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Functional Role of High-Affinity Anandamide
Transport, as Revealed by Selective Inhibition

M. Beltramo, N. Stella, A. Calignano, S. Y. Lin, A. Makriyannis,
D. Piomelli*

Anandamide, an endogenous ligand for central cannabinoid receptors, is released from
neurons on depolarization and rapidly inactivated. Anandamide inactivation is not com-
pletely understood, but it may occur by transport into cells or by enzymatic hydrolysis.
The compound N-(4-hydroxyphenyl)arachidonylamide (AM404) was shown to inhibit
high-affinity anandamide accumulation in rat neurons and astrocytes in vitro, an indi-
cation that this accumulation resulted from carrier-mediated transport. Although AM404
did not activate cannabinoid receptors or inhibit anandamide hydrolysis, it enhanced
receptor-mediated anandamide responses in vitro and in vivo. The data indicate that
carrier-mediated transport may be essential for termination of the biological effects of
anandamide, and may represent a potential drug target.

Anandamide (arachidonylethanolamide)
is an endogenous lipid that activates brain
cannabinoid receptors and mimics the
pharmacological effects of �9-tetrahydro-
cannabinol, the active principle of hashish
and marijuana (1). In humans, such effects
include euphoria, calmness, dream states,
and drowsiness (2). Depolarized neurons re-
lease anandamide (3) through a mechanism
that may require the calcium-dependent
cleavage of a phospholipid precursor in neu-
ronal membranes (4). Like other modulato-
ry substances, extracellular anandamide is
thought to be rapidly inactivated, but the
exact nature of this inactivating process is
still unclear. A possible pathway is hydrol-
ysis to arachidonic acid and ethanolamine,
catalyzed by a membrane-bound fatty acid
amide hydrolase (FAAH) highly expressed
in rat brain and liver (5). Nevertheless, the
low FAAH activity found in brain plasma
membranes indicates that this enzyme may
be intracellular (5), a possibility that is fur-
ther supported by sequence analysis of rat
FAAH (6). Although anandamide could
gain access to FAAH by passive diffusion,
the transfer rate is expected to be low be-
cause of the molecular size of this lipid
mediator (7). In that other lipids including
polyunsaturated fatty acids and prostaglan-
din E2 (PGE2) enter cells by carrier-medi-
ated transport (8, 9), it is possible that
anandamide uses a similar mechanism. In-
deed, the existence of a rapid, saturable
process of anandamide accumulation into
neural cells has been reported (3). This

accumulation may result from the activity
of a transmembrane carrier, which may thus
participate in termination of the biological
actions of anandamide. Accordingly, we de-
veloped drug inhibitors of anandamide
transport and investigated their pharmaco-
logical properties in cultures of rat cortical
neurons or astrocytes.

The accumulation of exogenous [3H]anan-
damide by neurons or astrocytes fulfills several
criteria of a carrier-mediated transport (Fig. 1)
(10). It is a rapid process that reaches 50% of
its maximum within about 4 min (Fig. 1A).
Furthermore, [3H]anandamide accumulation
is temperature-dependent (Fig. 1A) and satu-
rable (Fig. 1, B and C). Kinetic analyses re-
vealed that accumulation in neurons can be
represented by two components of differing
affinities (lower affinity: Michaelis constant,
Km, � 1.2 �M, maximum accumulation rate,
Vmax, � 90.9 pmol/min per milligram of pro-
tein; higher affinity: Km � 0.032 �M, Vmax �
5.9 pmol/min per milligram of protein) (Fig.
1B). The higher affinity component may re-
flect a binding site, however, as it is displaced
by the cannabinoid receptor antagonist, SR-
141716-A (100 nM) (11). In astrocytes,
[3H]anandamide accumulation is represented
by a single high-affinity component (Km �
0.32 �M, Vmax � 171 pmol/min per milligram
of protein) (Fig. 1C). Such apparent Km val-
ues are similar to those of known neurotrans-
mitter uptake systems (12) and are suggestive
therefore of high-affinity carrier-mediated
transport.

