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Post-translational modi�cations of DNA and histones are epigenetic mechanisms, which 

affect the chromatin structure, ultimately leading to gene expression changes. A number 

of different epigenetic enzymes are actively involved in the addition or the removal of 

various covalent modi�cations, which include acetylation, methylation, phosphorylation, 

ubiquitination, and sumoylation. Deregulation of these processes is a hallmark of can-

cer. For instance, G9a, a histone methyltransferase responsible for histone H3 lysine 

9 (H3K9) mono- and dimethylation, has been observed to be upregulated in different 

types of cancer and its overexpression has been associated with poor prognosis. Key 

roles played by these enzymes in various diseases have led to the hypothesis that these 

molecules represent valuable targets for future therapies. Several small molecule inhibi-

tors have been developed to speci�cally block the epigenetic activity of these enzymes, 

representing promising therapeutic tools in the treatment of human malignancies, such 

as cancer. In this review, the role of one of these epigenetic enzymes, G9a, is discussed, 

focusing on its functional role in regulating gene expression as well as its implications in 

cancer initiation and progression. We also discuss important �ndings from recent studies 

using epigenetic inhibitors in cell systems in vitro as well as experimental tumor growth 

and metastasis assays in vivo.

Keywords: histone methylation, epigenetic regulation, cancer, G9a, tumor growth, metastasis

Introduction

Cancer is a heterogeneous disease, commonly believed to solely arise from the acquisition of 
genetic mutations, leading to a loss of functionality of genes that prevent uncontrolled cell growth 
(tumor suppressor genes), as well as to a deregulated activity of genes that promote proliferation 
(oncogenes). However, for a cell, it is not only important to possess functional genes, but it is also 
fundamental to express them appropriately to maintain a normal phenotype. Processes that regulate 
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methyltransferase; LSD1, lysine-speci�c demethylase 1; RNAi, RNA interfering; SET, Su(var) 3-9, enhancer of zeste (Ez) and 
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gene expression include epigenetic mechanisms such as DNA and 
histone modi�cations, which have been found to be o�en deregu-
lated in di�erent types of cancer. Di�erent epigenetic modifying 
enzymes can actively promote or remove modi�cations directly 
on the DNA or on speci�c residues on histone tails, regulating 
various chromatin-related processes (1–3).

�e term “epigenetic” was initially introduced by Conrad 
Waddington in 1940, de�ning it as the branch of biology studying 
the interactions between genes and their products (4). In time, 
the de�nition has narrowed and it is nowadays used to identify 
heritable and long-term changes in gene expression that do not 
necessarily involve mutations in DNA sequences (1).

DNA is packaged into chromatin by histones forming 
nucleosomes. �e nucleosome is organized around an octamer 
composed of two molecules of each histone protein, H2A, H2B, 
H3, and H4, with 145 base pairs of DNA wrapped around it (5). 
Histones are essential proteins characterized by a globular car-
boxy-terminal domain and a protruding, lysine rich, N-terminal 
tail. �e N-terminal tails of histones are subject to reversible 
covalent modi�cations, which ultimately a�ect gene expression. 
Histones can be modi�ed by an array of post-translational modi-
�cations including acetylation, methylation, phosphorylation, 
ubiquitination, and sumoylation (6). �ese modi�cations regulate 
the ability of transcription factors to access the underlying DNA 
by modifying histone a�nity for its negatively charged sugar 
backbone, representing a fundamental regulatory mechanism, 
which is able to impact transcription (Figure 1), replication, and 
chromatin stability (7, 8).

Histone Modi�cations

Acetylation
Acetylation refers to the addition of an acetyl group at lysine resi-
dues in the N-terminal tails of histones. �e e�ect is to neutralize 
the positive charge of the histone tails, hence promoting the 
opening of DNA and increasing its accessibility to transcription 
factors (Figure 1, active nucleosome) (9, 10). Histone acetylation 

is regulated by two classes of enzymes, histone acetyltransferases 
(HATs) and deacetylases (HDACs). Di�erent proteins, which 
display this intrinsic activity are components of the RNA poly-
merase II complex or proteins that associate with transcription 
factors (11).

Phosphorylation
Like other proteins, histones are phosphorylated by kinases and 
are involved in the DNA damage repair mechanism, chromatin 
compaction, and transcriptional regulation (12). DNA damage 
repair has been associated with phosphorylation at serine 139 
(S139) on H2. In yeast, it has been shown that this residue is phos-
phorylated following DNA damage. �is modi�cation spreads for 
several kilobases on each side of the break on the DNA and it is 
thought to recruit DNA damage repair factors, such as the media-
tor of DNA damage checkpoint protein 1 (MDC1), promoting 
the recruitment of DNA repair proteins at the site of the damage 
(13–15). On the other hand, phosphorylation of H3 in mammals 
was shown to be necessary for chromatin compaction, promoting 
proper chromosomal condensation, and segregation. Moreover, 
studies have demonstrated that H3 phosphorylation is also able 
to a�ect gene expression, inducing transcription, through a 
crosstalk between other types of histone modi�cations (acetyla-
tion and methylation) (16, 17). Recently, many kinases thought 
to have only cytoplasmic function were shown to phosphorylate 
histones in the nucleus to a�ect gene expression (18, 19).

