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FUNCTIONAL REMODELING OF THE CARDIAC GLYCOME  
THROUGHOUT THE DEVELOPING MYOCARDIUM 

 
Marty L. Montpetit 

 
ABSTRACT 

 
Cell surfaces are replete with complex, biologically important glycans responsible 

for multiple cellular functions including cell adhesion and cellular communication.  

Proper protein glycosylation is essential for normal development and often 

pathologies are marked by altered glycosylation.  Here, data showed that the 

auxillary subunit, β1, modified voltage-gated Na+ channel (Nav) gating in an 

isoform-specific, sialic acid dependent, and saturating manner.  The regulated 

activity of the hundreds of glycogenes (glycosylation-associated genes) is 

responsible for protein glycosylation; this could result in a glycome of thousands 

of glycan structures.  Microarray analyses indicated that glycogene expression 

was highly regulated throughout the heart during development.  Specifically, 

>59% of glycogenes were significantly differentially expressed among neonatal 

and adult atrial and ventricular myocytes.  Quantitative-PCR of individual genes 

confirmed the microarray analyses.  Such substantial regulation of glycogene 

expression likely results in changes in glycan structures attached to cell surface 

proteins.  To confirm this, myocyte glycan profiles were determined and 

compared among neonatal and adult atria and ventricles using mass 

spectrometry.  The data predicted marked differences in glycan structures among 

myocyte types, indicating that the glycome is remodeled throughout the heart 



x 

during development.  To address the question of whether the remodeled glycome 

can impact cardiac function, action potentials and Nav activity were measured 

and compared under conditions in which glycogene expression was regulated.  

That is, atrial and ventricular myocytes were isolated from control mice and from 

mice in which the polysialyltransferase, STX, was knocked out.  STX is 

expressed in the neonatal atria, and is essentially absent in neonatal ventricle.  

Action potential waveforms and Nav activity measured in atrial myocytes were 

impacted by STX expression.  No changes in ventricular action potential 

waveform or in Nav activity were observed; as expected since STX is not 

expressed in the ventricle.  The magnitude of the atrial action potential and the 

rate of depolarization were decreased in the absence of STX.  Further, Nav 

gating was shifted consistently in the depolarized direction in STX knockout atrial 

myocytes.  Together, these data indicate that the glycome is tightly controlled 

and regulated in the heart, and proper glycosylation is essential for normal 

myocyte function.   
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CHAPTER 1 
 

INTRODUCTION 
 
Heart disease is the leading cause of death among U.S. citizens1.  Accounting for 

over 27% of deaths in 2004, heart disease caused 100,000 more deaths than 

any other cause1.  The cardiac action potential is formed through the coordinated 

gating of voltage-gated ion channels.  Conduction of the action potential 

throughout the heart leads to cardiac contraction.  Slight alterations in ion 

channel function (likely through cardiac remodeling) are associated with many 

cardiac maladies including heart failure, myocardial infarction and hypertension.   

Although significant work has been devoted to understand variations in cardiac 

waveform, this is the first to describe how a remodeled glycome could impact 

cardiac excitability.   

 

Cardiac remodeling impacts cardiac function 

Changing the expression of proteins and therefore the cellular processes in 

which they are involved is termed remodeling.  Cellular remodeling is 

characteristic of normal development2-20 and pathologies21-52.  Cardiac 

remodeling is evident in development as the human prenatal heart rate is 

commonly over 150 beats per minute which slows to an average of 72 beats per 

minute in the adult.  Sympathetic innervation and ion channel remodeling are 

considered responsible for the changing heart rate53-57.  In the adult mouse  
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Figure 1.1.  Ionic basis of the cardiac action potential. 
 
 

 
 
Figure 1.1.  Schematic of human action potential waveforms in atria (blue) and 
ventricle (red) and the major ion currents creating these waveforms.  Purple 
indicates the current is involved in both cell types.  Known or presumed channels 
are noted to the right of each current.  Figure from Pond and Nerbonne, 200158. 
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Figure 1.2.   Action potential waveforms throughout the heart. 
 
 

 
 
Figure 1.2.  Examples of the various action potential waveforms throughout the 
cardiac conduction and contractile systems.  Differential expression of ion 
channel subunits is assumed to be responsible for these changes in action 
potential waveform.  Action potentials are displaced in time to reflect the temporal 
sequence of propagation through the heart.  SA, sino-atrial; AV, atrio-ventricular; 
RV, right ventricle; LV, left ventricle.  Figure from Nerbonne, 200059. 



4 

myocardium, ion channel expression changes between the atria and ventricle 

(Figures 1.1 and 1.2) and within various locations throughout the heart (Figure 

1.2) leading to different action potential (AP) waveforms58,59.  Figure 1.1 shows 

the difference between the typical atrial and ventricular AP, the currents that 

constitute the AP, and the expression of the ion channels believed responsible 

for those currents.  Figure 1.2 shows the various action potential waveforms 

present throughout the heart which are different due to a change in ion currents. 

 

In addition to physiological changes in heart function, cardiac pathologies may 

result from both electrical and structural remodeling.  In atrial fibrillation, sodium 

currents (INa), calcium current (ICa), and the transient outward potassium current 

(Ito) are reduced due to a decrease in the mRNA levels of channels responsible 

for these currents50,60.  The decrease in ICa is likely responsible for shortening of 

the atrial action potential and the decrease of Ito results in loss of the ability of the 

heart rate to adapt to physiological changes.  Atrial fibrillation is also 

accompanied by atrial enlargement, loss of myofibrils, accumulation of glycogen, 

alteration of mitochondrial size and shape, fragmentation of sarcoplasmic 

reticulum and dispersion of nuclear chromatin61,62.  It is unclear whether atria are 

enlarged as a cause or as a result of atrial fibrillation63.   

 

Arrhythmias are the leading cause of death in patients with heart failure (HF)64.  

Recent studies indicate that AP prolongation is a contributing factor to 

arrhythmias associated with HF65-69.  Although the exact mechanism for AP 
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prolongation is not agreed upon, modulated K+, Na+, and Ca2+ currents have 

been identified65-73.  Ionic currents are typically remodeled in HF through 

changes in the density and/or the expression of various isoforms of ion 

channels65-73.  Furthermore, glycosylation is reduced in both hamster74 and 

mouse73,74 models of cardiac heart failure suggesting that glycosylation 

machinery is altered.   

 

Regulation of glycan biosynthesis is essential for normal physiology 

Cell surfaces are replete with glycan structures essential for proper development 

and normal function of living organisms with roles in protein trafficking, immunity, 

cell adhesion, receptor activation and endocytosis75 (Figure 1.3).  Protein 

function may be modulated by glycans through at least two mechanisms: 1) By 

altering the function of the protein’s conjugate and, 2) By conferring biological 

activity to its conjugate.  Glycans act as antigens on a variety of cells and 

activate the immune response as evidenced by the 1996 cholera pandemic of 

Bengal, India which was caused by Bengal 139 Vibrio cholerae76.  This was the 

139th identified strain of vibrio cholerae each of which had unique glycan 

structures.  Exposure to and subsequent antibody formation of a single strain 

does not protect the host from any of the 138 other strains.  Furthermore the A, 

B, O and AB blood types are dictated by the glycans attached with the O blood 

type lacking glycan structures and A and B each with unique structures.  As 

discussed with Vibro cholerae, glycans act as antigens; therefore, type B blood 

can not be administered to those with O or A types. Recent studies have  
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Figure 1.3.  Roles of glycans in cellular functions. 
 

 
 
Figure 1.3.  Cellular function is regulated by glycans through various 
mechanisms.  The influence of glycans on cellular function ranges from protein 
folding to cellular communication.  Figure from Ohtsubo and Marth, 200675. 
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reported the ability to change blood type B  to O by simply altering the glycan; 

thus circumventing the immune response when, for example, type B blood is 

transfused into one with blood type A77.  In these examples, the cell is not 

inherently immunoreactive, the glycans confer these attributes.   

 

In mammals, proteins and lipids are glycosylated in the endoplasmic reticulum 

and golgi apparatus where enzymes catalyze oligosaccaride formation from nine 

monosaccarides78,79.  Glycosylation is non-template driven, unlike the DNA 

template necessary for protein synthesis, and requires expression of glycogenes 

that comprise 1-2% of the human genome78-82.   Protein glycosylation refers to 

both N-glycans and O-glycans.  N-linked glycosylation is attached to an 

asparagine residue; hence, the “N-linked” nomenclature.  N-linked glycosylation 

requires the specific sequence of Asn-Xaa-Ser/Thr and sometimes Asn-Xaa-Cys 

where Xaa is any amino acid except proline.  O-glycosylation lacks a specific 

conserved sequence; instead several enzymes may catalyze the first sugar 

residue attached to serine or threonine.  Glycosylation is a highly ordered 

process where the product of one enzyme is the substrate for the next and where 

catabolic glycosidase enzymes are as important as anabolic glycosyltransferase 

enzymes.   

  

N-glycan synthesis (summarized in figure 1.4) is initiated in the cytoplasm where 

the first sugars are added to a lipid dolichol.  This dolichol-glycan structure then 

translocates into the lumen of the endoplasmic reticulum where further branching 
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Figure 1.4.   Overview of N-glycan biosynthesis. 

 
Figure 1.4.  Synthesis of N-glycans from initial attachment to dolichol through 
assembly and processing of N-linked glycans.  Molecular defects of known CDG 
types are indicated where known etiologies occur.  N-glycan assembly is initiated 
in the ER lumen by transferring two GlcNAc residues (blue squares) to Dol-P and 
completed in the lumen of the golgi.   Mannose (red circles), glucose (yellow 
triangles), fucose (grey triangle), galactose (green rhombus), sialic acid (pink 
diamonds). The mouse symbol designates a knock-out mouse of that enzyme, in 
red are yeast or CHO cells expressing specific enzymatic defects.  Adapted from 
Marquardt and Denecke, 200382. 
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and sugar addition occurs.  Eventually the glycan structure is transferred en bloc 

from dolichol to the asparagine residue of a newly synthesized protein.  Within 

the endoplasmic reticulum, the glycan structures are extended and trimmed 

several times until the glycoprotein is transferred to the golgi.  Final processing of 

the glycan takes place in the golgi.  The process includes addition of negatively 

charged sialic acid residues and when polysialyltransferase enzymes are 

expressed, sialic acids attach to other sialic acids (termed poly sialic acid) adding 

substantially more negative charges to a single structure 83.  

  

The glycome is defined as the full set of glycan structures produced in the 

body84,85, and is composed of thousands of glycan structures that perhaps is 

larger than the proteome75.  Glycan diversity is accentuated by several factors 

which can be divided into two types: protein determined and cellular factors 

(Figure 1.5).  The protein itself can only be N-glycosylated where specific N-

linked sequences are present and accessible according to tertiary protein 

structure (including protein phosphorylation), and is commonly located 

extracellularly78,79.  Sites located within the membrane, intracellularly or where 

the extracellular 3-dimensional structure prohibits access to those sites, will not 

be N-glycosylated.  Also, the rate at which the protein traverses through the 

glycosylation pathway may alter the final glycan structure.  The second factor is 

cellular in nature.  The repertoire of glycogenes expressed varies from cell type 

to cell type and, as this study indicates, throughout development.  Furthermore, 

glycosidase and glycosyltransferase enzymes are considered to be constitutively  
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Figure 1.5.   Regulation of glycan expression. 
 

 
 
Figure 1.5.  Glycan structure expression is regulated through various cellular 
mechanisms.  These include (1) glycosyltransferase and glycosidase gene 
transcription, (2) nucleotide sugar synthesis and transport to the ER and golgi 
(sugar transporters not depicted), (3) enzymatic structure modification through 
phosphorylation, (4) enzyme competition for identical substrates, (5) enzyme 
trafficking and access to substrates, (6) secretion of catalytic domains resulting 
from proteolysis within the lumen of the golgi (7) glycan turnover at the cell 
surface by endocytosis.  Figure from Ohtsubo and Marth, 200675. 
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active when expressed, yet competition between enzymes requiring a specific 

substrate further contributes to glycan diversity.   

 

Glycogene expression and glycan structure are tightly regulated in different 

tissues, through development and in disease states.  Comelli et al. reported that 

bone marrow, thymus, lymph nodes, spleen, lung, testes, kidney, liver and brain 

all had unique glycogene expression and glycan populations86.  Further, 

glycogene and glycan profiles of immune tissues (bone marrow, thymus, 

lymphnodes, and spleen) were more similar to each other than non-immune 

tissues (lung, testes, kidney, liver and brain) as non-immune tissues were more 

similar than immune. 

 

Glycogene expression and glycan structure are also tightly regulated through 

development of various tissues.  As shown here and in Ishii et al., glycogene 

expression is altered throughout the developing myocardium and in the 

developing cerebral cortex, respectively4.  Glycan profiles are distinct in each 

developmental stage of each tissue.     

 

Various disease states including Down syndrome, Huntington’s disease, 

glaucoma, and heart failure reveal a change in glycogene expression and 

possibly glycan structure profiles compared to healthy tissues28,39,74,75.  Although 

altered glycan arrays may be present in these disease states, they may or may 

not cause, contribute to or exacerbate conditions. 
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Minor changes in glycogene expression may have a major impact on glycan 

structure and organism physiology75,82,85,87.  The role of glycosylation is 

vast, spans every tissue, and is involved in numerous physiological 

processes.  Ongoing research in glycobiology focuses on immune responses, 

neuron tracking, ligand binding, and cancer indicating the wide range of functions 

of glycans in normal and pathophysiology75,86,88,89. 

 

Improper glycosylation results in pathologies that range from mild disease to 

lethal 85.  Common effects seem to target neuronal, cardiovascular and muscular 

systems.  Congenital disorders of glycosylation (CDG) are autosomal recessive 

disorders in which a single glycogene is mutated or missing or there is no known 

cause (as shown in figure 1.4). To date, 28 unique forms of CDG have been 

identified, 16 N-glycosylation associated, 6 O-glycosylation associated, 4 N- and 

O-associated and 2 involving glycolipids90.  Recently, a new category has been 

identified and classified as CDGs of hyperglycosylation defects.  CDG tends to 

affect individuals differently; for example, one patient of CDG-Ih was effectively 

treated with a low fat diet and essential oil supplements while four others suffered 

fatal maladies90.  With such a vast range of symptoms presented, diagnosis is 

difficult and with many unknown causes of death in infants, it is likely that many 

CDG patients are never identified.  One common thread through the many CDGs 

is symptoms consistent with decreased excitability such as hypotonia 

and decreased metabolic activity.  Also, all types of CDG have glycans with 
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reduced sialylation despite different enzymes ablated.  In fact, isoelectric 

focusing of serum transferrin is the most common assay to diagnose CDG, 

testing for a decrease in tetra-, penta- and hexa- sialylated transferrins replaced 

by mono-, di- and tri-sialylated transferrins. 

 

Chagas disease is an ailment affecting over 18 million with thousands of new 

cases reported each year91.  Chagas disease is characterized by progressive 

chronic fibrotic myocarditis and degeneration of tissues innervated by the 

autonomic nervous system, most commonly marked with cardiac abnormalities 

such as arrhythmias and cardiac insufficiency92.  Trypanosoma cruzi, the agent 

of Chagas disease, is a protozoan most commonly transmitted through insect 

bites, but can be transmitted through blood transfusions as well93.  T. cruzi 

releases a sialidase to cleave negatively charged sialic acid residues from host 

cells to incorporate with itself.  It is believed that this is the etiology of the major 

symptoms of Chagas.  Changing the level of sialylation may contribute to cardiac 

arrhythmias and insufficiency possibly through modification of ion channel 

function.   

