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ABSTRACT 

 
Ku is central to the non-homologous end-joining pathway of DNA double strand break 

repair, first discovered in eukaryotes and more recently in prokaryotes and archaea. This study 

concerns the importance of two unique sequence features of Ku protein from Mycobacterium 

smegmatis that include a lysine-rich extension at the C-terminus and a zinc-binding motif in the 

DNA-binding bridge-region. 

  The unique C-terminal tail of M. smegmatis Ku contains several lysine-rich low-

complexity PAKKA repeats that are absent from homologs encoded by obligate parasitic 

mycobacteria, but present in other mycobacterial proteins such as histone-like proteins. Removal 

of the lysine-rich extension from Ku decreased thermal stability and abolished DNA end-joining. 

The tail contacts the core DNA binding domain of Ku and hinders DNA-protein interaction as 

evidenced by an increase in DNA binding affinity upon removal of the lysine-rich extension. In 

contrast to Ku lacking the C-terminus, full-length Ku can directly bind DNA without free ends and 

form multiple complexes with a short stem-loop-containing DNA previously designed to 

accommodate only one Ku dimer, suggesting that these properties are conferred by its C-terminus.  

My study suggests that low-complexity lysine-rich sequences have evolved repeatedly to 

modulate the function of unrelated DNA-binding proteins and that extensions beyond the shared 

core domain may have independently evolved to expand Ku function. 

 An in vitro metal binding assay showed zinc binding to a predicted zinc-binding motif in 

the bridge-region of M. smegmatis Ku, an event that stabilizes the protein and prevents cysteine 

oxidation, but has little effect on DNA binding. In vivo, zinc induced significant upregulation of 

the gene encoding Ku as well as a divergently oriented gene encoding a predicted zinc-dependent 

MarR family transcription factor. In addition, overexpression of Ku conferred zinc tolerance on E. 



 
x 

 

coli. I speculate that zinc binding sites in Ku proteins from M. smegmatis and other mycobacterial 

species have been evolutionarily retained to provide protection against zinc toxicity. 

In all, my study identifies novel properties conferred by unique sequences present in M. 

smegmatis Ku protein, which suggests that the retention and evolution of unique sequences within 

a protein provides an adaptive advantage to microorganisms against environmental stress. 



1 
 

CHAPTER 1 

INTRODUCTION 

 

Genotoxic chemicals and ionizing radiation are examples of agents that may cause DNA 

double strand breaks (DSBs), which are the most lethal form of DNA damage occurring in the cell. 

Such breaks may also occur if the DNA polymerase complex encounters roadblocks such as 

unrepaired DNA lesions. Because DSBs pose a serious threat to genome integrity or cell survival, 

both prokaryotic and eukaryotic cells have evolved mechanisms for their repair, the major repair 

pathways being homologous recombination (HR) and non-homologous end-joining (NHEJ). 

While HR is generally more accurate, NHEJ often produces errors at the site of DSB repair as 

breaks are repaired without the assistance of an intact DNA template, therefore, it is also termed 

as “illegitimate” or “indiscriminate” recombination (for review, see [1-4]). NHEJ is the primary 

repair pathway for repairing DSBs in higher eukaryotes, except during late S or G2 phase of the 

cell cycle when the presence of a homologous DNA permits repair by HR. Homologues of proteins 

involved in NHEJ have recently been identified in certain prokaryotes, most of which spend 

significant time in stationary phase when only a single copy of the bacterial genome is present, 

thus precluding repair by HR. One of the most important proteins involved in NHEJ is Ku protein, 

which is a “hallmark” of the NHEJ process. Although Ku proteins from prokaryotes and 

eukaryotes exhibit limited homology and sequence identity,, they all have a conserved central ring-

shaped DNA binding domain. While eukaryotic Ku has acquired additional domains during 

evolution that makes it multifunctional, most of the prokaryotic Ku proteins lack such extra 

domains, with a few notable exceptions. 

This dissertation presents work carried out to elucidate the functional significance of two 

unique sequence features of Ku protein encoded by Mycobacterium smegmatis that include a 
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lysine-rich extension at the C-terminus and a zinc-binding motif in the DNA-binding bridge-

region.   

Eukaryotic Ku versus Prokaryotic Ku 

The structure of human Ku has been solved [5]. Eukaryotic Ku proteins are heterodimers 

consisting of two subunits, Ku70 and Ku80 that together form a functional unit [6] (Figure 1.1 ).  

 
Figure 1.1. Structure of eukaryotic Ku-DNA complex. Ku70 is colored magenta and Ku80 blue. 
Double stranded DNA is shown in orange. The N-terminal α/β domain (Von Willebrand A 
domain), central β-barrel, C-terminal arm, bridge and pillar regions are indicated with arrows. 
 
Although the two subunits have limited sequence identity (19.6% for human Ku) [7, 8], the overall 

folds of each Ku subunit are similar. The two subunits of human Ku associate to form a ring 

structure with an expansive base that cradles DNA and a narrow bridge. Ku70 and Ku80 form 

quasi-symmetrical molecules indicating divergence from a homodimer [5]. The Ku heterodimer 

has a three-domain topology consisting of the N-terminal α/β domain also called von Willbrand A 
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domain (vWA), the central β-barrel domain and the helical C-terminal domain (Figure 1.2). The 

β-barrel domain forms a central cradle of the DNA binding groove through which the DNA end is 

threaded. The ring structure and the positive electrostatic charge at the inner surface  

 

Figure 1.2. Domain organization of eukaryotic and prokaryotic Ku proteins. Eukaryotic Ku are 
heterodimers consisting of two subunits Ku 70 and Ku 80. Ku protein consist of following regions: 
a von Willebrand A domain (vWA) involved in protein-protein interaction.A central core domain 
and a divergent C-terminal region (designated by CT). Ku 70 contains a helix-extension-helix 
(HEH) derived SAP (SAF-A/B, Acinus, and PIAS) domain that may be involved in DNA binding. 
In higher eukaryotes, Ku 80 contains a longer CT domain that contains region to which DNA-
dependnet protein kinase catalytic subunit (DNA-PKcs) can bind (dignated by PK). In lower 
eukaryotes, Ku 80 has a tripartite domain organization and lacks DNA-PKcs-interaction motif 
from the C-terminal tail. Prokaryotes generally contain one Ku species and hence are homodimer, 
consisting of just the central DNA binding core domain. SCF55.25c from Streptomyces coelicolor 
is an exception, which also has C-terminal HEH domain. 
 
of the ring and along the DNA binding cradle imparts a very high affinity (Kd) ranging from 0.15 

to 4 nM. The ring-like structure of Ku enables it to translocate along DNA in an ATP-independent 

manner. The structure of Ku has a 70Å cradle that can fit approximately two turns of DNA duplex. 

In addition, the basket-like shape of Ku with the broad base and the narrow bridge exposes a large 

DNA surface area, which could enable other repair factors to interact with DNA. The N-terminal 
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vWA domain has been implicated in the heterodimerisation of Ku. It is a also module for protein-

protein interaction [9], which recruits other proteins to the site of DNA damage. The SAP motif at 

the C-terminus of Ku70 is a DNA binding module that is present in numerous DNA binding 

proteins [10]. 

Recent in silico analyses of bacterial genomes have led to the identification of a homologue 

of Ku protein, previously thought to be encoded only by eukaryotes [2, 3, 11-13]. The structure of 

bacterial Ku is not yet known, however, threading analysis (fold recognition) predicted it to form 

a structure similar to eukaryotic Ku with a conserved central ring-like structure [1, 14]. In contrast 

to eukaryotic Ku protein, the prokaryotic Ku proteins are predicted to exist as homodimers as most 

of the bacterial genomes harbor only a single Ku gene [2, 12, 13], with the exception of 

Mesorhizobium loti that has two adjacent Ku genes [2]. In contrast to eukaryotic Ku, bacterial Ku 

are much smaller (30-40 kDa) and lack SAP and von Willebrand A domains [12, 13] (Figure 1.2 

and 1.3). Although no homologue to vWA domain is present in prokaryotic Ku, a homologue of 

the SAP-motif has been identified at the C-terminus of Streptomyces coelicolor Ku where it is 

likely involved in DNA binding [2, 10]. It is assumed that these extra domains are acquired during 

evolution to impart additional functions to prokaryotic and eukaryotic Ku. 

Although the primary sequence of various eukaryotic Ku homologues is significantly 

different, the proteins are similar in overall size and subunit structure, as noted above. In addition, 

the sequence of Ku70 and Ku80 are divergent from each other in higher eukaryotes, but they 

appear to have arisen from a common ancestral gene [7, 8]. Moreover, the sequence similarity 

between bacterial and eukaryotic Ku suggests that both are derived form a common ancestor, 

which existed as a homodimer and formed a primordial non-homologous end-joining complex. 
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The presence of two bacterial genes for Ku in M. loti probably indicates an early event in the 

heterodimerisation of Ku [2]. 

 
Figure 1.3. Model of M. smegmatis Ku-DNA complex. Each monomer (in purple and light pink) 
is modeled on template strands 1jeyA and 1jeyB. Double stranded DNA is shown in orange. The 
β-barrel, bridge and pillar regions are indicated with arrows. The image was prepared with PyMOL 
(www.pymol.org).  
 
Functions of Ku Protein 

Eukaryotic Ku not only plays a central role in non-homologous end-joining-mediated DNA 

repair of DSBs [15-18], but it has also been reported to be involved in cellular processes such as 

antigen-receptor gene rearrangements, apoptosis, transcription and telomere maintenance (for 

review, see [6]). Similar to eukaryotic Ku, bacterial Ku has been reported to function in NHEJ-

mediated DNA repair by recruiting multifunctional ligases to DSB ends, demonstrating the 

http://www.pymol.org/
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conservation in the function of Ku throughout evolution from prokaryotes to eukaryotes [2, 12, 

13]. No other functions for bacterial Ku have been reported. 

Despite its importance in DSB repair, Ku is not ubiquitous among prokaryotes and many 

of the prokaryotes that encode a Ku homologue spend much of their life cycle in stationary phase 

[12, 19-22] during which no cell division occurs and cells may be exposed to desiccation and 

genotoxic agents that lead to DSBs. The phylogenetic distribution of Ku in diverse bacterial 

species is shown in Figure 1.4.  

  

Figure 1.4. Phylogenetic distribution of the NHEJ Ku protein in bacteria. Figure is a diagrammatic 
tree representation of major phyla, classes and families of bacteria. The lines between the names 
represent well-established phylogenetic links within various phyla. Names in green boxes 
represent phyla that contain homologues of Ku, Names in blue boxes indicate classes/orders that 
contain homologues of Ku. Names in red boxes indicate families that contain homologues of Ku. 
It is to be noted that not all species within a phylum or class contains Ku homologues. Figure 
adapted from [1]. 
 

During stationary phase, a homologous donor is absent and DNA repair of DSBs by 

homologous recombination is not possible, which implies that NHEJ may be the only active DSB 

repair mechanism during stationary phase (Figure 1.5). NHEJ repair complexes have been 
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identified in Bacillus, Mycobacterium and Pseudomonas [12, 23] and it is notable that the majority 

of bacteria retaining NHEJ are either pathogenic or symbiotic, such as the human pathogens 

Mycobacterium tuberculosis, Pseudomonas aeruginosa, and Bacillus anthracis [23-27]. M. 

tuberculosis Ku has been speculated to play a major role in repairing DSBs induced by genotoxic 

defense of human cells [24, 28], and it has been reported that NHEJ mediated by Ku along with 

the multifunctional ATP-dependent DNA ligase LigD protein plays an important role in repairing 

 

Figure 1.5. Double strand break repair in bacteria. Bacteria generally have circular chromosomes, 
which replicate bidirectionally from a defined origin. The replication forks are depicted as black 
triangles. In replicating bacterial cells, DSBs are repaired by HR using the replicated chromosome 
as a template. In quiescent or dormant cells, which have only one copy of the chromosome, NHEJ 
is employed for DSB repair. Figure adapted from [29]. 
 
DSBs and protecting M. smegmatis against DSBs accumulating during stationary phase [19]. The 

gene encoding LigD generally exists in association with the Ku gene in phylogenetically diverse 

bacteria (Figure 1.6). LigD is a multidomain protein, which is composed of a polymerase domain, 

a nuclease domain and a ligase domain. The organization of these domains varies between different 

species (Figure 1.7). 
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Figure 1.6. Gene organization of bacterial Ku operons in various bacterial genomes. The direction 
of the arrow indicates the direction of transcription. The juxtaposition of Ku and ligase genes in 
phylogenetically diverse bacteria, Mesorhizobium loti, Bacillus subtilis, Mycobacterium 

tuberculosis and an archaeon Archeoglobus fulgidus indicates that these genes belong to the same 
operon and their products might functionally interact. M. loti plasmid pMLb contains two bacterial 
Ku genes, probably representing a snapshot of a primitive heterodimeric Ku complex. 
 