Ubiquitination and Sumoylation
Histones undergo ubiquitination, however, unlike many other 
proteins; ubiquitination of histones does not lead to proteasomal 
degradation. Ubiquitin rather acts as a signaling molecule and 
either its addition or removal from histones can be associated with 
transcriptional activation. Cross-talk between ubiquitination and 
methylation has been observed, suggesting that ubiquitination 
and deubiquitination-related e�ects are mainly mediated by 
in�uencing the histone methylation status (20). Small ubiquitin-
related modi�er (SUMO) is a family of ubiquitin-like proteins, 
generally involved in post-translational modi�cations. SUMO 
proteins resemble ubiquitin both in their structure and in their 
ligation mechanism, but their addition to histones leads to di�er-
ent consequences in respect to ubiquitination. In fact, sumoyla-
tion has been associated with transcriptional repression (6, 21). 
It has also been shown recently that sumoylation decreases the 
a�nity between two adjacent nucleosomes, suggesting that this 
modi�cation might in�uence gene expression without involving 
chromatin compaction (22).

Histone Methylation
Histone methylation, similar to DNA methylation, has been 
generally associated with gene repression (23). However, it is 
known that several lysine methylation patterns can also charac-
terize active genes, such as tri-methylated H3K4 or H3K9 mono-
methylation (24, 25). Histones are methylated by several histone 
methyltransferases (HMTs) and methylation is actively removed 
by histone demethylases (HDMs). �e functional role of histone 
methylation and its implications in cancer will be discussed in 
detail in the next section.

FIGURE 1 | Histone modi�cations in�uence chromatin structure and 

activity. Histone tail modi�cations lead to a change in histone af�nity for the 

DNA, causing the chromatin to shift between an open (active) and a closed 

(suppressive) state. An example of a repressive mark is H3K9 methylation, 

while activation marks correspond to acetylation and H3K4 methylation 

[adapted from Biran et al. (7)].
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Methylation of histone tails occurs at either lysine or arginine 
residues, on histones H3 and H4, and, although normally associ-
ated with gene silencing, speci�c methylation sites are known 
to correlate with active promoters (26–28). For instance, meth-
ylation of histones H3K4, H3K36, and H3K79 is associated with 
gene activation (28, 29), while methylation on H3K9 or H3K27 
residues associates with transcriptional repression. On histone 
H4, K20 methylation is a known mark of gene silencing (27, 28). 
Similarly to lysine methylation, arginine methylation has been 
linked to both gene activation (H3R17) and repression (H3R2, 
H4R3) (30–32).

Lysines can be mono-, di- and trimethylated, whereas arginines 
can only be mono- or dimethylated. �e fact that gene expression 
was regulated by methylation has been known previously; the 
discovery of HMT, SUV39H1, has facilitated the understanding 
of histone methylation and gene expression (33, 34). SUV39H1, 
also known as KMT1A, is a lysine methyltransferase, conserved 
from yeast to human, and is a homolog of the Drosophila 
methyltransferase Su(var) 3-9 (33). KMT1A is characterized by 
the presence of a SET domain, which is a 130 amino acid long 
catalytic domain, initially found to be conserved in Su(var) 3-9, 
Enhancer of zeste (Ez) and trithorax (27). Other lysine methyl-
transferases have been identi�ed by homology to this domain, 
and altogether form the larger family of lysine methyltransferases 
(KMTs). Protein arginine methyltransferases (PRMTs), on the 
other hand, catalyze the transfer of methyl groups on arginine 
residues. Several arginine methyltransferases have been shown 
to methylate histone and non-histones to a�ect gene expression 
in various contexts (28, 35).

Methylation at di�erent histone residues are associated with 
either repressive or active chromatin states (36). For instance, 
while H3K9 di- and trimethylation are transcriptional repressive 
marks, H3K9 mono-methylation has been observed to charac-
terize active promoters (25). It appears that the cells are able to 
respond to di�erent histone modi�cations through various chro-
matin-associated proteins, which target speci�c modi�cations on 
histone residues, such as the repressive heterochromatin protein 
1 (HP1), leading to di�erent expression patterns. HP1 binds to 
methyl groups on histone H3K9 for gene repression (37). On the 
other hand, other factors, such as the transcriptional activator 
WDR5 promote gene activation. WDR5 recognizes methylated 
H3K4, a modi�cation associated with active promoters (38).

