = t, also the
conditional variance)

cov{X.s/,X.t/|Z} = ∑
k,l

cov.Ak,Al|Z/ ρk.s/ ρl.t/: .1/

(d) Each of the conditional link functions for the random effects is a smooth function of a
single index formed from the data; i.e. there is a parameter vector βk ∈ Rp, ‖βk‖ = 1,
and a twice continuously differentiable function αk : R → R such that

αk.β
′
kz/ = E.Ak|Z = z/,

for k = 1, 2, . . . .

These single-index models serve as a device for dimension reduction.
The proposed functional smooth random-effects model is a natural extension of the classical

Karhunen–Loève representation for stochastic processes (see equation (18) in Appendix A).
It incorporates the influence of the covariate effects Z through the conditional distribution of
the principal components scores, which are the random effects in the model, via the smooth
regression relationship (d).
The link functions αk in assumption (d) are of intrinsic interest as they, jointly with the eigen-

functions ρk, determine the nature of the dependence of the processX on the predictors Z. For a
given eigenfunction, an interpretation in terms of the underlying subject-matter problemmay be
found by checking the processes which have large principal components for this eigenfunction;
these ‘principal component scores’ are in turn determined by the shape of the eigenfunction.
Based on an interpretation of the kth eigenfunction ρk, the link function αk then reveals the
changes in relative importance of this eigenfunction in the representation of assumption (d) and
model 1 as the covariate Z varies.
We conclude this section with three remarks. First, the conditional covariance structure of

the model as given in equation (1) is quite adaptable, while keeping the dimension of the non-
parametric components low to avoid the ‘curse of dimensionality’ that is associated with high
dimensional nonparametric smoothing.
Second, if the domain is T = .t0/, a singleton, then X is just a real random variable and

there is only one eigenfunction: ρ1.t0/ = 1. In this case, model 1 collapses to a semiparametric
regression model with an unknown link function g.·/ and a parameter vector θ ∈ Rp such
that E{X.t0/|Z = z} = g.θ′z/, which is determined by the joint distribution of .Z,X.t0//. This
connects our approach to quasi-likelihood regression models with unknown link and variance
functions (see Appendix C). In this sense, model 1 provides a natural extension of SPQR to the
case where the responses are functions.
Third, consider a modified model with an explicit error process, given by X̃.t/ = X.t/ +

".t/, where the error process ".t/ is independent of X and Z and satisfies E{".t/} = 0 and
cov{".s/, ".t/} = σ.s, t/, where σ.·, ·/ is square integrable. This implies that the processes X̃

have eigenfunctions ρ̃k, k = 1, 2, . . . , and that there are uncorrelated zero-mean random vari-
ables Ãk such that

∑
Ãk ρ̃k.t/ = ∑

Ak ρk.t/ + ".t/:

Therefore, model 1 still applies, based on random effects Ãk and eigenfunctions ρ̃k, with cor-
responding altered interpretations.
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3. Estimation of the model components

3.1. Preliminaries
For estimation and prediction, we have assumed that the numberK of eigenfunctions with non-
zero eigenvalues in model 1 is finite. If in reality there are more than the assumed number of K
components, the target is the projection on the space spanned by the first K eigenfunctions. We
also assume from now on that the domain T of the processes is T = [0, τ ], and that discretized
measurementsXi.tij/ of processesXi.·/ are available, i = 1, . . . ,n and j = 1, . . . ,mi.We develop
our arguments for equispaced designs, for which tij = tj, j = 1, . . . ,m, and the tj are generated
by a smooth design density (see, for example, Müller (1984)), but extensions to situations that
are not equispaced and for which the number of measurements varies from subject to subject
can be covered by adding a presmoothing step, if the number of measurements mi for the ith
subject satisfies 0 < c1 � mi=m � c2 < ∞, i = 1, . . . ,n, for constants c1, c2 > 0.

Since smoothing plays a central role in the approach proposed, we briefly discuss some rel-
evant issues. Given any scatterplot data .Wi,Yi/i=1,:::,s, with underlying regression function
m.w/ = E.Y |W = w/, we define the smoothed estimate m̂.·/ by

m̂.w/ = S{w, b, .Wi,Yi/i=1,:::,s}:

Here, s is the number of data in the scatterplot and b is the smoothing parameter of the smoother
S, which is evaluated at the argument w.
For our analysis, it does not matter which particular smoothing method is applied, as long

as some basic consistency properties are satisfied and the smoother is linear in the data. Ker-
nel estimators, smoothing splines or local polynomial fitting by locally weighted least squares
are among the possible choices. We choose here the locally weighted least squares smoother,
denoted by SL, fitting local lines to the data. A formal definition is

SL{w,b, .Wi,Yi/i=1,:::,s} = argmin
a0

{
min
a1

(
s∑

i=1
K

(
w − Wi

b

)
[Yi − {a0 + a1.w − Wi/}]2

)}
:

This means that the value of the smoother at the argument w is obtained as the estimated in-
tercept of a regression line at w, where the line is fitted to those data falling into the window
[w − b,w + b] by weighted least squares. Here, K.·/ � 0 is a non-negative kernel function,
common choices being K.x/ = .1 − x2/1.|x|�1/ or K.x/ = exp.−x2=2/.