 

Figure 1.7. Domain organization of prokaryotic DNA ligases. DNA ligase in prokaryotes are 
multidomain proteins that exhibit a variety of arrangements of the catalytic domains. 
Representative examples shows arrangement of different domains from Mt-LigD, (Mycobacterium 

tuberculosis), PA2138 (Pseudomonas aeuriginosa), and YkoU (Bacillus subtilis). 
 
Homologous Recombination versus Non-homologous DNA End-Joining  

As even a single double strand break (DSB) can be lethal to a cell, repair of double strand breaks 

is indispensable. Two major DSB repair mechanisms are homologous recombination (HR) and 

non-homologous end-joining (NHEJ). Though HR and NHEJ differ in several fundamental 

respects, the most important difference between the two pathways is that HR requires the presence 
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of a homologous template DNA, hence it operates in replicating bacteria and late S or G2 phase of 

the cell cycle in eukaryotic cells, whereas NHEJ can operate throughout the cell cycle and in 

quiescent, non-dividing cells lacking a homologous DNA template [4, 30, 31] (Figures 1.5 and 

1.8). 

 

Figure 1.8. Homologous recombination and non-homologous end-joining pathways of double 
strand break (DSB) repair. A. Homologous recombination (HR). The DNA duplex with DSB (red) 
is resected (digested) at one or both ends by a 5′ or 3′ exonuclease, which generates a 3′-OH single 
strand extension. The 3′-extension invades the intact homologous sister strand (cyan). The invasion 
is catalyzed by RecA in bacteria and Rad51 in eukaryotes. The invading strand (red) serves as a 
primer for a DNA polymerase (DNA POL). The information on the intact sister strand (cyan) is 
copied by polymerase across the break. The intermediate recombination structure is then resolved 
and the DSB is rectified by transferring a short segment of the sister strand (represented in cyan) 
to the original strand (red). The nicks in the repaired duplex are sealed by replicative DNA Ligases 
(NAD+-dependent LigA in bacteria). B. Non-homologous end-joining (NHEJ). There is no 
requirement of a homologous sister chromatid in NHEJ. The first step is the detection and 
approximation of DSB by Ku (depicted as a pair of purple ovals). The two broken ends are 
maintained in close proximity to avoid loss of genetic information or chromosomal translocation. 
In case of DSB arisen from ionizing radiation or oxidative damage, the ends are resected to 
generate 3′-OH and 5′-phosphate groups. The gaps are filled in by polymerase and ligated by Lig4 
in eukarya or ATP dependent LigD in bacteria (depicted as dark orange rounded rectangle). Ku 
molecules have a ring shaped DNA binding core that binds DNA ends, following which Ku can 
translocate along DNA. How Ku is removed from the repaired DNA duplex is still a matter of 
debate. Figures adapted from [29]. 
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The NHEJ complex in eukaryotes is composed of an array of proteins, primarily ligase IV, X-ray 

repair cross-complimentary protein 4 (XRCC4), and XRCC4-like factor (XLF) complex, DNA 

dependent protein kinase catalytic subunit (DNA-PKcs), and Ku 70/80. Ku and DNA-PKcs 

promote end-synapsis and help in bridging the gap between the broken ends. Before end-joining, 

the broken ends are remodeled by polymerase (Pol µ and λ) and nuclease (Artemis and flap 

endonuclease). The ligation of broken ends is done by the LXX complex, recruited to the broken 

site by Ku. The corresponding yeast and prokaryotic homologues of proteins involved in NHEJ 

are given in Table 1.1. The detailed sequence of events in bacterial NHEJ is indicated in Figure 

1.9   

 Table 1.1. Corresponding enzymes in prokaryotes and eukaryotic NHEJ [32] 

 

Functional 

Component 

 

 

Prokaryotes 

Eukaryotes 

Saccharomyces 

cerevisae 
Multicellular 

eukaryotes 

Tool belt protein Ku (30-40 kDa) Ku 70 and Ku 80 Ku 70 and Ku 80 

Polymerase Pol domain of 
LigD 

Pol4 Pol µ and Pol λ 

Nuclease Uncertain Rad 50:Mre11:Xrs2 
(FEN-1) 

Artemis: DNA-PKcs 

Kinase/phosphatase Phosphoesterase 
domain of LigD 

Rpp1 and others PNK and others 

Ligase Ligase domain of 
LigD 

Nej2:Lif1:Dnl4 XLF:XRCC4:DNA ligase 
IV 
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Figure 1.9. Mechanism of NHEJ in prokaryotes. Ku binds to the 3′-protruding end of a DNA 
duplex inflicted with a DSB. Ku (depicted as pair of grey ovals) recruits genetically associated 
LigD (dark grey oval) to the DNA termini. LigD in bacteria are multidomain proteins comprised 
of a ligase domain (LigDom) along with polymerase (PolDom) and nuclease (NucDom) domains. 
Ku recruits and stimulates the polymerase and end-joining activities of LigD. Interaction between 
Ku and LigD is mediated by PolDom that has a strong affinity for 5′-phosphate groups and it 
mediates synapsis via a specific loop that brings the broken ends together. After microhomology 
pairing and resection of nonextendable 3′-termini by NucDom, the broken ends are resynthesized 
by PolDom that preferentially incorporates nucleoside triphosphate (NTPs) over dNTPs. The 
residual nicks are ligated by the LigDom of LigD. Figure adapted from [33] 
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Role of NHEJ in Bacteria 

Studies on M. smegmatis showed that deletion of proteins involved in the NHEJ machinery, 

that is, Ku or LigD alone or both Ku and LigD, enhanced the sensitivity of bacteria towards 

ionizing radiation, particularly during stationary phase; in logarithmic phase the differences in 

sensitivity between the wild type and mutant strains were less [19]. Apart from ionizing radiation 

(IR) the NHEJ mutant strains were found to be sensitive to prolonged desiccation [19]. Deletion 

of RecA protein from M. smegmatis showed that the mutants were more sensitive to IR and 

desiccation during logarithmic phase, suggesting that the preference for DSB pathway depends on 

the growth state of M. smegmatis, where NHEJ is a preferred pathway during starvation phase and 

HR during log phase [19]. 

 M. smegmatis is a soil dwelling bacterium, and like most free-living bacteria, it is also 

exposed to hostile environmental conditions, such as heat and freeze-drying, that can result in cell 

desiccation due to prolonged dehydration. Generally, free-living bacteria can exist in a non-

differentiating state; hence the NHEJ pathway in bacteria ensures continued survival during 

genotoxic stress conditions [19].  

 NHEJ is advantageous to M. tuberculosis, a causative agent of tuberculosis and a leading 

cause of death worldwide as one third of the global population is latently infected with this 

bacterium and millions die each year due to active tuberculosis [34, 35]. Transmission of tubercle 

bacilli occurs in the form of respiratory droplets, generated by coughs and sneezes, which rapidly 

desiccate, forming ‘droplet nuclei’ that remain air borne [36]. The success of M. tuberculosis is in 

part associated with is ability to attain dormancy and survive hypoxic conditions within host 

organisms for a long period without causing any visible symptoms. It is during such inactive 

periods of growth, when the cells do not have a homologous sister chromatid that NHEJ becomes 
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an important repair mechanism. Mutations resulting from NHEJ can also provide resistance to M. 

tuberculosis; for example, a single mutation in the katG gene can make M. tuberculosis resistant 

to isoniazid, which is a first line drug for treatment of human tuberculosis [37].  

 In the case of B. subtilis, NHEJ is required for sporulation [20, 21]. It also plays a role in 

providing resistance against high doses of ionizing radiation and dry heat [19-21]. Kineococcus 

radiotolerans, which is resistant to extreme doses of IR > 3000 Gy, has a Ku gene 

(KradDRAFT_1225), suggesting the existence of NHEJ repair in this and related bacteria [33].  

Unloading of Ku Trapped on DNA 

One of the major questions concerning the NHEJ repair mechanism is related to the 

unloading of Ku molecules that become trapped onto DNA after repair. Ring-shaped proteins are 

common and several of them are involved in DNA binding. Most of these ring-shaped DNA 

binding proteins are multi-domain proteins that open and re-close around DNA by either a change 

in conformation on interaction with DNA or with the help of other factors [38]. 

In the case of eukaryotic Ku, such opening and closing of subunits is not conceivable due 

to an inter-connection between the two subunits over a large binding surface. Consistent with this 

feature, it is well established in the field that Ku must thread onto free DNA ends. Also, except for 

the C-terminus of Ku70 and Ku80 there is no conformational change in the central DNA binding 

domain and N-terminus of Ku on DNA binding. Hence, the only possible method to unload the 

trapped Ku molecule on DNA is via proteolysis or denaturation. Recently, ubiquitin-mediated 

proteolysis of Ku80 has been reported [39]. Such ubiquitylation is triggered only when Ku80 binds 

DNA, however the mechanism responsible for ubiquitinylation of Ku80 on DNA binding is not 

clear. 
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In the case of bacteria, there is no homologue of ubiquitin, therefore the mechanism of 

unloading Ku from bacterial DNA is unclear. Nevertheless, a possibility of an involvement of a 

well-conserved bacterial ATP-dependent protease (ClpXP) has been suggested because of its 

ability to extract protein from tightly bound complexes [40, 41].   

Functions of Disordered Regions in Eukaryotic Ku  

The N-terminus of Ku70 is disordered and is comprised of 33 amino acids, most of which 

are acidic residues. This N-terminus is suggested to provide a partial steric or electrostatic 

hindrance to DNA access on the Ku70 side, thereby conferring a preferred orientation on DNA 

such that Ku70 is positioned proximal to the DNA ends and Ku80 is distal to the DNA ends [11]. 

The disordered region has been predicted to provide an energetic barrier to the inward translocation 

of Ku on DNA and it may help Ku to remain at DNA ends.  

In addition to a disordered region at the N-terminus of Ku70, there is another disordered 

region at the C-terminus of Ku80. A study using small angle X-scattering (SAXS) showed that a 

disordered region connects the C-terminus of Ku80 to the core of the protein [42]. Earlier, the C-

terminus of Ku80 (KU80-CTD) was shown to be essential for the activation of DNA dependent 

protein kinase catalytic subunit (DNA-PKcs) as deletion of the C-terminus significantly decreased 

kinase activity [42, 43]. It has been suggested that the disordered region, being highly flexible, can 

extend from the Ku molecules to interact with a DNA-PKcs molecule bound either to the same 

DNA end or to an adjacent double strand break and stimulate tethering of two DNA ends by 

interacting with the C-terminal domain of an adjacent Ku molecule across the DSB [44, 45]. In 

addition, the flexibility of the disordered region could also aid in protein-protein interaction 

between the C-terminal domain and the core domain of Ku protein [45].  
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Low Complexity Repeats 

The three-dimensional structure of a protein is determined by its amino acid sequence and 

the 3D structure of a protein determines its function. However, there are many proteins that remain 

unstructured or disordered because of the presence of peptide sequences with biased amino acid 

composition or repeat sequences, and hence fail to form an ordered globular structure. Proteins 

with such sequences are difficult to crystallize, and the repeat-containing segments must typically 

be omitted to obtain crystals; therefore, they are underrepresented in the protein data bank and 

little is known about their functional properties, which lead to the potential misconception of 

considering peptides with simple sequences as a ‘junk’ peptides [46, 47]. Based on the 

experimental data available from various organisms regarding proteins with disordered regions in 

their native state, there are 694 proteins in the database for protein disorder (DisProt) as of May 

2013 [48]. 

Two classes of repeat sequences have been characterized. Sequences with repetition of a 

single residues are called “single amino acid repeats” or “homopolymers”, however if they are 

composed of repeats of one or more amino acids then they are called “low-complexity repeats” 

(LCR) or “intrinsically disordered regions” or “intrinsically unstructured regions” (IUR), and 

proteins with such regions are classified as “intrinsically disordered proteins” (IDP) [49-53]. The 

LCRs are encoded by simple repetitive DNA sequences, however, due to the degeneracy of the 

genetic code, the LCRs can also be encoded by non-repetitive DNA sequences [54]. LCRs and 

IURs are similar in being unstructured, but different in the sense that IURs exist as disordered 

structures under physiological conditions, but can transition from a disordered to an ordered state 

upon interaction with a binding partner [55, 56].  
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Based on polarity, hydrophobicity, volume, and certain other properties, amino acids are 

ranked for their increasing tendency to promote disorder: Tryptophan, Phenylalanine, Tyrosine, 

Isoleucine, Methionine, Leucine, Valine, Asparagine, Cysteine, Threonine, Alanine, Glycine, 

Arginine, Asparagine, Histidine, Glutamine, Lysine, Serine, Glutamic acid, Proline [57]. 