Antagonists of HMTs are enzymes, which remove the methyl 
mark from histones, known as HDMs. �e �rst identi�ed was 
peptidylarginine deiminase 4 (PADI4), which reversed arginine 
methylation (39). Lysine demethylation is instead carried out by 
lysine-speci�c demethylase 1 (LSD1) and the next large class of 
enzymes identi�ed was the Jumonji C (JmjC) domain containing 
demethylases (15, 40). While LSD1 can only remove mono- and 
dimethyl modi�cations, JmjC domain-containing enzymes were 
shown to remove all three methylation marks (15).

Histone methylation plays key roles in di�erent processes other 
than gene expression regulation, such as imprinting and chromo-
some stability (41). Being an important regulatory mechanism of 
gene expression, it is not surprising that its deregulation has been 
implicated in various types of cancer, such as breast, prostate, 
lung, and brain. Moreover, patterns of histone methylation have 

been found to be severely altered in cancer cells, and this can 
involve both a gain and a loss of histone methylation (42).

Crosstalk in Histone Modi�cations
As discussed earlier, histones can be modi�ed by various pro-
cesses, ultimately leading to di�erent patterns of gene expression. 
An addition of complexity to this already complex system is 
brought about by the fact that certain residues may accept multiple 
modi�cations. For instance, lysine residue (K) can be targeted for 
distinct modi�cations such as acetylation, methylation, ubiquit-
ination, or sumoylation and can harbor one, two, or three methyl 
residues. Moreover, speci�c histone modi�cations were shown to 
promote the generation or the loss of other modi�cations, dem-
onstrating the existence of a crosstalk between them. Following 
this evidence, it is thought that the particular combination of 
N-terminal modi�cations results in speci�c signals which the 
cell is able to interpret as a readable code, known as the “histone 
code” (43, 44).

A �rst example of histone crosstalk is shown by the relation-
ship between H3S10 phosphorylation and H3K14 acetylation 
(Figure  2). It has been observed that phosphorylation of this 
serine residue induces the HAT Gcn5 to acetylate K14 on H3. 
H3S10 phosphorylation was also demonstrated to inhibit H3K9 
modi�cations (45). Other studies have also demonstrated the 
requirement of H2BK123 monoubiquitination for H3K4 and 
H3K79 methylation. Speci�cally, H2BK123 ubiquitination is dis-
pensable for monomethylation of the other two residues, but it is 
necessary for their di- and trimethylation (46). In addition, it has 
been shown that a point mutation in H3K14 results in a speci�c 
loss of H3K4 trimethylation, but not mono and dimethylation. As 
H3K14 is a known acetylation site, thus revealing its requirement 
for H3K4 trimethylation (47).

A number of di�erent types of crosstalk are present in the 
cellular context, involving di�erent combinations of histone 
modi�cations, and these can occur at various regions across the 
genome. Understanding the complex language of histones is the 
key in comprehending the events which regulate gene expression.

Functional Role of G9a in Regulating Gene 
Expression

G9a as a Histone Methyltransferase
G9a is a nuclear histone lysine methyltransferase (HMT) belong-
ing to the Su(var)3-9 family, which mainly catalyzes histone H3 
lysine 9 mono- and dimethylation, a reversible modi�cation gen-
erally associated with transcriptional gene silencing. Structurally, 
it is composed of a catalytic SET domain, a domain containing 
ankyrin repeats (involved in protein–protein interactions) and 
nuclear localization signals on the N-terminal region (Figure 3) 
(47–50). G9a SET domain is responsible for the addition of methyl 
groups on H3, whereas the ankyrin repeats have been observed 
to represent mono- and dimethyl lysine binding regions. G9a is 
thus not only able to both methylate histone tails but also able 
to recognize this modi�cation, functioning as a sca�old for the 
recruitment of other target molecules on the chromatin (46).

A G9a-like protein (GLP) has also been identi�ed, which 
actively interacts with G9a, forming a heterodimeric complex. 
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FIGURE 3 | G9a structure. G9a structural organization characterized by an automethylation site at its N-terminal end, ankyrin repeats which recognize mono and 

dimethylated histone H3K9 and by a catalytic SET domain, responsible for the enzymatic activity [adapted from Collins et al. (50)].

FIGURE 2 | The histone code. A core histone showing modi�cations on two different histone tails (H2B and H3). Different histone modi�cations can positively or 

negatively in�uence the generation of others, mediating a complex crosstalk in�uencing gene expression. Arrowheads indicate positive effects while �at heads 

indicate negative effects. Dotted arrows display different enzymes, their function and site of action [adapted from Bannister et al. (43)].
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It has been shown that the heteromeric structure is the predomi-
nant form, as well as the active state, of the methyltransferase 
in  vivo (51). However, recent studies have also demonstrated 
that while the heterodimer seems to be required for G9a–GLP 
methyltransferase activity, the enzymatic activity of G9a is more 
important for the in  vivo function of the complex (23). �e 
complex is responsible for methylating H3K9, a mark which is 
recognized by the heterochromatin protein 1 (HP1), leading to 
transcriptional silencing (52).