3.2. Estimating overall means and eigenfunctions
A crude estimate of the overall mean function µ can be obtained by smoothing pointwise aver-
ages µ̃.·/. For equispaced designs, these pointwise averages are

µ̃.tj/ = 1
n

n∑
i=1

Xi.tj/, .2/

given n sample curvesX1,X2, . . . ,Xn. To obtain a smooth function in t, wemay add a smoothing
step with a small bandwidth bµ,

µ̂.t/ = S[t, bµ, {tj, µ̃.tj/}j=1,:::,m]: .3/

For the case of designs that are not equispaced, a presmoothing step can be carried out first
with the aim of sampling all curves at the same time points.
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Let Σ be the sample m × m variance–covariance matrix of the stochastic process X, with
elements

vrs = 1
n

n∑
i=1

{Xi.tr/ − µ̂.tr/}{Xi.ts/ − µ̂.ts/}, 1 � r, s � m: .4/

Denote by ρ̃k = {ρ̃k.t1/, ρ̃k.t2/, . . . , ρ̃k.tm/} the eigenvector corresponding to the kth largest
eigenvalue of the matrix Σ. Following the method used in Capra and Müller (1997), which is a
variant of a proposal of Rice and Silverman (1991), a smooth estimate ρ̂k.·/ of the eigenfunction
ρk.·/ is obtained simply by smoothing the vector ρ̃k,

ρ̂k.t/ = S[t, bρk , {tj, ρ̃k.tj/}j=1,:::,m], k = 1, . . . ,K: .5/

3.3. Estimating random effects
Estimation of the link functions αk and parameter vectors βk is based on the estimated overall
mean function µ̂ and eigenfunctions ρ̂k. A discrete approximation of Ak = 〈ρk,X − µ〉 (see
expression (19) in Appendix A) then motivates the updated random-effects estimates

Âik = ∆
mi

mi∑
j=1

{Xi.tij/ − µ̂.tij/} ρ̂k.tij/, k = 1, . . . ,K, .6/

where ∆ = tij − ti.j−1/. To update estimates α̂k.β̂
′
kZ/, for Z ∈ Rp and p > 1, we adopt

{β̂k, α̂k.·/} = QLUE{.Zi, Âik/i=1,:::,n}, .7/

using SPQR in the form of the QLUE approach of Chiou and Müller (1998) which is summa-
rized in Appendix C. For the special case where the covariate Z is one dimensional, we may
obtain α̂k.·/ by a simple nonparametric regression step. In this case, there is no parameter vec-
tor, and we can regress the Âik nonparametrically on the Zi, i = 1, . . . ,n, to obtain the smooth
function estimates

α̂k.v/ = S{v, bαk
, .Zi, Âik/i=1,:::,n}: .8/

3.4. Prediction and estimation algorithm
For prediction, given a vector of covariates Z as described in Section 2, we substitute the un-
known functions µ, {αk}k=1,:::,K and {ρk}k=1,:::,K in the model with the estimates µ̂, α̂k and
ρ̂k respectively. The prediction for µZ.t/ = E{X.t/|Z} is then

µ̂Z.t/ = µ̂.t/ +
K∑

k=1
α̂k.β̂

′
Z/ ρ̂k.t/: .9/

The estimation procedure of the model components is summarized as follows.

(a) Obtain the estimates µ̂.t/ of the overall mean function µ.t/ by equations (2) and (3).
(b) Obtain the estimates ρ̂k.t/ of the eigenfunctions ρk.t/ by equation (5).
(c) Obtain the link function fits α̂k.·/ and the parameter vector estimates β̂k via equation (7),

the QLUE approach.

The smoothing and QLUE steps require the choice of a smoothing parameter. The choice
that is used in the QLUE algorithm is based on special features of quasi-likelihood; see Chiou
andMüller (1998). Smoothing parameter selection for the function estimates ρ̂k and µ̂0 requires
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other methods. We shall discuss practical choices coupled to the leave one curve out technique
in Sections 4.2 and 4.4.