Consistent with the ranking, low complexity repeats or intrinsically disordered regions are 

generally composed of higher amounts of polar and charged amino acids such as glutamine, serine, 

proline, glutamic acid, lysine and sometimes glycine and alanine; conversely, they generally have 

low content of bulky, hydrophobic, order-promoting amino acids such as methionine, tryptophan, 

phenylalanine, valine, isoleucine, leucine, and tyrosine [58, 59]. This bias with regard to amino 

acid composition is utilized in predicting the disordered regions. A number of software packets 

have been developed to predict the unstructured region from amino acid sequences, including 

PONDR, Fold Index, DISEMBL, GLOBPLOT2, and DISOPRED2 [60-63].  

Low Complexity Repeats Across Three Superkingdoms 

The abundance of LCRs varies among species [52], and LCRs are more commonly present 

in eukaryotic proteins than in prokaryotic proteins [51]. Eukaryotic genomes code for more 

proteins with internal repeats than prokaryotic and archaeal proteins, as they have evolved repeats 

to carry out functions specific to their needs. More occurrences of repeats in eukaryotic proteins 

are a result of differences in evolutionary rate where already existing repeats evolve at higher rates 

by mechanisms such as mitotic replication slippage, slipped strand mispairing and meiotic 

recombination.  

Though more repeats are known to occur in eukaryotic proteins, homologous sequence 

analysis using data from UniProt and InterPro databases showed that the disorder might be more 

common in bacterial and archaeal proteins than earlier thought, and some predicted disordered 
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regions are conserved within protein families [64, 65]. Prokaryotes attain evolutionary advantages 

by repeats that help to generate novel surface antigens and modulation of protein functions, which 

in turn facilitates adaptation to changing environments [66, 67]. The information about the disorder 

content in 296 completely sequenced prokaryotic genomes can be found on the website: 

http://bioinfo.matf.bg.ac.rs/disorder [68].  

Evolution of Proteins with Disordered Regions 

Protein with LCRs can evolve rapidly and one of the reasons is that buried amino acids are 

highly constrained, while on the other hand, disordered regions are not structurally constrained, 

thus substitutions are less likely to be deleterious [69-71]. Mechanisms involved in rapid evolution 

of LCRs are replication slippage, slipped strand mispairing and recombination [51, 72-75]. 

According to the ‘fitness (functional) density’ hypothesis, a protein in which many residues are 

involved in maintaining structure or inter-molecular interactions evolves slowly [70, 76-78]. 

Hence, the unfolded regions are variable and share lower sequence conservation as compared to 

the structured regions in the same protein [78, 79]. The evolution of LCRs follows a power-law 

relationship, according to which longer LCRs change faster than shorter ones. Studies have shown 

that the length of insertions and deletions within LCRs is strongly dependent on its size, i.e., the 

longer an LCR is, the more it will undergo expansion. Hence, the length distribution of LCRs 

across a genome is supposed to be dependent on expansion of LCR sequence, which in turn is 

dependent on its length [80]. 

Accumulation of Amino Acid Repeats by Natural Selection 

Repeats are an important source of genetic variability due to high mutation rates resulting 

from replication slippage, hence they play an important role in adaptive processes [81-85]. The 

http://bioinfo.matf.bg.ac.rs/disorder
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amino acid repeats not only rapidly accumulate in proteins, but also degenerate by the 

accumulation of point mutations and repeat contraction by slippage mechanisms [86].  

In case of humans, comparison of repeat conservation in coding and non-coding regions of 

genes has revealed that the level of conservation of DNA repeats in coding regions is higher than 

in non-coding regions, and that selection of repeats within the coding region has played an 

important role in the preservation and evolution of amino acid repeats. In cases where the repeats 

confer an advantage, the selection process tends to fix the evolved repeats in a population, and it 

has been observed that the increase in repeat size has more functional effects. In addition, it has 

been shown that the well-conserved repeats generally tend to be longer and less uniform than 

recently formed ones. The addition of repeats in a protein contributes to modifying function and 

properties. 

Functions and Implications of Low Complexity Repeats 

Against earlier beliefs, the inherently disordered proteins perform a plethora of functions. 

Repeats within a protein sequence have implications for evolution, genome variability and disease 

processes [87, 88]. LCRs have been proposed to be adaptive and to promote mRNA stability or to 

modify protein-protein interactions. They can provide antigenic diversification, which is of 

adaptive advantage to pathogens. Also some authors have reported it to just play a role as spacers 

between protein domains [52]. 

Functional analysis of more than 150 proteins with disorder regions of a length greater than 

or equal to 130 amino acids identified 28 different biochemical functions for 98 out of 115 

disordered regions that included functions such as protein-protein interaction, protein-nucleic acid 

binding and protein modification [89]. Based on the mode of action, four classes of disordered 

proteins have been proposed, which are molecular recognition, molecular assembly/disassembly, 
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protein modification and entropic chain activities, i.e., activities dependent on the flexibility and 

plasticity of the backbone [89-91].  

Proteins with intrinsically disordered regions are reported to play a role in a large number 

of important biological functions, which include the regulation of transcription and translation, 

cellular signal transduction, protein phosphorylation, storage of small molecules, regulation of 

self-assembly of large multi-protein complexes such as the bacterial flagellum and the ribosome, 

and chaperone functions for other proteins and RNA molecules [89, 91-94]. The intrinsically 

disordered regions are also associated with diseases. Some protein folding diseases include prion 

disease such as Parkinson’s disease, Alzheimer’s disease and Huntington’s disease [87, 95]. In 

signaling and regulatory pathways, the unstructured state provides advantages in various protein-

protein, protein–nucleic acid and protein-ligand interactions. The ability of disordered regions to 

interact with different targets makes it apt for organizing complex protein-protein interaction 

networks. Various hub proteins, which interact with numerous binding partners, employ this 

feature for their interaction with their target molecule [96]. The flexibility of a disordered protein 

and its ability to interact with a wide variety of targets provides it with an advantage of responding 

to changes in the environment. Incorporation of more repeats in proteins provides benefits such as 

modular construction of new proteins and introduction of rapidly evolving protein sequences, 

which allow faster adaptation to a new environment. These low complexity sequences within 

proteins provide dynamic flexibility to the whole protein structure by transition between folded 

and unfolded states, and these regions can attain a non-globular structure with an extended 

conformation in solution [93, 97].  

Numerous proteins with these regions have been shown to be involved in DNA-binding 

and recognition of other types of molecules [98]. In case of protein-nucleic acid recognition, 
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binding to a specific DNA sequence involves thermodynamic and kinetic challenges. Several cases 

have come into light where these challenges are overcome by use of folded or partly folded proteins 

[99-102]. The phenomenon of induced protein folding or coupled folding provides high specificity 

with lower affinity that is essential for signaling, as the complex should dissociate once the 

signaling is complete. Conformational flexibility of the disordered protein provides an added 

advantage of allowing the protein to bind to its physiological target and to modifying enzymes that 

are essential for posttranslational modification. The multiple metastable conformations of 

disordered binding sites in a protein bestows it an ability to recognize several targets with high 

specificity and low affinity [89]. In case of S. cerevisiae it has been reported that the recombination 

of repeat-coding sequences results in an adaptive phenotype variation [103]. LCRs are abundant 

in antigenic protein families, which suggests their role in antigen diversification [103, 104]. With 

so many diverse roles of disordered proteins in various key biological processes that are coming 

into light, they are subdivided in more than 30 functional subclasses [89].  

Relation between External Environment and Disordered Proteins 

Disordered proteins exhibit peculiar relations to various environmental conditions. Given 

below is a brief account of various factors that affect the disordered region within a protein. 

1) pH: Changes in pH partially induce folding of a disordered protein as it decreases 

charge/charge molecular repulsion and strengthens the hydrophobic force [105]. 

2) Counter ion presence: The presence of counter ion induces partial folding of disordered 

protein as it decreases charge/charge molecular repulsion and strengthens the hydrophobic 

force [105]. 

3) GC-content: The abundance of disorder in proteins is related to the GC-content as high 

GC-content results in greater propensity for the presence of disorder-promoting amino 
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acids such as Glycine, Alanine, Arginine and Proline in a protein [106, 107]. The GC-

content of an organism’s genome is associated with factors such as genome size, oxygen 

utility, and growth temperature, which in turn influences the disorder content in proteins 

[106].  

4) Temperature: Thermophiles have more ordered proteins than mesophiles [68, 108]. In 

response to heat, disordered proteins exhibit a partial unfolding called the “turned-out” 

response, and it has been reasoned that higher temperatures strengthen hydrophobic 

interaction, which is a driving force of folding [105].  

5) Genome size: In bacteria, the extent of disorder is higher in larger genomes as compared 

to smaller genomes, which is related to the tendency of large genomes to be more GC-rich 

[68, 106]. 

6) Oxygen requirement: The extent of disorder per protein in aerobic bacteria and archaea is 

comparatively more and this has been related to the high GC-content in aerobic organisms 

[68, 109].  

7) Habitat: Aquatic organisms were found to contain more disordered proteins, which is in 

agreement with the finding that free-living organisms with larger genomes tend to have 

genomes with higher GC-content due to complex and varied environments [68, 110].  

Position-Dependent Roles of Low Complexity Regions 

Studies on yeast proteins showed that proteins containing LCRs generally have more 

interacting partners than proteins without LCRs and that the position of the LCR is related to its 

function [111]. A study shows that proteins containing LCRs at their termini (sequence 

extremities) have more interacting partners and are often associated with stress responses, 

translation, and transport processes and other biological events that require low specificity, for 
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example, protein chaperones and proteins involved in translation and translation elongation [94, 

112]. On the other hand, proteins with LCRs in the central region (i.e., at least 50 bp away from 

either sequence extremity) generally have fewer binding partners and are mainly involved in 

transcription-related processes and biological events that require specificity such as 

phosphorylation cascades in signaling pathways, transcriptional regulation, and polyadenylation 

[111]. The LCRs at terminal regions can extend freely from the rest of the protein and hence can 

interact easily with other proteins and play roles in flexible and rapidly reversible binding, 

however, central LCRs are generally surrounded by globular domains acting as a linker between 

domains, which in turn limits the number of binding partners [94, 112, 113]. Studies have shown 

that a hub protein that has a large number of interacting partners frequently has multi domain 

structure and contains more disordered regions than non-hub proteins [113].  

Proteins with Proline-, Alanine-, and Lysine-Rich Repeats 

A particular LCR consisting of proline-, alanine-, and lysine-rich repeats has been 

identified in several proteins. Such LCRs tend to feature at the C-terminus or N-terminus and can 

modulate the function of the protein. In Deinococcus radiodurans, for example, the nucleoid-

associated DNA-binding protein HU contains a low complexity lysine-rich extension 

characterized by PAKKA repeats at its N-terminus, repeats that affect the binding site size and 

mode of binding to four-way junction DNA [114, 115]. Likewise, the HU homologues in 

Mycobacteria, also referred to as histone-like proteins (Hlp), contain PAKKA repeats at their C-

termini, which promote DNA end-joining by T4 DNA ligase [116]. Similarly, Streptomyces 

coelicolor encodes a histone-like protein with PAKKA repeats, and its deletion resulted in 

decreased heat resistance and an expanded nucleoid [117]. Similar repeats exist in nucleolin and 

the C-terminus of eukaryotic histone H1 where they have been implicated in chromatin 
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condensation [118-122]. Hence, these lysine-rich repeats occur both in prokaryotic and eukaryotic 

proteins where they are generally associated with proteins that bind nucleic acids. They are 

predicted to undergo disorder to order transitions on interaction with the charged nucleic acid 

backbone [123, 124]. 

Work presented in this dissertation documents the importance of the basic lysine-rich 

extension at the C-terminus of M. smegmatis Ku protein characterized by repeated PAKKA units, 

repeats that are entirely absent in Ku from pathogenic counterparts such as M. tuberculosis and M. 

bovis. This study shows that the low-complexity lysine-rich extension of the Ku protein modulates 

its function and that extensions beyond the core may have evolved independently to expand the 

function of Ku. In addition, zinc binding at a predicted zinc-binding motif in the DNA-binding 

bridge-region of M. smegmatis Ku is studied that unveiled a novel and previously uncharacterized 

role of M. smegmatis Ku in protection against zinc toxicity. 
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CHAPTER 2 

C-TERMINAL LOW-COMPLEXITY SEQUENCE REPEATS OF MYCOBACTERIUM 

SMEGMATIS KU MODULATE DNA BINDING 

 

Introduction 

Many proteins in both prokaryotes and eukaryotes have been identified that contain 

stretches of simple amino acid sequence repeats that have low information content due to biased 

amino acid composition and a lack of amino acid diversity. These segments are referred to as low 

complexity regions (LCRs). These sequences can either be homopolymers or they can be 

composed of a few different amino acids, often classified as intrinsically disordered regions 

[1].Within a protein, these LCRs have been found to evolve more rapidly than flanking sequences 

such that their length and amino acid content may differ widely between homologs encoded by 

different species. These sequences are also characterized by a lack of identifiable three-

dimensional structure and are therefore underrepresented in the protein data bank [2]. Because of 

compositional plasticity and lack of three-dimensional structure, the functional role of low 

complexity sequences is not properly understood. However, studies have suggested that position 

(terminal or central) of the LCRs within a protein sequence plays an important role in determining 

their function. Proteins with terminal LCRs are important in stress responses, translation and 

transport processes, and those with central LCRs have been implicated in transcription [3]. 