 

Ion transport is the basis for cellular communication 

Ion transport across the membrane of excitable tissues is essential for proper 

cellular and tissue function.  Cellular membranes are essentially impermeable to 

ions; thus, ion transport requires assistance in the form of membrane proteins.  

These proteins can be divided into several groups, transporters, pumps and ion 
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channels.  Transporters allow ions to move across the membrane with other 

solutes e.g. the sodium/glucose transporter.  Pumps require the use of energy to 

move ions across the membrane.  Ion channels are water filled pores that allow 

ions to flow through the membrane down their electrochemical gradient when 

open.  There are four types of ion channels, leak, ligand gated, stretch activated, 

and voltage gated channels.  Leak channels are considered constitutively active 

(open) and contribute to maintenance of the resting membrane potential of a cell.  

Stretch activated ion channels require the membrane to physically stretch the 

channel to an open state while ligand gated channels open in response to a 

ligand (i.e., a neurotransmitter) binding to its' extracellular surface.  Voltage gated 

ion channels gate in response to the depolarization and repolarization of the cell 

membrane. 

  

Cardiac contraction is the result of orchestrated ion channel function 

The cardiac action potential is the concerted opening, inactivation, and closing of 

many types of voltage gated ion channels, the Na+/K+ ATPase pump, and 

possibly some ligand gated ion channels (summarized in Figure 1.1 and 1.6).  

The result of the cardiac action potential is cardiac systole.  The cardiac action 

potential of contractile myocytes is divided into 5 distinct phases.  Phase 0 is the 

depolarization of the cellular membrane by opening of voltage gated sodium 

channels (Nav) which allows sodium ions to move down their electrochemical 

gradient and into the cell.  Phase 1 begins at the height of cellular depolarization 

and is marked by a sudden repolarization of the cell.  This occurs when voltage  
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Figure 1.6.  Schematic of a typical cardiac action potential. 
 

 

Figure 1.6.  The cardiac action potential is shown, with ionic currents responsible 
for each phase listed.  Figure from Keating and Sanguinetti, 200194. 
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gated sodium channels inactivate and sodium can no longer traverse the 

membrane and around the same time, voltage gated potassium channels open to 

allow potassium ions to exit the cell (Ito); thus, causing a short, rapid 

repolarization.  As Ito diminishes, voltage gated calcium channels open to initiate 

phase 2.  Influx of calcium ions is approximately the electrical equivalent to 

the efflux of potassium ions leading to a flat segment in the cardiac action 

potential termed the "plateau."  In phase 3, calcium channels inactivate and 

another population of slowly activating potassium channels open which causes 

the final repolarization and hyperpolarization of the membrane.  This 

hyperpolarization of the membrane is essential for the voltage-gated ion 

channels to recover from inactivation.  In phase 4, mostly leak and ligand gated 

ion channels are open to maintain the resting membrane potential and allow 

more channels to return to a closed position so the cell is prepared for the next 

action potential and resulting systole.   

 

The structure of Nav dictates channel function 

Voltage gated sodium channels (Nav) are transmembrane proteins which open in 

response to membrane depolarization to selectively allow sodium ions to pass 

though95.  Nav are composed of a single polypeptide chain approximately 220kD 

and is composed of 24 transmembrane segments subdivided into 4 homologous 

domains composed of 6 transmembrane segments each (Figure 1.7).  Each of 

the 6 transmembrane segments are unique, yet have homologous segments in 

the other 3 domains.  The S5 and S6 domains line the pore with an extracellular  
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Figure 7.  Schematic of the voltage-gated sodium channel structure. 
 

 

Figure 7.  Schematic of voltage-gated sodium channel alpha and beta subunits.  

(a) A characteristic alpha subunit with four homologous domains, each consisting 

of six alpha helical transmembrane segments is illustrated with the β1 subunit.  

The S5 and S6 (shown in green) of each domain are considered the pore forming 

segments.  The loop connecting the S5 and S6 dips into the pore and forms the 

selectivity filter (designated by white circles).  Note that both proteins are 

glycosylated (represented by ψ).  Blue circles in the intracellular loops of 

domains III and IV mark the inactivation gate IFM motif and its receptor (h, 

inactivation gate); P, phosphorylation sites.  (b) A hypothetical three-dimensional 

structure of the Nav channel α-subunit compiled from electron micrograph 

reconstructions.  Figures adapted from Yu et al. 200396. 
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S5-S6 linker that dips into the pore.  This pore forming loop is essential to proper 

channel selectivity, where the specific amino acid sequence of DEKA (aspartate, 

glutamate, lysine and alanine) defines the channel as sodium specific.  When this 

sequence is changed to the calcium channel sequence of EEEE, the channel 

allows calcium to pass while preventing sodium entry.  Although the remaining 

structure is currently under debate, there is consensus that the remaining 

transmembrane segments are located peripherally to the pore.  The S4 segment 

is considered to be the voltage sensor since every third amino acid is a positively 

charged arginine or lysine and the whole segment moves in response to 

membrane depolarization.  Movement of the S4 segment causes a 

conformational change and the channel to gate allowing sodium to enter into the 

cell.  Also of note is the intracellular linker of domains III and IV which contains 

the hydrophobic amino acid sequence; IFM (isoleucine, phenylalanine and 

methionine) which has been implicated in fast inactivation.  

 

The tertiary and quaternary structure of voltage gated ion channels has been the 

topic of recent debate within the scientific community as an alternative 

hypothesis has arisen from crystallography work on the voltage gated potassium 

channel which shares significant homology with Nav
97-100.  Cartoons of both 

models are shown in figure 1.8.  The conventional theory, as proposed through 

studies from the past 25 years, has the S4 segment located within a water filled 

column formed by the other segments of the same domain.  The S5 and S6 

segments form the pore while S1-S3 surround the S4.  The S4 segment moves  
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Figure 1.8.  Two competing theories for voltage-gated ion channel gating. 
 

 
 
 
Figure 1.8.  Cartoon depicting two models of S4 segment movement in response 
to a change in membrane potential (ΔV).  (+) signs represent positively charged 
amino acids within the protein structure.  Figure from Jiang et al. 2004.97 
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towards the extracellular surface in a perpendicular manner to the cellular 

membrane in response to membrane depolarization.  In the model proposed by 

Jiang et.al., the S4 segment forms a paddle-like structure with the S3 

segment peripheral to the pore which rotates through the lipid bilayer towards the 

extracellular surface and again causes a conformational change in the pore-

forming segments to open the channel97.  Both theories have two important 

similarities.  First, the positively charged amino acids, composing the S4 

segment, move towards the extracellular surface and second, this movement 

results in channel gating.  Since the introduction of the paddle theory in 2003, the 

scientific community has been vigorously debating these theories with evidence 

supporting the traditional theory101-108 and other data supporting the paddle 

theory97-100,109-113. 

  

Post-translational modifications may alter ion channel function 

The surface potential theory predicts that charges closely associated with the 

membrane adjacent to voltage gated ion channels contributes to channel 

gating95.  The idea is based upon electrostatic attraction of the voltage sensor by 

negative charges closely localized to the channel.  The source of these charges 

include charged lipids of the cell membrane, charged amino acids of the protein 

itself or a closely associated protein, ions present in the extracellular fluid and 

negatively charged sialic acid residues capping glycan structures.   
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Voltage gated ion channels are heavily post-translationally modified through fatty 

acylation, phosphorylation, nitrosylation, sulfonation, and glycosylation.  Of these 

posttranslational modifications, glycosylation is the highest proportion with 

upwards of 30% of the final channel mass being glycans114-116.  A fully 

glycosylated and sialylated channel could have as many as 100 sialic acid 

residues attached to a single channel114-116.  Each ion channel is differently 

glycosylated based upon number and location of potential N-linked sites and the 

other factors involved in N-glycosylation described above. 

 

The impact of glycosylation, particularly sialic acids, on ion channel gating has 

been the focus of numerous studies73,117-128.  These studies report that 

glycosylation can directly alter gating of voltage-gated sodium and potassium 

channels in an isoform specific manner.  For example, in CHO cells, Nav1.4 

gating is sialic acid sensitive whereas the gating of Nav1.5 does not change in 

response to the altering level of sialic acids117,118.  Nav1.4 is more heavily 

glycosylated than Nav1.5 likely due to the number of glycosylation sites with 

mature glycans attached.   

 

Nav1.5 is the predominate sodium channel isoform expressed in mouse cardiac 

tissue and commonly is considered the cardiac isoform3.  Studies have 

concluded that Nav1.5 is the isoform responsible for phase 0 of the cardiac action 

potential indicating that Nav1.5 gating initiates and propagates the cardiac action 

potential129.  Nav1.5 has the same basic structure as other voltage gated sodium 
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channels and is putatively heavily glycosylated with 13 potential glycosylation 

sites117.  

 

A recent study of Nav function in neonatal and adult cardiomyocytes showed that 

neonatal ventricular Nav required a ~10mV greater depolarization to gate than 

does neonatal and adult atrial and adult ventricular Nav
123.  Following 

desialylation through neuraminidase treatment, neonatal atrial and adult atrial 

and ventricular Nav gated similarly to untreated (and neuraminidase-treated) 

neonatal ventricular Nav.    Furthermore, investigators determined that Nav1.5 

was similarly expressed throughout the developing myocardium and β1 did not 

contribute to the changes.  Western blot analysis revealed that neonatal and 

adult atrial and adult ventricular Nav had higher levels of sialylation than did 

neonatal ventricular Nav.  Regulated glycogene expression is likely responsible 

for the various levels of Nav glycosylation observed, and the resulting changes in 

Nav gating.  This suggests that the cardiac glycome may be regulated throughout 

the heart during development. 

 

This study was designed to determine whether the glycome is remodeled 

throughout the developing myocardium and whether the remodeled glycome can 

affect excitability.  Glycans, more specifically the negatively charged sialic acid 

residues commonly capping glycan structures, modulate gating of voltage gated 

ion channels in both a cis (glycans attached to the alpha subunit) and trans 

(glycans attached to an auxiliary subunit) manner as reported in chapter 3.  The 
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level of glycosylation of Nav changes throughout the developing myocardium and 

in cardiac failure74,123.  The change in glycogene expression throughout the 

developing myocardium is described in chapter 4 and chapter 5 illustrates the 

correspondingly diverse N-glycan profiles.  Finally, chapter 6 suggests that 

cardiac excitability can be altered through the regulation of a single glycogene. 
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CHAPTER 2 

MATERIALS AND METHODS 

Chinese Hamster Ovary (CHO) Cell Culture and Transfection 

Pro5 and Lec2 cells were grown as described previously130.  Briefly, cells were 

plated onto 35 mm culture dishes at 25-50 % confluence.  Following a 24 h 

incubation, cells were then exposed to a 1 ml Opti-MEM (Invitrogen) medium 

containing 8 µl lipofectamine (Invitrogen) and 1-2 µg DNA.  Following a 5-24 h 

incubation at 37°C in a 5% CO2 humidified incubator, the medium was replaced 

with CHO medium consisting of Dulbecco's modified Eagle's medium (DMEM; 

Mediatech) supplemented with 25 mM Hepes, 15% fetal bovine serum (FBS; 

Mediatech), and 100 U ml-1 penicillin and 100 µg ml-1 streptomycin.  Growing 

medium included the same antibiotics, 10% FBS, and alpha Minimum Essential 

Medium (αMEM) with (Pro5) or without (Lec2) ribo- and deoxyribonucleosides 

(Invitrogen). Electrophysiological recordings began 68-76 h post-transfection, 

selecting cells expressing GFP.  

 

Vector Construction and Mutagenesis 

The rNav1.2 open reading frame (ORF) inserted into pRC-CMV (Invitrogen) was 

a gift of Dr. Alan Goldin.  The hNav1.7 cDNA ORF was inserted into pcDNA3.1.  

Expression vectors containing hNav1.4 and hNav1.5 were as previously 

described118.  hβ1 was subcloned into the bicistronic vector, pIRES2-EGFP 



26 

(Clontech), to ensure expression of β1 through visual inspection.  The hβ1 mutant 

(hβ1-ΔN) was created using the GeneEditor (Promega) site-directed mutagenesis 

kit.  hβ1 was cloned into pBluescript vector (Stratagene) as a template. Each 

asparagine residue initiating an external N-linked consensus sequence, NX(S/T), 

was mutated to a serine residue through sequential mutagenesis.  The constructs 

were sequenced to confirm successful mutagenesis.  hβ1-ΔN was then subcloned 

into pIRES2-EGFP for co-expression experiments.  hβ1 and hβ1-ΔN were amplified 

using PCR with the following oligonucleotides 5'-

TCCGGCCACCTGGACGCCCG-3' and 5'-GCGCAGCACGCGCCGCGCAG-3'.  

PCR products were subcloned into pcDNA3.1/V5-His TOPO TA expression 

vector (Invitrogen). Both ORFs were subsequently subcloned into pEGFP-N1 

(Clontech) to generate C-terminal, GFP-tagged hβ1 and hβ1-ΔN constructs.   

 

Electrophysiology and Data Analysis 

Sodium Current Recordings 

Sodium currents were recorded using the whole cell patch clamp technique 

described previously117,118. The combination of an Axon Instruments 200B patch 

clamp amplifier with a CV203BU headstage (Axon Instruments, Foster City, CA).  

Pulse acquisition software (HEKA) running on an 800 MHz Pentium III PC 

computer (Dell Computers) was used to generate pulse protocols.  The resultant 

analog signals were digitized using the ITC-16 analog to digital converter 

(Intsrutech, Great Neck, NY).   
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Whole cell patches were formed using techniques previously described 131.  

Electrodes were back-filled with electrode solution and manipulated to close 

proximity to the target cell.  Slight negative pressure was applied to the electrode 

and giga-seals formed between the cell and electrode tip and a short, rapid 

increase in negative pressure provided electrical access to the interior of the 

target cell.  Pulse protocols are explained explained later.  All data were recorded 

at least 5 minutes after attaining whole cell access to ensure dialysis of electrode 

solution.  

 

External recording solutions consisted of (in mM):  224 Sucrose, 22.5 NaCl, 4 

KCl, 2.0 CaCl2, 5 glucose, and 5 Hepes.  Intracellular recording 

(electrode) solutions contain (in mM):  120 sucrose, 60 CsF, 32.5 NaCl, and 5 

Hepes.  Both solutions were titrated with 1 N NaOH to pH 7.4 at room 

temperature.  All solutions were filtered using 0.2 µm filters (Invitrogen) 

immediately prior to use.  For the Ca2+ perfusion studies, the Ca2+ calcium 

concentration was reduced in the external solution to 0.2 mM.  Seals were 

formed in the bath solution containing 2.0 mM Ca2+. The cells were first perfused 

with 2.0 mM Ca2+ bath solution and followed by perfusion the 0.2 mM Ca2+ bath 

solution to determine directly the shift in Va with a 10-fold change in external Ca2+ 

concentration. All of the data shown were recorded at least 5 min after attaining 

whole cell configuration to assure complete dialysis of the intracellular solution. 

All of the solutions were filtered using Gelman 0.2-µm filters immediately prior to 

use. 
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Pulse Protocols 

Conductance-Voltage (G-V) Relationship 

Pulse protocols were used as previously described 117.  A holding potential of -

120 mV was applied to the cell and stepped from -100 to +70 mV in 10 mV 

increments for 10 ms.  Consecutive pulses were initiated every 1.5 s and leak 

subtracted using the P/4 method which steps negatively from the holding 

potential to eliminate any leak current.  At each potential, steady-state whole-cell 

conductance was determined by measuring the peak current and dividing by the 

driving force (difference between the membrane potential and the observed 

reversal potential).  Single Boltzmann fits of the data determined maximum 

conductance and the average Va ± SEM were determined from this fit.  