3.5. Some basic asymptotic results
Following arguments of Pezzulli and Silverman (1993), it is possible to obtain consistency prop-
erties for eigenfunction estimates .ρ̂k/k=1,:::,K, under mild regularity conditions. For a function
ϕ ∈ L2.dν/ on domain T , set

‖ϕ‖ =
{∫

T

ϕ2.t/ dν.t/
}1=2

:

We consider here a simplified version of model 1 where Z ∈ R1 and it follows that βk = 1 for
k = 1, . . . ,K.
For the smoother S that is used in the smoothing steps, we require the following two minimal

properties, which are satisfied by virtually all commonly used smoothing methods.

(a) Given independent and identically distributed random pairs .Wi,Yi/i=1,:::,s, from a dis-
tribution with regression function m.w/ = E.Y |W = w/, if the regression function m.·/
is twice continuously differentiable, and the probability distribution function fW of the
Wis is continuous at a point w and satisfies fW.w/ > 0, then

S{w, b, .Wi,Yi/i=1,:::,s} − m.w/ = Op.τn/,

for a sequence τn → 0, which depends on the particular smoother and smoothing
parameter choice.

(b) The smoother is linear in the data Yi,

S{w, b, .Wi,Yi/i=1,:::,s} =
s∑

i=1
Gi.w/Yi

for (possibly random) weight functions Gi, independent of Yi, and satisfies{
s∑

i=1
G2

i .w/

}
s∑

i=1
1{Gi.w/	=0} = Op.1/:

Examples of smoothers satisfying these properties are local linear fits or kernel smoothers,
among others.

Theorem 1. If the smoothers S that are employed in estimating the nonparametricmodel com-
ponents satisfy properties (a) and (b), and the covariate Z has a density which is continuous
and positive at any given point z, then

‖µ̂− EX‖ = Op.n
−1=2/: .10/

If in addition ‖ρ̂k − ρk‖ = Op.σn/, k = 1, . . . ,K, for a sequence σn → 0, then

|α̂.z/ − α.z/| = Op.σn + τn + n−1=2 + m−1/: .11/

The proof of this result is in Appendix B. Consistency requires, not surprisingly, that both
the number n of observed sample curves as well as the number of measurements m taken per
curve satisfy n → ∞ and m → ∞.

We note that a uniform result is possible for equation (11):

sup
z

|α̂.z/ − α.z/| = Op{νn.σn + τn + n−1=2 + m−1/},
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if instead of property (b) we require

sup
z

{
n∑

i=1
G2

i .z/

}
n∑

i=1
1{Gi.z/	=0} = Op.νn/:

A typical value which is achieved by most smoothing methods is νn = {log.n/=nb}−1=2, where
b is the bandwidth equivalent. Uniform consistency therefore requires in addition that νn.σn +
τn +n−1=2 +m−1/ → 0. Under certain assumptions, Pezzulli and Silverman (1993) have shown
that ‖ρ̂k − ρk‖ = op.1/, which leads to the consistency result |α̂.z/ − α.z/| = op.1/.

These results can be extended to the case of multivariate predictors, using the asymptotic
consistency properties of QLUE as described in Chiou and Müller (1998). For the following
result on the QLUE estimators for the unknown link functions αk and parameter vectors βk we
assume for simplicity that the true µ and ρk are known, so that the {Aik} play the role as the
usual ‘response’ variables in the SPQR step.

Theorem 2. Suppose that the overall mean function µ and the eigenfunctions ρk inmodel 1 are
given. Then, under regularity conditions, the following event holds for each k, k = 1, . . . ,K,
with probability 1 − δ, for a given arbitrarily small δ > 0: there exist QLUE estimates β̂k of
parameter vectors βk, satisfying ‖β̂k‖ = 1, and α̂k of link functions αk, such that, as n → ∞,

sup
z

|α̂.z/ − α.z/| = op.1/, .12/

n1=2{f.β̂k/ − f.βk/} D→Np{0, ..Df/.βk//Σ−1..Df/.βk//
T}, .13/

where

Σ = lim
n→∞

(
1
n

n∑
i=1

DT
i V−1

i Di

)

with Di = .@α.βTk xi/=@β
T
k /, f.βk/ = .f1.βk/, . . . ,fp−1.βk//

T with fj.βk/ = βkj=‖βk‖ and

.Df/.βk/ =
(

@fi.βk/

@βkj

)
1�i�p−1, 1�j�p

,

defined as a .p − 1/ × p matrix.