�e genetic manipulation of G9a in mice has yielded G9a-
de�cient embryonic stem (ES) cells allowing studies determining 
the functional role of G9a in development. G9a-de�cient cells 
were characterized by a loss of global methylation of chromatin, 
but not at heterochromatic regions. While HMT activity can 
generally be correlated with both heterochromatin organization 
and euchromatin, this result demonstrated that G9a is a unique 
enzyme that can speci�cally associate with euchromatin and, 
thus, involved in the repression of active promoters (51, 53, 54). 

Its repressive activity was revealed to be fundamental in embryo-
genesis in mice. G9a depletion resulted in embryonic lethality 
with severe di�erentiation defects in ES cells, demonstrating 
that G9a is essential for the repression of developmental genes 
and that it is required during development (55). Moreover, G9a 
was also found to be involved in the acquisition of cell speci�ca-
tion, as a necessary factor for the inhibition of the Oct-3/4, a 
homeobox gene important for the maintenance of pluripotency 
(56). In the silencing of Oct-3/4, G9a histone methylation activity 
synergizes with DNA methylation, to induce a long term repres-
sion of the gene. Following G9a-mediated histone methylation, 
HP1 is recruited to the methylated site, preventing transcrip-
tion. A DNA methyltransferase, DNMT1, is then recruited at 
the site, promoting methylation of nearby sites on the DNA, 
reinforcing the inhibitory signal (56). �is demonstrates that 
histone methylation and DNA methylation, although carried 
out by di�erent enzymes, possess a close biological relationship, 
cooperatively mediating gene repression through a system which 
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could be de�ned as a “double lock” (1). Moreover, G9a was also 
reported to represent a negative regulator of pathogenic T-cell 
di�erentiation as G9a depleted T-cells were shown to possess 
an increased sensitivity to TGF-β1, promoting naive T-cell dif-
ferentiation in pathogenic T-cells, �17 and Treg, in the absence 
of intestinal in�ammation (57). �is essentially demonstrated 
that G9a expression is a key factor in the maintenance of T-cell 
homeostasis. G9a has also been shown to be involved in the 
T-cell di�erentiation process. CD4+ T-cells, for instance, fail to 
di�erentiate into �2 cells both in vitro and in vivo in the absence 
of G9a. Mice carrying a T-cell-speci�c G9a deletion could not 
develop �2 cells in response to infection in the absence of 
interferon-γ (IFN-γ). In addition, CD4+ T-cells from wild type 
mice, when stimulated under normal, �1 and �2 conditions, 
were characterized by an increased expression of IL-17A a�er 
pharmacologic inhibition of G9a (58). Precursor lymphocytes 
are known to undergo a unique re-arrangement of the genes 
that encode di�erent antigen receptors of B and T lymphocytes, 
through a process called V(D)J recombination, mediating the 
assembly of immunoglobulin (Ig) and T-cell receptor (TCR). 
In this context, G9a recruitment inhibits transcription and 
recombination of adjacent gene segments, inducing gene silenc-
ing and promoting DNA hypermethylation (59). However, G9a 
inhibition has been shown to not a�ect lymphocyte development 
and V(D)J recombination, only displaying a slight impairment 
in the usage of Igγ L chains (60). �is could be explained by the 
fact that DNA methylation and histone methylation cooperate, 
and the silencing of only G9a does not completely block DNA 
methylation and gene repression.

In mammalian cell lines, G9a activity has been observed to 
increase under hypoxic conditions through protein accumula-
tion. �is increase was correlated with a concomitant increase 
in the global levels of histone H3K9 di-methylation, which in 
turn resulted in gene silencing, providing evidence for a critical 
function of G9a in the repression of genes in response to hypoxia 
(Figure 4) (61, 62). �e ability of G9a to actively repress genes in 
hypoxic conditions suggests a key role in the promotion of cell 
survival under this condition. In solid tumors, where hypoxia is a 
common micro-environmental state, G9a might be functioning 
as a factor that enhances survival, proliferation, and metastasis of 
malignant cells.

Non-Histone Targets of G9a
Apart from histones, G9a has also been found to methylate other 
proteins. While the implications of this mechanism are not fully 
understood, it is clear that G9a may exert important functions 
through this pathway. It is known that non-histonic methylation 
by G9a can have either a repressive or an activator e�ect on gene 
expression. For instance, during hypoxia, Reptin, a chromatin-
remodeling factor, was found to be methylated at K67 by G9a. 
�is induced Reptin to recruit HDAC1 to hypoxia-responsive 
gene promoters attenuating the transcriptional activity of HIF-1α 
(63). In contrast, under similar conditions, G9a can also methyl-
ate another chromatin-remodeling factor, Pontin, enhancing 
the transcriptional activity of HIF-1α by recruiting p300/CBP 
to a subset of hypoxia-responsive genes (64). �ese results not 
only demonstrate the activity of G9a toward non-histones but 

also strengthen the evidence for its importance in mediating the 
hypoxia-response.

