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Abstract The aim of this study is to propose the use of a Functional Data
Analysis (FDA) approach as an alternative to the classical statistical meth-
ods most commonly used in oceanography and water quality management. In
particular we consider the prediction of Total Suspended Solids (TSS) based
on Remote Sensing (RS) data. For this purpose several Functional Linear Re-
gression Models (FLRMs) and classical non-functional regression models are
applied to 10 years of RS data obtained from MEdium Resolution Imaging
Spectrometer (MERIS) sensor to predict the TSS concentration in the coastal
zone of the Guadalquivir estuary. The results of functional and classical ap-
proaches are compared in terms of their Mean Square Prediction Error (MSPE)
values and the superiority of the functional models is established. A simulation
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study has been designed in order to support these findings and to determine
the best prediction model for the TSS parameter in more general contexts.

Keywords Functional linear regression models · Functional principal
components · Functional partial least squares · Exponential regression
models · Remote sensing data

1 Introduction

Satellite images recorded by remote sensors are a way to obtain information
about the earth. They are widely used in environmental sciences to map land-
use and to analyze crop production and water quality (Caballero et al, 2014b,a;
Faivre and Fischer, 1997; Nezlin and DiGiacomo, 2005; Gitelson et al, 2015;
Rawat and Kumar, 2015). Specifically, in oceanography and water quality
management measuring ocean characteristics is a difficult and expensive task.
It usually involves complex logistics and leads to expensive data measures.
However, by using Remote Sensing (RS) data the future values of the relevant
ocean characteristics such as Sea Surface Temperature (SST), Chlorophyll-a
content (Chl-a) and Total Suspended Solids (TSS) can be predicted quickly
and economically (Bernardello et al, 2016; Caballero et al, 2014a,b; Chen et al,
2015; Le et al, 2013).

Remote sensing data are composed of remote sensing reflectance (Rrs) val-
ues recorded at different wavelengths of a spectrum. The prediction models
for ocean characteristics from RS data usually have low sample sizes (n, the
number of in-situ observations) because of the difficulties in observing in-situ
data and the moderate number of highly correlated predictors (p, the num-
ber of recorded wavelengths). In previous studies, the logarithm of TSS have
been modeled mainly by linear regression on a single wavelength or a combi-
nation of different wavelengths as predictors (Caballero et al, 2014a,b; Nechad
et al, 2010; Nezlin and DiGiacomo, 2005). Polynomial regression and regres-
sion based on dimension reduction techniques such as Principal Component
Analysis (known as Empirical Orthogonal Functions, EOF, in environmental
statistics) have also been used (Binding et al, 2003; Everson et al, 1997). How-
ever, collinearity and variable selection are some of the problems that may
arise when dealing with classical regression models. Moreover, Hyperspectral
Remote Sensing (HRS) data, which are measured on a large spectrum with
high number of wavelengths, have recently been in use. This would imply re-
gression models in which the number of predictors is larger than the number
of observations (“large p small n” problem; see Hastie et al 2015, for instance).
All the foregoing emphasizes the need for novel approaches instead of classical
methods. One of these approaches is Functional Data Analysis (FDA), which
enables us to work with continuous functions as predictor variables. General
references for FDA are Ramsay and Silverman (2005), Horváth and Kokoszka
(2012) and Kokoszka and Reimherr (2017). See also the recent review in Wang
et al (2016).
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Given the continuous structure of the spectrum, RS data can be treated
as functional data measured over a range of wavelengths. Thus, for each pixel
of the satellite image a function of Rrs values in the relevant spectrum is
observed. This way TSS concentration can be predicted on Rrs functions by
using Functional Linear Models (FLRMs). FLRMs are used to analyze linear
relationships between variables when at least one of the related variables has a
functional structure. FLRMs have a wide range of use in various fields such as
chemometry, biomechanics and environmental sciences. Particularly, there are
many studies that focus on modelling scalar responses on functional predictors
(Aguilera et al, 2010; James, 2002; Cardot et al, 1999). A recent review on
FLRMs for scalar responses can be found in Reiss et al (2017). For a more
general review on functional regression models, see Morris (2015) or the general
reference on FDA cited before.

FDA techniques have recently gained importance in the analysis of RS data.
Cardot et al (2003) and Besse et al (2005) used Functional Linear Regression
Models (FLRMs) to predict land use from remote sensing data obtained from
the Vegetation sensor of the SPOT4 Satellite. Liu et al (2012) put forward
a new rotation approach for functional factor analysis with an application
on periodic remote sensing data. In oceanography, Gong et al (2015) used
Functional Principal Components Analysis (FPCA) to model high-dimensional
temperature curves and temperature surfaces of Lake Victoria. Nevertheless,
there are still only a few studies that use the FDA approach to remote sensing
satellite data in the field of oceanography (Lahet et al, 2001; Gong et al, 2015),
even though there are many applications of multivariate analysis techniques
in this field (Clarke et al, 2006; Caballero et al, 2014a).

It is worth mentioning the pioneering study by Lahet et al (2001) in which a
functional data set is built representing reflectance as a function of wavelength.
The authors use satellite data (observed reflectance at 11 wavelengths) and a
classical spectrometric model to obtain smooth curves defined in the continu-
ous range of the spectrum. Although Lahet et al (2001) do not at any point
relate their work with the field of FDA, they propose a clustering method
based on the maximum of these functional data.

The goal of our study is to propose the use of Functional Linear Regression
Models for scalar responses to predict surface water characteristics based on
reflectance functions. Specifically, we aim to use FLRMs as an alternative to
classical regression models in order to predict the TSS concentration in the
coastal zone of the Guadalquivir estuary on 10 years of RS data obtained
from the MERIS sensor. MERIS is one of 10 sensors that in March, 2002, was
deployed by the European Space Agency (ESA) on board the polar-orbiting
Envisat-1 environmental research satellite.