We note that the degrees of freedom for the regression parameter estimates as well as the
rank of the corresponding asymptotic covariance estimates are reduced by 1 because of the
identifiability constraint in assumption (d) in Section 2. Details of the proof of the theorem
including the adjustment of the asymptotic covariance estimates are similar to those in Chiou
and Müller (1998, 2002) and are therefore omitted.

4. Application to egg laying curves for medflies

4.1. Background
Recently, increased interest in research on aging and quantitative biodemography has focused
on the relationship between reproductive and aging patterns. Evolution is driven by reproductive
success, and the connection between the evolution of aging and reproduction is intriguing not
least because it has proved to be elusive. Unravelling this connection may aid our understand-
ing of the aging process. Patterns of reproduction are typically inferred from experiments which
involve large experimental cohorts. The study of the reproductive behaviour of large cohorts of
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medflies (Ceratitis capitata) has led to several interesting findings. For instance, an interaction
between nutritional and gender effects results in a reversal of the female–male life expectancy
differential under protein deprivation, as reported in Müller et al. (1997), and two different
modes of aging and reproduction in conjunction with diet were identified in Carey, Liedo,Mül-
ler, Wang and Vaupel (1998). It has been conjectured that reproductive activity has a negative
effect on longevity, and the term ‘cost of reproduction’ was coined by Partridge and Harvey
(1985). Flies are ideal for the study of reproduction and longevity, as large cohorts can be reared
with recordings of both daily egg laying and survival.We focus here on the relationship between
patterns in the reproduction curves, which are viewed as dependent data, with the total number
of eggs produced by a fly and its lifetime as predictors. The total number of eggs produced is a
measure of reproductive success, and it is of interest to find out how reproductive patterns are
associated with overall reproductive success and lifetime.
The experiment which provides the data for our analysis was carried out in 1992–1995 at the

medfly mass rearing and sterilization facility (Moscamed) at Metapa, Chiapas, Mexico, and
consisted of n= 1000 female medflies for which daily egg reproduction was recorded. More
details about the biological features of the experiment can be found in Carey, Liedo, Müller,
Wang and Chiou (1998).
Let Xi.·/ denote the egg laying curve of the ith fly and Zi the bivector of lifetime and total

number of eggs. Randomly subsampled egg laying curves are visualized in Fig. 1, displaying 20
curves for each quartile of the total number of eggs. From the initial sample of 1000 medflies,
those who did not lay any eggs were discarded as those curves have constant value 0, leaving
egg laying data for n= 936 medflies in the analysis. We restricted the analysis to the first
50 days of egg laying, as we found large variability of egg laying at higher ages which would
entirely dominate the eigenfunctions, and as an earlier analysis in Carey, Liedo, Müller, Wang
and Chiou (1998) had shown that the total number of eggs as a function of lifetime showed a
marked changepoint at 51 days. Thus, the egg laying curvesXi.t/, i = 1, . . . , 936, are considered
as realizations of a stochastic process on T = [0, τ ] with τ = 50 days.
As many of the flies died before 50 days, it is of interest to consider whether informative

drop-out occurs in the sense that the mean function of egg laying is affected by the pattern of
drop-outs. An approximate parametric model of the egg laying process was developed and used
in Müller et al. (2001) to define a putative egg laying random process after time of death, and
in particular a remaining egg laying potential random function. Although interesting associa-
tions were established between lifetime and remaining egg laying potential at the time of death,
the association between lifetime and the imputed remaining egg laying process after death was
found to be at best very weak, providing some justification for the assumption that the drop-out
is non-informative in this example.

4.2. Eigenfunctions
The first four estimated eigenfunctions ρ̂k (5) are shown in Fig. 2 with the proportion of variance
explained for each principal component indicated in the caption. The corresponding eigenvalues
range from 0 to above 6000, which indicates large variation, in accordance with the variability
seen in Fig. 1. The first eigenfunction is roughly similar to the overall mean shape of the egg
laying curves, with a steep rise in the first 10 days and a subsequent relatively flat downward
pointing slope.
If we suppose that in fact ρ1.t/ = µ.t/, and that only one principal component matters, we

obtain the multiplicative effects model

E{X.t/|Z = z} = µ.t/{1 + E.A1|Z = z/}
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Fig. 2. First four eigenfunctions {ρ̂k}kD1,. . . ,4 (5) of the egg laying data: the first eigenfunction explains
34.38%, the second an additional 16.41%, the third an additional 8.82% and the fourth an additional 4.93%
of the total variance of the data (the bandwidths are selected by cross-validation individually by curve)

and

var{X.t/|Z = z} = µ2.t/ var{A1|Z = z}:
Conditionally on Z = z, we therefore observe quasi-gamma-type behaviour. Unconditionally,