In vitro characterization of DNA-binding proteins that contain LCRs either at their N- or 

C-termini has shown that the LCRs modulate functional properties. For example, Deinococcus 

radiodurans HU contains proline-, alanine-, and lysine-rich PAKKA repeats at its N-terminus that  

*This chapter originally appeared as Kushwaha, A.K. & Grove, A. (2013) C-terminal low-
complexity sequence repeats of Mycobacterium smegmatis Ku modulate DNA binding. 
Reprinted with permission from Bioscience Reports, Volume 33(1), 175-84 © the Biochemical 
Society. 
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affect the binding site size and mode of binding to four-way junction DNA [4, 5]. Similar PAKKA 

repeats are present at the C-termini of HU homologs encoded by some members of the 

Actinomycetes and by a member of the genus Kineococcus. In Mycobacteria, the HU homologs, 

also referred to as histone-like proteins (Hlp), contain a particularly extensive C-terminal tail 

composed of the repeated PAKKA units. In vitro, M. smegmatis Hlp promotes DNA end-joining 

by T4 DNA ligase and this ability has been attributed to the lysine-rich C-terminal domain [6]. 

Streptomyces coelicolor likewise encodes a histone-like protein with PAKKA repeats, and its 

deletion was shown to be associated with decreased heat resistance and an expanded nucleoid [7]. 

What is particularly intriguing is that these proteins contain LCRs that resemble those found within 

the C-terminus of eukaryotic histone H1; in the case of histone H1, the basic repeat region is 

important for chromatin condensation [8-11]. 

Ku protein encoded by M. smegmatis is another example of a protein with LCRs composed 

of PAKKA units (Fig. 1B). Ku is an important component of the non-homologous end-joining 

(NHEJ) double strand break (DSB) repair pathway in eukaryotes and select prokaryotes such as 

Bacillus, Mycobacterium and Pseudomonas [12-18]. M. tuberculosis Ku has been speculated to 

play a major role in repairing DSBs induced by genotoxic defense of human cells [12, 19], and it 

has been reported that Ku specifically interacts with the polymerase domain of the multifunctional 

LigD protein to facilitate DSBs repair by NHEJ thereby protecting M. smegmatis against DSBs 

accumulating during stationary phase [16, 17, 20, 21]. 

Eukaryotic Ku proteins are heterodimers consisting of two subunits, Ku70 and Ku80 that 

together form a functional unit [22]. In contrast, prokaryotic Ku proteins are homodimers and 

much smaller (30-40 kDa), being composed of just the central core domain of eukaryotic Ku [17, 

23]. The beta-barrel structure of this core domain is conserved despite limited sequence 
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conservation. In vitro analyses of eukaryotic Ku have shown that it binds non-specifically to both 

blunt and cohesive DNA ends. Its binding affinity varies from picomolar to nanomolar and is 

independent of the sequence and the structure of DNA ends but it is affected by the length of DNA 

duplex [24-27]. Stoichiometric measurements of eukaryotic Ku have indicated that it requires 14-

25 bp DNA for binding [25, 28, 29]. M. tuberculosis Ku also binds DNA non-sequence specifically 

irrespective of the kind of DNA ends and it is dependent on the DNA length [17]. However, little 

is known about the stoichiometry and binding affinity of mycobacterial Ku, and the role of the 

lysine-rich C-terminal tail exclusively seen in Ku encoded by soil-dwelling mycobacterial species 

remains unexplored. 

Here we show that lysine-rich LCRs are characteristic of Ku proteins from free-living 

mycobacterial species found in soil and natural reservoirs. DNA binding experiments suggest a 

role for the C-terminal tail in DNA interaction. Unexpectedly, removal of the C-terminal lysine-

rich repeats from M. smegmatis Ku enhances the DNA binding affinity. Consistent with the role 

of the lysine-rich repeats of Hlp in promoting DNA end-joining, only full length Ku promotes 

DNA end-joining by a heterologous ligase. We propose that lysine-rich LCRs have evolved 

repeatedly to modulate the function of unrelated DNA-binding proteins, in the case of M. 

smegmatis Ku and Hlp to respond more efficiently to environmental stresses that have potential to 

damage genomic DNA.  

Experimental Procedures 

Cloning, overexpression and purification of proteins 

The gene encoding Ku (JCVI Locus: MSMEG_5580) was amplified from M. smegmatis 

genomic DNA using primers 5′-CAC CAT GAC GGG TGC GTC AGT TAT G-3′ and 5′-TGC 

GAA GGT GCC CTG AGT TAC GAC-3′ and a gene fragment encoding truncated Ku (TKu) 

http://cmr.jcvi.org/cgi-bin/CMR/shared/GenePage.cgi?locus=MSMEG_5580


36 
 

lacking the C-terminal lysine rich repeats was amplified using primers 5′-CAC CAT GAC GGG 

TGC GTC AGT TAT G-3′ and 5′- GCG GGC TAG GAA TCC GAC TTG G-3′. Both genes were 

cloned into the Champion pET100/D-TOPO vector (Invitrogen). Fidelity of the constructs was 

verified by DNA sequencing. The resulting constructs were transformed into E. coli Rosetta blue 

cells. Cultures were grown in LB with 50 µg ml-1 ampicillin at 37°C to an A600 of 0.5, and 

expression of proteins was induced with 1 mM IPTG for 1 h, following which cells were pelleted 

at 4°C and stored at -80°C.  

For purification of both full length Ku and TKu, the cell pellets were resuspended in lysis 

buffer, pH 8.0 (50 mM sodium phosphate, pH 8.0, 2 mM 2-mercaptoethanol, 300 mM NaCl, 5% 

glycerol, 1 mM phenylmethanesulfonyl fluoride (PMSF), 300 µg/ml lysozyme, 0.05% Triton X-

100) and the mixture was incubated on ice for 1 h. DNA was precipitated by slow addition of 13% 

polymin P (BASF) to a final concentration of 0.05%. The cell lysate was centrifuged at 4°C for 40 

min at 9000 rpm. The supernatant was mixed with 1 ml of Nickel beads (Sigma) and incubated at 

4°C for 1 h. The mixture was loaded onto a gravity flow column and washed with 10 column 

volumes of lysis buffer and eluted with 150 mM imidazole-containing lysis buffer. The purest 

fractions were pooled and dialyzed overnight at 4°C against low salt Tris buffer, pH 8 (50 mM 

Tris, 2 mM 2-mercaptoethanol, 30 mM NaCl, 5% glycerol, 1 mM EDTA, 1 mM PMSF) and passed 

through a Q-Sepharose column equilibrated with the same buffer, and proteins were eluted and 

analyzed as described above. Both Ku and TKu were concentrated and concentrations determined 

using the Micro BCA Protein Assay Kit (Pierce) using bovine serum albumin (BSA) as standard 

and further confirmed by UV absorbance. Purity was determined by SDS-PAGE, followed by 

Coomassie brilliant blue staining. 
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Gel filtration 

All steps of gel filtration were carried out at 4°C using a HiLoad 16/60 Superdex 30 prep 

grade column (bed length 60 cm, inner diameter 16 mm; GE Healthcare). The column was 

equilibrated with 2 column volumes of Tris buffer, pH 8.0 (50 mM Tris, 2 mM 2-mercaptoethanol, 

200 mM NaCl, 10% glycerol and 1 mM EDTA). The gel filtration standard (Bio-Rad), which is a 

mixture of bovine thyroglobulin (670 kDa), bovine γ-globulin (158 kDa), chicken ovalbumin (44 

kDa), horse myoglobin (17 kDa), and vitamin B-12 (1.35 kDa), was run to calibrate the column. 

The concentration of protein applied to the gel filtration column was 1 mg ml-1 for both Ku and 

TKu. The proteins were run independently under the same conditions and were eluted with a flow 

rate of 0.5 ml min-1. 

Electrophoretic mobility shift assays 

 Oligodeoxyribonucleotides used to generate duplex DNA constructs were purchased and 

purified by denaturing polyacrylamide gel electrophoresis. The sequences of different DNA 

substrates used are available in Table 1. The top strand was 32P-labeled at the 5′-end with phage 

T4 polynucleotide kinase. Equimolar amount of complementary oligonucleotides were mixed, 

heated to 90°C and cooled slowly to room temperature to form duplex DNA. The concentrations 

of DNA were determined spectrophotometrically. 

Table 2.1. Sequences of oligodeoxyribonucleotides 

 
Oligos Sequences 

36 bp 5′-CCCCGTCTGTCCCCCGATCCCCTGCTCGTAGGCGTG-3′ 
3′-GGGCAGACAGGGGGCTAGGGGACGAGCATCCGCACG-5′ 

37 bp 5′-CCTAGGCTACACCTACTCTTTGTAAGAATTAAGCTTC-3′ 
3′-GGATCCGATGTGGATGAGAAACATTCTTAATTCGAAG-5′ 

50 bp 5′-TTCAATCCCCGTCTGTCCCCCGATCCCCTGCTCGTAGGCGTGCTTGACCG-3′  
3′-AAGTTAGGGGCAGACAGGGGGCTAGGGGACGAGCATCCGCACGAACTGGC-5′ 

21/34 nt 
hairpin 
substrate  

5′-GTTTTTAGTTTATTGGGCGCG-3′ 
3′-CAAAAATCAAATAATCGACCCTTTCGACCCGCGC-5′ 
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 For binding assays under stoichiometric condition, 40 nM or 5 nM of 32P-labeled DNA 

was titrated with Ku or TKu, respectively, in a total reaction volume of 10 µl in binding buffer (25 

mM Tris-HCl (pH 8), 50 mM NaCl, 0.1 mM Na2EDTA, 0.05% Triton X-100, 5 mM DTT and 2% 

(v/v) glycerol). Reactions were incubated at room temperature for 1 h. A non-denaturing 8% 

polyacrylamide gel was prerun for 30 min at 175 volts in 0.5X TBE buffer (45 mM Tris borate 

(pH 8.3), 1 mM Na2EDTA), and samples were loaded with power on. After electrophoresis, gels 

were dried, and protein-DNA complexes and free DNA were quantified by phosphorimaging using 

software supplied by the manufacturer (Image Quant 1.1). Percentage complex formation was 

plotted against [Protein]/[DNA]. The stoichiometry of the protein-DNA complex was determined 

by algebraically calculating the value of x at the intersection of the tangents to the linear portions 

of the graph. Experiments were performed in triplicate. 

Electrophoretic Mobility Shift Assays (EMSAs) for affinity determination were performed 

as described above, except that binding reactions contained 5 nM or 0.5 nM of 32P-labeled DNA, 

titrated with Ku or TKu, respectively. For TKu, the binding buffer was modified to contain 300 

mM NaCl, keeping the concentration of other components same. Percentage complex formation 

was plotted as a function of protein concentrations and fitted to the Hill equation, f= fmax 

([Ku]n/Kd
n) / (1+ ( [Ku])n/ Kd

n) where [Ku] is the protein concentration, f is the fractional 

saturation, Kd reflects the apparent equilibrium dissociation constant, and n is the Hill coefficient. 

All bands corresponding to protein-DNA complexes, including the area between the fastest 

migrating complex and the free DNA were considered as complex. Fits were performed using the 

program Kaleidagraph. The Kd value is reported as the mean ± S.D. Experiments were performed 

in triplicate. 
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End-joining assay 

Plasmid pUC18 was digested with EcoRI to obtain DNA with cohesive ends. Fifty 

nanogram of linear pUC18 was incubated with Ku or TKu at room temperature for 1 h. To this 

reaction, 1 µl of 40 U µl-1 of T4 DNA ligase was added and incubated at room temperature for 1 

h. To one of the reactions, 1 µl of exonuclease III (100 Uµl-1) was added and incubated at room 

temperature for 1 h. The reactions were terminated by adding 1 µl stop buffer (5 mM EDTA, 1.1% 

glycerol and 0.2 mg ml-1 proteinase K) and 1 µl of 10% SDS. Samples were run on 0.8% TBE 

agarose gels and visualized by ethidium bromide staining. 

