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Transient receptor potential (TRP) ion channels are widely expressed in several tissues 
throughout the mammalian organism. Originally, TRP channel physiology was focus-
ing on its fundamental meaning in sensory neuronal function. Today, it is known that 
activation of several TRP ion channels in peptidergic neurons does not only result in 
neuropeptide release and consecutive neurogenic inflammation. Growing evidence 
demonstrates functional extra-neuronal TRP channel expression in immune and epi-
thelial cells with important implications for mucosal immunology. TRP channels maintain 
intracellular calcium homeostasis to regulate various functions in the respective cells 
such as nociception, production and release of inflammatory mediators, phagocytosis, 
and cell migration. In this review, we provide an overview about TRP-mediated effects 
in immune and epithelial cells with an emphasis on mucosal immunology of the gut. 
Crosstalk between neurons, epithelial cells, and immune cells induced by activation of 
TRP channels orchestrates the immunologic response. Understanding of its molecular 
mechanisms paves the way to novel clinical approaches for the treatment of various 
inflammatory disorders including IBD.
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inTRODUCTiOn

The transient receptor potential (TRP) ion channel family consists of 28 members, which are 
divided into six subsets: TRPC (“canonical”), TRPM (“melastatin”), TRPV (“vanilloid”), TRPA 
(“ankyrin”), TRPML (“mucolipin”), and TRPP (or PKD) (“polycystin”) (1). TRP channels are 
membrane proteins with substantial cation permeability, preferentially high calcium ion perme-
ability, and calcium signaling plays a central role in many physiological processes. TRP receptors are 
polymodal ion channels with an exceptional role in the integration of various environmental stimuli 
including mechanical, thermal, or chemical stimuli. Inhering this function they are likely to be 
sensors for monitoring specific responses to different exogenous and endogenous chemical noxious 
and physical stimuli. As such, various TRP channels play an essential role in somatic and visceral 
nociception (2, 3). Upon activation, TRP channels also control the release of immunomodulatory 
neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP), the so-called 
neurogenic inflammation. During recent years, increasing evidence has demonstrated an important 
role of many TRP channels outside the nervous system in the context of inflammation; findings that 
extend the role of TRP channels in the regulation of inflammation beyond neuropeptide release. To 
date, only little is known about the functional role of TRP channels in the immune system. Moreover, 
recent reports describe a fundamental role of TRP channels in epithelial cells in mediating cytokine/
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chemokine release as well (4). In summary, TRP channel activa-
tion induces immunomodulatory effects on multiple levels. This 
review will focus on the role of TRP channels in immune cells 
(with a focus on macrophages and T cells) and epithelial cells in 
general, with an additional special focus on TRPs in intestinal 
inflammation. Recognizing the large family of TRP channels, this 
mini-review focuses on TRPA1, TRPM8, TRPV1, and TRPV4 
(alphabetical order), which are the most relevant TRP channels 
in the present context based on published literature until today.  
Table S1 (available in supplementary material) gives an overview 
of receptor expression and resulting biological effects in the dif-
ferent cellular compartments.