To characterize further this putative
anandamide transport, we used cortical as-
trocytes in culture. As expected from a se-
lective process, the temperature-sensitive
component of [3H]anandamide accumula-
tion was prevented by nonradioactive anan-
damide, but not by palmitoylethanolamide,
arachidonate, prostanoids, or leukotrienes
(Fig. 2A). Replacement of extracellular

Na� with N-dimethylglucosamine or cho-
line had no effect (as percentage of control:
N-dimethylglucosamine, 124 � 12%; cho-
line, 98 � 14%; mean � SEM, n � 6),
suggesting that [3H]anandamide accumula-
tion is mediated by a Na�-independent
mechanism, which has been observed with
other lipids (8, 9). Moreover, inhibition of
FAAH activity by treating the cells with
(E)-6-(bromomethylene)tetrahydro-3-(1-
naphthalenyl)-2H-pyran-2-one (25 �M) or
linoleyl trifluoromethyl ketone (15 �M)
(13, 14) had no effect (Fig. 2, B and C).
This indicates that anandamide hydrolysis
did not provide the driving force for anan-
damide transport into astrocytes within the
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Fig. 1. (A) Time course of [3H]anandamide accu-
mulation in rat cortical neurons (circles) or astro-
cytes (squares) at 37°C, and astrocytes at 0° to
4°C (diamonds). Results are expressed as
mean � SEM of 6 to 12 independent determina-
tions. (B and C) Lineweaver-Burk analyses of
[3H]anandamide accumulation (37°C, 4 min) in
neurons (B) or astrocytes (C). Results are from one
experiment representative of three performed in
duplicate with each cell type. The [3H]ananda-
mide accumulation assay has been described
(10).
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time frame of our experiments. Finally, the
cannabinoid receptor agonist WIN-55212-2
(1 �M) and antagonist SR-141716-A (10
�M) also had no effect, suggesting that
receptor internalization was not involved
(Fig. 2A).

A primary criterion for defining carrier-
mediated transport is pharmacological inhi-
bition. To identify inhibitors of ananda-
mide transport, we first examined com-
pounds that prevent the cellular uptake of
other lipids, such as fatty acids (phloretin,

50 �M), phospholipids (verapamil, 100
�M; quinidine, 50 �M), or PGE2 (brom-
cresol green, 0.1 to 100 �M) (15). Among
the compounds tested, only bromcresol
green interfered with anandamide trans-
port, albeit with limited potency and partial
efficacy (Fig. 3, A and B). Bromcresol green
inhibited [3H]anandamide accumulation
with an IC50 (concentration needed to pro-
duce half-maximal inhibition) of 4 �M in
neurons and 12 �M in astrocytes and acted
noncompetitively (16). Moreover, brom-
cresol green had no significant effect on the
binding of [3H]WIN-55212-2 to rat cerebel-
lar membranes (inhibition constant, Ki, �
22 �M), FAAH activity in rat brain micro-
somes (IC50 � 50 �M), and uptake of
[3H]arachidonate or [3H]ethanolamine in
astrocytes (121 � 13% and 103 � 12%,
respectively, at 50 �M bromcresol green,
n � 3) (17). The sensitivity to bromcresol
green, which blocks PGE2 transport, raised
the question of whether anandamide accu-
mulation occurred by means of a PGE2 car-
rier. That this is not the case was shown by
the lack of [3H]PGE2 accumulation in neu-
rons or astrocytes (18) and by the inability
of PGE2 to interfere with [3H]anandamide
accumulation (Fig. 2A). Previous results in-
dicating that expression of PGE2 transport-
er mRNA in brain tissue is not detectable
further support this conclusion (9).

To search for more potent anandamide
transport inhibitors, we synthesized and test-
ed a series of structural analogs of ananda-
mide (19). From this screening, we selected
the compound N-(4-hydroxyphenyl)arachi-
donylamide (AM404), which was both effi-
cacious and relatively potent (Fig. 3, C and
D; IC50 was 1 �M in neurons and 5 �M in
astrocytes). As we anticipated from its chem-
ical structure, AM404 acted as a competitive

inhibitor (20), suggesting that it may serve as
a transport substrate or pseudosubstrate. In
contrast, at the concentrations tested
AM404 had no effect on FAAH activity
(IC50 � 30 �M) or on uptake of [3H]arac-
hidonate or [3H]ethanolamine (102 � 4%
and 96 � 14%, respectively, at 20 �M
AM404, n � 6). Furthermore, a positional
isomer of AM404, N-(3-hydroxyphenyl)-
arachidonylamide (AM403), was signifi-
cantly less effective than AM404 in inhibit-
ing transport (Fig. 3, C and D). These data
provide pharmacological evidence for the
existence of a specific anandamide transport-
er and suggest (i) that neurons and astrocytes
may act synergistically in the brain to dispose
of extracellular anandamide and (ii) that the
transport systems in these two cell types may
differ kinetically and pharmacologically (Fig.
1, B and C, and Fig. 3, C and D).