A 105 bp DNA duplex with cohesive ends was generated as described [30]. The 105 bp 

DNA was labeled with 32P at the 5′-ends using T4 polynucleotide kinase. Five nanomolar 105 bp 

DNA was incubated with Ku or TKu at room temperature for 1 h. One microlitre of T4 DNA ligase 

of concentrations 40 Uµl-1 and 80 Uµl-1 was added to the reaction containing Ku and TKu 

respectively, and incubated at room temperature for 1 h. Reactions were treated with exonuclease 

III and terminated as described above, following which they were phenol extracted and ethanol 

precipitated and loaded on a prerun 8% polyacrylamide gels and electrophoresed using 0.5% TBE 

running buffer. Complexes were visualized by phosphorimaging.  

Results  

M. smegmatis Ku contains a lysine-rich low complexity region at its C-terminus 

Sequence alignment of Ku proteins from mycobacterial species reveals very significant 

sequence conservation within the core domain, but variation at the C-termini. Soil-dwelling 

mycobacterial species such as M. smegmatis, M. gilvum, Mycobacterium sp. JLS, Mycobacterium 

sp. KMS and other free-living mycobacterial species such as M. avium, M. ulcerans, M. marinum, 

M. kansasii that are found in natural reservoirs, encode Ku homologs with low-complexity regions 
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characterized by conserved lysine, alanine, and proline residues. Strikingly, this LCR is entirely 

absent in Ku proteins from obligate parasites such as M. tuberculosis and M. bovis (Figure 2.1A), 

indicating that only Ku proteins encoded by free-living mycobacterial species inhabiting soil or 

natural reservoirs contain these rapidly-evolving low complexity regions. 

 

Figure 2.1. Ku protein from M. smegmatis. A. Sequence alignment of the C-terminal protein 
sequence of various Mycobacterial Ku homologs. Low complexity PAKKA repeats of M. 

smegmatis Ku protein are underlined in red. M_smg, M. smegmatis; M_gil, M. gilvum; M_JLS, 
Mycobacterium Sp. JLS; M_KMS, Mycobacterium Sp. KMS; M_bov, M. bovis; M_tub, M. 

tuberculosis; M_avi, M. avium; M_int, M. intracellulare; M_kan, M. kansasii; M_mar, M. 

marinum; M_ulc, M. ulcerans. The site of truncation is marked with an arrow. B. Schematic 
representation of the N-terminal domain (solid box) and the lysine rich C-terminal tail. Mutant 
protein lacking C-terminal PAKKA repeats is truncated Ku (TKu). C. Gel filtration analysis of Ku 
and TKu. Linear calibration curve represents the logarithm of molecular mass as a function of 
elution volume. The elution volumes of dimeric Ku and TKu are indicated by arrows. Inset: 
Coomassie blue-stained 12% SDS-PAGE gel showing purified proteins. Lane 1, molecular weight 
markers in kDa; lanes 2-3, purified TKu and Ku, respectively. 
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Annotation of the M. smegmatis genome (JCVI) indicates that Ku consists of 358 amino 

acids, which includes several PAKKA repeats at the C-terminus (Figure 2.1A). To determine the 

role of the C-terminal LCR, M. smegmatis Ku and Ku truncated for the C-terminal region (TKu) 

were purified to apparent homogeneity as judged by Coomassie blue staining of SDS PAGE gels 

(Figure 2.1C); truncated Ku was created by placing a stop codon after residue 327 (Figure  2.1A-

B). Analysis of Ku and TKu by gel filtration chromatography indicated that both proteins exist as 

a homodimer in solution (Figure 2.1D); this observation was further confirmed by glutaraldehyde 

crosslinking, which showed no trace of residual monomeric Ku or TKu (data not shown).  

DNA binding by Ku and TKu 

We expected the lysine-rich LCR to participate in DNA contacts based on its charge and 

the previous observation that similar repeats in HU and Hlp homologs modulate DNA binding. 

However, while Ku binds to 37 bp DNA with Kd = 8.6 ± 0.5 nM, TKu binds with much higher 

affinity (Kd = 4.2 ± 0.7 nM using a buffer with significantly higher ionic strength); (Figure 2.2A-

B and Figure 2.3A-B). The Hill coefficient of 1.6 ± 0.1 and 1.1 ± 0.1 for Ku and TKu, respectively, 

suggest modest positive cooperativity of DNA binding for full-length Ku, reflecting preferred 

binding of a second Ku protomer (homodimer) to the DNA. Considering that Ku self-associates to 

bring together DNA ends, this observation can be readily reconciled with its normal function. No 

sequence preference of Ku and TKu is evident, as indicated by the equivalent affinity for other 36 

bp and 37 bp duplexes (data not shown). 

M. smegmatis Ku is a homodimer and removal of the C-terminal extension has no effect 

on oligomeric assembly (Figure 2.1C). From EMSA performed under stoichiometric conditions, 
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Figure 2.2. Binding affinity and stoichiometry determination of TKu. A. Titration of TKu with 36 
bp DNA in reaction mixture containing 300 mM NaCl and [DNA]<Kd. Lane 1, 36 bp DNA (0.5 
nM) only; lanes 2-15, 36 bp DNA titrated with increasing concentrations (0.1-40 nM) of TKu. B. 
Binding isotherm for TKu binding to 36 bp DNA. The best fit to the data were obtained using the 
Hill equation (R2 = 0.9883 and n = 1.1 ± 0.1). Error bar represents standard deviation. C. Titration 
of TKu with 36 bp DNA in a reaction mixture containing 50 mM NaCl and [DNA]> Kd 
(stoichiometric conditions). Lane 1, 36 bp (5 nM) only; lanes 2-15, 36 bp titrated with increasing 
concentrations (1-120 nM) of TKu. D. TKu-36 bp DNA binding stoichiometry plot. Percent 
complex plotted against the ratio of TKu and 36 bp DNA concentrations. Gels contained 8% 
acrylamide. 

 

where Ku was titrated with 37 bp DNA and TKu with 36 bp DNA, both Ku and TKu were found 

to bind respective DNA at a ratio of 4:1 (Figure 2.2C-D and Figure 2.3C-D), calculated by 

considering the molecular weight of monomeric protein, which suggests that a dimer requires ~18 

bp for binding and consistent with eukaryotic Ku that has been shown to require 14-25 bp of 
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double-stranded DNA for binding [25, 28, 29]. The formation of two discrete complexes is 

consistent with this interpretation.  

 

Figure 2.3. Binding affinity and stoichiometry determination of Ku. A. Titration of Ku with 37 bp 
DNA in a reaction mixture containing 50 mM NaCl and [DNA]<Kd. Lane 1, 37 bp DNA (5 nM) 
only; lanes 2-15, 37 bp DNA titrated with increasing concentrations (4-800 nM) of Ku. B. Binding 
isotherm for Ku binding to 37 bp DNA. The best fit to the data were obtained using the Hill 
equation (R2 = 0.9878 and n = 1.6 ± 0.1). Error bar represents standard deviation. C. Titration of 
Ku with 37 bp DNA in a reaction mixture containing 50 mM NaCl and [DNA]> Kd (stoichiometric 
conditions). Lane 1, 37 bp (40 nM) only; lanes 2-15, 37 bp titrated with increasing concentrations 
(40-2800 nM) of Ku. D. Ku-37 bp DNA binding stoichiometry plot. Percent complex plotted 
against the ratio of Ku and 37 bp DNA concentrations. Gels contained 8% acrylamide. 

 

As a further test of the duplex length required for optimal Ku binding, we used a 21/34 nt 

hairpin DNA substrate that can accommodate only one Ku dimer [31]. This DNA, which was used 

for Ku-DNA structure determination, was designed to form a 14 bp duplex that is separated from 

7 bp of duplex by a short stem-loop that prevents Ku from sliding along the DNA; the 7 bp duplex 
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is designed to be too short for stable complex formation, thus restricting Ku binding to the 14 bp 

segment (Figure 2.4). A binding assay with this construct showed that TKu forms the expected 

single complex, whereas Ku forms two complexes, most likely due to an interaction between the 

C-terminal tail of full length Ku with the 7 bp region of the hairpin substrate (Figure 2.4A-B). That 

TKu fails to saturate this DNA construct even at 40 nM protein suggests reduced affinity compared 

to the 37 bp DNA, perhaps reflecting that 14 bp is insufficient for optimal complex formation.   

 

Figure 2.4. Electrophoretic analysis of 21/34 nt hairpin DNA. A. EMSA of 21/34 nt hairpin DNA 
with Ku. Lane 1, 21/34 bp hairpin DNA (5 nM) only; lanes 2-13, DNA titrated with increasing 
concentrations (4-200 nM) of Ku. B. EMSA of 21/34 nt hairpin DNA with TKu. Lane 1, 21/34 nt 
hairpin DNA (5 nM) only; lanes 2-13, DNA titrated with increasing concentrations (1-40 nM) of 
TKu. Reaction mixture for both Ku and TKu contained 50 mM NaCl. In the cartoon 7 bp and 14 
bp duplex region of 21/34 nt hairpin DNA is shown. 
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The inference that Ku may bind DNA shorter than 14 bp prompted us to investigate binding 

to 37 bp DNA using a 6% polyacrylamide gel, which yields higher resolution. In this gel system, 

TKu still formed 2 complexes with 37 bp DNA, consistent with the estimated site size, however, 

three complexes could be detected with full-length Ku (Figure 2.5A). The detection of a third 

complex is intriguing, and it might be a result of protein-protein interactions, leading to two Ku-

DNA complexes associating, or due to interaction of the C-terminal lysine-rich tail with the DNA. 

To examine the presence of protein-protein interaction, an assay was performed in which 

equimolar concentrations of 32P-labeled 37 bp and cold 50 bp DNA was mixed and titrated with 

increasing concentrations of Ku and TKu (Figure 2.5B) with the idea that the migration of a 

complex consisting of two Ku-DNA complexes would be different if one 37 bp DNA duplex is 

replaced with a 50 bp duplex. However no such change in mobility was observed, suggesting that 

if Ku-DNA complexes do associate in solution, such junctions are not stable during 

electrophoresis. We therefore surmise that the additional complex observed when full-length Ku 

interacts with 37 bp DNA is due to interaction of its C-terminal tail with the DNA. 

Deletion of the lysine-rich LCR results in loss of DNA end-joining by T4 ligase 

Ku participates in non-homologous end-joining repair of DNA double-strand breaks. 

Earlier studies have reported that M. tuberculosis Ku specifically interacts with and stimulates the 

ligation activity of ligase protein (LigD) from M. tuberculosis and that it inhibits end-joining by 

T4 ligase, reflecting its preferred binding to DNA ends [17]. In contrast, end-joining assays with 

M. smegmatis Ku using linearized pUC18 or radiolabelled 105 bp DNA substrate showed that M. 

smegmatis Ku promotes end-joining by T4 ligase as can be seen by the appearance of end-joined 

products with increasing concentration of Ku (Figure 2.6A-B). Treatment with exonuclease III 

digested the end-joined products, which shows that Ku promotes formation of linear multimers 
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Figure 2.5. Electrophoretic analysis on 6% polyacrylamide gel. A. Equimolar concentrations of 
32P-labeled and cold 37 bp DNA (5 fmoles each) titrated with Ku and TKu. Lane 1, 32P-labeled and 
cold 37 bp DNA (5 fmoles each); lanes 2-8, 32P-labeled and cold 37 bp DNA with increasing 
concentrations (4-28 nM) of Ku; lanes 9-15, 32P-labeled and cold 37 bp DNA with increasing 
concentrations (4-28 nM) of TKu. B. Equimolar mixed concentrations of 32P-labeled 37 bp and 
cold 50 bp DNA (5 fmoles each) titrated with Ku and TKu. Lane 1, 32P-labeled 37 bp and cold 50 
bp DNA (5 fmoles each); lanes 2-8, 32P-labeled 37 bp and cold 50 bp DNA with increasing 
concentrations (4-28 nM) of Ku; lanes 9-15, 32P-labeled 37 bp and cold 50 bp DNA with increasing 
concentrations (4-28 nM) of TKu. 
 

and not circularization of the DNA (Figure 2.6A, lane 7). In contrast to full-length Ku, TKu, at 

similar and even lower concentrations, prevented the formation of end-joined products and also 

protected DNA from exonucleolytic cleavage, most likely reflecting its higher affinity binding 
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Figure 2.6. End-joining assay with Ku. A. Lane 1, 5 nM 105 bp DNA only; lane 2, DNA and T4 
DNA ligase (40 Uµl-1); lanes 3-6, DNA, T4 DNA ligase with increasing concentrations (25, 200, 
300, 400 nM) of Ku; lane 7, DNA, T4 DNA ligase, Ku (400 nM) and exonuclease III. B. Lane 1, 
50 ng of linear pUC18 DNA only; lane 2, DNA and T4 DNA ligase; lanes 3-6, DNA, T4 DNA 
ligase with increasing concentrations (200, 400, 600, 800 nM) of Ku. 
 