TRP CHAnneL FUnCTiOn—GeneRAL 
ROLe in iMMUne CeLLS AnD ePiTHeLiA

TRPA1
TRPA1 is an irritant receptor that belongs to the ankyrin 
subfamily and is highly co-expressed with TRPV1 in a subset 
of sensory neurons (5). Only very little is known to date about 
TRPA1 expression in immune cells. The role of TRPA1 in 
macrophages was recently investigated in the context of the 
pathogenesis of atherosclerosis. Oxidized low-density lipoprotein 
(oxLDL) and the prototypical TRPA1 agonist allyl isothiocyanate 
(pungent ingredient in garlic) induced calcium transients in 
bone marrow-derived macrophages via TRPA1. TRPA1 expres-
sion was found to be upregulated in macrophage foam cells in 
atherosclerotic aortas of apolipoprotein E-deficient (apoE−/−) 
mice. Treatment with a selective TRPA1 antagonist HC030031 
(HC) led to aggravation of oxLDL-induced lipid accumulation 
and subsequently exacerbated atherosclerotic lesions in apoE−/− 
mice. In addition, HC-treated apoE−/− mice showed increased 
levels of serum HDL, triglycerides, total cholesterol, and the 
pro-inflammatory cytokines IL-1β, TNF-α, MCP-1, IL-6, and 
macrophage inflammatory protein-2 (MIP-2), which suggested 
a crucial anti-inflammatory role of TRPA1 in the pathogenesis of 
atherosclerosis and cholesterol metabolism of macrophage foam 
cells (6). Previously, another group provided evidence about the 
functional expression of TRPA1 in peritoneal macrophages. LPS-
stimulated cannabichromene-treated (CBC, cannabinoid TRPA1 
agonist) peritoneal macrophages showed a significantly decreased 
level of nitrite (stable metabolite of nitric oxide) compared to LPS-
stimulated peritoneal macrophages without CBC pretreatment. 
Nitric oxide acts as an abundant pro-inflammatory mediator, 
which indicates anti-inflammatory effects of TRPA1 activation 
by CBC in peritoneal macrophages. Interestingly, the TRPA1 
antagonists AP-18 and HC had almost the same inhibitory effect 
on the nitrite production as TRPA1 activation, which indicated 
that the effect of TRPA1 agonists was due to receptor activation 
and subsequent desensitization (7). The TRPA1 agonists acrolein 
and crotonaldehyde were able to excite the release of TNF-α and 
IL-8 (CXCL8, a potent neutrophil chemoattractant) from the 
human macrophage cell line U937, whereas acrolein induced 
release of IL-8 from the THP-1 macrophage cell line and from 
human alveolar macrophages. In addition, the lipid peroxidation 

product 4-hydroxy-2-nonenal (4-HNE), a mediator of oxidative 
stress and a TRPA1 agonist was found to be upregulated in lungs 
of patients with chronic obstructive pulmonary disease (COPD), 
and induced release of IL-8 from U937 cells. Conversely, 
saturated aldehydes had no effect. This indicated that alpha,beta-
unsaturated aldehydes such as 4-HNE (an ingredient of cigarette 
smoke) are likely to be pivotal in activating macrophages that 
may ultimately result in the destructive inflammatory reaction 
involved in the course of disease in COPD (8).

TRPA1 is also expressed in cultured human airway cells 
including epithelial cells, smooth muscle cells, and fibroblasts. In 
vitro, acrolein and cigarette smoke aqueous extract (CSE) (both 
TRPA1 agonists) induced the release of IL-8 TRPA1 dependently 
which was reduced by pharmacological TRPA1 blockade. TRPA1 
expression was highly co-localized with TRPV1 expression in 
airway sensory nerves and the activation of both TRPA1 and 
TRPV1 channels induced the release of the pro-inflammatory 
neuropeptide SP. Interestingly however, the pro-inflammatory 
effects of acrolein and CSE were independent of sensory neu-
ronal activation. After 24  h of intra-tracheal instillation with 
both compounds, neutrophil chemoattractant chemokine (KC) 
was increased in bronchoalveolar lavage (BAL) independent of 
pretreatment with a SP receptor/NK1 antagonist. In contrast, 
intra-tracheal instillation of capsaicin or SP had no effect on KC 
levels. Furthermore, pretreatment with a TRPA1 antagonist (HC) 
decreased KC release. Moreover, BAL from TRPA1-deficient 
mice did not show any release of acrolein- and CSE-induced KC. 
Thus, KC accumulation-derived inflammation was independent 
of neurogenic factors, and non-neuronal TRPA1 was shown to 
be essential in this model of inflammatory airway disorder (9).

In line with these observations of TRPA1 acting as an immune 
modulator, TRPA1 expression was detected by northern blot, 
western blot, and immunohistochemical methods in Jurkat 
T  cells as well as in human splenocytes (10). Bertin et  al. also 
confirmed the expression of mouse and human TRPA1 at mRNA 
and protein level in murine T cells (11).

TRPM8
TRPM8 is characterized in peripheral sensory neurons as a cold 
sensor (12, 13). Increasing evidence is accumulating that TRPM8 
might also be implicated in inflammatory disorders. Previously, 
direct evidence for TRPM8 expression in macrophages was 
reported. TRPM8-like channels could be activated by the 
TRPM8 agonist icilin measured by the patch-clamp technique in 
RAW 264.7 macrophages (14). Recently, we observed evidence 
for TRPM8 expression in several populations of murine mac-
rophages, which modulated inflammatory responses. In vitro, 
TRPM8 activation by menthol induced an anti-inflammatory 
cytokine profile in murine peritoneal macrophages (increased 
IL-10 and decreased TNF-α release) (15). Consistently, 1,8-cin-
eol (eucalyptol) and L-menthol (both TRPM8 agonist) were 
able to inhibit the production of pro-inflammatory cytokines 
in human monocytes and lymphocytes in vitro (16, 17). In our 
own studies, activation of TRPM8 in wild-type (WT) but not in 
TRPM8-deficient peritoneal macrophages enhanced phagocyto-
sis of zymosan beads. In vivo, phagocytic activity of peritoneal 
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macrophages was impaired in TRPM8-deficient mice compared 
to WT controls (15).