Another G9a non-histone target is the tumor suppressor p53, 
a sequence-speci�c transcription factor, known to be mutated 
in a substantial proportion of human tumors. Transcriptional 
activation and repression of p53 was observed to be mediated 
through various mechanisms, including protein methylation. 
G9a is indeed responsible for p53 methylation at lysine 373, and 
this form of the transcription factor was observed to be inactive 
(65). During skeletal muscle di�erentiation, myogenic regula-
tory factors such as MyoD play a key role. �is factor regulates 
gene expression and it is one of the genes responsible for skeletal 
muscle development. G9a is able to regulate MyoD activity by 
speci�cally methylating K104. Methylated MyoD is inactive, 
while the methylation-defective mutants were able to actively 
promote di�erentiation (66).

�ere are several other proteins identi�ed to be G9a targets 
including CDYL1, WIZ, and ACINUS (67). Methylation of 
CDYL1 was found to alter its chromodomain binding to H3K9me3 
suggesting that it may regulate the activity of chromatin factors 
and interaction. Interestingly, G9a was also observed to undergo 
automethylation. G9a is automethylated at K239, facilitating the 
binding of HP1 at the methylated site (68). While its biological 
signi�cance remains elusive, it is possible that this process is 
required for the recruitment of other factors. In fact, it is known 
that HP1 actively interacts with DNMT1 and that the recruitment 
of these factors, together with G9a, coincides with gene silencing 
(69). DNMT1 itself was also observed to be methylated by another 
HMT, SET-7, speci�cally at K142. During the S and G2 phase 
of the cell cycle, the amount of methylated DNMT1 increases, 
leading to its degradation (70). �ese observations increase the 
evidence for the existence of a tight crosstalk between DNA and 
histone modi�cations, demonstrating that one can have a strong 
in�uence in the regulation of the other.

G9a in Cancer

Deregulated Levels of G9a in Various Tumor Types
While cancer has commonly been considered as a disease, which 
mainly arises from the accumulation of genetic mutations, it 
is now understood that alterations in the modi�cation of both 
DNA and histones (the epigenome) contribute to the initiation 
and progression of cancer. In fact, cancer cells are characterized 
by clear epigenetic misregulations, which have been observed in 
a variety of cancers, including breast, lung, head and neck, brain, 
and ovarian carcinoma (2, 71–75). In this topic, G9a has attracted 
particular attention for its role in the promotion of tumorigenesis.

It has been observed that G9a is overexpressed in a number of 
cancers, including esophageal squamous cell carcinoma, hepato-
cellular carcinoma, aggressive lung cancer, brain cancer, multiple 
myeloma, and aggressive ovarian carcinoma (Figure 5) (76–79). 
Higher G9a expression levels were also noted to be associated with 
poor prognosis (2, 65, 74, 79). Elevated G9a levels were commonly 
correlated with higher methylation levels, leading to the suppres-
sion of important tumor suppressor genes. In breast cancer, the 
metastasis suppressor genes desmocollin 3 (DSC3) and MASPIN, 
for instance, were reported to be frequently silenced by an 
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FIGURE 4 | G9a in hypoxia. G9a activity is enhanced under hypoxic conditions, leading to the repression of a speci�c subset of hypoxia-responsive genes. 

Under similar conditions, G9a can also methylate non-histone proteins, such as Pontin and Reptin, respectively activating or inhibiting the expression of various 

target genes.

FIGURE 5 | G9a alterations in cancer. Genetic alterations for G9a in different types of cancer from cBioportal (www.cbioportal.org). Genetic alterations are shown 

as green (mutations), blue (deletions), red (ampli�cations), and gray (multiple alterations).