The Guadalquivir estuary is of great significance from the ecologic, social
and economic points of view (Ruiz et al, 2014). The river is the main source
of freshwater inputs and nutrients to the estuary and the adjacent Gulf of
Cádiz shelf, thereby regulating the high biological productivity of the basin
(Navarro and Ruiz, 2006). The turbidity plume variability is important for the
functioning of the estuary and the adjacent coastal region, where high turbid
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levels frequently produce negative effects on water quality and clarity, which
are the major determinants of the condition and productivity of an aquatic
system as well as, the tractability of water for human consumption, recreation
and manufacturing (Ruiz et al, 2014). Several prolonged turbid episodes orig-
inated hypoxia and inhibition of phytoplankton growth in the Guadalquivir
coastal region (Navarro et al, 2012; Caballero et al, 2014b), generating alert
in the policy-managers and stakeholders. Examination of the turbidity and
suspended solid estimation is therefore required in order to assist to the chal-
lenging coastal management and water quality monitoring.

In the following section the structure of the in-situ and satellite data sets
used in the analysis are described and detailed information on the matching
process is provided. In Section 2.3, we explain the theoretical background of
Functional Linear Regression Models that are used later to predict TSS con-
centration in the Region of Interest (ROI). The results of classical and func-
tional approaches are summarized in Section 3. A simulation study designed
to support findings and to compare the predictive performance of the models
is set out in Section 4. The last Section summarizes our conclusions (based on
both the real data application and the simulation study) about what the best
prediction models are for tackling the problem. All the statistical computa-
tions and graphics in the paper has been done using the software R (R Core
Team, 2017). Satellite images in Figures 2 and 8 has been created by Matlab
(MATLAB, 2011).

2 Materials and Methods

2.1 Study Area and data sets

The data set is composed of two parts: the in-situ measurements of TSS con-
centrations collected from the sea surface and the satellite data recorded by
MERIS between the years 2002 and 2011. The Region of Interest is determined
by the coordinates 36◦ − 37◦ N latitude and 6◦ − 7◦ W longitude (see Figure
1).

2.1.1 In-Situ Data

The in-situ data consists of samples collected from the coastal region of the
Gulf of Cádiz on the southwest coast of the Iberian Peninsula at the Junta

de Andalućıa station and by the cruises of Reserva and Fluctuaciones over
different time periods. The sampling carried out by the Junta de Andalućıa

covers the period between April 2008 - May 2011, where the samples of Reserva
and Fluctuaciones were collected between the periods July 2002 - September
2004 and May 2005 - May 2007, respectively. The coordinates of the Junta

de Andalućıa station was fixed at lattitude 36.78◦ N and longitude 6.37◦ W,
where the coordinates of the Reserva and Fluctuaciones stations in the Region
of Interest (ROI) were chosen according to the campaign planning (see Figure
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Fig. 1 The study area and ROI.
a) The study area. b) Map of the Guadalquivir estuary and the Gulf of Cádiz coastal area
showing the ROI. Pink stars and circles indicate the Fluctuaciones and Reserva stations,
respectively. The round white circle denotes the Junta de Andalućıa station.

1). The surface samples taken for analysis were collected with a rosette sampler
(5 m below the water surface) at a distance of between 1km and 25 km from the
coast. The amount of TSS concentration in each sample is measured according
to the protocols given in Caballero et al (2014a).

2.1.2 Satellite Data

The MERIS overpass time for central Europe is between 9:30 and 11:00 UTC,
with a global coverage every 3 days. The MERIS sensor typically provides
high coverage of the Gulf of Cádiz study area (overpass at GMT of approx-
imately 10:30 am); however, cloudy and/or foggy conditions result in patchy
spatial coverage and temporal gaps. The satellite data included within the
Region Of Interest (ROI) was downloaded from the Ocean Colour Website
(http://oceancolor.gsfc.nasa.gov) in hierarchical data format (hdf). SeaDAS
image analysis software (SeaWifs Data Analysis System, version 6,
http://seadas.gsfc.nasa.gov/) was used to convert data from hdf format to
ascii format. The RS data set consists of Level-2 Remote Sensing Reflectance
(Rrs) (sr−1) values recorded at eight different wavelengths (413 nm, 443 nm,
490 nm, 510 nm, 560 nm, 620 nm, 665 nm, 681 nm) with 300 m full spatial
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(a) Rrs 413 (b) Rrs 443 (c) Rrs 490 (d) Rrs 510

(e) Rrs 560 (f) Rrs 620 (g) Rrs 665 (h) Rrs 681

Fig. 2 Images recorded at each wavelength for the day 23-October-2009 at time 11:02:49.

resolution between the years 2002-2011. A Level-2 data product is the result
of the sensor calibration and atmospheric correction, consisting of derived geo-
physical variables generated from the corresponding Level-1A product using
the standard National Aeronautics and Space Administration (NASA) pro-
cessing methodologies. Considering the resolution of the images, the data set
consists of 370× 370 = 136900 pixels images that are recorded for each wave-
length in different time periods (Figure 2). The data set was passed through a
quality control process corresponding to the L2 flags given in Caballero et al
(2014a) in order to remove the suspicious and low-quality data points.

2.1.3 Data matching

The Rrs values recorded by the sensor are matched up with field measurements
by considering the coordinate and the time at which the sample is collected.
Data match-ups are performed by matching the in-situ observations with the
satellite data within a square area of 5 by 5 pixels (1.5×1.5 km2) whose central
pixel contains the coordinates of the field measurement, which is a standard
approach in remote sensing community. Then the satellite data are averaged
over these 25 pixels (excluding those with low-quality data) and the results
are matched to the in-situ observations. As a result of matching, a total of 71
observations are obtained. However, a careful consideration of scales is critical
when comparing remotely-sensed data with in-situ observations, particularly
because of the large spatio-temporal heterogeneity of estuarine and coastal wa-
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ter properties influencing those measurements (Fettweis and Nechad, 2011). In
this sense, the time difference between satellite overpasses and the collection
time of in-situ samples is reduced by a filter of < 1.5 hours from acquisition,
thus preventing temporal biases to further evaluate the results of each data set.
As a result of this filtering process, the total number of observations decrease
from 71 to 31. Furthermore, 6 observations were removed from the data set
for various reasons: four observations for not being collected from the water
surface; one observation due to the measurement error during filtering process,
and one observation due to the missing values at some band values. Finally,
analysis was conducted on 25 observations. If a wider time window of 4 or 5
hours is used, a major number of match-ups are obtained, although greater
variability is encountered with the inconvenience of greater discrepancies be-
tween in-situ and RS observations.