The identification of inhibitors allowed
us to examine whether transmembrane
transport participates in terminating anan-
damide responses mediated by cannabinoid
receptor activation. Cannabinoid receptors
of the CB1 subtype are expressed in neurons
(21) where they are negatively coupled to
adenylyl cyclase activity (22). Accordingly,
in cultures of rat cortical neurons the can-
nabinoid receptor agonist WIN-55212-2 in-
hibited forskolin-stimulated adenosine
3�,5�-monophosphate (cAMP) accumula-
tion (control: 39 � 4 pmol per milligram of
protein; 3 �M forskolin: 568 � 4 pmol per
milligram of protein; forskolin plus 1 �M
WIN-55212-2: 220 � 24 pmol per milli-
gram of protein), and this inhibition was
prevented by the antagonist SR-141716-A
(1 �M) (555 � 39 pmol/mg of protein, n �
9) (23). Anandamide produced a similar
effect, but with a potency (IC50, 1 �M) that
was 1/20 of that expected from its binding

Fig. 2. (A) Selectivity of [3H]anandamide accumu-
lation in cortical astrocytes. Accumulation was
measured after a 4-min incubation with [3H]anan-
damide at 37°C, in the absence (control) or pres-
ence of nonradioactive anandamide (100 �M), N-
palmitoylethanolamide (100 �M), arachidonate
(100 �M), leukotriene C4 (LTC4; 1 �M), leukotriene
B4 (LTB4; 1 �M), PGE2 (100 �M), or thromboxane
B2 ( TXB2; 50 �M). The broken line indicates non-
specific [3H]anandamide accumulation in cells
measured at 0° to 4°C (43 � 3% of total accumu-
lation, which in these experiments was 43,104 �
1249 dpm per well). Results are expressed as
mean � SEM (n � 6 to 9). Effects of FAAH inhib-
itors on (B) FAAH activity and (C) [3H]anandamide
accumulation in cortical astrocytes. Cells were in-
cubated for 10 min with (E)-6-(bromomethyl-
ene)tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-
one (BTNP, 25 �M) or linoleyl trifluoro methyl-
ketone (Lyn-TFK, 15 �M), and then with the same
drugs plus [3H]anandamide for an additional 20
min. The total radioactivity in cell lipid extracts (to
measure [3H]anandamide transport) (10) and ra-
dioactivity in nonesterified arachidonate (to mea-
sure FAAH activity) (13) were measured separately
in samples of lipid extracts prepared from the
same cultures.

Fig. 3. Inhibition of [3H]anandamide
accumulation by bromcresol green in
(A) astrocytes or (B) neurons. One as-
terisk indicates P 	 0.05 and two as-
terisks P 	 0.01 [analysis of variance
(ANOVA) followed by Bonferroni test]
compared with control [3H]ananda-
mide accumulation. Inhibition of [3H]-
anandamide accumulation by AM404
(squares) or AM403 (diamonds) in (C)
astrocytes or (D) neurons. The asterisk
indicates P 	 0.05 (paired Student’s t
test between AM404 and AM403). In all
experiments, cells were incubated with
the inhibitors for 10 min before the ad-
dition of [3H]anandamide for an addi-
tional 4 min. Results are expressed as
mean � SEM of three to nine indepen-
dent determinations.

REPORTS
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constant for CB1 cannabinoid receptors (Ki

 50 nM) (1) (Fig. 4A). The transport
inhibitor AM404 bound to CB1 receptors
with low affinity (Ki � 1.8 �M) (19) and
did not reduce cAMP concentrations when
applied at 10 �M (Fig. 4B). Nevertheless,
the drug enhanced the effects of ananda-
mide, increasing the potency (by a factor of
10) and decreasing the threshold (by a fac-
tor of 1/100), an effect that was prevented
by SR-141716-A (Fig. 4A). Thus, a con-
centration of anandamide that was below
threshold when applied alone (0.3 �M)
produced an almost maximal effect when
applied with AM404 (Fig. 4B). Bromcresol
green and AM403, which were less effective
than AM404 in inhibiting anandamide
transport (Fig. 3), were also less effective in
enhancing the anandamide response (Fig.
4B). Furthermore, the decreases in cAMP
concentrations produced by WIN-55212-2
(which stimulates CB1 receptors but is not
subject to physiological clearance) or gluta-
mate [which stimulates metabotropic recep-
tors negatively coupled to adenylyl cyclase
(24) and is cleared by a selective transporter
(25)] are not affected by any of the anan-

damide transport inhibitors tested (26).
These results suggest that pharmacolog-

ical blockade of carrier-mediated transport
protects anandamide from physiological in-
activation, enhancing the potency of anan-
damide to nearly that expected from its
affinity for CB1 cannabinoid receptors in
vitro. To find out whether this potentiation
occurs in vivo, we tested the effects of
AM404 on the antinociceptive activity of
anandamide in mice. Intravenous anan-
damide (20 mg per kilogram of body
weight) elicited a modest but significant
analgesia, as measured by the hot plate test
(27) (P 	 0.05, Student’s t test); this anal-
gesia disappeared 60 min after injection and
was prevented by SR-141716-A (Fig. 4C)
(28). Administration of AM404 (10 mg/kg,
intravenously) had no antinociceptive ef-
fect within 60 min of injection but signifi-
cantly enhanced and prolonged anandam-
ide-induced analgesia (Fig. 4C) (P 	 0.01,
Student’s t test).