Normalized data from the Boltzmann fits were averaged with remaining cells of 

the same type and an averaged conductance-voltage curve was determined 

using the following Boltzmann relation fit to the data: 

Fraction of maximal conductance= [1+(exp-(V-Va/Ka))]
-1, 

where V is the membrane potential, Va is the voltage of half activation, and Ka is 

the slope. 

  

Steady-State Inactivation Curves (hinf)  

Cells were prepulsed for 500 ms from the holding potential (-120 mV) to 

potentials ranging from -130 to -20 mV in 10 mV increments, followed by a +60 

mV pulse for 5ms and returning to the -120 mV holding potential.  Currents from 
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each cell were normalized to the maximal current (determined through a single 

Boltzmann fit), averaged with other cells of the same type and again fit to a single 

Boltzmann relationship (eq. 2) from which Vi (voltage of half inactivation) and the 

slope were calculated. 

Fraction of maximum current = [1+(exp-(V-Vi/Ki))]
-1, 

  

Recovery from Inactivation  

Cells were held at -120 mV membrane potential, pulsed to +60 mV for 10 s, 

and stepped to the recovery potential for 1-20 ms in 1 ms increments.  The 

potential was then stepped again to +60 mV for 10 ms.   Peak currents from the 

two +60 mV pulses were compared to determine the fraction of current measured 

during the second pulse which represents the fraction of channels that recovered 

from inactivation during the recovery pulse.  Fractional current was plotted as a 

function of the recovery time between the two test pulses of 60 mV.  Single 

exponential functions were fit to the data to determine the time constants for 

recovery from inactivation, trec. 

  

Measurement of Inactivation gating kinetics 

Inactivation gating kinetics were determined from attenuating currents (90-10%) 

of traces used for G-V relationships which were fit to a single exponential 

function. 
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Neonatal and Adult Cardiac Tissue Isolation 

Neonatal and adult atria and ventricle tissue were isolated for microarray, 

quantitative PCR, western blot analysis and mass spectrometry.  Neonatal mice 

and adult mice were euthanatized and whole hearts removed and placed in 

Dulbecco's phosphate buffered saline.  Atria were gently removed from the 

remaining heart and ventricles were dissected away from the base of the heart 

with great care taken to ensure only atria and ventricles were removed.  The 

remaining portions were discarded.  Tissue intended for microarray and 

quantitative PCR studies was transferred to RNase Later (Sigma, St. Louis, MO) 

and incubated for minimum one hour.  Tissue intended for western blot and mass 

spectrometry studies was snap frozen in liquid nitrogen to prevent protein 

degradation and stored at -80oC.   

  

mRNA Isolation  

Heterogeneous populations of litter-mate animals were isolated for microarray 

testing.  Neonatal samples were each composed of 7-9 animals (14-18 atria or 

ventricles) yielding approximately 25-28 mg of tissue.  Adult samples were each 

composed of 4 animals (2 male and 2 female) aged 10-12 weeks yielding 

approximately 25-28 mg of tissue.  Tissue was homogenized by dounce and 

isolated following RNeasy manufacturer protocols (Qiagen).  Beckman 

Spectrometer was used to determine final RNA concentration.   
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Microarray  

Three RNA samples each of neonatal and adult atria and ventricle were sent to 

the Consortium for Functional Glycomics Gene Microarray Core E for microarray 

analysis.  Samples were amplified and biotin labeled using the Bioarray High 

Yield RNA transcript labeling kit (ENzo Life Sciences, Farmingdale, NY).  

Hybridization and scanning of the glycogene-chip, GLYCOv2, were performed 

according to Affymetrix's recommended protocols (Affymetrix, Santa Clara, CA).   

  

Microarray Analysis 

The GLYCOv2 chip was created by the Consortium for Functional Glycomics and 

produced by Affymetrix (Affymetrix, Santa Clara, CA).  This chip was designed 

that each probeset consists of 11 perfect match and 11 single base mismatch 

probe pairs (Table 2.1).   

 

The intensities from each perfect match were compared to corresponding 

mismatch pair.  Invariant set normalization of the data was performed using the 

DNA-Chip (dChip) Analyzer (www.dchip.org) software package for probe-level 

and high level analysis of gene expression microarrays.  Hierachical clustering 

and class comparison was accomplished using Biometric Research Branch 

(BRB) Array Tools v3.2.2.  Heatmaps were generated using the dChip program.  

Class comparison used a p-value cutoff of 0.05 and a multivariate permutation 

based false discovery rate calculation preset at 10% with 80% confidence level.  
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Table 2.1  Breakdown of probesets on GLYCOv2 

  Probesets In 
Triplicate 

Probesets In 
Duplicate 

Single 
Probesets 

Total genes 
transcript 
targets 

Total 
Probesets

Total Human  503 426 101 1030 2462 

Total Mouse 443 363 119 925 2174 

Total Other (control) 0 0 46 46 46 

    2001 4682 
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Quantitative PCR 

Three RNA samples each of neonatal and adult atria and ventricle were reverse-

transcribed to cDNA using Superscript II Reverse Transcriptase (Invitrogen) 

following manufacturer's protocols.  Briefly, 1ug of total RNA, 100µM dNTPs and 

100ng of random hexameric primers (Invitrogen) were incubated at 65oC for 5 

minutes then placed on ice.  First strand buffer and 10 mM dithiothreitol (DTT) 

were added and incubated at room temperature (25oC) for 2 minutes.  Finally, 

200 µM Superscript II reverse transcriptase was added to the mixture and 

incubated for 10 minutes at room temperaturefollowed by 42oC for 50 minutes 

and 70oC for 15 minutes.  cDNA is ready for use in real time reactions. 

   

Primer sets were designed using PrimerQuest (IDT) and are shown below.  

Primer sets were tested for efficiency and precise amplification using dilution 

curves.  Quantitative PCR was performed on 12 gene products including HPRT 

and β-actin as controls.  Each primer set was run in triplicate for each sample.  

SYBR Green PCR master mix (Superarray), primers and cDNA were combined 

in one well of a 96 well PCR plate (Rio-Rad) and covered using RT-PCR optical 

tape (Bio-Rad).  PCR products were detected in real time using the iCycler iQ 

detection system (Bio-Rad) with PCR conditions of 5 minutes at 95oC followed by 

40 cycles of 30 sec at 95oC, 30 sec at 60oC and 30 sec at 72oC.  Relative 

expression levels were reported using the ΔΔCT method of analysis where 

triplicate threshold values of a single gene are averaged and compared to the 
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control (either HPRT or β-actin) then this ΔCT value is compared to the ΔCT of 

another sample.  

Quantitative PCR primer sequences 

ST3Gal3 CTG TGA TGA AGT GGC AGT CG CTC GCT GGA TGT TGT CTG TC 

ST3Gal5 AAA GTC CCA CTC CAG CCA AAG C GTG TAG CCA AGA CAA CGG CA 

STX AGC CAG CCT CAT CCA AAT G TAT CCT TCT CCG CAT CCA AG 

ST6Gal1 GAC CAG GAG TCA AGT TCA GCG T AGA AGA CAC GAC GGC ACA CT 

ST8Sia6 TGC TGC TCC TCC TGC GTA T TAT GTG CTG TTC CTG GTG CGT G 

ST6GalNAc6 AAC AAA GAG CAG CGG TCA GC GTT GCC GAG GAT AGG GAA GTA GG 

Versican TGG CTG TGG ATG GTG TTG TG TGC TCT GGG CTT GCT ATG AC 

HPRT GCA GTA CAG CCC CAA AAT GG GGT CCT TTT CAC CAG CAA GCT 

B-actin CCA ACC GTG AAA AGA TGA CC CCA GAG GCA TAC AGG GAC AG 

 

Glycan Screening 

Glycan Isolation 

N-glycans were isolated as previously described132.  Cardiac tissue was 

homogenized in 0.5% SDS tris buffer and dialyzed in 12-14 kDa cut-off dialysis 

tubing in an ammonium hydrogen carbonate solution (50 mM, pH 7.4) for 48 

hours. Once dialyzed, samples were lyophilized.  Reduction and 

carboxymethylation of samples were carried out by incubation in 0.5ml of 2 

mg/mL DTT in deoxygenated tris buffer (0.6M, pH 7.4) for 45 minutes at 37oC 

followed by addition of 0.5 ml of 12mg/mL iodoacetic acid in tris buffer (0.6M, pH 

7.4) and incubation for 90 minutes at room temperature in the dark.  Reaction 

was terminated by dialysis for 48 hours and the sample was lyophilized. Samples 

were then digested in 1 mL of a 50mM ammonium hydrogen carbonate solution 

(pH 8.4) with approximately 2 mg of TPCK treated bovine pancreas trypsin at 
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37oC for 16 hours.  The sample was purified through a Sep-Pak C18 conditioned 

with 5mL methanol, 5mL 5% (v/v) acetic acid in water 5mL propan-1-ol and 30 

mL of 5% (v/v) acetic acid followed by collection of 3mL of 20% (v/v) and 40% 

(v/v)  propanol in 5% (v/v) acetic acid.  These fractions are pooled and lyophilized 

followed by digestion with 3 units of N-glycosidase F (PNGase F) in 200 uL of 

50mM ammonium hydrogen carbonate (pH 8.4) at 37oC for 20 hours.  The 

digested sample was purified through a pre-conditioned Sep-Pak C18 (5mL 

methanol, 5mL 5% acetic acid, 5mL propan-1-ol and 15 mL of 5% acetic acid), 

eluted with 5mL of 5% acetic acid. 

  

Glycan derivatization 

N-glycans were prepared for mass spectrometry by chemical derivatization using 

the sodium hydroxide procedure133.  5 pellets of sodium hydroxide and 3mL of 

dry DMSO were crushed together in a glass mortar. 1mL of the resulting slurry 

was added to the dry sample in a glass tube followed by 0.5mL of methyl iodide. 

The mixture was vigorously mixed on an automatic shaker for 15 minutes at 

room temperature. The reaction was quenched by addition of water, 

Permethylated N-glycans were extracted with 1mL of chloroform and washed 

with 3mL of water several times. The organic phase was dried under a stream of 

nitrogen. Derivatized and dried glycans were then purified through a pre-

conditioned Sep-Pak C18 (5mL methanol, 5mL water, 5mL acetonitrile, 15 mL 

water) and eluted with 15%, 35%, 50% and 75% (v/v) acetonitrile in water.  
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Mass Spectrometry 

Mass spectrometry was performed through the Consortium for Functional 

Glycomics and the methods were described previously132.  The permethylated 

sample was dissolved in 10 µl of methanol, and 1 µl of dissolved sample was 

mixed with 1 µl of 2,5-dihydroxybenzoic acid (20mg/mL in 70:30 (v/v) 

water:methanol), spotted onto a metal plate and dried under vacuum.  MALDI-

MS and MALDI-MS/MS data were acquired using a Perseptive Biosystems 

Voyager-DETM STR mass spectrometer in the reflectron mode with delayed 

extraction and a 4800 MALDI-TOF/TOF (Applied Biosystems, Damstadt, 

Germany) mass spectrometer respectively. The collision energy for MALDI-

MS/MS experiments was set to 1kV and argon was used as collision gas.  

 

Cardiomyocyte Isolation for Electrophysiology 

The cardiomyocyte isolation protocol was adapter from a method described 

previously134.  Neonatal (postnatal day 2-3) mice we rapidly euthanized and 

hearts excised and placed in 0 Ca2+ Tyrode’s Solution.  Atria and ventricles were 

carefully separated and digested in 260 units Type I collagenase (Sigma, St. 

Louis, MO)/ mL 0 Ca2+ Tyrode’s Solution at 37oC for 40 minutes.  Cells were 

centrifuged at 160 g for 5 minutes and the supernatant replaced with fresh 

collagenase solution.  Cells were gently triturated and incubated at 37oC for 30 

minutes followed by centrifugation at 160 g for 5 minutes.  The supernatant was 

replaced by CHO media (DMEM supplemented with 10% Fetal Bovine Serum 

(Gibco) and 100 U/ml penicillin and 100mg/ml streptomycin (Gibco), triturated, 
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and incubated at 37oC for 20-40 minutes to stop digestion.  Again the cells were 

centrifuged for 5 minutes at 160 g and plated on laminin-coated 35mm dishes in 

fresh CHO media. 

 

Cardiomyocyte Electrophysiology 

Sodium Current Recordings 

Recording techniques were described above.  External recording solutions 

consisted of (in mM):  20 NaCl, 10 TES, 5 KCl, 1 CaCl2, 5 CsCl, 10 glucose, 

and 100 choline chloride adjusted to pH 7.35 with CsOH.  Intracellular recording 

(electrode) solutions contain (in mM): 20 NaCl, 10 TES, 2 MgCl2, 2 CaCl2, 20 

EGTA, and 105 CsF adjusted to pH 7.35 with CsOH.  All solutions were filtered 

using 0.2 µm filters (Invitrogen) immediately prior to use.   

 

Action Potential Recordings 

Myocytes were patched and recorded in external solution (in mM): 135 NaCl 

5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH 7.4.  Patch pipettes were 

filled with a solution with the following constituents (in mM): 110 K-Asp; 20 KCl, 

10 NaCl, 4 ATP-Mg, 10 HEPES, pH 7.3.  APs were recorded at room 

temperature (22-25 °C) using an Axopatch 200B amplifier (Axon Instruments) 

and pCLAMP 9 software (Axon Instruments). APs were triggered by a 2-ms 

injection of a depolarizing current at a frequency of 1 Hz.  Analysis of APs was 

performed using Clampfit 9 software (Axon Instruments, Foster City, CA). 
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Transgenic mouse 

The STX knockout mouse was provided through collaboration with Dr. Jamey 

Marth, University of California San Diego.  Neonatal mice were 2-3 days post-

natal and adult mice were 10-12 weeks post-natal. 

 

Data Analysis 

Sodium current electrophysiological data were analyzed using Pulse/PulseFit 

(HEKA) and Sigmaplot 2001 (SSPS Inc.) software.  Action potential data were 

analyzed using Clampfit (Axon) and Sigmaplot 2001 (SPSS Inc).  Figures were 

produced using Sigmaplot 2001 (SPSS Inc), Microsoft Excel (Microsoft), or Corel 

Draw (Corel). 



39 

 
 
 

CHAPTER 3 

THE β1 SUBUNIT MODULATES Nav GATING IN AN ISOFORM-SPECIFIC, 

SIALIC ACID-DEPENDENT MANNER 

 

Cardiac remodeling often involves modulating ion channel expression and/or 

function.  One mechanism of this remodeling likely involves regulated expression 

and function of Nav alpha and beta subunits.  With ten identified Nav alpha 

isoforms, changing expression of these isoforms would modify ion currents135.  

The role of β1 was not conclusively established with theories of the role of β 

including nodal stabilization, cellular localization, functional expression, kinetics 

and voltage-dependence of channel gating136.  Previous studies report that N-

glycans alter function of some Nav alpha isoforms.  Here we report β1 subunit 

sialic acids alter the voltage dependence of Nav gating.   

 

The β1 subunit external domain is essential for correct modulation of sodium 

channel gating and is the site of four potential N-glycosylation sites137.  At least 

three of these four sites are thought to be glycosylated in the mature 

protein.  Published reports agree that β1 causes a hyperpolarizing shift in the 

voltage dependence of inactivation and in several studies, activation gating was 

also shifted in the hyperpolarized direction by β1
138-145. 
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Voltage gated sodium channel α and β subunit isoforms each have a unique 

glycosylation signature determined through their differing number and location of 

N-glycosylation sites.  In an attempt to determine how N-glycans alter Nav 

function, four isoforms, the adult skeletal muscle isoform (Nav1.4), the cardiac 

isoform (Nav1.5), a peripheral nerve isoform (Nav1.7), and a brain isoform 

(Nav1.2), were expressed in the fully glycosylating Pro5 and reduced sialylating 

Lec2 cell lines.  Nav1.4 and Nav1.5 were previously reported 117,118 and Nav1.2 

and Nav1.7 were studied here for the first time.  Table 3.1 and figures 3.1-3.4 

indicate that Nav1.5 and 1.7 are not sensitive to α sialic acids; whereas, Nav1.2 

shows a small, insignificant depolarizing shift in gating when sialylation is 

reduced.  Nav1.4 shows a significant ~14.6mV depolarizing shift in the absence 

of sialic acids. 