2.2 Standard Regression Models

We refer as standard regression model to any linear regression, either simple
(one explanatory variable) or multiple (many explanatory variables), where
the response is the logarithm of the TSS (Y = log(TSS)) and the predictors
are reflectance values recorded at a single wavelength or a combination of
different wavelengths. Let Xij , i = 1, . . . , n, j = 1, . . . , p, be the reflectance
value at wavelength wj at pixel i, and let Yi be the logarithm of the TSS for
the same pixel. Then the generic linear regression model is

Yi = β0 +

p∑

j=1

βjXij + εi, i = 1, . . . , n, (1)

where εi, i = 1, . . . , n are assumed to be independent zero mean random
variables with a common variance σ2. The corresponding model for TSS is

TSSi = exp


β0 +

p∑

j=1

βjXij + εi


 , i = 1, . . . , n.

This last model for TSS is known as exponential regression model in the remote
sensing literature. See, for instance, Caballero et al (2014a,b), Nechad et al
(2010), or Nezlin and DiGiacomo (2005).

The regression model (1) is usually estimated by Ordinary Least Squares
(OLS) solving the problem

min
β0,...,βp

n∑

i=1


Yi − β0 −

p∑

j=1

βjXij




2

.

Numerical instability can appear when the number of predictor (p + 1) is
large, compared with the number of observations n, or when the predictors
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are highly correlated between them. In these circumstances it is advisable to
use penalized versions of OLS estimation, solving instead the problem

min
β0,...,βp

n∑

i=1


Yi − β0 −

p∑

j=1

βjXij




2

+ λ




p∑

j=1

|βj |
d




1/d

,

where λ > 0 is known as the penalization parameter. The most popular penal-
ized OLS estimators are when d = 1 (LASSO, Least Absolute Shrinkage and
Selection Operator) or d = 2 (Ridge regression). Hastie et al (2015) is a good
reference for LASSO and Ridge regression.

An alternative way is to use elastic net estimator (Zou and Hastie, 2005)
which is a compromise between Ridge and Lasso estimators. The elastic net
objective function is

min
β0,...,βp

n∑

i=1


Yi − β0 −

p∑

j=1

βjXij




2

+ λ


α

p∑

j=1

|βj |+ (1− α)

p∑

j=1

β2
j


 .

Elastic net, which includes as special cases LASSO (α = 1) and Ridge regres-
sion (α = 0), can do variable selection and dealing with correlated predictors
simultaneously.

2.3 Functional Linear Regression Models

A functional linear regression model with a scalar response is defined as

Y =

∫

T

χ(t)β(t)dt+ ǫ, (2)

where Y indicates the scalar response, ǫ is the random error term (with 0 mean
and unknown variance σ2), χ(t) and β(t) define the (observable) functional
predictor and the (unknown) functional parameter, respectively, which are
defined as real functions on a continuous interval T . In order to estimate
the unknown elements of this model (σ2 and β(t), t ∈ T ) we observe n pairs
(χi, Yi), i = 1 . . . , n, following model (2) with independent errors ǫ1, . . . , ǫn.

The main additional difficulty with the functional linear regression model,
as compared with the standard multiple regression model, is that tractable
representations of functions χ and β are required. Several methods have been
proposed to estimate model (2). In this study, we focus on three different ap-
proaches that are based on cubic B-spline basis expansion, functional principal
components analysis, and functional partial least squares analysis, respectively.
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2.3.1 B-spline Basis Approach

Both the predictor and the parameter estimate are functionals and can be
approximately expanded in terms of cubic B-spline basis functions:

χi(t) ≈ χ̃i(t) =

K∑

k=1

cikφk(t) = c′iφ(t),

β(t) ≈ β̃(t) =

L∑

l=1

b̂lθl(t) = b′θ(t) = θ′(t)b,

where {φ1(t), . . . , φK(t)} and {θ1(t), . . . , θL(t)} are two (possible different) B-
spline basis of functions defined on T , φ(t) = (φ1(t), . . . , φK(t))′, and θ(t) =
(θ1(t), . . . , θL(t))

′.
Replacing in (2) χi and β by their B-spline expansions, we obtain an ap-

proximated model

Yi ≈

∫

T

χ̃i(t)β̃(t)dt+ ǫi = c′i

∫

T

φ(t)θ′(t)dtb+ ǫi = c′iJφθb+ ǫi.

In matrix notation we have Y = CJφθb+ǫ, the usual expression of a multiple

regression model with vector coefficient b. Let b̂ be the ordinary least square
estimator of b and define β̂(t) = θ′(t)b̂. Then the fitted values of Yi, i =

1, . . . , n, are Ŷi = c′iJφθb̂ =
∫
T
χ̃i(t)β̂(t)dt.

In the procedure that we have just described, the smoothness of the esti-
mated coefficient function β̂(t) is controlled only by the number L of elements
in the corresponding B-spline basis. An alternative approach consists in adding
a roughness penalty term to the sum of squared residuals:

PENSSRλ(β̃) =
n∑

i=1

(
Yi −

∫

T

χ̃i(t)β̃(t)dt

)2

+ λ

∫

T

(
β̃′′(t)

)2
dt.

See, for instance, Section 15.4 in Ramsay and Silverman (2005) or Marx and
Eilers (1999) for an alternative approach leading to P-splines.

2.3.2 Functional Principal Components Regression

The main idea of Functional Principal Components Regression (FPCR) is to
predict the scalar response Y from the principal component scores of functional
data χ(t). This method is based on the Karhunen-Loève Theorem which states
that a square integrable function χ(t), t ∈ T , with mean µχ(t) = E [χ(t)] and
the covariance function cχ(t, s) = E [(χ(t)− µ(t))(χ(s)− µ(s))], can be repre-
sented in terms of the eigenfunctions ξ1(t), ξ2(t), ... of the covariance operator
Γχ (the kernel function of which is the covariance function cχ(t, s)) as

χ(t) = µχ +

∞∑

j=1

fjξj(t),
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where fj , j ≥ 1, are uncorrelated zero mean random variables (known as
scores) satisfying E[f2

j ] = λj , where λj is the eigenvalue corresponding to the
j-th eigenfunction of the covariance operator.