September 2015 | Volume 6 | Article 4876

Casciello et al. Histone methylation in cancer

Frontiers in Immunology | www.frontiersin.org

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


September 2015 | Volume 6 | Article 4877

Casciello et al. Histone methylation in cancer

Frontiers in Immunology | www.frontiersin.org

epigenetic mechanism (80). DSC3 is a glycoprotein, belonging to 
the cadherin superfamily, required for the desmosome-mediated 
cell-to-cell junction and adhesion (81). MASPIN is a protease 
inhibitor, which was shown to reduce the ability to induce tumor 
growth and metastasis (82). Pharmacologic inhibition of G9a has 
been demonstrated using the DNA methyltransferase inhibitor 
5-Aza-2′-deoxycytidine, as well as RNA interference (RNAi)-
mediated silencing. Inhibition of G9a led to the reactivation of the 
two tumor suppressors concomitantly, with a reduction of H3K9 
di-methylation mark (80) suggesting that the activity of G9a may 
be linked to DNA methylation. A runt-domain transcription 
factor, RUNX3 is known to act as a tumor suppressor gene in 
gastric cancer, and its level of expression was dependent on post-
translational modi�cations, such as acetylation and sumoylation. 
Transcriptional repression of this factor was instead observed to 
be mediated by methylation with G9a found to be responsible for 
its hypoxia-mediated silencing, increasing H3K9 di-methylation 
and decreasing H3 acetylation at the promoter region of the gene 
(83). In addition, in ovarian cancer, G9a activity promoted the 
suppression of di�erent tumor suppressors, including CDH1, 
DUSP5, SPRY4, and PPP1R15A (79). Moreover, as previously 
mentioned, G9a methylates the tumor suppressor p53, leading 
to its inactivation (65). It is thus believed that targeting G9a in 
cancer will lead to the re-expression of important tumor suppres-
sor genes.

Overexpression of G9a, and not of its related protein GLP, 
has o�en been associated with a more aggressive phenotype in 
cancer. For instance, elevated G9a protein levels were observed 
in the highly invasive lung cancer cell lines CL1-5 and H1299 as 
a result of gene ampli�cation. In contrast, poorly invasive CL1-0 
cells are characterized by a lower expression of the enzyme (2). 
Even though the global H3K9me2 levels were not directly corre-
lated with G9a protein expression levels, ectopic overexpression 
of the enzyme in CL1-0 increased cell motility and invasiveness, 
whereas its silencing in fast-growing cell lines led to a less 
aggressive phenotype (2). Similar results were also observed 
in ovarian cancer, where the invasive cell lines ES-2, SKOV-3, 
TOV-21G, OV-90, and OVCAR-3 were found to be character-
ized by elevated G9a levels compared with poorly aggressive 
tumor cells (79). In addition, G9a protein levels were also found 
to be signi�cantly correlated with the disease stage in ovarian 
cancer, with a lower and higher expression of the enzyme found 
to characterize early and late phase of the disease, respectively 
(79). �is data suggest that G9a expression levels in�uence cell 
motility in cancer in a target-speci�c manner by altering histone 
H3K9 methylation status. Moreover, ovarian cancer xenogra�s 
have demonstrated a higher expression of the methyltransferase 
in metastatic lesions compared to the primary tumors, whereas 
knocked down G9a was able to reduce metastasis in vivo in lung 
cancer, demonstrating a direct association between G9a protein 
levels and metastasis (79).

It is clear that an appropriate level of G9a activity is required 
to maintain the normal phenotype in a cell. During hypoxia, G9a 
activity increases, causing an increase in global histone methyla-
tion. As hypoxia is considered to be an important factor in the 
development of metastasis of solid tumors, the acquisition of 
cell motility under hypoxic conditions has been correlated with 

a reduction in the expression of cell adhesion molecules (84). 
In this context, G9a was demonstrated to inhibit the expres-
sion of cell adhesion factors such as E-cadherin and epithelial 
cell adhesion molecules (Ep-cam). Inhibition of G9a led to the 
re-expression of these molecules and to a reduction in motility 
and metastasis in  vivo in aggressive lung and breast cancer (2, 
72). �e correlation between G9a-mediated repression of cell 
adhesion molecules and its increase in activity during hypoxia 
strongly supports the evidence for a direct involvement of G9a in 
the metastatic pathway. �is hypothesis is also supported by the 
fact that overexpression of G9a was o�en observed in aggressive 
and highly metastatic forms of cancer, indicating that G9a expres-
sion might be a key factor in the occurrence of metastasis (2, 79).

�ese �ndings demonstrate the importance of G9a in the 
maintenance of the malignant phenotype and suggest that target-
ing this enzyme might represent a novel strategy for the treatment 
of various types of solid tumors, characterized by hypoxic regions 
and higher risk of metastasis.

G9a Inhibition and Effects on Cell Proliferation
G9a depletion has been reported to inhibit cell proliferation 
in several cancer cell lines (75, 85, 86). In cancer, an increased 
activation of the serine–glycine biosynthetic pathway is com-
monly observed, which is known to drive the synthesis of mac-
romolecules fundamental for cell proliferation and promoting 
cancer cell survival. �ere are many reports demonstrating the 
requirement of G9a for maintaining an active pathway through 
H3K9 mono-methylation (87). Interestingly, various studies 
have shown that G9a inhibition ultimately leads to autophagy. 
Autophagy is a cell survival mechanism in which proteins and 
organelles are degraded in response to cellular stress, such as 
hypoxic conditions or nutrient deprivation. Fundamental for 
the autophagic response is the inhibition of mTOR, a signaling 
pathway able to sense environmental conditions and regulate 
growth (75, 88). Silencing or blocking G9a function was su�cient 
in inhibiting mTOR, leading to autophagic cell death in head and 
neck squamous carcinoma (75).