  

In an attempt to determine the role of the β1 subunit in voltage gated sodium 

channel gating, we co-expressed β1 with each of the four Nav isoforms.  When 

co-expressed in the fully sialylating Pro5 cell line, β1 induced a hyperpolarizing 

shift in all measured gating parameters of three of four α subunits.  β1 did not 

have an effect on Nav1.4 gating.  These data generally agree with previously 

published work with most studies indicating that β1 induces a hyperpolarizing shift 

in the gating of various α subunits137,143,146-150. 
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Table 3.1. The measured gating parameters for α±β1±sialic acid 
  

Channel construct  
 

n  
 

Va  
(mV) 

Vi  
(mV) 

τh  
(ms) 

trec (-120 mV) 
(ms) 

Nav1.4 + SA 9 -31.3 ± 2.0 -71.5 ± 3.3 2.4 ± 0.4 1.8 ± 0.05 

Nav1.4 - SA 9 -16.7 ± 1.7a -60.8 ± 1.5a 7.9 ± 1.1a 1.3 ± 0.03a 

Nav1.4 + β1 + SA 11 -29.2 ± 1.6 -70.0 ± 2.3 2.9 ± 0.5 1.7 ± 0.02 

Nav1.4 + β1 - SA 9 -16.3 ± 1.1a -63.1 ± 1.8b 8.1 ± 0.2a 1.4 ± 0.03a 

Nav1.5 + SA 13 -29.0 ± 2.2 -78.7 ± 2.5 2.8 ± 0.4 4.0 ± 0.1 

Nav1.5 - SA 10 -29.5 ± 1.6 -79.5 ± 1.9 2.4 ± 0.2 4.1 ± 0.1 

Nav1.5 + β1 + SA 11 -37.4 ± 1.6a -86.1 ± 3.2b 2.0 ± 0.1b 5.6 ± 0.3a 

Nav1.5 + β1 - SA 9 28.6 ± 0.9 -78.8 ± 1.6 2.9 ± 0.2 4.1 ± 0.1 

Nav1.7 + SA 10 -15.1 ± 1.2 -70.0 ± 2.4 4.8 ± 0.8 5.5 ± 0.09 

Nav1.7 - SA 9 -14.4 ± 1.7 -70.0 ± 3.7 5.2 ± 1.2 5.5 ± 0.06 

Nav1.7 + β1 + SA 12 -23.8 ± 1.8a -76.2 ± 2.0b 3.0 ± 0.4b 7.8 ± 0.2a 

Nav1.7 + β1 - SA 9 -13.4 ± 1.3 -68.3 ± 1.5 5.1 ± 0.8 5.5 ± 0.2 

Nav1.2 + SA 9 -14.6 ± 1.6 -60.5 ± 3.1 3.3 ± 0.7 2.5 ± 0.08 

Nav1.2 - SA 10 -11.7 ± 1.8 -62.7 ± 3.1 3.1 ± 0.5 2.2 ± 0.04b 

Nav1.2 + β1 + SA 12 -20.8 ± 0.7a -68.1 ± 2.7b 2.3 ± 0.3b 3.1 ± 0.07a 

Nav1.2 + β1 - SA 9 -11.9 ± 1.0 -62.2 ± 2.8 3.2 ± 0.6 2.2 ± 0.06b 

hSkM1P1 + SA 10 -23.5 ± 2.3 -70.4 ± 2.5 3.4 ± 0.5 1.8 ± 0.07 

hSkM1P1 - SA 8 -26.7 ± 1.2 -68.8 ± 2.5 3.4 ± 0.8 1.8 ± 0.05 

hSkM1P1 + β1 + SA 9 -32.7 ± 2.0a -75.9 ± 1.6b 2.3 ± 0.4b 2.4 ± 0.06a 

hSkM1P1 + β1 - SA 11 -24.0 ± 1.5 -69.2 ± 1.5 3.7 ± 0.6 1.9 ± 0.04 
 

 
Table 1.  The measured gating parameters for α±β1±sialic acid.  The data are the 
mean parameter values ± S.E.  τh data were measured for Nav1.4, Nav1.5, and 
hSkM1P1 at -40mV and for Nav1.2 and Nav1.7 at -30mV.  Two-tailed Student’s t 
test was used to determine the significance of β1 sialic acids comparing each 
condition with the parameter measured for the fully sialylating α subunit alone. 
Significance (p<0.1) demarcated with an (a) and highly significant (p < 0.005) 
demarcated with a (b). Table from Johnson et al. 2004120. 
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Figure 3.1.  Alpha and β1 subunit sialic acids modify channel activation in an α 
subunit dependent manner. 
 
 

 
 
Figure 3.1.  Conductance-voltage (G-V) relationships for four voltage-gated 
sodium channel α subunits ± β1 as expressed in the fully sialylating, Pro5, and 
reduced sialylating, Lec2, cell lines.  The data are the mean normalized peak 
conductance (G) ± S.E. at a given membrane potential and are shown as curves 
that are fits of the data to single Boltzmann relationships.  Data are summarized 
in Table 1.  Circles with solid lines, α subunit alone; squares with dashed lines, 
α+ β1. Filled symbols, in Pro5 cells; open symbols, in Lec2 cells. A, Nav1.4. B, 
Nav 1.5. C, Nav1.7. D, Nav1.2.  Figure adapted from Johnson et al. 2004120. 
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Figure 3.2.  Alpha and β1 subunit sialic acids modify channel inactivation in an α 
subunit dependent manner. 
 
 

 
 
Figure 3.2. Steady state channel availability (hinf) curves for the four α subunits ± 
β1 ± sialic acid.  The data are the mean normalized peak current ( ) ± S.E. 
measured during a maximally depolarizing test pulse following a 500-ms 
prepulse to the plotted potentials.  Lines and symbols are identical to those 
described in figure 3.1.  Figure from Johnson et al. 2004120. 
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Figure 3.3.  Alpha and β1 subunit sialic acids alter channel fast inactivation rates 
in an α subunit dependent manner. 
 
 

 
 
Figure 3.3.  The rate of fast inactivation for the four α subunits ± β1 ± sialic acid.  
The data are the means ± S.E. time constants for fast inactivation (τh) as a 
function of membrane potential.  Inset to C, representative normalized whole cell 
Na+ current traces measured at –20 mV for Nav1.7. Note that the rate at which 
the current attenuates (inactivates) is much faster in the presence of β1 sialic 
acids, consistent with the observed shift in τh along the voltage axis. The scale 
shown is for Na 1.7 + β1 + SA current traces, to which the other current traces 
were normalized.  Lines and symbols are identical to those described in figure 
3.1.  Figure from Johnson et al. 2004120.   
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Figure 3.4.  Alpha and β1 subunit sialic acids modify channel recovery from 
inactivation in an α subunit dependent manner. 
 
 

 
 
Figure 3.4.  Time constants for recovery from fast inactivation (τrec) ± S.E. 
measured for the four α subunits ± β1 ± sialic acid at three recovery potentials.  
Inset to C, typical plot of the fractional recovery measured following a –120mV 
recovery potential for Nav1.7 ± β1 ± SA. The data are the means ± S.E. fractional 
current measured during a second depolarizing test pulse following the plotted 
interval at –120 mV recovery pulses of various durations. The lines are 
exponential fits of the data from which the τrec were determined.  Lines and 
symbols are identical to those described in figure 3.1.  Figure from Johnson et al. 
2004120.    
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Due to the fact that β1 is heavily glycosylated, we tested the hypothesis that β1 

sialic acids modulate Nav gating.  β1 induced a hyperpolarizing shift in the gating 

of three of the four α subunits studied when expressed in Pro5.  This effect was  

eliminated when expressed in the essentially non-sialylating Lec2 cell line as all 

four α subunits gated the same as α expressed alone.  β1 did not alter any gating 

parameter of Nav1.4 under either sialylating or non-sialylating conditions.  As 

shown in figures 3.1-3.4, all effects of β1 on gating can be attributed to the sialic 

acids attached to β1, since in the absence of β1 sialic acids, Nav gating is not 

modulated.  

 

In addition to N-linked glycosylation, sugars can be attached to serine or 

threonine residues of membrane proteins termed, O-linked glycosylation.  

Mutagenesis of the four N-linked glycosylation sites provides a method to 

determine that N-linked sialic acids are responsible for modulating Nav gating.  

The mutant β1 lacks all N-linked glycosylation, yet all other post-translational 

modifications remain.  As exhibited in figure 3.5, β1-ΔN (β1 with all N-glycosylation 

sites mutated resulting in no N-glycosylation) had no effect on gating of any of 

the Nav α subunits previously modulated by β1.  Thus, we confirm that β1 N-linked 

sialic acids are fully responsible for the observed shifts in Nav α gating. 

  

Figures 3.1-3.4 showed that the heavily glycosylated Nav1.4 was sensitive to α 

subunit sialic acids (cis effect), but not sensitive to β1 sialic acids (trans effect).  

Conversely, the putatively lesser glycosylated Nav1.2, 1.5 and 1.7 were not  
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Figure 3.5.  β1 subunit sialic acids modify channel gating parameters in a 
saturating manner. 
 
 

 
 
Figure 3.5.  Voltage-dependent steady state and kinetic gating for hSkM1P1 ± 
β1± SA is shown.  Circles, hSkM1P1 expressed alone; squares, hSkM1P1 + β1. 
Filled symbols, in Pro5 cells; open symbols, in Lec2 cells.  A schematic of 
hSkM1P1 structure illustrates that the chimera consists of Nav1.4 with the less 
glycosylated Nav1.5 DIS5-S6 loop replacing the Nav1.4 DIS5-S6. A, G-V 
relationship. B, steady state channel availability. C, fast inactivation time 
constants. D, time constants for recovery from fast inactivation.  Figure from 
Johnson et al. 2004120.   
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Figure 3.6.  The impact β1 has on Nav gating is likely through electrostatic 
interaction. 
 
 
 

 
 
Figure 3.6.  A bar graph of the observed hyperpolarizing shifts in Va for hSkM1P1 
± β1± SA with a 10-fold decrease in external Ca2+ concentration used to 
differentially screen external negative surface charges.  Figure from Johnson et 
al. 2004120.   
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dependent on α subunit sialic acids, but β1 sialic acids modified their gating.  

These data suggest that in this cellular system there may be a saturating limit to 

the contribution of sialic acids to channel gating, with Nav1.4 sialic acids possibly 

achieving saturation.  Figure 3.6 further supports this theory by showing that 

gating of a less glycosylated Nav1.4 chimera, hSkM1P1 (a generous gift from Dr. 

A.L. George Jr.),  is no longer dependent on α subunit sialic acids but is sensitive 

to β1 sialic acids.  These data suggest that by decreasing Nav1.4 sialylation 

below saturating levels, β1 can impact channel gating.  Thus, it appears that the 

combined effects of cis α subunit DIS5-S6 and trans β1 subunit functional sialic 

acids on channel gating are saturating.   

 

The surface potential theory of voltage-gated channel gating is often assigned to 

the phenomenon of negative external surface charges changing channel 

gating.  It has been established that increasing external Ca2+ concentrations 

tends to shift Nav gating to depolarized potentials.  Ca2+ tends to screen the 

negative charges that contribute to the negative surface potential; thus, 

minimizing the external negative charge sensed by the channel gating 

mechanism.  The voltage sensed by the channel gating mechanism becomes 

more negative, moving away from the voltage of half activation and requiring a 

larger depolarization to activate the channel.  If sialic acids contribute to this 

negative surface potential, channel gating will be more sensitive to external Ca2+ 

concentrations as the level of sialylation is increased.  If β1 sialic acids contribute 

to the surface potential, co-expression of β1 with hSkM1P1 (a reduced  
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Figure 3.7.  N-glycans are completely responsible for β1 effects on Nav gating. 

 
 

 
 
Figure 3.7.  G-V relationships for hSkM1P1 (A), Nav1.5 (B), Nav1.7 (C), and 
Nav1.2 (D) under fully sialylated conditions alone or co-expressed with β1 or with 
β1-ΔN.  Filled circles with solid lines, α subunit alone (n = 9–13 for each); filled 
squares with dashed lines, (n = 9–12 for each); filled triangles with dotted lines, α 
co-expressed with β1-ΔN (n = 4–6 for each).  Figure from Johnson et al. 2004120.   
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glycosylated form of Nav1.4) in Pro5 cells should show the greatest sensitivity to 

Ca2+.  Figure 3.7 clearly indicates that the presence of β1 increases sensitivity to 

external Ca2+ concentrations; thus, β1 sialic acids likely contribute to the negative 

surface potential.   

 

Discussion 

To date, there have been many α and β subunit isoforms identified for the 

voltage-gated sodium channel, each with unique glycosylation patterns that may 

modulate sodium current118,128.  Expression of α subunits and β subunits are 

regulated over time and in disease states and can be processed differently 

among cell types possibly as a mechanism to ensure proper cellular function151-

155.  The model in figure 3.8 suggests a scenario where Nav α and β1 subunit 

combinations function differently and sialylation could change the location on the 

curve as sialylation is changed. 

 

As proposed by this model, various α subunit isoforms may function differently as 

a result of their level of glycosylation as ten α isoforms have been identified each 

with a unique putative glycosylation signature.  β1 expression, as previously 

described and in this study, alters some Nav channel α isoforms; hence, control 

of β1 expression causes acute changes in functional sialic acids associated with 

an α subunit possibly altering the gating of the α subunit.   
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Figure 3.8.  Model proposing the saturating effects of sialic acids on Nav gating. 

 

 
Figure 3.8.  Model predicting the possible saturating effects of α and β1 sialic 
acids on Nav gating.  (A) Possible interactions between Nav1.4 (highly 
glycosylated) and hSkM1P1 (lesser glycosylated) α subunit and β1 sialic acids.  
The data suggest that β1 sialic acids cannot contribute further to the gating of 
Nav1.4 but do contribute to the gating of the other α subunits through an apparent 
electrostatic mechanism.  Thus, Nav1.4 shows ineffectual β1 sialic acids as 
distant, whereas the hSkM1P1 illustrates that fewer α subunit functional DIS5-S6 
sialic acids may allow β1 sialic acids to interact more intimately with the α subunit 
and contribute to channel gating.  (B) a theoretical G-V curve comparing 
contributions to Va associated with various α and β1 combinations.  The location 
of each combination is not precise but is consistent with the data shown here.  
Figure from Johnson et al. 2004120.   
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β1 expression is regulated through development, commonly expressed at the 

highest levels after 4 weeks of age156-159.  β1 is a heavily glycosylated protein; 

although, this level is different among the tissues in which it is expressed.  If β1  

glycosylation alters Nav α gating, then Nav would likely be modified differently in 

each tissue in relation to the level of glycosylation.  Here, we report the effect of 

β1 on Nav gating can be entirely attributed to sialic acid residues.   