TRPM8 was also found in human lung epithelial cells. 
Activation of this channel increased the expression of several 
cytokines and chemokines, including TNF-α, IL-4, IL-13, IL-1α, 
and IL-1ß, that modulate the response of other resident cell 
types in the lung such as immune cells, smooth muscle cells, and 
sensory neurons (18).

TRPv1
TRPV1 is expressed in sensory neurons of dorsal root ganglia 
(DRG), trigeminal, and vagal ganglia (19). Due to its high abun-
dance in nociceptive neurons, TRPV1 acts as a nociceptor marker 
(20). Most of the TRPV1 expressing DRG neurons co-express 
peptidergic markers such as SP and CGRP (20). TRPV1 is activated 
by noxious stimuli such as capsaicin, extracellular acidification, 
or heat and is sensitized or activated by inflammatory mediators 
in vitro (21–23). Zhao and colleagues found that oxLDL-stimulated 
bone marrow-derived macrophages showed an increased level of 
TRPV1 expression and oxLDL activated TRPV1 which led to intra-
cellular Ca2+-transients that were abolished by superfusion with 
the TRPV1 antagonist capsazepine. Capsazepine aggravated the 
oxLDL-induced lipid accumulation and induced the production 
of MCP-1 and IL-6 in macrophages. In contrast, pretreatment of 
bone marrow-derived macrophages with evodiamine or capsaicin 
(TRPV1 agonists) alleviated lipid accumulation and impaired the 
production of MCP-1, MIP-2, and IL-6 (24). Capsaicin application 
to LPS- and IFN-γ-stimulated RAW 264.7 macrophages exhibited 
inhibitory effects on iNOS and the production of NO, COX-2, and 
PGE2 in a concentration-dependent manner. Capsazepine failed 
to abolish the effect of capsaicin but rather showed similar inhibi-
tory effects even synergistic with capsaicin on PGE2 released from 
LPS-stimulated peritoneal macrophages (25). In another report, 
capsaicin failed to modulate the protein/mRNA levels of COX-2, 
whereas capsazepine exhibited an inhibitory effect on the COX-2 
levels produced from LPS-stimulated peritoneal macrophages 
(25). Both capsaicin and capsazepine decreased iNOS mRNA 
levels in LPS/IFN-γ-stimulated peritoneal macrophages in a 
concentration-dependent manner (25). Since iNOS and COX-2 
are regulated by transcription factors like nuclear transcription 
factor kB (NF-kB) (26), it was examined, whether capsaicin or 
capsazepine regulated the activation of NF-kB. Both, capsaicin 
and capsazepine, blocked the degradation of IkB-a induced by 
LPS-stimulated peritoneal macrophages, reflecting that both 
capsaicin and capsazepine inhibit the activation of NF-kB. Due 
to the inability of capsazepine to block the effect of capsaicin, the 
authors suggested that peritoneal macrophages do not express 
TRPV1 but rather a TRPV1-like protein (25). Intriguingly, these 
results become more complicated in their interpretation since we 
were recently able to show that capsazepine is also a potent TRPA1 
agonist (2).

In a sepsis model of cecal ligation and puncture, LPS-stimulated 
TRPV1-deficient peritoneal macrophages showed impaired 
phagocytosis compared to unstimulated controls (27). LPS/SP 
co-stimulated TRPV1−/− macrophages were shown to restore 
phagocytic activity, an effect that was abolished by pretreatment 

with a selective antagonist of the SP/NK1 receptor. In contrast, 
CGRP-stimulated TRPV1-deficient macrophages did not show 
a significant difference in response to LPS (27). Furthermore, 
a TRPV1 antagonist decreased phagocytosis of LPS-stimulated 
WT macrophages compared to control cells (27). Recently, a 
previously unknown role of the endocannabinoid system in regu-
lating immune homeostasis TRPV1 dependently was reported. 
Activation of TRPV1 by capsaicin induced production of the 
endocannabinoid anandamide in myeloid cells and promoted the 
presence of immunosuppressive CXCR1hi macrophages via anan-
damide acting on CB2 receptors expressed in the enteric nervous 
system. Moreover, this mechanism also provided protection from 
experimental autoimmune diabetes (28).