Consider a sample of independent identically distributed observations (χi, Yi),

i = 1 . . . , N . Let χ̄ = (1/N)
∑N

i=1 χi be the sample mean of functional predic-
tors, and let

ĉχ(t, s) =
1

N

N∑

i=1

(χi(t)− χ̄(t))(χi(s)− χ̄(s)), s, t ∈ T,

be the empirical covariance function. According to the Karhunen-Loève The-
orem, the functional observations χi can be approximated in terms of the
first K eigenfunctions ξ̂j(t) of the sample covariance operator Γ̂χ (the ker-
nel of which is the empirical covariance function ĉχ(t, s)) and the empirical

functional principal component scores f̂ij = 〈χi − χ̄, ξ̂j〉 for i = 1, . . . , N and
j = 1, . . . ,K

χi(t) ≈ χ̃i(t) = χ̄i +

K∑

j=1

f̂ij ξ̂j(t), i = 1, . . . , N, j = 1, . . . ,K. (3)

The empirical eigenfunctions satisfy the conditions
∫
T
ξ̂j(t)ξ̂j(t)dt = 0, for

i 6= j and
∫
T
ξ̂j(t)ξ̂j(t)dt = 1, so that they form an orthonormal basis in

L2(T ). Then the functional parameter of the FLRM (2) can be approximated

by Equation (4) in terms of empirical functional components ξ̂j related to the

largest eigenvalues λ̂j in a K dimensional space

β(t) ≈ β̃(t) =

K∑

j=1

bj ξ̂j(t). (4)

Hence, the FLRM between the centered scalar response and the centered
functional predictors χ̃i(t)− χ̄(t) takes the form of

Yi − Ȳ ≈

∫

T

(χ̃i(t)− χ̄(t))β̃(t)dt+ ǫi =

∫

T




K∑

j=1

f̂ij ξ̂j(t)



(

K∑

h=1

bhξ̂h(t)

)
dt+ ǫi

=

K∑

j=1

K∑

h=1

f̂ijbh

∫

T

ξ̂j(t)ξ̂h(t)dt+ ǫi =

K∑

j=1

f̂ijbj + ǫi. (5)

Assume that b̂j refers to the ordinary least squares estimate of bj in the

Equation (5). Then the fitted values of Yi, i = 1, . . . , N are computed as Ŷi =

Ȳ +
∑K

j=1 f̂ij b̂j . Moreover, β(t) is estimated by

β̂(t) =

K∑

j=1

b̂j ξ̂j(t). (6)
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The number K of eigenfunctions can be chosen in different ways (see, for
instance, Horváth and Kokoszka 2012, Section 3.3). When the main objective
is to approximate χi by χ̂i, as in Equation (3), the method based on CVP

(cumulative percentage of total variance: 100×
∑K

j=1 λ̂j/
∑N

j=1 λ̂j) give good
results in practice: K is chosen in order that the CVP exceeds a desired level
(85%, for instance). However, when the objective is fitting a functional regres-
sion model (as in our case) it could happen that the first K principal functions
are not the most related with the response Y . In this context the selection of
how many principal functions should be used (and which of them might be
chosen) can be done by cross-validation or model selection criteria, such as
Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC,
also known as Schwarz Information Criterion, SIC).

Even if we have presented B-splines and FPCR separately, both method-
ologies can also be combined. For instance, FPCA for the predictor curves and
a B-splines basis for the coefficient function (see, e.g., Goldsmith et al 2011,
and references therein).

2.3.3 Functional Partial Least Squares Regression

In order to increase the predictive performance of FLRM, Preda and Saporta
(2005) have proposed the Functional Partial Least Squares Regression (FPLSR)
approach as an alternative to FPCR. This method is based on regressing the
response on FPLS scores which are obtained from the maximization of the
covariance between the functional predictor χ(t) and the scalar response Y .
Since FPLS components are more related to the variability of the response,
they are more relevant to predicting the outcome (Preda and Saporta, 2005;
Aguilera et al, 2010; Febrero-Bande et al, 2015). Similarly to the case of FPCR,
FPLS seeks for an orthonormal basis of functions {φl}l≥1 allowing predictors
and the functional parameter to be expanded as χ(t) = µχ+

∑∞

l=1 υlφl(t) and
β(t) =

∑∞

l=1 clφl(t), respectively. In practice, the FPLS components φl are
obtained from an iterative algorithm (see, for instance, Delaigle et al 2012 or
Febrero-Bande et al 2015 for detailed explanations) leading to the representa-
tions

χi(t) ≈ χ̃i(t) = χ̄+
L∑

l=1

υ̂ilφ̂l(t), i = 1, . . . , N, β(t) ≈ β̃(t) ≈
L∑

l=1

clφ̂l(t),

where cl, l = 1, . . . , L, indicate unknown constants, and the FPLS scores υ̂il
are computed as υ̂il = 〈χi − χ̄, φ̂l〉, i = 1, . . . , N , l = 1, . . . , L.

The FLRM model can be approximated by a finite linear combination of
FPLS scores υ̂il:

Yi − Ȳ ≈

∫

T

(χ̃i(t)− χ̄(t))β̃(t)dt+ ǫi =

∫

T

(χ̃i(t)− χ̄(t))

L∑

l=1

clφ̂l(t)dt+ ǫi

=
L∑

l=1

cl

∫

T

(χ̃i(t)− χ̄(t))φ̂l(t)dt+ ǫi =
L∑

l=1

υ̂ilcl + ǫi.
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Let ĉl be the ordinary least squares estimate of cl. Then the predicted values
of the responses are obtained from Ŷi = Ȳi+

∑L
l=1 ĉlυ̂il. The β(t) is estimated

by

β̂(t) =
L∑

l=1

ĉlφ̂l(t). (7)

2.4 Measuring the performance of the regression models

To compare the predictive performance of the different regression models, an
adjusted version of Mean Square Prediction Error (aMSPE) based on Leave-
One-Out Cross-Validation (LOOCV) is defined by

aMSPE =

∑n
i=1(Yi − Ŷ

(i)
i )2∑n

i=1(Yi − Ȳ (i))2
, (8)

where Ŷ
(i)
i is the prediction for observation i using the model fitted on the other

(n − 1) observations, and Ȳ (i) indicates the mean computed after removing
the i-th observation. Observe that the denominator of Equation (8) is n times
the LOOCV estimation of the MSPE for the constant model, and it serves as
a reference for other models. In our case we use always the logarithm of TSS
values as the response values Yi.