 

A recent study of Nav function revealed a sialic acid dependent change in Nav 

activity throughout cardiac development123.  These changes were independent of 

altered Nav protein expression as the same Nav α isoform was expressed in all 

tissues studied and upregulation of β1 did not impact Nav function.  Different 

levels of glycosylation, through glycogene regulation, likely is responsible for 

these changes and is the focus of the following two chapters. 
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CHAPTER 4 

GLYCOGENE EXPRESSION IS REGULATED THROUGHOUT THE 

DEVELOPING MYOCARDIUM 

 

Slight changes in ion channel function may lead to devastating maladies such as 

myotonia, paralysis, epilepsy, long QT syndrome (LQTS) and arrhythmias 

associated with heart failure129,148,160-180.  One possible mechanism to modulate 

Nav function is through alteration of the glycan structure.  A previous report 

indicated that cardiac Nav gating is altered in a cell-specific, glycosylation 

dependent manner123.  Furthermore, others report that glycosylation is altered in 

disease states, some of which present with altered excitability28,29,73-75,87,88,92.  

Thus, we determined that glycogene expression is regulated, and that the 

glycome is remodeled.  Then, we questioned whether and how these changes in 

glycosylation might alter cardiac excitability.   

 

Glycosylation abnormalities have been reported to occur in many disease states 

including heart failure.  Until recently, in depth studies of glycogene expression in 

cardiac disease and non-disease states have been lacking.  Here we present 

and compare the glycogene expression profiles for four healthy cardiac tissues; 

neonatal atria (NA), neonatal ventricle (NV), adult atria (AA) and adult ventricle 

(AV).  This investigation utilized the GLYCOv2 gene chip, a customized array 
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designed by the Consortium for Functional Glycomics, containing 2174 probesets 

targeting 942 mouse transcripts encoding proteins responsible for glycan 

biosynthesis and glycan recognition, including glycan transferases, glycan 

degradation proteins, proteins involved in nucleotide sugar biosynthesis, glycan-

binding proteins, and transporters.  

  

To determine the relationship among the four tissue types, we performed 

hierarchical clustering from all probesets, glycosyltransferases, glycan 

degradation proteins and nucleotide biosynthesis (Figure 4.1).  High correlation 

within each of the tissue types reveals minimal variability between replicates of 

each tissue type.  Independent clustering of each tissue type indicates the 

glycogene profile is unique among the four tissue types.   

  

Hierarchical clustering showed that glycogene expression profiles are unique for 

each of the four tissue types and these differences are evident when displayed 

as heat maps (Figure 4.2).  Due to the lack of a control tissue studied, signals 

from each gene target are averaged and all relationships are compared to this 

average with red blocks indicating expression above the mean, blue 

blocks below the mean, and white as the mean.  Despite the differences of 

overall glycogene expression, there are some important similarities to explore 

further.  The patterns observed provide insight into the changing expression of 

glycogenes and their role in development, chamber specific expression or high 

expression in only one tissue type (lower in the three other tissue types).    
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Figure 4.1  Comparison of glycogene expression among samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.  Unsupervised hierarchical clustering analysis of glycogenes in the 
developing murine myocardium.  The dendrograms have been constructed using 
center correlation and average linkage.  Three biological replicates are shown for 
neonatal atria (PA), neonatal ventricle (PV), and adult ventricle (AV) and two 
biological replicates for adult atria (AA).  (A) Overall glycogene expression.  (B) 
Glycosyltransferases.  (C) Glycan degradases.  (D) Nucleotide sugar synthesis 
and transporters.  

A. Overall

D. Nucleotide Sugar Synthesis

and Transport

C. Glycan Degradases

B. GlycosyltransferasesA. Overall

D. Nucleotide Sugar Synthesis

and Transport

C. Glycan Degradases

B. Glycosyltransferases
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Figure 4.2A.  Glycosyltransferase expression throughout the developing 
myocardium. 
 

 
 
Figure 4.2.  Heat maps displaying the relative gene expression levels among 
each sample and cell type as measured from microarray data.  Red indicates 
upregulation compared to the mean of all samples for a given glycogene 
whereas blue indicates downregulation and the individual glycogene mean is 
white.  (A) Glycosyltransferases.  (B) Glycan degradases.  (C) Nucleotide sugar 
synthesis and transporter genes. 

NV AA AV NA NV AA AV NA 
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Figure 4.2B.  Glycan degradase expression throughout the developing 
myocardium. 
 

NA NV AA AV 
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Figure 4.2C.  Nucleotide sugar synthesis and transporter gene expression 
throughout the developing myocardium. 
 

 

NA NV AA AV 
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Three distinct expression patterns were identified in the data presented here.  

First, glycogene expression can be regulated developmentally.  This is observed 

in figure 4.2 where the neonatal tissues are blue or red and adult tissues are the  

opposite color.  Versican is developmentally regulated and is highly expressed in 

the neonate and essentially absent in the adult.  This is likely due to 

the importance of versican in the development of the heart and its diminished 

role in adults.  On the contrary, ST3GalVI is also developmentally regulated, but 

present in the adult and absent in the neonate. 

  

Secondly, glycogene expression is also regulated in a chamber-specific manner 

where genes are expressed above the mean in neonatal and adult atria and 

below the mean in the neonatal and adult ventricle or vice versa.  These changes 

indicate that the genes involved are essential to normal atrial or ventricular 

function but not both.  Mannosidase-II is categorized with a chamber specific 

expression pattern since it is expressed at much higher levels in the atria than 

the ventricles. 

  

The third expression pattern identified is the high (or low) expression of a 

glycogene in one of the four tissue types compared to the other three.  This effect 

is likely a combination of the two patterns discussed previously where the gene is 

developmentally expressed (i.e. only present in neonatal tissues) and in a 

chamber specific manner (i.e. expressed only in the atria).  The 

polysialyltransferase, ST8SiaII (STX), has been shown to be expressed in 
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various tissues in early developmental stages181,182, yet ST8SiaII is found to be 

expressed only in the neonatal atria and is absent in the neonatal ventricle as 

well as both adult tissues.   

  

Glycogene expression is quite different among the four tissue types and is 

regulated developmentally, in a chamber specific manner, or as a combination of 

the two.  Furthermore, changing the expression patterns of different enzymes will 

alter glycosylation biosynthesis at various points throughout the process. 

 

Each glycoprotein and glycolipid has a common core structure which is 

elongated, possibly branched and eventually terminated.  Figure 4.3 illustrates 

these core structures for N- and O- glycans and glycolipids.  For further insight 

into the impact of a change in glycogene expression, four groups have been 

created:  core structure synthesis, termination, glycan degradation and 

nucleotide sugar synthesis of which some genes are represented twice; once in 

core structure synthesis and once in one of the other three groups.   

  

Core Structures 

As summarized in table 4.1A, most genes with roles in core glycan synthesis are 

regulated in a chamber-specific or developmental manner, yet several have no 

significant change in expression.  Most of those genes involved which have some 

change in expression are involved in the translocation of N-glycan structures 

from the cytoplasm to the lumen of the endoplasmic reticulum.  On the contrary,  
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Figure 4.3.  The three basic glycosylation structures. 
 

Figure 4.3.  Schematic of typical N- and O-linked glycans and glycolipids.  
Dashed lines indicate core structures for each glycoconjugate. 
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Table 4.1A  mRNA levels encoding proteins involved in core structure synthesis. 
 

Gene Name NA NV AA AV 

N-Glycans     

ALG13 154.6 154.4 153.6 180.8 

DPM1 417.1 444.4 407.9 514.4 

DPM2 407.9 341.7 308.5 231.0 

GPI1(PIGq) 391.6 410.8 436.3 750.0 

PIG-a 76.8 70.6 54.5 50.2 

Pigb 51.5 47.4 65.6 52.3 

PIGF2 66.5 67.2 63.6 80.1 

Putative PIG-M 151.6 153.6 159.0 149.8 

Defender against cell death protein1 1200.0 1010.9 1246.5 886.4 

Oligosaccharyltransferase 48 714.3 490.3 531.6 403.0 

RibophorinI 1083.9 1023.0 869.3 722.6 

RibophorinII 603.0 436.9 653.2 453.4 

GNT1 473.2 517.3 464.0 448.0 

GNT2 390.3 366.3 295.0 202.5 

a-Mannosidase (Man2B1) 406.6 307.7 366.3 299.4 

b-Mannosidase 320.1 332.0 302.6 257.5 

MannosidaseII (Man2A1/ManII) 279.4 192.9 298.3 165.2 

O-Glycans     

Galnt1(ppGalNAcT1) 
623.4 598.7 826.0 

1046.
5 

Galnt2(ppGalNAcT2) 871.3 625.0 614.1 445.5 

Galnt3(ppGalNAcT3) 12.2 12.1 12.1 12.8 

Galnt4(ppGalNAcT4) 63.2 57.8 68.2 57.5 

Galnt6(ppGalNAcT6) 49.2 47.7 56.5 49.9 

Galnt7(ppGalNAcT7) 91.3 112.9 87.5 98.9 

Glycolipids     

UDP-glucoseceramideglucosyltransferase 188.6 138.2 127.2 100.4 

ceramide1--galactosyltransferase 27.2 28.8 23.1 27.8 
 

Table 4.1.  Gene expression profiles of glycogenes directly involved in glycan 
synthesis.  Intensity signals were generated with the dChip v1.3 PM-only 
algorithm and represent the mean of independently prepared samples.  (A) 
Proteins involved in core structure synthesis.  (B) Sialyltransferases. (C) 
Sulfotransferases. (D) Fucosyltransferases.  (B,C,D) are considered terminal 
glycosyltransferases.  (E) Glycan degradases; (F) Nucleotide sugar synthesis 
and transporters.  NA, neonatal atria; NV, neonatal ventricle; AA adult atria; AV, 
adult ventricle.   
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Table 4.1B.  mRNA levels encoding proteins involved in sialylation. 
 

Gene Name NA NV AA AV 

ST3GalI 179.2 142.1 195.6 160.3 

ST3GalII 145.1 121.9 122.4 101.7 

ST3GalIII 170.2 177.1 205.8 314.8 

ST3GalIV 111.3 126.9 132.8 108.0 

ST3GalV 319.6 266.6 562.4 1061.3

ST3GalVI 178.1 190.5 409.8 372.6 

ST6GalI 257.9 139.1 198.3 82.0 

ST6GalII 51.9 54.1 56.2 53.0 

ST6GalNAcI 76.8 82.4 81.9 80.4 

ST6GalNAcII 77.8 88.1 74.1 76.4 

ST6GalNAcIII 40.1 39.9 41.8 49.7 

ST6GalNAcIV 107.5 118.3 85.1 94.8 

ST6GalNAcV 111.0 111.9 117.7 98.6 

ST6GalNAcVI 259.0 304.4 318.2 403.3 

ST8SiaI 54.3 61.6 55.3 63.4 

ST8SiaII 121.6 48.3 51.2 41.1 

ST8SiaIII 61.9 64.3 77.4 107.9 

ST8SiaIV 64.3 209.7 112.9 226.7 

ST8SiaV 110.2 106.0 120.4 98.5 

ST8SiaVI 26.0 65.1 40.2 105.2 
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Table 4.1C.  mRNA levels encoding proteins involved in sulfation. 
 

Gene Name NA NV AA AV 

chondroitin4-O-SulfoT1 178.2 149.5 212.9 144.3

CS4ST-1 68.9 60.7 64.1 46.5 

CS4ST-2 146.3 108.2 146.5 103.3

CS6ST-1 66.4 64.8 70.8 71.5 

Gal3ST-1 67.8 62.4 64.9 49.3 

Gal3ST-2 50.7 53.0 59.3 45.9 

Gal3ST-4 15.0 15.8 14.0 18.8 

GlcNAc6ST-1 79.3 87.8 85.4 74.5 

GlcNAc6ST-2 155.3 136.2 282.6 195.5

GlcNAc6ST-3 34.0 36.4 36.6 35.3 

GlcNAc6ST-4 79.8 105.5 83.4 96.6 

HS2OST 354.5 295.7 211.2 157.1

HS3OST-1 169.6 107.6 151.2 105.1

HS3OST-3B 66.9 69.6 67.9 61.3 

HS6OST-1 186.7 179.1 152.0 155.4

HS6OST-2 53.9 55.9 43.1 45.3 

HS6OST-3 58.0 56.3 55.9 58.3 

KS6ST-1 284.2 349.9 363.0 528.3

NDST1 112.7 71.3 90.8 54.4 

NDST2 131.5 125.2 89.0 93.6 

NDST3 34.5 32.3 38.1 40.5 

NDST4 43.6 43.4 43.8 43.9 
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Table 4.1D.  mRNA levels encoding proteins involved in fucosylation. 
 

Gene Name NA NV AA AV 

Fut1 128.3 71.9 117.2 56.7 

Fut2 57.6 55.8 62.3 62.9 

Fut4 34.3 37.5 35.1 33.2 

Fut7 79.7 80.9 77.0 72.1 

Fut8 218.0 208.0 203.8 198.2 

Fut9 11.0 10.7 11.7 13.0 

Fut10 70.8 80.5 90.0 99.9 

Fut11 216.4 166.7 208.9 130.1 

Pofut1 133.8 114.6 122.5 101.3 

Pofut2 302.9 240.2 233.6 161.5 

Sec1 45.4 48.3 49.2 47.5 
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Table 4.1E.  mRNA levels encoding proteins involved in glycan degradation. 

 

Gene Name NA NV AA AV 

ArylsulfataseA 259.3 197.6 258.3 176.3 

ArylsulfataseB 61.4 63.5 61.1 68.2 

alpha-GalactosidaseA 177.5 183.5 155.1 172.2 

beta-Galactosidase(lactase) 51.5 55.2 51.4 57.2 

b-Galactosidase 354.0 271.2 296.5 207.8 

b-Glucuronidase(Gus-s) 356.6 344.0 311.1 228.3 

hexosaminidaseA 274.1 238.5 328.4 242.5 

Hyaluronidase1 63.2 66.4 59.5 47.6 

Hyaluronidase2 304.3 267.2 206.5 181.2 

a-L-iduronidase 197.0 196.7 212.6 232.2 

Acida1_4Glucosidase 481.1 311.0 644.0 515.1 

AcidLipase 186.2 165.4 208.5 184.9 

AcidSphingomyelinase 754.7 823.6 1308.2 1831.2

alpha-N-Acetylglucosaminidase 151.2 112.6 168.6 135.2 

Asah 461.4 431.2 567.2 408.6 

Cystinosis 178.3 166.8 170.2 151.6 

Galactosylceramidase 37.9 38.6 34.6 40.6 

Glucocerebrosidase(gba) 428.1 270.9 385.4 217.3 

MPI 456.9 578.7 419.7 773.8 

N-Aspartyl-b-Glucosaminidase 591.2 480.7 783.9 391.3 

protectiveproteinforbeta-galactosidase 854.5 820.4 1025.1 865.6 

SialicAcidTransportProteinLAMP1 2931.2 3159.6 3297.9 3629.8

SialicAcidTransportProteinLAMP2 489.3 303.0 474.3 276.8 

a-Mannosidase(Man2B1) 406.6 307.7 366.3 299.4 

b-Mannosidase 320.1 332.0 302.6 257.5 

MannosidaseII(Man2A1/ManII) 279.4 192.9 298.3 165.2 

acylneuraminatelyase 154.9 125.6 123.0 182.4 

a-N-Acetyl-Galactosaminidase 245.4 177.5 237.0 143.0 

GM2ActivatorProtein 248.5 215.0 269.9 199.6 

Neu1 182.1 170.8 183.7 179.3 

Neu2 67.6 64.6 73.1 57.7 

Neu3 125.0 137.7 157.5 183.5 

Galactosamine-6-Sulfatase 109.5 88.7 96.0 74.8 

IduronateSulfatase 50.2 59.6 64.9 77.0 

SULF1 727.8 389.2 677.6 251.2 

SULF2 864.6 939.4 695.5 401.4 

N-sulfoglucosaminesulfohydrolase 66.2 68.3 72.5 72.4 
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Table 4.1F.  mRNA levels encoding proteins involved in nucleotide sugar synthesis and transport. 
 