 (Figure 2.7A-B). Taken together, these data show that while TKu is similar to M. tuberculosis Ku 

in inhibiting DNA end-joining by a heterologous ligase, full-length M. smegmatis Ku promotes 

such end-joining, implying that this feature is a property of the C-terminal extension.  
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Figure 2.7. End-joining assay with TKu. A. Lane 1, 5 nM of 105 bp DNA; lane 2, 105 bp DNA 
and T4 DNA ligase (80 Uµl-1); lanes 3-8, 105 bp DNA, and T4 DNA ligase with increasing 
concentrations (200, 400, 600, 800, 1000, 1200 nM) of TKu; lane 9, 105 bp DNA, T4 DNA ligase, 
TKu (1200 nM) and exonuclease III. Note that a higher concentration of ligase is used compared 
to experiment in Fig. 9 to obtain ligation products in absence of protein. B. Lane 1, 50 ng of linear 
pUC18 DNA only; lane 2, DNA and T4 DNA ligase; lanes 3-7, DNA, T4 DNA ligase with 
increasing concentrations (100, 200, 300, 400, 600 nM) of Ku; lane 8, DNA, T4 DNA ligase, TKu 
(600 nM) and exonuclease III. 
 

Discussion 

Low complexity regions in Ku encoded by free-living mycobacterial species 

The multiple sequence alignment of Ku from various mycobacterial species revealed the 

presence of lysine-rich LCRs only in Ku encoded by soil-dwelling mycobacterial species such as 
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M. smegmatis, whereas Ku encoded by obligate parasites including M. tuberculosis completely 

lack these LCRs (Figure 2.1A and Figure 2.8). Considering the phylogenetic relationship between  

 

Fig. 2.8. Sequence alignment of Mycobacterial Ku homologs. Low complexity PAKKA repeats of 
M. smegmatis Ku protein are underlined in red. M_smg, M. smegmatis; M_gil, M. gilvum; M_JLS, 
Mycobacterium Sp. JLS; M_KMS, Mycobacterium Sp. KMS; M_bov, M. bovis; M_tub, M. 

tuberculosis; M_avi, M. avium; M_int, M. intracellulare; M_kan, M. kansasii; M_mar, M. 

marinum; M_ulc, M. ulcerans. 
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mycobacterial species and the clustering and reduced genome size of obligate parasites, the LCR 

may have evolved in an ancestral species and subsequently been lost in parasitic species. The 

presence of terminal LCRs in Ku proteins, whose function is in double strand break repair, is in 

agreement with an observation according to which LCRs have position-dependent roles and 

proteins with terminal LCRs participate in stress responses [3]. Notable examples of proteins that 

contain terminal LCRs characterized by the same PAKKA repeats include mycobacterial histone-

like proteins (Hlp), which are upregulated during anoxia or cold shock-induced dormancy and 

proposed to be involved in DNA double strand break repair [6, 32]. Similarly, HupS protein from 

S. coelicolor, which is upregulated during sporulation and plays a role in DNA packaging and 

protection, also contains lysine-rich LCRs at its C-terminus while HU from D. radiodurans 

contains such repeats at its N-terminus [4, 7]. Furthermore, these LCRs tend to evolve rapidly [2], 

suggesting that they have evolved in response to the stress conditions that the bacteria encounter. 

It is also notable that the PAKKA repeats significantly alter DNA-binding properties, for example 

conferring on Hlp the ability to promote DNA end-joining and directing D. radiodurans HU to an 

unusual binding mode with four-way junction DNA [4, 6]. 

The C-terminal extension promotes DNA end-joining 

Intermolecular ligation with eukaryotic Ku using 60 bp DNA and with M. tuberculosis Ku 

using 157 bp and 445 bp DNA have shown that Ku specifically stimulates the ligation activity of 

its cognate ligase, but not of unrelated ligases such as E. coli or T4 ligases [17, 33]. In apparent 

contrast with these earlier observations, M. smegmatis Ku promotes end-joining by T4 DNA ligase 

(Figure 2.6A-B). However, DNA end-joining is not promoted by TKu, regardless of DNA 

substrate (Figure 2.7A-B), indicating that the ability to appose DNA ends for intermolecular 

ligation by a heterologous ligase is a property of the C-terminal lysine-rich extension. A similar 
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phenomenon was reported for mycobacterial Hlp where the C-terminal lysine-rich domain of 

mycobacterial Hlp promotes DNA end-joining by T4 DNA ligase, while an Hlp mutant lacking 

the C-terminal repeats does not [6]. And consistent with its longer LCR, Hlp is more efficient than 

Ku in promoting end-joining. In analogy with the lysine-rich LCR of histone H1, we predict that 

the LCRs of Ku and Hlp are unstructured due to electrostatic repulsion, and that association with 

DNA may promote a helical conformation [34]. Ku and Hlp may therefore bind one DNA substrate 

via their core domain, while neighboring DNA may be brought into proximity by interaction with 

the LCR. A recent study by Grob et al. on yeast and human Ku has shown that Ku has a weak end-

bridging activity contributing to end-to-end alignment during DSB repair by NHEJ [35]. Our 

results suggest that the presence of PAKKA repeats in M. smegmatis Ku might enhance this 

activity. Moreover, the ability to bring distant DNA segments into proximity appears to be a shared 

feature of proteins with C-terminal PAKKA-type repeats [6].  

Removal of lysine-rich extension affects DNA binding affinity 

Removal of the C-terminal lysine-rich repeats enhances the affinity of Ku for DNA. This 

increase in affinity is also manifest in the inability of both T4 DNA ligase and exonuclease III to 

access the TKu-bound DNA ends, which suggests that complexes with TKu fail to dissociate 

appreciably in solution during the time of incubation. The gain of stable binding to DNA on 

truncation of a C-terminal extension has also been reported for Pseudomonas aeruginosa Ku [13], 

that also contains an extended C-terminal tail, however it lacks PAKKA repeats.  

The stoichiometry measurement suggests that the DNA binding site size for both Ku and 

TKu is ~18 bp (Figure 2.2C-D and Figure 2.3C-D). Consistent with the calculated stoichiometry, 

TKu formed two complexes with 37 bp DNA on a 6 % polyacrylamide gel; in contrast, full length 

Ku formed three complexes with 37 bp DNA on the same gel (Figure 2.5A). Also, binding to the 
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21/34 nt hairpin substrate, which has 7 bp and 14 bp duplex regions separated by a hairpin 

structure, showed that Ku forms two complexes whereas TKu forms one complex only with an 

apparent lower affinity compared to 37 bp DNA as evidenced by the failure to saturate this DNA 

construct (Figure 2.4A-B) [36]. For TKu, this suggests that its optimal site size is >14 bp. The 

differences in the binding properties of full length Ku and TKu could potentially be attributed to 

protein-protein interactions between DNA-bound Ku dimers or to the lysine-rich C-terminal LCRs 

interacting with DNA. Since the pattern of complexes seen when Ku is mixed with equimolar 

concentrations of 32P-labeled 37 bp and cold 37 or 50 bp DNA is identical (Figure 2.5A-B), we 

favor the latter interpretation. Interaction between the lysine-rich LCR and DNA would be 

expected to require only a few base pairs, potentially allowing such interaction to occur with the 7 

bp duplex region of the 21/34 nt hairpin construct or with residual base pairs within the 37 bp DNA 

not occupied by Ku binding via its core DNA-binding motif. 

In all, the lysine-rich C-terminus of M. smegmatis Ku significantly modulates DNA 

binding properties and promotes DNA end-joining. Evidently, M. smegmatis Ku exhibits 

properties distinct from those characteristic of M. tuberculosis Ku, properties associated with its 

unique lysine-rich C-terminus. Low complexity sequences, such as the PAKKA repeats found in 

M. smegmatis Hlp and Ku evolve rapidly and we suggest that M. smegmatis Ku has evolved in 

response to needs to cope with environmental stress such as desiccation.  
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CHAPTER 3 

MYCOBACTERIUM SMEGMATIS KU BINDS DNA WITHOUT FREE ENDS 

 

Introduction 

Ku is a ‘hallmark’ protein of the non-homologous end-joining (NHEJ) repair pathway of 

double strand break repair (DSB), and homologs have been identified in all three major domains 

of life. It is present throughout eukaryotes, sporadically distributed in phylogenetically diverse 

prokaryotes, and it has also been documented in two archaeal species, Archeoglobus fulgidus and 

Methanocilla paludicola [1-7]. Eukaryotic Ku proteins are heterodimers consisting of two 

subunits, Ku70 and Ku80 that together form a functional unit [8]. The crystal structure of human 

Ku shows that it has a tripartite organization consisting of an N-terminal α/β von-Willebrand factor 

A domain, a central β-barrel domain and a subunit-specific C-terminal SAP domain that together 

form a pseudosymmetrical ring-like channel that can accommodate a DNA duplex [9]. In contrast, 

the prokaryotic Ku proteins are homodimers [1, 4, 5] and much smaller (30-40 kDa), consisting of 

the conserved central ‘ring-shaped’ core domain of eukaryotic Ku and lacking the N-and C-

terminal domains present in Ku70/80, except for homologs from a few bacteria such as 

Streptomyces coelicolor that contain a SAP-like domain. [1, 4, 5]. Also, Ku proteins from free-

living mycobacterial species found in soil and natural reservoirs contain at their C-terminus low 

complexity repeats containing the amino acids lysine, alanine, and proline that promote DNA end-

joining [10]. 

The role of Ku in NHEJ-mediated DNA repair has been extensively studied in eukaryotes 

and select prokaryotes such as Bacillus, Mycobacterium and Pseudomonas [4, 5, 11-16]. Despite 

its importance in DSB repair, Ku is not ubiquitous among prokaryotes and many of the prokaryotes 

*This chapter originally appeared as Kushwaha, A.K. & Grove, A. (2013) Mycobacterium 

smegmatis Ku binds DNA without free ends. Reprinted with permission from Biochemical 
Journal, Volume 456(2), 275-282 © the Biochemical Society. 
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that encode a Ku homolog spend much of their life cycle in stationary phase during which no cell 

division occurs and cells may be exposed to desiccation and genotoxic agents that lead to DSBs 

[4, 17-20]. Eukaryotic Ku is multifunctional, as in addition to its central role in repair of DSBs 

[21-24], it has also been reported to be involved in cellular processes such as antigen-receptor gene 

rearrangements, apoptosis, transcription, mobile genetic element biology, telomere maintenance, 

ageing/senescence, cell adhesion and cell/microenvironment interaction (for review, see [8]). In 

comparison to eukaryotic Ku, which is functionally diverse due to its N- and C-terminal domains, 

prokaryotic Ku proteins have been shown to play a role in NHEJ only [9, 25].   

As a participant in NHEJ-mediated DSB repair, Ku is a sequence-independent DNA end-

binding protein as shown by in vitro and in vivo analyses [26, 27]. In apparent contradiction to this 

binding mode, reports have implicated eukaryotic Ku in regulation of gene expression, which 

would imply interaction with intact chromosomes [28]. Such binding to internal sites could 

perhaps involve association with local secondary structure in genomic DNA. Also, in vitro binding 

studies with circular single stranded DNA and DNA containing hairpin loops at both ends 

demonstrated that eukaryotic Ku could bind to a “closed” substrate lacking free ends with no 

significant difference in binding affinity compared to DNA with free ends [27, 29]. Recently, a 

homolog of eukaryotic Ku from Deinococcus radiodurans was shown to bind supercoiled DNA 

with 67-fold higher affinity as compared to linear DNA, also supporting the notion that DNA 

binding by Ku is likely more complex than originally thought [30]. Furthermore, we recently 

demonstrated that the lysine-rich C-terminal repeats of M. smegmatis Ku confer on the protein the 

ability to promote DNA end-joining, consistent with its role in NHEJ [10]. While a contribution 

to DNA end-joining and interaction with short DNA duplexes suggested that the positively charged 

C-terminal extension may contact DNA directly, their removal enhances DNA-binding affinity of 
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the truncated protein, indicating that extensions may modulate DNA binding by the core domain 

[10]. To address the role of the C-terminal extension in DNA binding, we explored the binding of 

M. smegmatis Ku to diverse DNA substrates. With properties such as the ability to translocate to 

internal DNA sites as well as direct binding to DNA without free ends, M. smegmatis Ku differs 

significantly from other prokaryotic Ku homologs and is instead more similar to eukaryotic Ku in 

its association with DNA. The observed binding mode suggests that extensions beyond the shared 

core domain may have independently evolved to expand Ku function. 