Some regression models require the choice of tuning parameters (such as
the number of components in PCR and PLSR models or the penalty parameter
λ in LASSO, Ridge and Elastic net regression, and also α parameter in Elastic
net). In such cases, an automatic choice mechanism (LOOCV, K-fold CV,
GCV or BIC, for instance) within the LOOCV should be used, in order that
the numerator of Equation (8) is n times an unbiased estimator of the MSPE
for these regression models. In our examples we use LOOCV within LOOCV
for non-functional models. For functional models, either GCV or BIC within
LOOCV have been used (see Section 3.2 for more details).

3 Results

We present the results of fitting standard regression models and FLRMs to the
25 observations for which the time and space matching between TSS content
(in-situ response) and Rrs values at 8 wavelengths (predictors from satellite)
has been possible.

3.1 Results of Standard Regression Models

Several methods have been used to investigate the relationship between TSS
concentration and Rrs values. Generally, Rrs values are proposed for use at
the band which is most closely correlated with the response and for fitting
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a regression model. In the literature, wavelength Rrs 665 has been found to
be the band most closely with TSS concentration (Binding et al, 2003, 2005;
Caballero and Navarro, 2016). For MERIS data, Nechad et al (2010) used
the bands 665 nm and 681 nm to model TSS. In the study by Caballero and
Navarro (2016), a simple regression model with band 665 nm was used to
analyze the relationship between TSS and Rrs.

In our data set, the most correlated bands with the logarithm of the TSS
content are found to be the wavelengths 665 nm (r = 0.729, p < 0.001) and 681
nm (r = 0.734, p < 0.001), while 510 nm was the least correlated wavelength
(r = 0.567, p = 0.003). Therefore, two simple regression models were fitted
between TSS values and Rrs values at the wavelengths 665 nm and 681 nm
separately.

In-situ TSS measurements ranged between 3 and 327 mg/L, while Rrs
values at the wavelength 681 nm ranged between 0 and 0.0275 sr−1, and Rrs
values at the wavelength 665 nm ranged between 0 and 0.028 sr−1. As may
be seen from the scatter plot of the observations in Figure 3, the dispersion of
Rrs values are quite similar for both bands.
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Fig. 3 The scatter plot between in-situ TSS and Rrs values at wavelengths 665 nm and
681 nm.
The blue curve indicates the relationship between TSS and Rrs 665 nm while the pink curve
indicates the relationship between TSS and Rrs 681 nm.

The fitted simple regression model with band 665 nm is

T̂SS = exp(3.18 + 70.83 ∗ Rrs 665),

and the model with band 681 nm is

̂log(TSS) = 3.18 + 74.38 ∗ Rrs 681.
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The simple regression model with band 665 nm on the MERIS data of the
same period was proposed in the study by Caballero et al (2014b). The MERIS
data of this study consists in the last Ocean Color reprocessing
by Mission required for improving the archived products
(https://oceancolor.gsfc.nasa.gov/reprocessing/r2012.1/meris, December 2012).
However, Caballero et al (2014b) used the first processing of the full resolu-
tion MERIS database. In this regard, the minor deviation between both data
is explained for the different reprocessing history.

In addition to these univariate models, linear regression using all the band
values, stepwise regression, LASSO estimation, Ridge regression and Elastic
net regression are also applied to the data set, as they are implemented in the R
library glmnet (Friedman et al 2010). In order to avoid correlation between the
explanatory variables and to reduce dimension, regression models on Principal
Components (PC) and on Partial Least Square Components (PLSC) are used
as well, by the R library pls (Björn-Helge and Wehrens 2007).

All the models are compared in terms of the aMSPE criterion given in
Equation (8). These values are shown in Table 1. Among the non-functional
regression models, the best performance (in terms of aMSPE) corresponds
to the Ridge and Elastic net regression models, followed by LASSO. Regres-
sion models based on PCR and PLSCR was exhibited a worst behavior than
expected: aMSPE is larger than 1 in both cases.

Observing Equation (8) we realize that aMSPE values are the average of
n = 25 values, namely

(Yi − Ŷ
(i)
i )2

(1/n)
∑n

i=1(Yi − Ȳ (i))2
, i = 1, . . . , n,

that have been obtained in the LOOCV process. In order to add variability
information to the location information provided by aMSPE values, Figure 4
shows the box-plots of these n = 25 values for each regression model. These
box-plots confirm that, among the non-functional models, Ridge, Elastic net
and LASSO have the best performance, and that PCR and PLSCR have the
worst. However the impression of linear model with all bands and stepwise
regression is more positive compared to the simple regression models using
only 665 or 681 nm bands, even though the aMSPE values are higher.

3.2 Results of Functional Regression Models

All the computations involving functional elements have been done using the R
libraries fda (Ramsay et al 2017) and fda.usc (Febrero-Bande and Oviedo de
la Fuente 2012). Cubic B-spline fitting withK = 8 basis is used to represent the
data as functional objects. We have usedK = 8 basis in order to interpolate the
observed data (8 observations per function), given the low number of observed
points at each function and the low noise level. The resulting curves evaluated
in a fine grid are given in Figure 5.
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Table 1 The Comparison of Standard versus Functional Regression Models

Model aMSPE
Standard regression models

Using only band 665 nm 0.51
Using only band 681 nm 0.50
Using all bands 0.59
Stepwise regression 0.54
LASSO 0.44
Ridge regression 0.41

Elastic net 0.41

PCR 1.35
PLSCR 1.08

Functional regression models

FLRM with B-spline bases 0.44
FPCR 0.43
FPLSR 0.39

The outlier detection of the functional data set is carried out by a procedure
based on weighting and bootstrap in which the number of bootstrap samples
and the quantile to determine the cut off value obtained from Bootstrap sample
are taken as 200 and 0.5, as suggested by default in Febrero-Bande and Oviedo
de la Fuente (2012). Four different depth measures are used in computations:
Fraiman-Muniz Depth (FMD), Modal Depth (MD), Random Tukey Depth
(RTD) and Random Projection Depth (RPD). Although there are suspicious
observations in the data set, none of them have been recognized as outliers.

The functional regression models used to model the logarithm of TSS con-
tent are FLRM based on the B-spline basis approach, FPCR and FPLSR. In
FLRM, the number of basis function for representing the coefficient function
(β(t)) has been chosen as L = 8, because this is the number of basis used for
interpolating the observed points at each function. We control the smooth-
ness of the estimated coefficient function with a roughness penalty approach.
Specifically, within each of the 25 outer LOOCV runs, we use inner generalized
cross-validation as it is implemented in the function fregre.basis.cv from
library fda.usc, with the option type.CV = GCV.S.