E{X.t/} = µ.t/,

var{X.t/} = µ2.t/λ1,

and the ‘first mode of variation’ is ‘in the direction of’ the mean function µ.·/. Thus, uncondi-
tionally, we obtain a constant coefficient of variation model in t,

√
λ1 being the coefficient of

variation.
We find that the second eigenfunction differentiates this shape into a very early peak at around

5 days and a subsequent much faster decline, leaving room for further peaks later. The third
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eigenfunction depicts a broad peak at later ages, and the higher order eigenfunctions resolve
this into a series of increasingly complex oscillations.
Themean function µ̂ (3) does not depend on the covariate and is shown in Fig. 3. The smooth-

ing parameter is determined by minimizing the squared prediction error obtained by the leave
one curve out technique,

PE =
n∑

i=1

mi∑
j=1

{X̂.−i/
i .tij/ − Xi.tij/}2=nmi, .14/

where X̂
.−i/
i is the leave one curve out function estimate obtained by omitting the ith sam-

ple curve in the estimation. Since for the classical Karhunen–Loève model without covariates
X̂

.−i/
i .t/ = µ̂.−i/.t/ = µ̂.−i/.t, b/, we can compute the optimal prediction smoothing parameter

b̂µ = argminb{PE.b/}; this produced b̂µ = 2:5 days.

4.3. Total number of eggs as a single covariate
Wefirst consider the case of a single covariate. The covariateZ is the total number of eggs, which
is the predictor for the random components Ak. In addition to the estimation of the eigenfunc-
tions ρk and the mean function µ we need to obtain estimates α̂k (8) for the random-effect link
functions αk. Implementing these steps leads to the estimated functions α̂k, shown in Fig. 4 for
k = 1–4. We find that α̂1 is monotone increasing throughout and almost linear, whereas α̂2 is
slightly increasing at the beginning and thenmonotone decreasing throughout with increasingly
negative slope. The functions α̂k of higher order (k = 3, 4 and higher) appear flat, indicating
that the covariate affects only the scores for the first two eigenfunctions. Indeed our final model
will not use all four random components.
Given function estimates µ̂.·/ and {α̂k.·/}k=1,:::,K, we obtain the fitted surface

µ̂Z.t/ = µ̂.t/ +
K∑

k=1
α̂k.Z/ ρ̂k.t/, .15/

Fig. 3. Estimated overall mean egg laying function of time µ̂.t/ (3), with a leave one curve out cross-validated
bandwidth of 2.5 days
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Fig. 4. Smoothed random-effects link functions {α̂k.z/}kD1,:::,4 (8), in the dependence on the total number
of eggs, based on a sample of 936 medflies (the bandwidths selected by cross-validation are 500 for all four
curves)

according to equation (9). The fitted surface µ̂Z.t/ (15), shown in Fig. 5(a), exhibits an interest-
ing sloping ridge pattern, and the cross-sections, in Fig. 5(b), reveal that, although the peaks are
slightly drifting to the right as the total number of eggs increases, the graphs are, for the most
part, being shifted upwards as the total number of eggs increases. We note that the number of
eigenfunctions is chosen as K = 2 for Fig. 5. This choice is based on visual inspection of the
functions α̂k in Fig. 4, as well as the predictive quality of the fitted model.

The leave one curve out prediction error (14) is a useful quantification of the predictive quality
of a model. The leave one curve out predictors are

µ̂
.−i/
Zi

.t/ = µ̂.−i/.t/ +
K∑

k=1
α̂

.−i/
k .Zi/ ρ̂

.−i/
k .t/: .16/

Here, µ̂.−i/, ρ̂.−i/
k and α̂.−i/

k are all obtained in the same way as before, but omitting the observed
process Xi itself. This functional form of the cross-validation sum of squares was introduced
by Rice and Silverman (1991). Prediction errors in the dependence on the number of fitted
eigenfunctions are shown in Table 1, supporting the choice K = 2. The leave one curve out pre-
diction error for a model without the covariate effect, i.e. the model specified by equation (18) in
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Fig. 5. (a) Fitted surface µ̂Z.t/ (15) with the total number of eggs as the covariate and (b) cross-
sections through the fitted surface µ̂Z.t/ for the total number of eggs fixed at 400 ( ), 800 ( . . . . . . .),
1200 (– – –) and 1600 (— —)

Appendix A, was found to be 462.54. The large reduction in prediction error when including
covariates demonstrates the effectiveness of including the covariate effect in model 1.