Experimental Procedures 

Electrophoretic mobility shift assay 
 
  M. smegmatis Ku and truncated Ku (TKu) lacking the C-terminal repeats were purified as 

previously described [10]. Fifty bp oligodeoxyribonucleotides used to generate duplex DNA 

constructs were purchased and purified by denaturing polyacrylamide gel electrophoresis. The top 

strand 5′-TTC AAT CCC CGT CTG TCC CCC GAT CCC CTG CTC GTA GGC GTG CTT GAC 

CG-3′ was 32P-labeled at the 5′-end with phage T4 polynucleotide kinase. Equimolar amount of 

complementary oligonucleotides were mixed, heated to 90°C and cooled slowly to room 

temperature to form duplex DNA. Five nM of 32P-labeled DNA was titrated with TKu, in a total 

reaction volume of 10 µl in Reaction Buffer (25 mM Tris-HCl (pH 8), 50 mM NaCl, 0.1 mM 

Na2EDTA, 0.05% Triton X-100, 5 mM DTT and 2% (v/v) glycerol). Reactions were incubated at 

room temperature for 1 h. A non-denaturing 8% polyacrylamide gel was prerun for 30 min at 175 

volts in 0.5X TBE buffer (45 mM Tris borate (pH 8.3), 1 mM Na2EDTA), and samples were loaded 

with power on. After electrophoresis, gels were dried, and visualized by phosphorimaging. 
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Exonuclease III protection assay 

Fifty nanogram of NheI-digested 1 Kb DNA fragment was incubated with TKu for 40 

minutes at room temperature. To each reaction, 1 µl of exonuclease III (100 Uµl-1) was added and 

incubated at room temperature for 1 h. Reactions were terminated by addition of 1 µl stop buffer 

and 1 µl of 10% SDS. Samples were run on 0.8% TBE agarose gels. Gels were stained with 

ethidium bromide. All reactions were performed in duplicate. 

Protein melting temperature 
 

Melting temperatures for proteins were determined according to protocols described by 

Ericsson et al. [31]. Protein was diluted to 5 µM in a buffer containing 50 mM Tris (pH 8.0), 100 

mM NaCl, and 5X SYPRO Orange (Invitrogen) as reference fluorescent dye. Triplicate 50 µl 

samples were analyzed in a 96-well reaction plate. The fluorescence emission was measured over 

a temperature range of 5-90°C in 1° increments for 40 s using an Applied Biosystems 7500 Real-

Time PCR System (filter: SYBR green). The total fluorescence yield measured was corrected 

using reactions without protein. The resulting data were analyzed with Sigma Plot 12 and the 

sigmoidal part of the curve was averaged for each triplicate. The averaged curves were 

subsequently fit to a four-parameter sigmoidal equation and the Tm values were determined. 

Agarose gel retardation 
 
  Linear DNA was obtained by digesting pUC18 with EcoRI, nicked DNA was obtained by 

digesting pUC18 with Nt.BStNBI, and relaxed closed circular DNA was obtained by treating 

pUC18 with Topoisomerase I (Epicentre). Reactions were incubated at room temperature in 10 µl 

of Reaction Buffer containing 50 ng of supercoiled, linear, nicked or relaxed closed circular pUC18 

and varying amounts of Ku or TKu. Complexes were resolved on 0.7% 1X TAE-agarose gels and 
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electrophoresed at 2.5 Vcm-1 for 3 h in 1X TAE buffer (40 mM Tris acetate, 1 mM EDTA, pH 

8.0). Gels were stained with ethidium bromide after electrophoresis. 

Tryptophan fluorescence   
 

Intrinsic fluorescence of Ku alone and in presence of different molar ratios of linear and 

supercoiled plasmid DNA (pUC18) were recorded from 310 nm to 410 nm with an excitation of 

295 nm on a PTI QuantaMaster4/2006SE spectrofluorimeter at 25°C using a 0.3 cm pathlength 

cuvette. All experiments were performed with 1.25 µM of Ku and TKu in FL buffer [40 mM Tris-

HCl (pH 8.0), 0.2 mM EDTA, 0.1% (w/v) BRIJ 58, 100 mM NaCl, and 10 mM MgCl2]. The 

protein-DNA reaction mixtures were equilibrated for 15 min before fluorescence was measured. 

The absorbance values of each sample were recorded on Varian Cary 50 spectrophotometer from 

200 nm to 450 nm to correct for the inner filter effect. The corrections were performed as described 

[32]. 

Competition assay 
 

Competition assay to determine the binding preference of Ku and TKu for supercoiled and 

linear DNA was performed using 32P-labeled 190 bp DNA. Supercoiled and linear DNA were gel 

purified to eliminate the presence of other DNA species. Reactions were incubated at room 

temperature in 10 µl of reaction buffer containing 2 nM of 190 bp DNA and fixed concentration 

of proteins (400 nM of Ku and 50 nM of TKu) and varying amounts of either linear pUC18 

(linearized with EcoRI) or supercoiled pUC18. The reaction mixture was incubated at room 

temperature for 1 h. Samples were resolved on prerun 8% polyacrylamide gels at room temperature 

with 0.5% TBE running buffer. Complexes were visualized by phosphorimaging. 

For competition assay with biotinylated DNA, 5 nM of 32P-labeled 37 bp DNA was mixed 

with increasing concentrations of either doubly biotinylated DNA or unlabeled 37 bp DNA and 
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incubated with 600 nM of streptavidin at 37°C for 30 minutes to ensure the binding of streptavidin 

to biotinylated DNA. The reactions were cooled down to room temperature and 30 nM of Ku or 3 

nM of TKu was added to the reaction followed by incubation at room temperature for 1h. Samples 

were resolved and visualized as above. The sequence of top strand of 37 bp DNA is 5′-

CCTAGGCTACACCTACTCTTTGTAAGAATTAAGCTTC-3′. 

Results and Discussion 

 

The C-terminal extension of M. smegmatis Ku is not required for binding to internal DNA sites 

M. tuberculosis Ku, which has no C-terminal extension, binds DNA ends [15]. In 

contrast, P. aeruginosa Ku, which contains a C-terminal extension whose sequence is unrelated 

to the low complexity lysine-rich sequence characteristic of M. smegmatis Ku (Figure 3.1B), 

forms multiple complexes with long DNA, interpreted to be due to electrostatic interactions with 

the C-terminal extensions [12]. Deletion of this extension results in two complexes, inferred to 

 

Figure 3.1. TKu can bind internal DNA sites. A. Electrophoretic analysis of 50 bp DNA titrated 
with TKu. Lane 1, 50 bp DNA (0.5 nM) only; lanes 2-15, DNA titrated with increasing 
concentrations (0.2-80 nM) of TKu. B. C-terminal sequence of M. smegmatis Ku protein with 
PAKKA repeats boxed in red. The site of truncation is marked with an arrow. 
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correspond to Ku bound to each DNA end. We previously reported that full-length M. smegmatis 

Ku can form multiple complexes with 37 bp DNA, while protein truncated for the C-terminal 

extension forms two complexes only, seemingly in agreement with the properties of P. aeruginosa 

Ku [10]. That truncated P. aeruginosa Ku forms only two complexes also implies that this protein 

cannot translocate from DNA ends to internal DNA sites, a property previously ascribed to 

eukaryotic Ku [12, 33]. To assess if the same pertains to truncated M. smegmatis Ku (TKu), we 

incubated TKu with 50 bp DNA that would be of sufficient length to accommodate three TKu 

molecules given the estimated site size of 15-18 bp [10]. As seen in Figure 3.1A, TKu does form 

three discrete complexes with this DNA; assuming initial binding of TKu only to DNA ends, this 

suggests that truncation of the C-terminal extension does not prevent translocation to internal DNA 

sites. We also incubated linear plasmid DNA with increasing concentrations of TKu under 

stoichiometric conditions ([DNA]>Kd), following which exonuclease III was added to assess if 

DNA ends were protected by TKu. With 7.8 nM DNA (15.6 nM DNA ends), 50 nM TKu should 

be more than sufficient to saturate DNA ends, yet even 200 nM TKu was insufficient to provide 

full protection against exonuclease III. This indicates that DNA protection may be achieved only 

on saturation of the entire DNA with TKu (Figure 3.2). This observation also suggests that TKu is 

not stably or preferably bound at DNA ends, and it is consistent with the inference that TKu 

translocates to internal DNA sites upon association with DNA ends. 

Electrostatic interactions between DNA and the lysine-rich C-terminal extension of Ku may form 

the basis for both its ability to promote DNA end-joining as well as the formation of additional 

protein-DNA complexes compared to TKu [10]. Indeed, computational analyses of disordered  
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Figure 3.2. TKu protects DNA from exonucleolytic cleavage. Lane 1, 50 ng of 1 kb DNA only; 
lane 2, DNA and exonuclease III; lanes 3, 5 and 7 contains DNA and 50, 100, 200 nM of TKu; 
lanes 4, 6, 8 contains DNA, exonuclease III and 50, 100, 200 nM of TKu. 
 
extensions in DNA-binding proteins have suggested that such extensions may function to interact 

non-specifically with DNA, thereby enhancing DNA binding affinity and promoting intersegment 

transfer from one DNA to another [34]. However, the increased DNA-binding affinity of TKu 

compared to full-length Ku suggests that the C-terminal extension interferes with optimal 

interaction between the ring-shaped core domain of Ku and DNA. Such interference could be the 

result of the C-terminus contacting DNA ends, thus preventing Ku from engaging DNA via its 

core domain, or it could be due to the C-terminus partly obscuring the core domain and its access 

to DNA by protein-protein contacts. The highly charged C-terminus is reminiscent of the lysine-

rich repeats in eukaryotic histone H1, which were previously shown to fold only on interaction 

with DNA [35-37]. By inference, the C-terminal extension of Ku would be expected to be unfolded 

in solution unless charges are neutralized; that the C-terminus is likely disordered is also a 

significant prediction rendered by the DISOPRED2 Disorder Prediction Server [38]. If the charge 
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neutralization required for folding derives from interaction with the core domain, a change in 

protein stability might result. We therefore measured the thermal stability of both full-length Ku 

and TKu using SYPRO orange as a reporter of protein unfolding [31]. As shown in Figure 3.3, the 

Tm for full-length Ku of 44.3±0.3°C is reduced to 41.8±0.1°C on removal of the C-terminus. We 

therefore infer that the C-terminus is not a separate unstructured domain, but that it interacts with 

the protein core. 

 

Figure 3.3. Melting temperature determination by differential scanning fluorimetry. A. Thermal 
denaturation curve of Ku. Tm (with SD) is 44.3 ± 0.3 °C. B. Thermal denaturation curve of TKu. 
Tm (with SD) is 41.8 ± 0.1 °C.   
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Both Ku and TKu bind DNA without free ends 

While the core domain of Ku is expected to associate with DNA ends, there is no a priori 

reason to suspect that the C-terminal extension binds preferred DNA structures. To assess the 

binding of the C-terminal domain to different DNA conformations, DNA binding by Ku and TKu 

was compared using agarose gel retardation assays. In agreement with previous findings [4], both 

Ku and TKu bound linear and nicked plasmid DNA (Figures 3.4 and 3.5). However, while the 

observed interaction of full-length Ku with supercoiled DNA was not unexpected, titration of 

supercoiled DNA with TKu also resulted in a marked reduction in electrophoretic

 

Figure 3.4. Binding of Ku to linear, supercoiled, and nicked DNA. A. Ku binding to linear and 
supercoiled DNA. Lane 1, 50 ng linear DNA only; lanes 2-5, linear DNA with increasing 
concentrations (100, 200, 400, 800 nM) of Ku; lane 6, 50 ng supercoiled DNA only; lanes 7-10, 
supercoiled DNA with increasing concentrations (100, 200, 400, 800 nM) of Ku. B. Ku binding to 
nicked DNA. Lane 1, nicked DNA only; lanes 2-5, nicked DNA with increasing concentrations 
(100, 200, 400, 800 nM) of Ku. 
 

mobility (Figure 3.5A). Since DNA supercoiling might lead to extrusion of hairpin structures, TKu 

was also incubated with relaxed closed circular DNA and again seen to form complex (Figure 

3.5C). By comparison, M. tuberculosis Ku, which lacks the C-terminal low complexity sequence 

repeats, preferentially binds to linear DNA compared to circular DNA or single stranded DNA [4]. 
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Figure 3.5. Binding of TKu to linear, supercoiled, nicked and covalently closed relaxed DNA.  A. 
TKu binding to linear and supercoiled DNA. Lane 1, 50 ng linear DNA only; lanes 2-7, linear 
DNA with increasing concentrations (500, 1000, 1500, 2000, 2500, 3000 nM) of TKu; lane 8, 50 
ng supercoiled DNA only; lanes 9-14, supercoiled DNA with increasing concentrations (500, 
1000, 1500, 2000, 2500, 3000 nM) of TKu. B. TKu binding to nicked DNA. Lane 1, nicked DNA 
only; lanes 2-4, nicked DNA with increasing concentrations (400, 800, 1600 nM) of TKu. C. Tku 
binding to relaxed closed circular DNA. Lane 1, relaxed closed circular DNA only; lanes 2-4, 
relaxed closed circular DNA with increasing concentrations (400, 800, 1600 nM) of TKu. 
 