Amantini et  al. could demonstrate that distinct thymocyte 
subsets express TRPV1, which is required for capsaicin-induced 
apoptosis (29). Functional expression of TRPV1 was furthermore 
shown by Bertin et al. in primary murine CD4+ T cells (30). The 
authors could show that the co-stimulatory molecules CD4 and 
TRPV1 were co-localized within the plasma cell membrane of 
CD4+ T  cells and stimulation with capsaicin triggered calcium 
ion influx.

In bronchial epithelial cells, TRPV1 was able to control the 
expression of pro-inflammatory cytokines such as IL-6 and IL-8 
due to its modulation of calcium traffic between the intra- and 
extracellular compartment (31). IL-8 is an essential chemotactic 
protein produced by neutrophils in the lung (32), which provides 
the molecular basis for a vital epithelial–immune interaction.

TRPv4
TRPV4 was originally identified to be involved in the regulation 
of osmotic homeostasis (33). Furthermore, TRPV4 is activated by 
mechanical stress and non-noxious heat (34). The prominent role 
of TRPV4 in visceral nociception was highlighted by recent work 
(35, 36). Beyond TRPV4 function in neurons, several reports 
suggest an important physiological function of non-neuronal 
TRPV4. TRPV4 is expressed in lung and gut epithelial cells and 
immune cells including macrophages, monocytes, neutrophils, 
and T cells (4, 37). Functional TRPV4 expression was recently 
observed in bone marrow-derived macrophages. The selective 
TRPV4 agonist GSK1016790A increased the intracellular cal-
cium ion concentration in a dose-dependent manner, an effect 
that was inhibited by TRPV4 siRNA or a pharmacological blocker 
and completely abolished in TRPV4-deficient bone marrow-
derived macrophages. Using fluorometry in vitro and quantifying 
phagocyted particles in vivo, the authors also observed impaired 
phagocytosis after downregulation of TRPV4 with siRNA in LPS-
treated bone marrow-derived macrophages (38).

TRPV4 expression was shown in human airway epithelial 
cell lines (A549, Beas 2B, and NCI-H292) and primary airway 
epithelial cells. Selective TRPV4 agonists were shown to trigger 
calcium influx in NCI-H292 and increased the release and secre-
tion of IL-8 and PGE2 in a time- and concentration-dependent 
manner (37). In vivo, intranasal administration of the TRPV4 
agonist 4α-PDD enhanced the concentration of KC, which sub-
sequently led to the recruitment of neutrophils in BAL fluids in 
WT but not TRPV4-deficient mice (37), indicating an indirect 
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epithelial–immunological interaction. However, a direct role for 
TRPV4 expression in the function of murine alveolar macrophages 
was also demonstrated. 4α-PDD triggered calcium influx and 
subsequently production of superoxide and nitric oxide in alveo-
lar macrophages of WT but not TRPV4-deficient mice. Likewise, 
the adoptive transfer of TRPV4-expressing alveolar macrophages 
into lungs of TRPV4−/− mice restored hypersusceptibility in a 
model of ventilator-induced mechanical injury (39).

In line with these pro-inflammatory functions of TRPV4, 
Majhi and colleagues found endogenous expression of different 
TRPV isoforms in Jurkat, primary human T  cells, and mouse 
T cells isolated from spleens. Moreover, they observed calcium 
influx in T cells upon treatment with different TRPV4 agonists. 
Furthermore, in vitro activation of TRPV4 in T cells resulted in 
upregulation of TRPV1 and TRPV4 channels, T cell proliferation, 
and production of the pro-inflammatory cytokines IFN-γ, TNF-
α, and IL-2. This effect was blocked pharmacologically suggesting 
that TRPV4-mediated calcium influx might play a crucial role in 
T cell-mediated immune responses (40).