4.4. The case of multiple covariates
For the case ofmultiple covariates, we consider both the total number of eggs laid and lifetime as
the predictors for the random componentsAk. The estimation procedure described in Section 3
was implemented for standardized covariates. The dimension for the random components that
was used in the analysis is again chosen as K = 2. The first four estimated random-effects link
functions α̂k are in Fig. 6.
The estimated coefficients β̂1 = .β̂11, β̂12/ and β̂2 = .β̂21, β̂22/ for the linear predictors in
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Table 1. Prediction errors PE (14) of fitted model (16) with K eigenfunctions

K 1 2 3 4 5 6 7 8
PE 333.71 313.22 315.22 316.41 315.64 315.62 315.62 315.49

Table 2. QLUE for the random components αk.β0
kV/ corresponding to Fig. 6

Function Coefficient QLUE (standard error) Bandwidth Goodness of fit

α1 β11 (TotalEgg) 0.8842 (0.0031) 83.78 (variance) D = 940:36
β12 (Lifetime) −0.4671 (0.0059) 1.16 (link) P = 916:20

α2 β21 (TotalEgg) 0.6730 (0.0520) 28.22 (variance) D = 1250:75
β22 (Lifetime) 0.7397 (0.0471) 1.91 (link) P = 936:60

functions α1 and α2 are presented in Table 2. These estimates are obtained from the SPQR
approach implemented with QLUE. The associated standard errors are useful for asymptotic
inference. For the linear predictor β1, the total number of eggs is relatively more important
than lifetime, and both predictors are significant and of opposite sign, forming a contrast in
the covariates. For linear predictor β2, the influence of the two predictors is about the same,
forming an average of the covariates, and both predictors are significant.
The effects of individual predictors on the response are a consequence of the coefficients

listed in Table 2, and the eigenfunctions in Fig. 2. For the particular application at hand we
propose here a criterion for the necessary smoothing parameter selection for the estimation of
the link functions that is easy to implement and has good practical properties. It is based on
pseudolikelihood (see Davidian and Carroll (1988)),

PL{y;µ.β/,σ2.µ/} = −1
2

n∑
i=1

log{2π σ2.µi/} − 1
2

n∑
i=1

.yi − µi/
2

σ2.µi/
,

where y, µ and σ2 respectively represent the vectors of response, mean and variance. Here µ and
σ2 are replaced by their estimates µ̂ and σ̂2 in the pseudolikelihood and the optimal bandwidths
are chosen by maximizing the pseudolikelihood PL.y;µ,σ2/.

The resulting bandwidths for our data analysis are shown in the fourth column of Table 2.
In addition, in Table 2 we present the goodness-of-fit statistics for SPQR. Here, we provide the
‘nonparametric’ quasi-devianceD and Pearson statistic P , which are asymptotically χ2 distrib-
uted with the degrees of freedom approximately equal to the number of observations minus
the number of parameters to be estimated in the linear predictor. The values in Table 2 do not
indicate a lack of fit, as D ≈ P (compare Chiou and Müller (1998), for more details).

5. Discussion and concluding remarks

Wehave developed an approach to extend principal component analysis for curve data to the sit-
uationwhen covariates are present. This approach extends previous work ofRice and Silverman
(1991) and yields a flexible functional regression model, the functional smooth random-effects
model. This model allows for substantial flexibility in mean regression and heteroscedasticity
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Fig. 6. Estimated link functions for the random effects {α̂k.β0
kZ/}kD1,. . . ,4 (7), depicted in dependence on

the linear predictors, obtained by the QLUE implementation of SPQR

structure. Flexibility is retained for high dimensions through the single-index feature of the
model. Through an example of egg laying curves for 1000 female medflies, this method is shown
to be effective in reducing the prediction errors. The approach proposed is simple both concep-
tually and computationally. The nonparametric components of the SPQRmodel are structured
in such a way that only one-dimensional smoothing steps are needed.
Our main results and techniques have been derived for equispaced designs, where the avail-

able measurements for the curve data are made on a regular grid. Non-equispaced data are
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clearly important in practice. If a design is ‘mildly’ non-equidistant in the sense that there
are no persistent gaps, the methods described in Section 3.1 can still be applied; for persis-
tent gaps in measurements and sparse designs, extensions of the method proposed need to be
developed.
An extension to the case that is relevant in practice where the predictor is a time-varying