�e addition of serine to the cell culture medium was able 
to rescue G9a-inhibited cells from autophagy, demonstrating a 
defect in the serine metabolic pathway induced by depletion of 
G9a. Together, these data suggest that targeting G9a may lead to 
a reduction in cancer proliferation caused by autophagic death 
through imbalance in the serine–glycine biosynthetic pathway.

Pharmacological Inhibition of G9a
�ere is a growing evidence of a critical role for G9a in the initia-
tion and progression of solid tumors. �is led to the hypothesis 
that targeting G9a and its epigenetic machinery would promote 
the re-expression of tumor suppressor genes, a reduction in 
metastasis and the inhibition of cancer cell proliferation. A 
number of small molecule inhibitors have been developed with 
the capacity to inhibit G9a catalytic activity and have been used 
in various in vitro and in vivo experiments. One of the �rst mol-
ecules developed was BIX-01294 (diazepin-quinazolin-amine 
derivative), a competitive inhibitor speci�c for G9a, able to reduce 
G9a-mediated H3K9 di-methylation, but not mono-methylation 
(89). BIX-01294 competes with G9a substrate and not with G9a 
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TABLE 1 | Epigenetic enzymes and available inhibitors.

Enzyme Inhibitor

Histone Lysine Methyltransferase

Dot1l/KMT 4 EPZ004777, EPZ005676 (104)

KMT6 3-deazaneplanocin A (DZNep) (105)

G9a/GLP BIX (84), UNC0638 (93), UNC0642 (96)

SUV39H1 Chaetocin (106)

SUV39H2 Chaetocin (106)

EZH2 GSK343, GSK126, EPZ006438, 

EPZ005687 (99)

Histone Lysine Demethylases

KDM2/7 Daminozide (107), TC-E 5002 (108)

JMJD2A DMOG (109)

KDM6B and KDM6A combined GSK-J1/J4 (110)

JMJC family IOX1 (111)

JMJD2 ML324 (112)

LSD1 PCPA (phenylcyclopropylamine) (113)

Novel histone demethylase LSD1 

inhibitors

RN-1 (113), TCP (114), CAS 927019-

63-4 (115), CBB1007 (116), S2101 (116)

Jumonji family JIB-04 (117)

Histone Acetyltransferases

GCN5/KAT2A MB3 (butyrolactone 3) (118)

PCAF/KAT3A + p300/KAT3B EML425 (119)

PCAF/KAT3A H3COA20 (120)

p300/KAT3B Curcumin (121), LTK 14 (122),  

LYS-COA (120)

p300/KAT3B + CBP/KAT3A C646 (123), histone acetyltransferase 

inhibitor II (124)

p300/KAT3B + PCAF/KAT2B Garcinol (125)

Histone Deacetylases

Class I (HDAC1, HDAC2, HDAC3, 

HDAC8, HDAC4)

Pyroxamide (126), tacedinaline (127), 

mocetinostat (GCD 0103) (128)

Class I/II (HDAC1, HDAC2, HDAC3, 

HDAC8, HDAC4, HDAC5, HDAC6, 

HDAC7, HDAC9, HDAC10)

Vorinostat (SAHA) (129), belinostat (130), 

LAQ 824 (131), panobinostat (130), 

givinostat (130), abexinostat (PCI 24781) 

(132), sodium phenylbutyrate (133), 

valproic acid, trichostatin A (134)

HDAC1, HDAC2, HDAC3 Entinostat (135)

HDAC1, HDAC2 Romidepsin (130)

Unknown speci�city Pivanex (AN-9) (136)
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cofactor S-adenosyl-methionine (SAM), the source of the trans-
ferred methyl group (89, 90). BIX-01294 treatment was shown 
to reduce cell proliferation in leukemia HL-60 and NB4 cell 
lines, as well as in human germ cell tumors and squamous neck 
carcinoma (91, 92). Moreover, cells pre-treated with the inhibitor 
and subsequently injected into mice formed signi�cantly smaller 
tumors when compared with untreated ones, suggesting that G9a 
inhibition could e�ectively reduce tumor growth and metastatic 
potential (92). However, BIX-01294 also showed intrinsic toxic 
e�ects, which were not related to the inhibition of G9a-mediated 
methylation. �e molecule has then been optimized, leading to 
the synthesis of a second inhibitor, UNC0638, which exhibited 
high potency and speci�city for G9a, combined with lower 
cell toxicity, as well as higher lipophilic characteristics and cell 
membrane permeability (93). UNC0638 has e�ciently been used 
in vitro, suppressing cellular proliferation in various cancer cell 
lines, such as breast, squamous head and neck carcinoma, hepato-
cellular carcinoma, acute myeloid leukemia, and cervical cancer 
(58, 92–94). However, while RNAi and BIX-01294-mediated 
inhibition of G9a was shown to induce autophagy (95) (through 
mTOR inhibition, as previously discussed), pharmacologic 
inhibition of the enzyme using UNC0638 did not lead to the 
same phenotype (75, 94). In particular, mTOR appeared not to 
be inhibited following UNC0638 treatment. �is contrasting 
evidence might be due to the di�erent mTOR targets compared 
in the two experiments, or by the use of di�erent cell lines. It is 
nevertheless possible that the dissimilar response is due to the use 
of di�erent inhibitors, suggesting that these inhibitors might in 
some way display diverse e�ects.