TRP CHAnneLS in iMMUne CeLLS  
AnD ePiTHeLiA—ROLe in MODeLS  
OF inTeSTinAL inFLAMMATiOn

The majority of published literature ascribes the role of TRP 
channels in modulation of experimental colitis to its capacity 
to attenuate neuropeptide release and subsequently neurogenic 
inflammation. In accordance with this, we have found that 
TRPA1 and the pro-inflammatory neuropeptide SP in extrinsic 
primary afferent neurons are fundamental for the development 
of TNBS colitis. Pharmacological blocking of TRPA1 attenuated 
chronic colitis through inhibition of neuropeptide release (41). 
However, the role of extra-neuronally expressed TRP channels 
in the pathogenesis of intestinal inflammation is emerging and 
results in a complex crosstalk of different cellular compartments 
(see Figure  1). A recent study stressed the important role of 
extra-neuronal TRPA1 and TRPV1 receptor expression in this 
context. TRPA1 and TRPV1 were expressed in macrophages and 
epithelial cells in both healthy and inflamed human and murine 
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colons (42). Since macrophages are major producers of TNF-α 
and activation of TRPA1 was able to impair the expression of 
TNF-α in distal colon homogenates during colitis, it is likely that 
TRPA1 in macrophages mediated the anti-colitogenic effect. In 
addition, employing different mouse models of colitis including 
IL-10 knockout mice as well as adoptive T cell transfer models 
of colitis, it was shown that the genetic deletion of TRPA1 in 
CD4+ T cells caused intestinal inflammation via induction of the 
transcription factor Tbet which subsequently increased produc-
tion of the pro-inflammatory cytokines IFN-γ and IL-2 (11) and 
resulted in a higher capacity to differentiate into TH1 effector 
cells. Additionally, CD4+ T cells isolated from TRPV1 knockout 
mice showed impaired calcium influx upon T cell receptor stimu-
lation, resulting in the inactivation of the transcription factors 
NFAT and NFkB. Likewise, TRPV1-deficient CD4+ T cells failed 
to induce colitis in transfer models of colitis as TRPV1-deficient 
CD4+ T  cells showed decreased production of the pro-inflam-
matory cytokines IFN-γ, TNF-α, and IL-17 (30). An important 
extra-neuronal role of TRPV4 was recently demonstrated with 
regard to colonic inflammation. TRPV4 mRNA was found to be 
upregulated in colonic intestinal epithelial cells from mice with 
dextran sulfate sodium (DSS)-induced colitis. TRPV4 activa-
tion led to chemokine and cytokine release such as IL-8, IP-10, 
MIG, and MCP-1, which indicated a potential role of TRPV4 
in activating pro-inflammatory signaling pathways that might 
induce the recruitment of macrophages and other immune cells. 
In addition, intrarectal enemas with the TRPV4 agonist 4α-PDD 
induced acute and chronic colonic inflammation in mice (4). 
Finally, we could recently show that mice that were reconstituted 
with TRPM8-deficient macrophages exhibited increased suscep-
tibility to DSS, demonstrating a fundamental role of constitutive 
TRPM8 expression in macrophages in the context of colitis (15). 
Two recent reports, however, favor a dominant role for TRPM8 
expression in controlling neuropeptide release and, thus, colitis 
development (43, 44). TRPM8 was shown to modulate the release 
of CGRP in the colonic microenvironment from peptidergic sen-
sory neurons, which might have directed the protective effects of 
CGRP on CD11+ dendritic cells (44).

COnCLUSiOn

The role of TRP channels reaches beyond the control of immu-
nomodulatory neuropeptide release from sensory nerve endings. 
Many TRP channels are expressed in various immune cells, 

especially in macrophages and T cells. Here, they modulate many 
functions such as cytokine expression and release, migration, 
or phagocytic activity. Moreover, in a third compartment, the 
epithelial layer, TRP channel expression was also found to be 
relevant in the pathogenesis of many inflammatory disorders 
mainly through controlling chemokine/cytokine expression and 
release. Thus, a vital interplay between neurons, epithelia, and 
mucosal immune cells seems to maintain homeostasis in different 
organs, for example, the gut, the lung, and the vascular system 
and disruption of one or more of these players may induce disease 
(see Figure 1). Thus, targeting TRP channels and neuropeptide 
receptors might represent a promising new therapeutic approach 
in various inflammatory disorders such as inflammatory bowel 
disease, asthma, COPD, and atherosclerosis.
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