Gene Name NA NV AA AV 

CMP-sialicacid 272.9 238.9 178.5 174.4 

UDP-Galactosetransporter 154.6 147.9 173.6 156.1 

UDP-galactosetransporterrelated 1157.0 1057.4 791.7 884.7 

UDP-GlcNActransporter 107.7 115.9 90.9 81.7 

CMP-N-acetylneuraminicacidsynthase 813.5 561.8 714.7 585.7 

CMP-Neu5Achydroxylase 66.6 72.1 97.6 94.0 

epimerase 213.6 159.3 196.2 116.4 

Fucose-1-phosphateguanylyltransferase 87.5 88.6 96.4 82.8 

galactokinase(galK) 295.8 293.8 174.0 151.1 

Galactose-1-phosphateuridylyltransferase 332.7 514.0 441.0 631.7 

GDPfucosesynthetase 155.0 151.1 150.0 222.0 

GDP-man4-6dehyd 142.7 107.5 112.4 80.0 

GDP-mannosepyrophosphorylaseA 409.6 293.4 628.3 363.7 

GlcNAc/ManNAckinase 348.7 372.4 270.9 297.2 

GlcNAc2-epimerase 330.1 310.0 381.8 325.9 

glucosamine-6-
phosphatedeaminase/isomerase 

146.5 175.9 160.7 171.3 

glucosamine-phosphateN-acetyltransferase 167.2 175.8 114.8 105.0 

glucosephosphateisomerase 3481.4 3577.7 3231.8 3325.8

Glutamine-fructose-6-
phosphatetransaminase1 

227.9 271.7 249.0 380.3 

Glutamine-fructose-6-
phosphatetransaminase2 

65.7 70.0 96.3 137.3 

hexokinase1 915.5 963.7 648.3 737.8 

ketohexokinase(fructokinase) 134.2 121.8 155.1 171.7 

Neu5Ac9-phosphatesynthase 320.7 293.4 188.2 146.7 

PAPSsynthetase-1 407.2 395.7 211.2 150.9 

PAPSsynthetase-2 75.2 75.6 105.2 75.9 

phosphoglucomutase1 821.8 1341.0 741.4 1767.4

phosphomannomutase 156.0 166.4 234.7 305.4 

phosphomannomutase1 185.6 151.9 187.4 163.7 

pyrophosphorylase 622.6 503.4 589.9 621.1 

UDP-Gal-4-Epimerase 86.8 83.3 78.0 65.8 

UDP-GlucoseDehydrogenase 565.9 358.3 452.7 165.0 

UDP-GlucuronicacidDecarboxylase 144.2 130.2 142.0 153.3 

uridinediphosphoglucosepyrophosphorylase2 515.9 543.3 386.1 700.7 
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five of the seven O-glycan associated enzymes do not change.  Of the O-glycan 

associated enzymes that do change (Galnt1 and Galnt2), Galnt1 is upregulated 

in the atria compared to the ventricle of both neonatal and adult tissues and 

Galnt2 is higher in the adult tissues.   

 

Terminal Structures 

Core glycan structures are elongated, and often, branches are added 

contributing to variation of N-glycan structures that differs among cell types 

(Comelli et al.86 and addressed in chapter 5).  Extracellular communication and 

any modulatory effects of glycans are likely due not only to structural variation, 

but also, and possibly more importantly, to terminal residues.  Not surprisingly, 

terminal glycosyltransferase expression is highly variable from tissue to tissue.  

Tables 4.1B, 4.1C and 4.1D illustrate these changes in sialyltransferase, 

sulfotransferase and fucosyltransferase expression among the four tissues.   

 

Glycan Degradation 

Glycan degradation enzymes are intimately involved in glycan biosynthesis as 

displayed in (Figure 1.4).  Removal of glucose and mannose residues allows N-

glycosylation to proceed in the endoplasmic reticulum and golgi apparatus after 

the structure is transferred from dolichol to asparagine of a glycoprotein.  

Incomplete or improper removal of these glucose and mannose structures leads 

to improper glycosylation structures and likely a pathological disorder such as 
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CDG.  It should also be noted that degradases included in the GLYCOv2 chip are 

active at various time points of the glycan lifetime including in the lysosome.  As 

summarized in table 4.1E, the expression of glycan degradases varies among all 

tissues with no discernible pattern.  Each tissue is the highest expresser of at 

least one gene and the lowest expresser of others.   

 

Nucleotide Sugar Synthesis and Transporters 

Enzymes classified under the category of nucleotide sugar synthesis have a role 

in creating and transporting the sugars that glycosyltransferases add to the 

glycan structure.  These enzymes include transporters that bring the sugars into 

the proper organelle, epimerases, isomerases, synthases and other enzymes 

directly involved in nucleotide sugar synthesis.  These proteins and their relative 

expression levels are summarized in table 4.1F which shows varying expression 

of these genes and that all three expression patterns are present. 

  

Tissue Type Comparison 

Chamber and developmental effects can be elucidated using four comparison 

groups: neonatal atria (NA) vs neonatal ventricle (NV), NA vs adult atria (AA), AA 

vs adult ventricle (AV), and NV vs AV.  The two remaining comparison groups: 

NA vs AV and AA vs NV are neither chamber specific or developmental 

comparisons and were excluded from this analysis.   
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Figure 4.4A.  Glycosylatransferases differentially expressed throughout the 
developing myocardium. 
 

 
Figure 4.4.  Differential expression of glycogenes directly involved in glycan 
synthesis; (A) glycosyltransferases, (B) glycan degradases, and (C) nucleotide 
sugar synthesis and transporters.   Left panel shows expression relationships of 
all glycogenes in each category.  Right panel shows glycogenes considered to be 
differentially expressed at p<0.01.  

NV AA AV NA 

NA NV AA AV 
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Figure 4.4B.  Glycan degradses differentially expressed throughout the 
developing myocardium. 
 

NA NV AA AV 

NA NV AA AV 
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Figure 4.4C.  Nucleotide sugar synthesis and transporters differentially 
expressed throughout the developing myocardium. 
 
 

NA NV AA AV 

NA NV AA AV 
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 Figure 4.5.  Differential expression of glycogenes by category. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.5.  Each comparison group shows the % of genes within a type of 
glycogene that were found to be differentially expressed.  (A) Differential 
expression patterns when all four tissue types are compared.  (B) and (C) show 
the chamber specific differences in neonate and adult respectively.  (D) and (E) 
reveal the developmental changes in glycogene expression by category.  Note 
the patterns of all comparisons are unique. 
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Glycogene expression is largely different in each of the four comparison 

groups and is detailed below.  Overall, 419 of the 710 genes are differentially  

expressed in at least one comparison group.  These changes are summarized in 

figures 4.4 and 4.5 which reveals that the proportion of differentially expressed 

genes is higher than any single comparison group; indicating that one 

comparison group does not encompass all differentially expressed 

genes.  Surprisingly, the three gene groups directly involved in glycosylation 

(glycosyltransferases, glycan degradases and those involved in nucleotide sugar 

synthesis and transport) show that ~46% (110 of 239) of these genes are 

differentially expressed at p<0.01 (Figure 4.4) among the four myocyte types.   

  

Glycogene expression profiles of two tissue types were compared to attempt to 

identify major developmental and chamber specific changes.  Table 4.2 

summarizes these changes and shows overall changes between groups and the 

changes in specific glycogene categories.  These data, together with the 

heatmap data (Figure 4.2 and 4.4), identify a large proportion of overall gene 

expression changes between tissue types.  Specific details of differential 

expression with each relevant myocyte comparison group is discussed below. 

 

Chamber-Specific Regulation 

Neonatal Atria and Ventricle 

Expression of glycogene targets in the neonate varies between the atria and 

ventricle.  Specifically, expression of 161 of 710 (22.7%) gene targets are  
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Table 4.2.  Differential glycogene expression profile 
 

 NA:NV AA:AV AA:NA AV:NV Totals 

 n % n % n % n %  

Glycan-
transferase 

31 16.4 50 26.5 22 11.6 52 27.5 189 

Glycan 
Degradation 

10 25.6 20 51.3 5 12.8 18 46.2 39 

Nucleotide  Sugar 
Synthesis and 
Transport 

8 22.2 15 41.7 10 27.8 20 55.6 36 

CBP:C-Type 
Lectin 

15 13.8 32 29.4 17 15.6 37 33.9 109 

CBP:I-Type Lectin 3 18.8 5 31.3 1 6.3 4 25.0 16 

CBP:S-Type 
Lectin 

3 21.4 5 35.7 3 21.4 6 42.9 14 

Glycoprotein 2 20.0 4 40.0 0 0.0 2 20.0 10 

Notch pathway 7 31.8 5 22.7 4 18.2 6 27.3 22 

Intracellular 
protein transport 

0 0.0 1 14.3 0 0.0 1 14.3 7 

Adhesion 
Molecule 

4 50.0 3 37.5 2 25.0 4 50.0 8 

Chemokine 6 9.8 8 13.1 9 14.8 24 39.3 61 

Cytokine 1 7.1 2 14.3 1 7.1 5 35.7 14 

Growth Factors & 
Receptors 

45 25.3 56 31.5 30 16.9 52 29.2 178 

Interleukin & 
Receptors 

4 9.1 8 18.2 7 15.9 12 27.3 44 

Proteoglycan 12 40.0 11 36.7 9 30.0 14 46.7 30 

 
Table 4.2.  Summary of the differential expression of glycogenes by category.  
Both the number and the overall percent of glycogenes differentially expressed 
are displayed (p<0.05).   
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significantly altered (p<0.05).  Interestingly, 118 of the 161 (73%) differentially 

expressed gene targets are expressed at higher levels in the neonatal ventricle.  

Furthermore, of the genes where expression is considered to be highly different 

(>1.3-fold change), the proportion remains at approximately 73% (100 gene 

targets) are in the ventricle.  When the p-value is decreased to 0.01, 99 genes 

are still considered differentially expressed.  Differences in glycogene expression 

between atria and ventricles are evidence of the importance of minor 

adjustments required for proper cellular function (discussed further in chapter 6).   

  

Adult Atria and Ventricle 

The second chamber specific comparison between the adult atria and ventricle 

shows another large change in glycogene target expression with 253 of the 710 

targets (35.6%) altered.  Within this comparison, 39.1% of the differentially 

expressed gene targets are up-regulated in the atria.  These figures are modified 

only slightly when only highly altered (>1.3-fold change) gene targets are 

analyzed with 36.7% (66 gene targets) of the highly differentially expressed gene 

targets are in the atria.  

  

Developmental Regulation 

Adult and Neonatal Atria 

Glycogene expression between neonatal and adult atria indicates that 19.4% 

(p<0.05) (138 of 710 gene targets) of gene targets are significantly differentially 

expressed.  55.1% of these genes are up-regulation in the adult atria compared 
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to the neonatal atria. Of the highly differentially expressed genes (>1.3 fold 

change), these proportions remain approximately the same at 56% and 46% 

respectively.    

 

Adult and Neonatal Ventricle 

The largest change in glycogene target expression is found between neonatal 

and adult ventricle.  307 of 710 (43.2%) gene targets were significantly 

differentially expressed with approximately an equal number of gene targets up-

regulated in the neonatal (154 gene targets) and adult (153 gene 

targets) ventricles.  Among the highly altered gene targets (>1.3 fold change), 

neonatal ventricle has higher expression of 115 gene targets compared to 108 

for the adult ventricle. 

 

Quantitative PCR verifies microarray data 

Gene chip verification is an important process for quality control and duplication 

of expression levels.  Here, we verified each comparison group using three 

distinct genes for each comparison for a total of twelve.  These included 

sialyltransferases involved in N-glycan synthesis or O-glycan synthesis and 

growth factors.  Tissue type comparisons of the expression of each of the 

twelve glycogenes are consistent with genechip findings compared to HPRT 

(Figure 4.6).  These data were also analyzed by comparing expression levels to 

β-actin as the control with similar results (data not shown). 

 



79 

Figure 4.6.  qPCR validates the GeneChip microarray data. 
 

 
 
 
Figure 4.6.  Selected genes were investigated by qPCR analysis of RNA to 
validate GeneChip microarray data.  Three glycogenes from each comparison 
group were studied, revealing that data from both microarray and qPCR were 
consistent.  All genes were normalized to the endogenous control gene, HPRT.   
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Discussion 

Glycogene expression is a developmentally regulated process in the myocardium 

with large changes in both the developing atria and ventricle.  Significant 

differences are apparent within the developing atria with 19.4% of the genes 

differentially expressed yet the developing ventricle shows more than twice as 

many genes differentially expressed at 43.2%.   

  

Not surprisingly, glycogene expression is significantly regulated between cardiac 

chambers.  Differential expression of glycogenes between chambers at the same 

developmental stage range from 22.7% (neonates) to 35.6% (adults) suggesting 

that glycan structures are modified between chambers.  

 

Glycogene expression is differently regulated among the four myocyte types 

indicating that the glycome is remodeled throughout the developing myocardium.  

The high levels of variation among the four comparison groups provides insight 

into the possible changes in glycan structure at a cellular level.   
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CHAPTER 5 

THE GLYCOME IS REMODELED THROUGHOUT THE HEART DURING 

DEVELOPMENT 

  

With such diversity in glycogene expression, one would expect very 

different populations and relative quantities of glycans synthesized by the cell.  

Mass spectrometry is a powerful tool for identifying the populations of glycans 

present in a given sample.  The resulting spectra provide insight into changes in 

N-glycan profiles produced throughout the developing heart.  Complete mass 

spectra are shown in figures 5.1 and 5.2. 

  

High Mannose Structures 

The intensity patterns of the first five major high mannose structures (1579, 1783, 

1987, 2192 and 2369) are almost identical among all four tissue samples: 

neonatal atria, neonatal ventricle, adult atria and adult ventricle (blue peaks, 

Figures 5.1 and 5.3).  The high mannose structure at m/z 2369 is the most 

common structure of the five high mannose structures and is most common 

overall in three of the four tissues composing over 50% of the total glycan 

density.  The adult atria is the exception with the high mannose structures 

composing only 23.5% of the total glycan population (Table 5.1).  When 

comparing the pattern of only high mannose structures, m/z 1987 is the least  
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Figure 5.1A.  The population of N-glycans is different among the four myocyte 
types. 
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Figure 5.1.  (A) Mass Spectrometry profiles of N-glycans in neonatal and adult 
atria and ventricles utilizing MALDI-TOF MS.  .  Note that the lower MW 
structures up to high mannose structures are at relatively high density for each 
myocyte type (blue peaks).  Significant variation in complex glycan structures 
among myocyte types is readily apparent (red peaks), both in relative levels and 
types of glycans.  Predicted glycan structures for highlighted peaks are shown in 
neonatal ventricle panel.  (B and C) N-glycans associated with masses reported 
in figure 1A.  (B) Glycans with masses between 1500 and 3050 m/z, (C) 
structures with masses above 3050 m/z.  Structures that list the mass in 
highlighted yellow ovals were determined using MALDI TOF/TOF analyses.  Blue 
square, GlcNAc; green circles, mannoe; yellow circles, glucose; red diamonds, 
NeuAc; light blue diamonds, NeuGc; red triangles, fucose.   



83 

Figure 5.1B.  Identified low mass N-glycan structures and their relative mass. 
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Figure 5.1C.  Identified high mass N-glycan structures and their relative mass. 
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 Figure 5.2A.  Mass spectra of the neonatal atrial N-glycans. 