BIC (or SIC) is used to identify the optimal number of components in
FPCR and FPLSR. The CV criterion has not been considered since it requires
more computing time (see for instance Febrero-Bande and Oviedo de la Fuente
2012). More precisely, we use functions fregre.pc.cv and fregre.pls.cv of
library fda.usc (Febrero-Bande and Oviedo de la Fuente 2012) with the option
criteria = "SIC".

In FPCR, the fifth and the second components (with 4.3% and 6.8% ex-
plained variance, respectively) are chosen by BIC, while for the case of FPLSR
the first two components are chosen. The chosen Functional Principal Com-
ponents (FPCs) and Functional Partial Least Squares Components (FPLSCs)
are displayed in Figure 6.
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Fig. 4 Comparison of regression models. For each model, the box-plot corresponds to the
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∑n
i=1(Yi − Ȳ (i))2} whose average is the corresponding

aMSPE value in Table 1. The vertical red dashed line at 1 serves as a reference.

As may be seen in the left panel of Figure 6, the second FPC gives higher
positive weight to the band values around 550 nm, while it gives negative
weights to the lowest and mainly to the highest band values. The fifth FPC is
harder to interpret: it has an oscillatory behavior giving positive weight to low,
medium and high band values, and negative to the rest. For the case of FPLSR
(the panel on the right in Figure 6), the first FPLSC is a stable function (it
could be interpreted as an average of all bands, with higher weights for higher
bands), while the second FPLSC is similar to the second FPC, except for a

sign change. The parameter estimates of models FPCR and FPLSR (b̂j and
ĉl in Equations 6 and 7) are given in Table 2.

The aMSPE values computed by LOOCV are found to be lower for the
FPCR and FPLSR approaches compared to the B-spline basis approach, and



Functional regression on RS data in Oceanography 17

450 500 550 600 650

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Raw functional data

Wavelengths

R
rs

 (
1

/s
r)

450 500 550 600 650

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Smoothed functional data

Wavelengths

R
rs

 (
1

/s
r)

Fig. 5 Raw functional data and curves smoothed by cubic B-splines.
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Fig. 6 Components from FPCA (left) and FPLS (right) that have been selected by BIC to
be included in FPCR and FPLSR Models.

this one (the worst among functional regression models) coincides with Ridge
regression (the best result for standard regression models). This is a very pos-
itive result for functional regression models when compared with the standard
ones.

The functional parameter estimations of FPCR and FPLSR models (com-
puted as in Equations 6 and 7) are shown in Figure 7. The functional parame-
ter estimate of the FPLSR model in the right panel of Figure 7 indicates that
the difference between extreme (whether high or low) and medium bands is
an effective way to predict the response. The functional parameter estimate
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Table 2 The coefficient estimates of functional components

Parameter Estimate Standard Error p value
FPCR

Intercept 3.76 0.10 < 0.001
FPC 5 -24.05 3.92 < 0.001
FPC 2 -8.34 3.12 0.013

FPLSR

Intercept 3.76 0.10 < 0.001
FPLSC 1 0.12 0.005 < 0.001
FPLSC 2 0.20 0.001 < 0.001
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Fig. 7 The functional parameter estimations of FPCR and FPLSR Models.

of the FPCR model in the left panel has an interpretation quite coincident
with the previous one, with the following differences: the very extreme bands
have lower weight (close to 0) and the relevant medium bands are now more
concentrated.

Regarding Table 1, the FPCR and FPLSR models give better predictions
than the standard models. The FPCR model with two components (chosen
by BIC) has the lowest aMSPE value (thus predicting the logarithm of TSS
better than other models) closely followed by FPLSR.

As an example, the predicted values of the logarithm of TSS concentrations
on the day 23-October-2009 obtained from four different models are shown in
Figure 8.

4 Simulation study

A simulation study has been designed in order to compare the predictive per-
formance of the proposed regression models and to support findings. For the
simulation study, the area of interest is that described in Section 2: 36◦ − 37◦

N latitude and 6◦ − 7◦ W longitude (see Figure 1).
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(a) Exponential Regression with 665 nm (b) Elastic Net Regression with all the bands

(c) FLRM with Basis Expansion (d) FPCR with 2 components chosen by BIC

(e) FPLSR with 2 components chosen by BIC

Fig. 8 Predicted Images for TSS concentrations (in mg/L) on the day 23-October-2009 at
time 11:02:49. Pixels that have been removed by the control quality after L2 flagging are
represented in white.
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Fig. 9 Design of the simulation study.

The simulation study consists of four main steps (Figure 9 shows the sim-
ulation scheme). The first step is to choose the day and hour to be simulated.
This is done by choosing the satellite image with the maximum number of full
pixels in the last wavelength 681 nm, since the amount of Rrs in this band is
usually lower compared to other bands. So the image chosen as the functional
predictor corresponds to the day 11-July-2009 and hour 10:31:31; it has 9843
pixels with valid values for wavelength 681 nm. The Rrs values at the eight
wavelengths for this day has been merged and the functional data object has
been created. A total of 66 observations were removed due to the missing val-
ues at the other wavelengths. Finally, 9777 functional observations were left
(N=9777).

In the second step the TSS state of the sea is simulated. In order to do that,
the scalar response vector Ỹ is generated according to the estimated models in
Section 3, using as predictors either Rrs values or Rrs functions for each pixel of
the chosen image. Five models (M = 5) are used in generating the response: a
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simple linear regression with 665 nm wavelength; Elastic net regression; FLRM
with the B-spline Basis approach; FPCR with all components, and FPCR with
the two components chosen by the BIC criterion. FPLSR could not be used
in the generation of the response, since this method requires knowledge of the
covariance between the response and the predictor. Here, the covariance can
not be computed because the response is unknown.