Our findings indicate that a high-affin-
ity transport system present in neurons and
astrocytes has a role in anandamide inacti-
vation by removing this lipid mediator from

the extracellular space and delivering it to
intracellular metabolizing enzymes such as
FAAH (5, 6). Therefore, the identification
of selective inhibitors of anandamide trans-
port should be instrumental in understand-
ing the physiological roles of the endoge-
nous cannabinoid system and may lead to
the development of therapeutic agents.
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An NGF-TrkA–Mediated Retrograde Signal to
Transcription Factor CREB in

Sympathetic Neurons
Antonella Riccio,* Brian A. Pierchala,* Christopher L. Ciarallo,

David D. Ginty†

Nerve growth factor (NGF) is a neurotrophic factor secreted by cells that are the targets
of innervation of sympathetic and some sensory neurons. However, the mechanism by
which the NGF signal is propagated from the axon terminal to the cell body, which can
be more than 1 meter away, to influence biochemical events critical for growth and
survival of neurons has remained unclear. An NGF-mediated signal transmitted from the
terminals and distal axons of cultured rat sympathetic neurons to their nuclei regulated
phosphorylation of the transcription factor CREB (cyclic adenosine monophosphate
response element–binding protein). Internalization of NGF and its receptor tyrosine
kinase TrkA, and their transport to the cell body, were required for transmission of this
signal. The tyrosine kinase activity of TrkA was required to maintain it in an autophos-
phorylated state upon its arrival in the cell body and for propagation of the signal to CREB
within neuronal nuclei. Thus, an NGF-TrkA complex is a messenger that delivers the NGF
signal from axon terminals to cell bodies of sympathetic neurons.

The growth and survival of many popula-
tions of neurons depends on trophic support
provided by their target tissue (1). NGF is
secreted by targets of sympathetic and some
sensory neurons, and it is also expressed
within discrete regions of the central ner-
vous system (1, 2). NGF belongs to a family
of structurally related neurotrophic factors
termed neurotrophins; this family includes
brain-derived neurotrophic factor (BDNF),

neurotrophin 3 (NT-3), and neurotrophin
4/5 (NT-4/5) (2). Two cell surface receptors
for NGF have been identified: a receptor
tyrosine kinase, TrkA, and the low-affinity
neurotrophin receptor, p75NTR. NGF exerts
its growth- and survival-promoting effects
on neurons through activation of TrkA and
subsequent biochemical events that ulti-
mately influence the expression of vari-
ous genes, including those encoding ion
channels, neurotransmitter-synthesizing en-
zymes, and cytoskeletal components (3).

NGF stimulates dimerization and auto-
phosphorylation of TrkA and initiation of
intracellular signaling cascades that propa-
gate the signal to the nucleus (4). One

transcription factor that is a key target of an
NGF-stimulated signaling pathway is CREB
(5). Upon exposure of pheochromocytoma-
derived cell line PC12 to NGF, CREB be-
comes phosphorylated on its transcriptional
regulatory site Ser133 (5), and this phospho-
rylation event promotes NGF activation of
transcription of the immediate early gene
c-fos. Because many NGF-regulated imme-
diate early genes and delayed-response
genes contain CREB binding sites within
their upstream regulatory regions (5),
CREB is likely to be a mediator of the
general nuclear response to neurotrophins.

Because NGF is internalized and retro-
gradely transported from the axon terminal
to the cell body (6), NGF itself may carry
signals from the axon terminal to the nu-
cleus. Alternatively, TrkA or p75NTR, an
NGF-receptor complex, or a terminally de-
rived second messenger molecule might
serve as a retrograde messenger (7). To
address questions of retrograde NGF signal-
ing, we used compartmentalized cultures of
sympathetic neurons (8) and antibodies
that distinguish between the Ser133-phos-
phorylated and unphosphorylated states of
CREB (anti–P-CREB) (9) and TrkA (anti–
P-Trk) (Fig. 1A). In these cultures, the cell
bodies are separated from the axon terminals
and distal processes by a distance of either 1
mm or 3 to 4 mm, and the cell bodies and
distal processes are located in separate fluid
compartments (Fig. 1B). This system enables
us to expose isolated terminals and distal
axonal processes to NGF and then to assess
by immunocytochemistry the phosphoryl-
ation state of CREB Ser133 and TrkA in cell
bodies.

To determine whether NGF induces
phosphorylation of CREB Ser133 in sympa-
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