 
 

Figure 5.2.  MALDI-TOF mass spectra for each tissue type.  Each spectrum is an 
enlarged version of those displayed in figure 5.1 to better show detail.  Masses 
correspond to structures in figure 5.1B and 5.1C. 
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Figure 5.2B.  Mass spectra of the neonatal ventricular N-glycans. 
 

 



87 

Figure 5.2C.  Mass spectra of the adult atrial N-glycans. 
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Figure 5.2D.  Mass spectra of the adult ventricular N-glycans. 
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Figure 5.3.  Mass spectra of masses between 1500 and 2400 m/z. 

 
Figure 5.3.  Enlarged schematic of spectra between 1500 and 2400 m/z.  The 
blue peaks indicate relative density of high mannose structures. 
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Figure 5.4.  Mass spectra of masses between 2400 and 3050 m/z.  

 
Figure 5.4.  Enlarged schematic of spectra between 2400 and 3050 m/z.  The red 
peaks indicate relative density of bi-antennary structures assigned to one of three 
groups. 
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Figure 5.5.  Spectra of masses above 3050 m/z. 

Figure 5.5.  Enlarged schematic of spectra above 3050 m/z.  These peaks are 
associated with the most complex and highest mass structures. 
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Table 5.1.  Relative percentage of glycan structures defined by either structure 
(high mannose) or mass. 
 

 NA NV AA AV 

High Mannose 52.06 60.43 23.53 52.95 

2400-3050 m/z 37.63 23.24 57.38 35.91 

3050-5000 m/z 1.45 8.98 10.44 1.37 

 
Table 5.1.  Relative density of glycan structures defined by either structure (high 
mannose) or mass.  Note the low proportion of high mannose glycans and high 
proportion of higher mass structures in the adult atria (AA) compared to all other 
groups.  Although relative density of glycans in the neonatal atria (NA) and adult 
ventricle (AV) are similar, the mass spectra are much different as seen in figure 
5.1, 5.2A and 5.2D.  Neonatal ventricle, NV. 
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common while 1783 and 2192 are higher and similar in level of expression in all 

tissue types.   

 

Complex Structures 

Complex structures, defined here as those structures that have been processed 

beyond high mannose stages and have a mass above 2400 m/z, are present in 

unique relative quantities among all four tissue types.  The structures with 

masses between 2400 and 3050 m/z are bi-antennary complex structures 

(Figure 5.4) while those with masses above 3050 m/z are mostly tri- and tetra- 

antennary (Figure 5.5).   

 

Chamber-specific glycan profile changes 

Neonatal Atria and Ventricle 

 The neonatal atria and ventricle spectra are surprisingly similar in terms of 

glycans present or absent, yet the level of each glycan varies.  The neonatal atria 

have higher relative levels of almost every glycan between 2400 and 3050 m/z 

accounting for approximately 37.6% of the overall glycan population compared to 

23.2% for the neonatal ventricle (Table 5.1).  Of particular interest in this region 

are three sets of sialylated glycans (Figure 5.4):   

 

group 1 consists of glycans at 2605 and 2635 m/z,  

group 2 is composed of glycans at 2793, 2822 and 2852 m/z and  

group 3 is comprised of  glycans at 2966, 2996 and 3026 m/z.   
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In the neonatal atria and ventricles, groups 1 and 3 decrease in relative level 

from low m/z to high m/z and group 2 increases in relative glycan level from low 

m/z to high m/z.  

  

The greater number of unique higher mass (above 3050 m/z) N-glycan structures 

are present in the neonatal ventricle with several complex structures produced by 

the ventricle but not the atria (Figure 5.5).  In the higher mass region the relative 

abundance is higher in the ventricle accounting for 8.9% in contrast to 1.4% in 

the neonatal atria (Table 5.1).  Thus, it is likely that the neonatal atria produce the 

same bi-antennary structures as the ventricle but at a higher relative abundance 

while the neonatal ventricle produce more tri- and tetra- antennary structures at 

higher relative levels than the neonatal atria. 

  

Adult Atria and Ventricle 

The population of glycans present in the adult atria and ventricle are comparable 

in some manners and different in others.  Note for the adult atria, the data are 

normalized to the 2852.2 m/z peak whereas the other three tissue types are 

normalized to the high-mannose structure around 2396 m/z (Figure 5.1).  Despite 

this change, the spectral patterns between 2400 and 3050 m/z for adult atria and 

ventricle are very similar with adult atria showing higher (57.4% compared to 

35.9%) relative levels of each glycan (Table 5.1).  Groups 1, 2 and 3 are similar 

in pattern in that the relative level increases from low to high m/z; although, the 



95 

adult ventricle has extremely low relative expression levels of 2793 and 2822 m/z 

(i.e., barely greater than baseline (Figure 5.4)).   

  

Higher mass structures are present in greater relative abundance and number of 

species in the adult atria than in the adult ventricle (Figure 5.5).  The most 

complex glycan registers with a minor peak at 3867.2 in the adult ventricle, yet 

the adult atria had a higher relative level of the glycan at that mass and six 

glycans register at a higher mass than 3867.2.  These high mass structures 

compose approximately 10.4% of the adult atria overall glycan population 

compared to 1.4% for the adult ventricle (Table 5.1). 

 

Developmental glycan profile changes 

Neonatal and Adult Atria  

In contrast to the similarities of age matched comparisons, developmental 

differences are more apparent.  The putative structure of middle mass, bi-

antennary glycan structures present are similar throughout atrial development but 

with much higher relative levels in the adult atria for most structures (Figure 5.4).  

One major exception is the glycan at 2809 m/z which is the highest peak above 

2397 in the neonatal atria whereas this peak is relatively minor in the adult atria.  

Groups 1 and 3 show opposite patterns with neonatal atria decreasing relative 

levels from low to high m/z and adult atria increasing relative levels from low to 

high m/z.  Surprisingly, group 2 has an identical pattern in both neonatal and 

adult atria with increasing relative levels from to low to high m/z.   
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 The higher mass range of both adult and neonatal atria has similar glycan 

structures, yet each tissue type has some structures that are unique (Figure 

5.5).  The relative levels of these glycans is higher in the adult atria with over 

10% of glycan structures with higher mass than 3050 m/z compared to neonatal 

atria with higher mass composing only approximately 1.4% of the total glycan 

structures (Table 5.1).  

  

Neonatal and Adult Ventricle 

The developmental changes between adult and neonatal ventricle are prominent 

in the mass spectra shown in figure 5.1.  The portion of glycans in the 2400 to 

3050 m/z range is much higher in the adult ventricle (35.9%) compared to the 

neonatal ventricle (23.2%), but the pattern of expression is also changed (Table 

5.1).  Groups 1 and 3 have opposite patterns with the neonatal ventricle 

increasing relative level from low to high m/z and adult decreasing relative level 

from low to high m/z (Figure 5.4).  Group 2 has an identical pattern in both adult 

and neonatal ventricle. 

  

In contrast, the neonatal ventricles have a much higher proportion (8.9%) of 

glycans in the higher mass range than the adult ventricle (1.4%) (Table 5.1).  The 

neonatal ventricle also has 37 unique high mass glycan structures compared to 

the adult ventricle with only 13 (Figure 5.4).  This change indicates a shift 

towards bi-antennary glycans in the adult ventricle. 
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Discussion 

Regulated glycogene expression throughout the heart during development would 

lead one to expect the glycan profile to also be markedly varied among myocyte 

types.  In fact, each tissue has a unique glycan profile with notable similarities 

among all tissues.  All tissues have an identical pattern of the identified high 

mannose structures indicating that high mannose structure production is similar 

in all four tissues.  The microarray data correlates quite well that expression 

levels of enzymes responsible for high mannose synthesis and pruning are 

comparable across the four tissue types.   

  

There are over 30 different forms of sialic acid produced in nature.  In the mouse 

there are two common sialic acids attached to glycans, N-acetylneuraminic acid 

(NeuAc) and N-glycolylneuraminic acid (NeuGc).  These sialic acids seem to be 

developmentally regulated in mouse myocardium.  Adult tissues seem to produce 

glycans that add NeuGc preferentially over NeuAc, as shown in groups 1, 2 and 

3.  Alternatively, this conclusion cannot be made in the neonates since the 

dominant peak in these groups varies between those with NeuAc (groups 1 and 

3) and NeuGc (group 2).   These changes are examples of the developmental 

modifications of glycan structures.   

  

Glycan profiles are markedly different among the four tissue types tested in two 

of the three glycan mass categories with only the high mannose patterns being 

similar among the four tissue types.  Changes in glycan profiles among the four 
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tissues are prevalent above 2400 m/z indicating that the modifications in glycan 

structure are imposed in the latter steps of the glycosylation pathway.  Bi-

antennary glycans are similar in structure throughout the developing 

myocardium, yet the relative levels of these glycans change in both in a 

developmental and chamber-specific manner.  Furthermore, the largest 

variations in the number of glycan structures are at a mass above 3050 

m/z where tri- and tetra-antennary structures are located.  The glycogene 

expression data are consistent with these data in that the majority of glycogenes 

active in the distal golgi apparatus are most commonly differentially expressed.  
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CHAPTER 6 

THE REGULATED EXPRESSION OF A SINGLE 

POLYSIALYLTRANSFERASE IMPACTS CARDIAC EXCITABILITY  

 

Sialic acid residues are the primary terminal residues and are added to the 

glycan structure through sialyltransferase activity.  Through polysialyltransferase 

activity, the level of sialylation is greatly increased.  Polysialyltransferase 

enzymes are responsible for addition of sialic acids to sialic acids creating long 

chains from 5 to 100 residues termed polysialic acid.  Expression of the 

polysialyltransferase, ST8 alpha-N-acetyl-neuraminide alpha-2,8-

sialyltransferase 2 (STX), is highly regulated in the developing myocardium.  As 

seen in chapter 4, STX is expressed at much higher levels in the neonatal atria 

compared to the neonatal ventricle, adult atria and ventricle where STX is 

essentially not expressed.  To ascertain whether a single enzyme whose 

expression is regulated may affect cardiac excitability, we recorded action 

potentials from control and STX knockout mice.   The results of these studies 

indicated that Nav function may be modified by the regulated expression of STX 

thereby altering atrial action potentials.  Here, we also question whether the 

regulated expression of a single sialyltransferase is sufficient to alter Nav gating. 
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The effects of sialic acid residues on the voltage dependence of voltage gated 

sodium channel (Nav) gating has been extensively studied 117,118,120,123.  Thus far, 

it has been determined that sialic acid residues modulate ion channels in an 

alpha (pore-forming) subunit manner and through the expression of the auxillary 

subunit, β1.  For Nav, the mechanism by which sialic acids modulate channel 

gating is through an apparent electrostatic attraction between the negative 

surface potential (to which the negatively charged sialic acid residues contribute) 

and the positively charged amino acids of the channel's voltage sensors 

117,118,120,123.  Stocker and Bennett determined that the sodium channel isoform 

expressed in neonatal ventricles was less-sialylated compared to the same 

sodium channel isoform in the neonatal atria, adult atria and ventricle indicating 

another possible mechanism for the cell to manipulate channel gating through 

changing the glycans attached to the proteins123.  In this study, we have identified 

large changes in glycogene expression and glycan structure; consistent with a 

global mechanism by which cardiac function is altered by a regulated glycome. 

 

The neonatal atrial action potential waveform is altered when STX is absent 

To question whether the regulated expression of a single sialyltransferase can 

alter cardiac excitability, action potential waveforms were recorded from neonatal 

atria and ventricles of control and STX knockout mice.  Proper voltage-gated 

sodium, potassium and calcium channels are essential to initiate and propagate 

the action potential in cardiomyocytes.  Neonatal atrial action potential recordings 

reveal a rate of depolarization (dV/dt) that is 65% slower in the knockout atria  
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Figure 6.1.  Expression of STX modifies neonatal atrial, but not ventricular AP 
waveform.  
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Figure 6.1.  Measured parameters of the action potential waveform.  Bar graphs 
of the mean +_ S.E.M.  (A) The rate of action potential depolarization.  (B) The 
maximum AP depolarization.  (C)  Representative action potential traces from 
STX control (red) and knockout (blue) atria. 

A. 

B. 

C. 
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compared to the littermate control atria (Figure 6.1).  The maximal depolarization 

of the knockout atria is also 30 mV less than the control atria as determined by 

peak amplitude (Figure 6.1).  These two measurements tend to be associated 

with the portions of the action potential produced by sodium currents and are 

consistent with how Nav dysfunction changes excitability with STX expression.  

That is, the lack of STX expression in the knockout would cause the channel to 

gate at more depolarized potentials.  These changes lead to a slower action 

potential depolarization rate.  Because the time to reach peak amplitude is 

increased in the absence of STX, a higher percentage of Kv may be active at the 

peak of the action potential.  Increased K+ currents during the rising phase of the 

action potential would offset Na+ currents and effectively decrease the peak 

amplitude.  No changes in action potential waveform were observed in ventricular 

myocytes; as expected since STX is not expressed in the ventricle.   

 

The voltage dependence of Nav gating changes only in the neonatal atria of 

the STX knockout. 

To determine whether the absence of a single sialyltransferase, STX, can modify 

Nav gating, Na+ currents were recorded from atrial and ventricular myocytes 

isolated from STX knockout mice and compared to littermate controls.  Neonatal 

tissues are ideal to elucidate whether STX can modulate Nav gating since STX is 

expressed several times more abundantly in the atria than in the ventricle and 

both tissues are isolated from the heart of the same animal.  The Nav Va and Vi 

measured in the knockout atrial myocyte were 7-9 mV more depolarized and  
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Figure 6.2.  STX causes a change in neonatal atrial Nav activation voltage, but 
not in ventricular Nav activation. 
 

 
 

 
 
Figure 6.2.  Conductance-voltage relationships for control and STX knockout 
atrial and ventricular Nav.  Data are the mean normalized peak conductance ± 
S.E.M.  Representative current traces are shown to the right.
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Figure 6.3.  STX causes a change in neonatal atrial Nav steady state inactivation, 
but not in ventricular Nav steady state inactivation. 
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Figure 6.3.  Steady-state availability curves for control and STX knockout atrial 
and ventricular Nav.  Data are the mean normalized current ± S.E.M. 
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Figure 6.4.  Absence of STX causes a slowing of the neonatal atrial Nav 
inactivation rate, but has no effect on the kinetics of ventricular Nav inactivation.    
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Figure 6.4.  Inactivation kinetics for control and STX knockout atrial and 
ventricular Nav.  Data are the mean time constant of inactivation ± S.E.M. 
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Figure 6.5.  Absence of STX increases the rate of recovery from fast inactivation 
for neonatal atrial Nav to rates similar to those measured for control and knockout 
ventricular Nav. 
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Figure 6.5.  Recovery from inactivation kinetics of for control and STX knockout 
atrial and ventricular Nav.  Data are the mean time constant of recovery from 
inactivation ± S.E.M.  Significance (p < 0.05) demarcated with an *. Lack of 
significance demarcated with an #. 
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Table 6.1.  Measured action potential and Nav parameters. 