The response vector generated when using the simple linear regression
model (with band 665 nm as predictor) is denoted by Ỹlm. The Elastic net
regression model estimated in Section 3.1 has all non-null coefficients. The
response vector generated with this model is denoted by Ỹelas. The general
form of simulated FLRMs can be expressed as follows:

Ỹi =

∫
χ̃∗
i (t)β̃(t)dt+ ǫi. (9)

Here, χ̃∗
i (t) denotes the functional predictor which is composed of Rrs values at

8 different wavelengths, and β̃(t) is the functional parameter estimate that is
taken respectively from the functional models used in the application: FLRM
with B-spline basis expansion, FPCR with all components and FPCR with
the components chosen by BIC. The responses of the functional linear models
are denoted respectively by ỸBs, ỸFPC 8 and ỸFPC 2.

The response ỸBs for FLRM with B-spline basis approach is generated
from

ỸBs =

∫
χ̃∗(t)β̃(t)dt+ ǫi = c∗iJφθb

∗ + ǫi,

where Jφθ is the matrix computed from the inner product of basis func-
tions φ(t) = [φ1(t), .., φ8(t)]

′ and θ(t) = [θ1(t), ..., θ7(t)]
′ that are used to

extend χ̃∗
i (t) =

∑8
k=1 c

∗
ikφk(t) and β̃(t) =

∑7
l=1 b

∗
l θl(k), respectively. Here,

c∗i = [c∗i1, ..., c
∗
i8]

′ and b∗ = [b∗1, ..., b
∗
7]

′ indicate the computed coefficient vec-
tors to expand the functional predictor and the parameter function in the
corresponding basis functions.

The expressions b∗ and Jφθ in this model are replaced by the related
parameters of the FLRM in the Section 3.2, whereas c∗i is obtained from the
smoothing of the chosen functional predictor χ̃∗

i (t) on the 8 functions forming
a B-spline basis.

In the case of FPCR, Model (9) is approximated by,

ỸFPC = Ȳi + F∗
pcb

∗ + ǫi,

where Ȳi is the mean of the real response vector, F∗
pc denotes the score matrix

which is computed from F∗
pc = 〈χ, ξ̂〉, and b∗ is the parameter vector obtained

from the expansion βFPC(t) =
∑

j∈J b∗j ξ̂j used in the application. J indicates
the set of components used in the expansion of the data, which is equal to
{1, . . . , 8} for FPCR with all the components, and is equal to {5, 2} for FPCR
with the BIC method.

The error term ǫi is generated from the normal distribution with zero
mean and the variance equal to the raw residual variance of the model from
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which the functional parameter is taken. The raw residual variances of the
models in Section 3 are quite high. Hence, three different values (S = 3) of
residual variance are used in the simulation: the raw residual variances of the
related model (σ2

1 = σ̂2), one fifth of the model residual variance(σ2
2 = σ̂2/5),

one tenth of the model residual variance (σ2
3 = σ̂2/10). For each value of

the residual variance and each type of model, the response is generated five
hundred (P = 500) times.

The third step consists on simulating the in-situ data collection campaigns.
Three (G = 3) different sample sizes ss = {25, 50, 100} are considered. ss
out of N = 9777 pixels are randomly chosen from the image. Therefore, the
simulation has M × S × G, i.e. 45, possible scenarios. Following the same
procedures as in Section 3, and using the pixels in the sample of size ss, for
each scenario a total of E = 5 models are estimated: a simple linear regression
with band 665 nm; Elastic net regression (parameters λ and α chosen by
LOOCV); the B-spline basis expansion; the FPCR BIC, and the FPLSR BIC
models.

The last step consists in using the estimated models for predicting the
responses Ỹi for the other (N − ss) pixels. The predictive performance of the
models are measured in terms of the their MSPE values.

Finally steps 2, 3 and 4 are repeated P = 500 times. So the mean of MSPE
values are taken over the P = 500 simulations. The results of the simulation
study are given in Table 3. The best results for each scenario are marked in
bold. Figure 10 offers an alternative way to look at the these data: for each
estimating model i in a particular scenario, the ratio

min(mean MSPEi)

mean MSPEi

is represented with a color code. The models for which this ratio is closer to
one (lighter colors) have better performances.

In general, the best predictions are obtained from the models used for
generating responses. This is clearer for larger sample sizes and/or smaller
residual variances. As seen from the first block of Table 3, in the case of
low sample size and high residual variance (σ2

1), all the response types have
been predicted better by Elastic net. However, when sample sizes increases or
residual variance decreases, the Elastic net is beaten by other estimators, even
for data generated according to the Elastic net model.

The mean MSPE values of the models FPCR BIC and FPLSR BIC are
usually very similar. It turns out that with the increment of the sample size the
predictive performance of functional linear models improves and get closer to
each other. The responses based on functional models (ỸBs,ỸFPC 8, ỸFPC 2)
are predicted better by functional regression models.

Although the response generated from simple linear regression model (Ỹlm)
is predicted better by the simple linear regression model, one may observe that
the predictions given by Elastic net and the functional linear models are only
slightly worst, particularly in the case of low residual variance and high sample
size (last block of Table 3; see also Figure 10).
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Table 3 Simulation results. Mean of MSPE values. Each row corresponds to one of the
45 scenarios (combinations of generating model, sample size and residual variance). The
columns correspond to the 5 estimating models.

Sample size 25
Type of Residual Lin. Reg. Elastic FLRM FPCR FPLSR
Response Variance on 665 nm Net Reg. Basis BIC BIC

σ2
1 1.10 1.04 1.33 1.40 1.27

Ỹexp σ2
2 0.32 0.56 0.40 0.47 0.43

σ2
3 0.10 0.20 0.14 0.19 0.17

σ2
1 1.25 1.04 1.26 1.30 1.26

Ỹelas σ2
2 1.50 0.47 0.36 0.40 0.36

σ2
3 1.56 0.20 0.15 0.13 0.13

σ2
1 1.27 1.02 1.21 1.28 1.29

ỸBs σ2
2 1.57 0.50 0.22 0.29 0.23

σ2
3 1.60 0.24 0.06 0.08 0.07

σ2
1 1.31 1.02 1.21 1.51 1.31

ỸFPC 8 σ2
2 1.52 0.33 0.49 0.24 0.25

σ2
3 1.53 0.20 0.42 0.06 0.06

σ2
1 1.40 1.05 1.22 1.28 1.29

ỸFPC 2 σ2
2 1.96 0.58 0.29 0.30 0.28

σ2
3 2.04 0.35 0.11 0.09 0.08

Sample size 50
Type of Residual Lin. Reg. Elastic FLRM FPCR FPLSR
Response Variance on 665 nm Net Reg. Basis BIC BIC