Although UNC0638 displays improved chemical charac-
teristics with respect to previous inhibitors, it is a�ected by a 
poor pharmacokinetics, which impedes its e�cient use in vivo. 
Recently, Liu and its group reported the synthesis of the G9a and 
GLP inhibitor suitable for animal studies, UNC0642 (96). �e 
molecule was shown to demonstrate an improved pharmacoki-
netics, while it maintained a high selectivity and low cell toxicity. 
�us, UNC0642 represents a promising candidate for targeting 
the enzyme in animal models, which will allow the evaluation of 
G9a functions in di�erent cancer setting.

Inhibitors to Other Epigenetic Modifying 
Enzymes
A growing number of epigenetic inhibitors has been developed 
and tested to speci�cally inhibit dysregulated enzymes in a broad 
array of human diseases. Epigenetic drugs have the potential to 
reverse the adverse e�ects acquired from genetic mutations with 
the advantage of being less invasive if compared with other new 
technologies, such as gene therapies. However, inhibitors lack 
target selectivity, and may cause cell type-speci�c changes in gene 
expression, which can eventually lead to disruption of various 
cellular pathways and non-speci�c cell death (97, 98).

Epigenetic drugs mainly comprehend DNA methyltrans-
ferases inhibitors, and some of these molecules are now being 
tested in clinical trials. In particular, 5-azacytidine (Vidaza) has 
received the FDA approval for the treatment of myelodysplastic 
syndromes (99). However, other epigenetic drugs, which target 
histone modi�ers have also been developed, which mainly 

comprehend HDAC inhibitors and lysine methyltransferase 
inhibitors (Table 1). While HMT inhibitors have not yet reached 
the clinical trial stage, various HDAC inhibitors have been 
approved by the FDA and are undergoing trials in di�erent 
types of malignancies, such as ovarian carcinoma and leukemia  
(100, 101). Vorinostat is probably the most advanced HDAC 
inhibitor to date, approved by the FDA in 2006, demonstrating 
that it is well tolerated and have promising anticancer activity in 
combination with other chemotherapeutic drugs (102). In fact, 
combinatorial therapy using epigenetic inhibitors together with 
other drugs, like chemotherapy and hormonal therapy, has the 
ability to improve the e�cacy of existing treatments. For instance, 
epigenetic drugs are expected to possibly sensitize resistant cells 
to their present therapies, through the re-expression of funda-
mental genes, such as important tumor suppressors (103). �us, 
epigenetic enzymes represent key target molecules for various 
kinds of diseases a�ected by deregulations in gene expression pat-
terns. Substantial progress has been made in the understanding of 
their roles in human pathologies and in the development of small 
molecule inhibitors. New technologies are nevertheless needed to 
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increase their speci�city in order to obtain an intelligent control 
of gene expression.

Conclusions and Future Directions

Recent �ndings have suggested an important role for G9a in the 
progression of solid tumors, promoting cell proliferation and 
survival under hypoxic conditions, as well as metastasis. Further 
studies focusing on determining the transcriptional role of G9a in 
various cancer types will provide better understanding of epige-
netic changes that occur in cancer. To fully understand the intrica-
cies of G9a’s contribution to gene regulation in cancer, future work 
utilizing small molecule inhibitors to G9a both in vitro and in vivo 
are required to determine whether inhibition of G9a is bene�cial 
at a physiological setting. Characterization of G9a target genes by 
whole transcriptome analysis and the resultant changes in the his-
tone methylation status monitored by chromatin immunoprecipi-
tation (ChIP) in the setting of tumor hypoxia and pharmacologic 
inhibition will play a central role in assessing the therapeutic value. 
It appears that G9a activity is fundamental for the maintenance of 
the malignant phenotype in several cancer types and modulating 
the expression of genes regulated by G9a may have the potential 

of developing more e�ective treatment. �e G9a inhibitor can be 
used alone or in combination with other standard-of care therapies 
currently used in the clinic in order to develop better treatments 
for cancer patients, including the aggressive metastatic subtypes 
for which no e�cient treatment is available.
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