function rather than a time invariant vector is possible through various approaches. One such
approach is to discretize a covariate function Z.t/ into a (possibly high dimensional) vector
Z.s1/, . . . ,Z.sM/ by specifying an equidistant grid of M points s1, . . . , sM and then fitting the
functional smooth random-effects model as described above, using these vectors as covariates.
An alternative approach is to project the random covariate functions onto their first K′ eigen-
functions for some suitable integerK′ and to use the resulting principal component score vectors
as K′-dimensional covariate vectors in the functional smooth random-effects model.
In the approach proposed, for a one-dimensional covariate, acting only on the random effect,

all model components can be estimated easily and consistently in one step, andwe provide an as-
ymptotic consistency result. The extension to multivariate predictors is achieved by combining
these ideas with a single-index quasi-likelihood approach for multivariate and high dimension-
al regression, using the QLUE technique. This allows us to include both unknown link and
variance functions. Our implementation also provides for automatic choices of the smoothing
parameters, so that only the covariates need to be identified and no specifications need to be
made regarding the nature of the distribution of the random effects or the shape of the link
functions.
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Appendix A: Stochastic processes in L2

Suppose that the observed curves X1, X2, . . . ,Xn are independent and identically distributed realizations
of a stochastic process X on a domain T ⊂ R. The process is assumed to have mean and covariance
functions

E{X.t/} = µ.t/,

cov{X.s/,X.t/} = γ.s, t/:

Given functions f and g, let 〈f , g〉 denote the L2.dν/ inner product,

〈f , g〉 =
∫

T

f.t/ g.t/ dν.t/,

where dν is a measure on T which normally is chosen as the Lebesgue measure.
It is assumed that there is an expansion of γ into orthonormal eigenfunctions ρk.·/ on L2.dν/ such that

γ.s, t/ =
∞∑
k=1

λk ρk.s/ ρk.t/, .17/
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with ordered eigenvalues λ1 � λ2 � . . . � 0. The eigenvalues are non-negative because the covariance
kernel γ.s, t/ is symmetric and non-negative definite. The orthonormal eigenfunctions satisfy 〈ρi, ρi〉 = 1
and 〈ρi, ρj〉 = 0 for i 	= j, and 〈γ.s, ·/, ρk〉 = λk ρk.s/, s ∈ T , k = 1, 2, . . . . The eigenvalues may then be
expressed as

λk =
∫

T

∫
T

ρk.s/ γ.s, t/ ρk.t/ dν.s/ dν.t/,

k = 1, 2, . . . . Under assumption (17), the stochastic process model then provides the following Karhun-
en–Loève representation for a randomly selected curve:

X.t/ = µ.t/ +
∞∑
k=1

Ak ρk.t/, .18/

where ρk is the kth eigenfunction. By Mercer’s theorem (see Riesz and Nagy (1990)), the right-hand side
of equation (18) converges uniformly in t ∈ T . The random variables Ak correspond to the principal com-
ponents and are given by

Ak = 〈ρk,X − µ〉: .19/

The principal components Ak are uncorrelated random variables and satisfy

E.Ak/ = 0,

var.Ak/ = λk,
∞∑
k=1

λk < ∞,

i.e. the kth eigenvalue corresponds to the variance of the kth principal component. From equation (18), we
find that, under expression (17), X.t/ is composed of a mean function µ plus additive noise, the stochastic
part.

The principal components Ak and basis functions ρk can be interpreted as defining the variation of the
stochastic process about its mean function. According to expression (19), the random variable A1 is the
length of the projection ofX−µ onto ρ1 for each sample curveX, andA1ρ1 explains themaximum amount
of variation in X among all functions which involve a single real-valued random variable. Similarly, the
function A2ρ2 explains the maximum additional amount of process variation which is unexplained by
A1ρ1, and so forth for k = 3, 4, . . . .

Appendix B: Proof of theorem 1

For equation (10), we observe that

E.‖µ̃− EX‖2/ = 1
n2

∑
i,j,k,l

E.AikAjl/〈ρk, ρl〉 = 1
n2

∑
i,k

E.A2
ik/〈ρk, ρk〉 = O.n−1/:

This implies that E.‖µ̃− µ‖/ = O.n−1=2/ by Jensen’s inequality, and therefore ‖µ̃− µ‖ = Op.n
−1=2/. The

assertion follows from property (b) in Section 3.5 and

‖µ̂− µ‖ � ‖µ̃− µ‖ sup
x

{
n∑

i=1
G2

i .x/
n∑

i=1
1{Gi.x/	=0}

}
: .20/

For equation (11), let A
.1/
ik = 〈Xi − µ̂, ρ̂k〉, A.2/

ik = 〈Xi − µ, ρk〉, α̂.1/
k .z/ = S{z, bαk

, .Zi,A
.1/
ik /i=1,:::,n} and

α̂.2/
k .z/ = S{z, bαk

, .Zi,A
.2/
ik /i=1,:::,n}. Noting that E.A

.2/
ik |Z/ = αk.Z/, the consistency assumption (a) in

Section 3.5 on the smoother implies that |α̂.2/
k .z/−αk.z/| = Op.τn/. Furthermore, observing the linearity

assumption (b),

|α̂.2/
k .z/ − α̂.1/

k .z/| =
∣∣∣∣

n∑
i=1

Gi.z/{A.2/
ik − A

.1/
ik }

∣∣∣∣
�

{
n∑

i=1
G2

i .z/

}1=2 {
n∑

i=1
.A

.2/
ik − A

.1/
ik /2 1{Gi.z/	=0}

}1=2

: .21/
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Note that

sup
i

|A.2/
ik − A

.1/
ik | � sup

i

|〈Xi, ρk − ρ̂k〉| + |〈µ̂, ρ̂k − ρk〉| + |〈ρk, µ̂− µ〉|
= Op.‖µ̂− µ‖ + ‖ρ̂k − ρk‖/,

since K is finite, so supi ‖Xi‖ < ∞. Then expression (21) implies that |α̂.2/
k .z/ − α̂.1/

k .z/| = Op.‖µ̂− µ‖ +
‖ρ̂k −ρk‖/, using assumption (b) in Section 3.5 in the same way as in inequality (20). A second application
of the same argument, using supi |A.1/

ik − Âik| = Op.m
−1/, which follows from the smoothness properties

of Xi, ρ̂k and µ̂, and equation (6) then implies the result.

Appendix C: Semiparametric quasi-likelihood regression

SPQR is an estimation procedure for estimating the unknown model components: these consist of two
smooth functions, the link function g.·/ and the variance function σ2.·/, and a vector of regression pa-
rameter β0, with ‖β0‖ = 1. Given the observations yi and the predictors xi, the model assumptions are

E.yi/ = g.xT
i β0/, i = 1, . . . , n,

var.yi/ = var."i/ = σ2{g.xT
i β0/} = σ2{E.yi/}:

A three-stage iterative QLUE procedure was proposed by alternating the parametric and nonparametric
estimation steps. The procedure can be summarized as follows; see Chiou and Müller (1998, 1999) for
additional details.

Let S.ν/{z,h; .zi, yi/i=1,:::,n}, ν � 0, be generic notation for a nonparametric estimator for the νth deriv-
ative of a regression function, dνE.Y |Z = z/=dzν , based on scatterplot data .zi, yi/i=1,:::,n. Here the zis are
design points, yis are raw data to be smoothed, h denotes a bandwidth and z is a target level at which the
function is to be evaluated. Let gν be the νth derivative of the link function g. The various updating steps
are as follows.

Step 1—nonparametric estimation step for the link function: for given β̂, ‖β̂‖ = 1, estimates of the link
function and its first derivative are updated by

ĝν.t; β̂/ = S.ν/{t, bν; .xT
i β̂, yi/i=1,:::,n}, ν = 0, 1:

Step 2—nonparametric estimation step for the variance function: for given β̂, ‖β̂‖ = 1 and ĝ0.·; β̂/, an
updated nonparametric variance estimate σ̂2.·/ is obtained by

σ̂2.u/ = S.0/{u, b; .µ̂i, "̂2i /i=1,:::,n}
where µ̂i = ĝ0.xT

i β̂; β̂/ and "̂2i = .yi − µ̂i/
2 are squared residuals which serve as the ‘raw’ variance

estimates and are based on a current model fit.
Step 3—parametric estimation step: for given ĝ0.·; β̂/, ĝ1.·; β̂/ and σ̂2.·/, β̂ is updated by solving the
quasi-likelihood estimating equation with respect to β, inserting the current estimates for the link and
variance function. The estimated estimating equation for the score is

UÅ.β/ =
n∑

i=1

yi − ĝ0.ηi;β/
σ̂2{ĝ0.ηi;β/} ĝ1.ηi;β/xi,

where xi = .xi1, xi2, . . . , xip/
T, ηi = xT

i β and ‖β‖ = 1.

The iteration is run until convergence. Sliced inverse regression (Li, 1991) estimates provide satisfactory
starting values for β. To simplify the notation, we denote the estimated vector of regression parameters
and the estimated link function obtained at convergence of the iteration by

{β̂, ĝ.·/} = QLUE{.xi, yi/i=1,:::,n}:
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