σ2
1 0.96 1.00 1.02 1.02 0.99

Ỹexp σ2
2 0.28 0.40 0.32 0.35 0.34

σ2
3 0.09 0.12 0.10 0.11 0.11

σ2
1 1.07 1.00 1.00 1.02 1.02

Ỹelas σ2
2 1.11 0.32 0.26 0.25 0.25

σ2
3 1.22 0.11 0.10 0.08 0.08

σ2
1 1.09 0.98 0.96 0.98 0.99

ỸBs σ2
2 1.15 0.29 0.17 0.19 0.17

σ2
3 1.16 0.12 0.05 0.05 0.05

σ2
1 1.07 0.92 0.89 0.94 0.92

ỸFPC 8 σ2
2 1.11 0.20 0.34 0.12 0.13

σ2
3 1.14 0.13 0.28 0.03 0.03

σ2
1 1.15 0.99 0.97 0.98 1.00

ỸFPC 2 σ2
2 1.36 0.32 0.18 0.18 0.17

σ2
3 1.37 0.18 0.06 0.05 0.05

Sample size 100
Type of Residual Lin. Reg. Elastic FLRM FPCR FPLSR
Response Variance on 665 nm Net Reg. Basis BIC BIC

σ2
1 0.92 0.99 0.95 0.95 0.94

Ỹexp σ2
2 0.27 0.33 0.28 0.30 0.30

σ2
3 0.08 0.10 0.09 0.09 0.09

σ2
1 1.01 0.97 0.91 0.94 0.93

Ỹelas σ2
2 0.96 0.24 0.23 0.21 0.22

σ2
3 0.95 0.08 0.08 0.06 0.06

σ2
1 1.01 0.95 0.86 0.89 0.88

ỸBs σ2
2 0.97 0.21 0.15 0.16 0.15

σ2
3 0.97 0.08 0.04 0.04 0.05

σ2
1 1.01 0.85 0.81 0.82 0.81

ỸFPC 8 σ2
2 0.99 0.17 0.28 0.09 0.09

σ2
3 0.99 0.10 0.23 0.02 0.02

σ2
1 1.04 0.95 0.86 0.88 0.90

ỸFPC 2 σ2
2 1.09 0.23 0.15 0.15 0.15

σ2
3 1.10 0.12 0.05 0.04 0.04
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Fig. 10 Performances of the estimation models as the sample size increases and the response
type changes

In general, the mean MSPE values are found to be higher for the linear
regression than for the other models, and higher for Elastic net than for func-
tional models (this is clearer for smaller residual variances). Considering all
types of response and the residual variance, FLRMs based on dimension reduc-
tion methods (FPCR BIC and FPLSR BIC) give the best predictions among
all the models.

In summary, when the sample size is small and the residual variance is
high, the results obtained from all the models are comparable, with certain
advantage for Elastic net. However, for large samples with low residual variance
it is recommended to use functional models (specially those based on dimension
reduction methods) instead of non functional approaches.

Table 3 and Figure 10 summarize the average simulation results, but they
do not inform about the variability of MSPE values among the P = 500
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simulated data sets. In order to gain an insight into this variability, Figure 11
shows the box plots of the P = 500 MSPE values (in logarithms) for the 5
estimating models in the 15 scenarios corresponding to sample size ss = 25.
These graphics support what we have said before, when analyzing Table 3 and
Figure 10 (and the same is true for the box plots corresponding to sample sizes
ss = 50 or 100, not included here): the method that corresponds to the model
the data is simulated from performs best; for the highest residual variance,
Elastic net gives the best results (lowest and most concentrated MSPE values);
for lower residual variances, functional regression models are preferred (lower
and more concentrated MSPE values) to Elastic net (with the exception of
data generated from model FPC 8), whereas simple linear model performs
well only when responses are generated with a simple linear model.

There are several ways to extend the simulation study (to be considered
in further studies). First, it is possible to use the coordinates of the chosen
pixels in a determined route in analogy with the routes followed by the cruises
Reserva and Fluctuaciones. Secondly, a greater number of satellite images can
be used when generating the response. Moreover, matching can be conducted
on the basis of the exact pixels instead of considering 2× 2 box area, as in the
study by Acar-Denizli et al (2017).

5 Conclusion

In this study, the use of functional linear models is proposed as an alternative to
classical regression models to make predictions from RS data in oceanography
and water quality management. In this sense, various statistical models are
applied to predicting TSS content in the coastal region of Guadalquivir estuary
and a comparison is made between the performance of these models. The
results indicate that the functional models predict the TSS parameter better
than other classical approaches with lower prediction errors. This finding is
supported by the simulation study. According to the results of the simulation,
as the sample size increases and the error variance decreases, the predictive
performance of FLRMs generally gets better than that of the linear regression
models. In concordance with the results obtained in Table 1, FLRMs based
on dimension reduction methods yield better predictions than other models
in simulation. In particular, in the case of large sample size and low residual
variance, the use of functional prediction models is highly recommended.

Two of the limitations of this study are the low number of in-situ observa-
tions and the few available wavelengths. Unfortunately, because of the sensors
that were used over that period, it is not possible to increase the number
of wavelengths. Recently, new sensors that record data in a wider spectrum
have been employed. Moreover, new in-situ samples are currently being col-
lected. We hope that in the near future the matching between both sources
of information can be successfully carried out. In fact, the use of functional
models on hyperspectral data has recently been gaining importance. Ferraty
et al (2017) predict some environmental related parameters from hyperspec-
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Fig. 11 Simulation results for sample size ss = 25: Box plots of the P = 500 MSPE
values (in logarithms) for the 5 generating models (rows), the 3 different standard deviations
(columns) and the 5 estimating models (each corresponding to a box plot at the panels).



Functional regression on RS data in Oceanography 27

tral remote sensing data by using nonparametric FLRMs. It is foreseen that
in the future FLRMs will gain more importance in the analysis of sensor data
in oceanography and water quality management as well as providing more
efficient prediction models.

There is a need to further assess the potential of FDA on the validation and
calibration of local or regional empirical models, which is the common practice
in coastal and estuarine waters. Therefore, this study is a first approximation
to applying this methodology in a significant spot for the challenging coastal
water management, and can be further extended to other regions, satellites
and geophysical parameter in order to test its suitability.
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