 
Control 

Atria 
Knockout 

Atria 
Control 

Ventricle 
Knockout 
Ventricle 

dV/dt 
(normalized) 

1.00±0.12 0.35±0.03* 1.00±0.41 1.02±0.28# 

Maximal 
Depolarization 
(mV) 

137.2±4.8 111.9±7.5* 125.6±10.7 127.6±10.2# 

Nav Va (mV) -55.6±1.7 -48.3±1.1* -53.8±3.2 -50.7±1.3# 

Nav Vi (mV) -105.1±1.2 -96.7±1.4* -92.9±3.5 -90.0±1.2# 

Nav τh (ms) 1.73±0.17 2.93±0.37* 2.85±0.29 2.48±0.24# 

Nav τrec (ms) 9.47±0.57 6.71±0.68* 6.29±0.33 6.90±0.80# 

 
Table 6.1.  The measured action potential and Nav gating parameters measured 
for control and STX knockout cardiomyocyte Nav.  The data are the mean 
parameter values ± S.E.M.  τh data were measured at -50 mV and τrec data were 
measured at -120 mV.  Significance was determined using a two-tailed Student’s 
t test comparing control atria and ventricles to STX knockout atria and ventricles, 
respectively.  Significance (p<0.04) demarcated with an *. Lack of significance 
demarcated with an #. 
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control atrial Va and Vi (figures 6.2 and 6.3).  No significant difference in 

ventricular Nav steady state gating was observed (figures 6.2 and 6.3).  The Nav 

kinetic gating properties are again consistent with the steady state parameters.  

That is, no shift in neonatal ventricular Nav gating kinetics were observed, but 

neonatal atrial Nav kinetics were shifted in the depolarized direction in the 

absence of STX (Figures 6.4 and 6.5).  Collectively, these data reveal the 

impact of a single glycogene on Nav function. 

 

Discussion 

Alterations of the measured action potential properties are consistent with the 

changes measured in Nav gating in the neonatal atria.  Shifting the Va to more 

depolarized potentials require a greater depolarization to elicit an action potential. 

Thus, there is a higher proportion of Nav that are closed as the membrane 

depolarizes which leads to the slower rate of depolarization (dV/dt) observed.  

Further, the activation of some Kv channels would cause both a slower rate of 

depolarization and a smaller maximal depolarization as the outward delayed 

rectifier K+ current would counteract membrane depolarization by the inward Na+ 

current.  Finally, the more depolarized Vi would cause Nav to inactivate possibly 

before maximal depolarization; therefore, decreasing Na+ current and reducing 

the rate of depolarization and maximal depolarization.   

 

The glycome is remodeled between the neonatal atria and ventricle as shown in 

the two previous chapters.  Here, we showed that the changing glycome may 
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alter cardiac excitability by modulating action potential waveforms and Nav 

function.  These data are consistent with our recent study in neonatal rats which 

revealed a sialic acid dependent shift in Nav gating parameters in the neonatal 

atrial myocytes but no shift in ventricular Nav gating123.  Nav of control neonatal 

atria which expresses STX at relatively high levels, gate at a hyperpolarized 

potential compared Nav gating observed in the STX knockout atrial myocytes.  

Consistent with the Nav data, AP waveform parameters are altered between the 

control and knockout STX atrial cardiomyocytes while ventricular myocytes 

action potentials show no significant change with STX expression.   

 

The slower rates of depolarization and lower peak amplitude seen in the STX 

knockout atria compared to the control atria are consistent with another study in 

which cardiomyocyte glycosylation was altered73.  This study indicated a role for 

glycosylation in heart failure as studied in a mouse model in which the muscle 

LIM protein (MLP) is absent.  MLP is not associated with glycosylation, yet 

cardiomyocytes are under-glycosylated compared to control.  MLP knockout and 

neuraminidase-treated myocytes show altered action potential parameters as 

mentioned above as well as shifts in the voltage-dependence of gating 

comparable with those currents recorded here.   

 

Together, Nav and action potential data reveal that changing the expression of a 

single glycogene can significantly modify cardiac excitability.  For this study, we 

observed the impact of the regulated expression of STX on cardiac excitability, 
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yet this is only one of the >100 glycogenes that are differentially expressed in the 

developing heart.  If a single enzyme can have this impact on cardiac excitability, 

the potential of a remodeled glycome on cardiac function is likely substantial.   
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CHAPTER 7 

FINAL DISCUSSION 

  

This study describes two mechanisms by which Nav function and cardiomyocyte 

excitability can be modulated through differential glycosylation.  The first 

mechanism, the protein-isoform specific mechanism, indicates that the cell can 

express combinations of protein isoforms that have similar functions, but are 

differently glycosylated.  This differential glycosylation affects channel function 

and thereby alters the action potential waveform.  The second mechanism, the 

cell-specific glycosylation mechanism, describes how the change in glycan 

structure through regulation of glycogene expression in a cell-specific manner. 

 

The first portion of this project focused on Nav and the manner in which alpha 

subunit function can be modified by the β1 isoform.  Different combinations of α 

and β subunits will likely function differently than other combinations giving the 

cell the ability to slightly alter Nav function.  Ten α and four β Nav isoforms have 

been identified and, as shown in chapter 3, β1 modulated each α subunit function 

differently.  

  

 Nav alpha subunits show isoform-specific sensitivity to negatively charged sialic 

acid residues.  When expressed in the CHO cell line, no significant shift in the 
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voltage dependence of Nav1.2 and Nav1.7 gating was observed in this study.  

Previously, Nav1.5 was shown to be sialic acid insensitive; whereas, Nav1.4 is 

sensitive to sialic acids attached to the alpha subunit.  Interestingly, the β1 

subunit modifies the voltage dependence of Nav gating in a subunit specific 

manner.  Three of the less-glycosylated Nav α isoforms tested were modulated 

by β1 sialic acids, yet Nav1.4 was insensitive to any effect of β1 in the CHO cell 

expression system.  Furthermore, when the less-glycosylated Nav1.4 chimera 

was co-expressed with β1, it became sensitive to β1 modulation.  Together, these 

data indicate that alpha and/or β1 sialylation modulates Nav gating in a saturating 

manner. 

  

The modulation of Nav gating by β1 was abolished when co-expressed in the 

non-sialylating Lec2 cell line; likewise, β1 was unable to modulate gating of any 

alpha subunit isoform when the β1 N-glycosylation sites were mutated.  Thus, the 

effect of β1 can be attributed entirely to the glycans attached.  We conclude that 

β1 modulated Nav gating in a sialic acid dependent, saturating manner. 

  

With each alpha subunit having a unique glycosylation signature, changing which 

alpha subunit is expressed could result in a sialic acid dependent shift in channel 

voltage dependence.  Four beta subunits likely modulate alpha subunit gating 

through various mechanisms - as we have shown here, β1 modulates gating 

through glycosylation, but the three remaining beta isoforms may alter channel 

gating through other, glycosylation dependent or independent mechanisms.  A 
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recent report described this exact effect with the β2 subunit.  Johnson and 

Bennett reported that β2 caused a sialic acid dependent hyperpolarizing shift in 

Nav1.5 gating while β2 caused a sialic acid independent depolarizing shift in the 

voltage dependence of Nav1.2 gating121.  Co-expression of both β1 and β2 with 

each α subunit revealed an additive effect.  Nav1.5.β1
.β2 produced a larger 

hyperpolarizing shift in gating; whereas, Nav1.2.β1
.β2 gated like Nav1.2 alone.   

These differences in the manner in which β1 and β2 impact α subunit gating 

indicates that expression of various combinations of alpha and beta subunits 

would create an array of voltages at which the channel gates. 

  

In vivo, Nav alpha and beta isoform expression may be up- or down-regulated in 

response to development or pathologies, and this could result in a sialic acid 

dependent change in the voltage dependence of Nav gating.  Theoretically, Nav 

gating can be modulated in hundreds of ways through unique combinations of 

differently glycosylated alpha and beta subunits.  Nav1.5 is the primary Nav 

isoform expressed in both chambers of the developing heart.  However, in the 

developing skeletal muscle, the Nav α isoform changes from Nav1.5 in the 

neonate to Nav 1.4 in the adult183-185.  The adult skeletal muscle isoform is heavily 

glycosylated compared to the neonatal isoform 117,118.  As previously reported, 

the Nav1.4 gating is sialic acid sensitive while Nav1.5 is insensitive to sialic acid 

modulation when expressed in CHO cells118.  β1 is developmentally regulated in 

the rodent heart where it is highly expressed in the adult ventricle, but expressed 

at much lower levels in the neonatal atria and ventricle and adult atria123.  
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Expression of various combinations of α and auxillary subunits may create a 

spectrum of channel gating parameters that are glycosylation dependent; thus, 

supporting the relevance of the protein-specific mechanism by which Nav function 

is modulated. 

 

As described, the second mechanism studied here questioned whether cell 

specific change in glycogene expression and the corresponding changes in 

glycan structure are relevant to Nav gating.  Glycogene expression varies 

widely between cardiac chambers and through development with over 46% of 

glycosylation-associated genes differentially expressed.  Comparison of neonatal 

and adult ventricular myocyte glycogene expression showed the highest 

proportion of differential expression at 43.2% while the neonatal and adult atria 

showed the lowest at 19.4%.  Corresponding to these changes in glycogene 

expression, we report large changes in N-glycan structures throughout the 

developing myocardium.   

  

Mass spectrometry of the cardiomyocyte glycans throughout development 

showed major differences in glycan structure between each myocyte comparison 

group.  All groups had similar ratios of high mannose structures.  However, there 

was marked variation throughout the developing myocardium in the more 

complex structures above 2400 m/z.  The adult atria had the highest proportion 

of complex N-glycans of any myocyte type (mass ranges of 2400-3050 and 

3050-5000 m/z).  Neonatal atria and adult ventricle had comparable levels of N-
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glycans in the 3050-5000 m/z and were the lowest relative levels of the four 

tissues studied.  In addition, the structures of these glycans varied among 

myocyte types, with each tissue having at least one unique glycan.  Observations 

derived from these data support a second mechanism by which glycosylation 

might impact cardiac function, through cell-specific regulation of glycosylation.  

That is, the GeneChip and glycan screening data indicate that the glycome is 

remodeled throughout the myocardium and during development. 

  

These studies have led to a proposed model that predicts that gating of Nav is 

modulated by glycans through two mechanisms (Figure 7.1).  The left panel 

describes the "protein isoform-mediated" mechanism which is controlled at the 

transcriptional level where alpha and beta subunit isoforms are expressed.  Each 

alpha subunit has a unique glycosylation signature creating currents unique to 

the combination of alpha and beta isoforms.  

  

The right panel shows the model for the "cell-specific glycosylation" mechanism 

of modulation.  Here, the glycogene profile determines the glycan structures 

present and how sodium currents are modulated by the remodeled glycome.  

The neonatal and adult atria and ventricles express the same Nav α subunit 

isoform yet apparently have unique glycan structures which cause the channels 

to gate differently.  Tight control of glycogene expression is essential for cells to 

consistently produce appropriate glycans for that cell's particular function.  Minor 

changes in glycogene expression may alter glycan structure and therefore  
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Figure 1.  Model proposing glycosylation-dependent control and modulation of 
Nav gating. 
 

 
 
Figure 1.  This model describes two mechanisms by which a cell can modulate 
Nav gating.  The protein-specific (left panel) and the cell-specific glycosylation 
(right panel) mechanisms together create a spectrum of possible channel gating 
motifs (bottom panel).   
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change the manner in which glycans mediate cell adhesion, self vs. non-self 

recognition, molecular trafficking, receptor activation and even modulate cellular 

excitability.  We find here that slight changes in glycan structure, specifically 

changing sialic acid levels, could alter sodium channel function (as characterized 

by the G-V curves shown in figure 6.1).  Hundreds of possible sodium channel G- 

V curves would result following these slight changes in glycan composition.  

Combination of these two mechanisms would create a spectrum of Nav that gate 

at various voltages. 

 

Although both mechanisms describe means by which sodium channel function 

may be modified, there may be examples in which one of the two mechanisms is 

dominant.  In the dorsal root ganglion (DRG), there is an apparent change in the 

level of glycosylation  of Nav 1.9 through development186.  The DRG expression 

of Nav1.9 does not change, yet the level of glycosylation is greater in the neonate 

compared to adult.  This study also showed a functional impact of glycosylation 

on Nav gating with approximately a 7 mV depolarizing shift in Vi in the adult 

compared to neonate.  When treated with neuraminidase (an enzyme that 

removes sialic acid residues), this voltage shift was abolished.  Unlike other 

studies, no effects on activation were identified, indicating that glycosylation may 

impact gating of Nav in an isoform dependent manner. 

  

In this study we showed that a single polysialyltransferase, STX, is expressed 

essentially only in the neonatal atria.  In the absence of STX, both Nav function 
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and action potential parameters were altered in neonatal atrial myocytes.  No 

modulation of Nav gating or action potential waveform was observed in neonatal 

ventricular myocytes; consistent with the fact that STX is not expressed in the 

ventricle.  In wild type atrial myocytes, STX must be important for proper 

excitability and other possible processes not studied here.  This further supports 

the model presented above that slight alterations in glycosylation may alter 

channel function in a cell-specific manner since the same Nav α subunit is 

expressed in the neonatal atria and ventricles.   

 

Changing the expression of a single glycogene can have dramatic effects upon 

cellular excitability as shown with STX in the neonatal atria.  Therefore, if one of 

more than 100 regulated glycogenes can alter cardiac excitability, the potential 

impact of the remodeled glycome on cardiac function is considerable; not only on 

cardiac excitability, but on a range of cardiac processes. 

 

Significance of this study 

The broad role of glycans in normal and pathophysiological processes demands 

tight control of glycans present on cell surfaces that may differ from cell to cell 

and from tissue to tissue.  Glycans are essential to regulate protein folding, cell 

adhesion, molecular trafficking and clearance, receptor activation, endocytosis 

and signal transduction.  Furthermore, glycans determine blood type and 

immunity.     
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Through understanding differential glycosylation of cells and tissues, we better 

understand normal function and the dysfunction associated with 

pathophysiological conditions.  Drug side effects are a result of the drug 

disrupting the normal physiological process in a system not associated with the 

target system88,89.  Improving the effectiveness of a drug and preventing side 

effects is a main goal in therapeutic research.  Targeting glycans may allow 

researchers to obtain this goal.  Because each tissue expresses a unique 

population of glycans, therapeutics can be developed that use glycans to target 

specific tissues for drug delivery.   

 

Altered glycans are a hallmark of the tumor phenotype.  Cancer cells over- and 

under- express naturally occurring glycans and expression of glycans restricted 

to embryonic tissues 88.  Furthermore, if the embryonic glycan forms could be 

modified to elicit an immune response to the tumor, a side-effect free, effective 

cancer therapeutic would be developed. 

  

Cardiac arrhythmias are associated with various ion channel maladies.  Several 

reports indicate point mutations of Nav1.5 cause aberrant inactivation leading to a 

persistent sodium current which can lead to LQTS by creating inward sodium 

current in phase 2 of the cardiac action potential 129,171.  Persistent sodium 

current would counteract the outward rectifying K+ current, extending the phase 

2 of the cardiac action potential and the QT segment of ECG.  By shifting the Va 

to more hyperpolarized potentials, Nav will open following lesser depolarizations, 
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thus limiting extension of phase 2 and LQTS.  Although new methods of 

modifying glycans are currently under investigation, several methods may be 

used to modify sodium channel function including gene therapy which may 

involve either mechanism explained above.  First, glycosyltransferase DNA could 

be delivered to the cell which could directly increase sialylation (via STX for 

example) or increase glycan branching and overall sialylation.  Second, auxiliary 

subunits may be expressed to modify Nav function.   

  

The goal of this work was to identify and explain a model by which glycans can 

modulate activity of proteins (specifically Nav) and how this may influence cardiac 

excitability.  Furthermore, we explained the vast changes in glycogene 

expression and glycan structures that occur throughout the developing 

myocardium and how the regulated expression of a single polysialyltransferase 

modulates cardiac excitability.  Pathological and stressor mediated (i.e. cigarette 

smoke) studies in all organ systems might be studied in a similar manner to 

better understand the changes in the glycome and excitability that these 

conditions induce.  Through further research and development of glycan focused 

and glycan mediated therapeutics, maladies caused by or marked by changes in 

glycan structures may be treated.   
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