To make sure that binding to supercoiled DNA was not an artifact of a nicking activity, both Ku 

(Figure 3.6) and TKu (data not shown) were tested for the absence of nuclease and nicking 

activities. While complexes between full-length Ku and supercoiled DNA may at least in part be 
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due to interaction with the charged C-terminus, the absence of this domain in TKu implies an 

alternate mode of binding. 

 

Figure 3.6. Test for nuclease or nicking activity. A. Ku binding to supercoiled and linear DNA. 
Lane 1, 100 nM supercoiled DNA only; lanes 2-4, supercoiled DNA with increasing 
concentrations (700, 1400, 2100 nM) of Ku; lane 5, 100 nM linear DNA only; lanes 6-8, linear 
DNA with increasing concentrations (700, 1400, 2100 nM) of Ku. B. Phenol extracted supercoiled 
and linear DNA after Ku treatment. Lane 1. Supercoiled DNA only; lane 2-4, purified supercoiled 
DNA after treatment with increasing concentrations (700, 1400, 2100 nM) of Ku; lane 5, linear 
DNA only; lane 6-9, purified linear DNA after treatment with increasing concentrations (700, 
1400, 2100, 2800 nM) of Ku; lane 10, supercoiled DNA only; lane 11, linear DNA only; niked 
DNA (supercoiled pUC18 treated with NtBstI).   
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 M. smegmatis Ku can be modeled on the structure of human Ku70/Ku80 (Figure 3.7). 

Each monomer contains two tryptophan residues at positions 45 and 208 in the primary amino acid 

sequence that both are predicted to reside at the base of the central DNA-binding core domain, 

hence changes in the intrinsic fluorescence of Ku would be expected on DNA binding, as such 

binding would alter the environment of these fluorophores. In addition, the JCVI annotation of M. 

smegmatis Ku, which was used in designing the cloning strategy [10], reflects an N-terminal 

 

Figure 3.7. Model of M. smegmatis Ku. A. Predicted structure of M. smegmatis Ku homodimer. 
Each monomer (in cyan and light pink) is modeled on template strands 1jeyA and 1jeyB with 
sequence identities of 11% and 13% respectively. Tryptophan residues are shown in red. Double 
stranded DNA is shown in orange. The image was prepared with PyMOL (www.pymol.org). 
 

extension in which an additional tryptophan is found. Using an excitation wavelength of 295 nm, 

the measured emission maximum for Ku and TKu was observed at 336 nm, consistent with an 

emission signal predominantly due to tryptophan (Figure 3.8A-D).  

http://www.pymol.org/
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Figure 3.8. DNA-induced changes in the intrinsic fluorescence spectrum. A. Fluorescence spectra 
for free and linear DNA-bound Ku. The intrinsic fluorescence spectrum of 1.25 µM Ku (monomer) 
was measured in the absence or in the presence of increasing concentration of linear DNA; 0:1 
molar ratio of linear DNA:Ku (solid, black line); 0.5:1 (broken, light grey line); 1:1 (broken, dark 
grey line). B. Fluorescence spectra for free and supercoiled DNA-bound Ku. The intrinsic 
fluorescence spectrum of 1.25 µM Ku was measured in the absence or in the presence of increasing 
concentration of supercoiled DNA; 0:1 molar ratio of supercoiled DNA:Ku (solid, black line); 
0.5:1 (broken, light grey line); 1:1 (broken, dark grey line). C. Fluorescence spectra for free and 
linear DNA-bound TKu. The intrinsic fluorescence spectrum of 1.25 µM TKu was measured in 
the absence or in the presence of increasing concentration of linear DNA; 0:1 molar ratio of linear 
DNA:TKu (solid, black line); 0.5:1 (broken, light grey line); 1:1 (broken, dark grey line). D. 
Fluorescence spectra for free and supercoiled DNA-bound TKu. The intrinsic fluorescence 
spectrum of 1.25 µM TKu was measured in the absence or in the presence of increasing 
concentration of supercoiled DNA; 0:1 molar ratio of supercoiled DNA:TKu (solid, black line); 
0.5:1 (broken, light grey line); 1:1 (broken, dark grey line). The spectra corresponding to 0.5:1 and 
1:1 molar ratio of supercoiled DNA:TKu are overlapping. 
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The significant blueshift compared to the 340-350 nm emission maximum for Trp that is 

fully exposed to an aqueous environment suggests a less polar environment. With linear DNA, a 

significant increase in fluorescence was observed for both Ku and TKu at a linear DNA:protein 

molar ratio of 1:1 (considering the molecular weight of dimeric Ku; corresponding to a 2:1 ratio 

of free DNA ends to Ku) with an additional increase in fluorescence for a molar ratio of 2:1 (Figure 

3.8A,C). By comparison, the fluorescence of Ku and TKu showed no change on adding 

supercoiled DNA to a DNA:protein molar ratio to 1:1, however, a significant increase in 

fluorescence was observed when the molar ratio was 2:1 (Figure 3.8B, D). 

Several amino acid side chains (and water molecules) quench the fluorescence from the 

indole ring of tryptophan; the increase in fluorescence intensity on DNA binding, irrespective of 

DNA conformation, might be due to steric shielding of tryptophan residues resulting from a change 

in protein conformation that alters the environment of the fluorophores [39]. For both proteins, 

addition of DNA ultimately results in significant increase in fluorescence intensity, consistent with 

the inferred location of tryptophan residues at the base of the DNA-binding core. The co-crystal 

structure of human Ku and DNA revealed that the non-sequence-specific binding of Ku to DNA 

is due to interaction of basic amino acids with the negatively charged DNA phosphate backbone, 

whereas no direct contact with the nucleobases were seen [9]. M. smegmatis Ku also binds DNA 

non-sequence-specifically; interaction between positively charged residues near tryptophan and 

the negatively charged DNA phosphate backbone might shield tryptophan residues from solvent 

due to closer proximity to the apolar base pairs, thereby resulting in the observed fluorescence 

increase. Also, if the C-terminal extension contacts the protein core, as inferred from both its ability 

to change protein stability and DNA-binding affinity, then association with DNA may disrupt or 

alter such interactions and contribute to changes in the environment of tryptophan residues. We 
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also note that the fluorescence yield of Ku in absence of DNA is significantly greater than that of 

TKu (Figure 7A-D), consistent with the interpretation that the Ku C-terminal domain contacts the 

protein core and alters the environment of Trp residues. The data also show that the increase in 

fluorescence of Ku and TKu is comparable on interaction with linear and supercoiled DNA, 

indicating that both proteins bind both linear and supercoiled DNA. 

To validate this observation, a competition assay was performed to compare the binding of 

M. smegmatis Ku to linear and supercoiled DNA. Full-length Ku bound linear and supercoiled 

DNA with similar preference as evidenced by the observation that both supercoiled and linear 

DNA competed for binding to 190 bp DNA at equivalent concentrations, as indicated by the 

disappearance of the preformed complex (Figure 3.9A-B). 

 

Figure 3.9. DNA competition assay. A. Supercoiled DNA competes for Ku binding to linear DNA. 
Reactions contain 2 nM of DNA (190 bp) and 400 nM Ku. Lane 1, DNA only; lane 2, DNA and 
Ku (400 nM); lanes 3-12, DNA and Ku with increasing concentrations (2, 4, 6, 8, 10, 12, 14, 16, 
18, 20 nM) of supercoiled pUC18. B. Ku binding to linear DNA. Reactions contain 2 nM of DNA 
(190 bp) and 400 nM Ku. Lane 1, DNA only; lane 2, DNA and Ku (400 nM); lanes 3-12, DNA 
and Ku with increasing concentrations (2, 4, 6, 8, 10, 12, 14, 16, 18, 20 nM) of linear pUC18. 



72 
 

A competition assay with TKu, similarly showed no preferential binding to either linear or 

supercoiled DNA (Figure 3.10 and 3.11). A competition assay was also performed using 37 bp 

biotinylated DNA blocked at both ends by binding to streptavidin. The preformed complex formed  

 

Figure 3.10. TKu binds to supercoiled DNA. Reactions contain 2 nM of DNA (190 bp) and 50 nM 
TKu. Lane 1, DNA only; lane 2, DNA and TKu (50nM); lanes 3-12, DNA and TKu with increasing 
concentrations (2, 4, 6, 8, 10, 12, 14, 16, 18, 20 nM) of supercoiled pUC18. 
 

 

Figure 3.11. TKu binds to linear DNA. Reactions contain 2 nM of DNA (190 bp) and 50 nM TKu. 
Lane 1, DNA only; lane 2, DNA and TKu (50 nM); lanes 3-12, DNA and TKu with increasing 
concentrations (2, 4, 6, 8, 10, 12, 14, 16, 18, 20 nM) of linear pUC18. 
 

between Ku and 37 bp DNA was competed out comparably by both biotin-streptavidin DNA and 

37 bp unmodified DNA duplex (Figure 3.12A). By comparison, the preformed complexes with 

TKu were not efficiently competed out by biotin-streptavidin DNA, but only by unmodified 37 bp 
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duplex (Figure 3.12B). TKu has been shown to require a minimum of 14 bp for DNA binding, 

whereas Ku can bind to 7 bp of DNA [10]. Hence, to rule out the possibility that doubly 

biotinylated DNA has insufficient space for TKu binding at internal sites as a possible reason for 

the inefficient competition, a competition assay using Dps-1 protein, which requires a minimum 

of 22 bp of DNA to bind, was performed. This experiment showed efficient binding of Dps-1 to 

doubly biotinylated DNA, indicating that at least 22 bp duplex is available for protein binding 

(data not shown) [40]. We therefore conclude from figure 3.12 that TKu requires free DNA ends 

for binding to linear DNA while full-length Ku does not, a property conferred by the C-terminal 

extension.  

Conclusions 

Consistent with a circular DNA-binding motif, Ku preferentially associates with the ends 

of linear DNA. However, additional properties ascribed to eukaryotic Ku include the ability to 

translocate inwardly from DNA ends and the ability to bind DNA whose ends are closed with 

hairpin loops [27, 33]. Ku from P. aeruginosa and M. tuberculosis differ; P. aeruginosa Ku deleted 

for its C-terminal extension forms two complexes with linear DNA, implying that it cannot 

translocate from DNA ends [12]. M. tuberculosis Ku, which does not have a C-terminal extension, 

does not bind supercoiled DNA, and it forms only two complexes with 66 bp DNA, suggesting 

that it cannot translocate to internal DNA sites either, since 66 bp DNA should be of sufficient 

length to accommodate at least three Ku molecules [4, 12]. M. smegmatis Ku lacking its C-terminal 

extension appears to be more similar to eukaryotic homologs in its interaction with DNA; it 

requires free DNA ends for binding to short duplexes, but it can readily translocate to internal 

DNA sites (Figures 3.1 and 3.9). Such movement would be expected to facilitate association of 

the cognate ligase with DNA ends. 
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Figure 3.12. DNA competition assay with biotinylated streptavidin-bound DNA and unmodified 
37 bp DNA. A. Ku binding to biotinylated streptavidin-bound DNA and normal 37 bp DNA. 
Reactions contain 5 nM of labeled DNA (37 bp) and 30 nM Ku. Lane 1, DNA only; lane 2, DNA 
and Ku (30 nM); lanes 3-8, DNA and Ku with increasing concentrations (10, 20, 30, 40, 50, 60 
nM) of biotinylated streptavidin-bound DNA; lanes 9-14, DNA and Ku with increasing 
concentrations (10, 20, 30, 40, 50, 60 nM) of normal 37 bp DNA; lane 15, 32P- labeled singly 
biotinylated 37 bp DNA (5 nM) and 30 nM streptavidin. B. TKu binding to biotinylated 
streptavidin-bound DNA and normal 37 bp DNA. Reactions contain 5 nM of labeled DNA (37 bp) 
and 3 nM TKu. Lane 1, DNA only; lane 2, DNA and TKu (3 nM); lanes 3-8, DNA and TKu with 
increasing concentrations (10, 20, 30, 40, 50, 60 nM) of biotinylated-streptavidin DNA; lanes 9-
14, DNA and TKu with increasing concentrations (10, 20, 30, 40, 50, 60 nM) of normal 37 bp 
DNA; lane 15, 32P- labeled singly biotinylated 37 bp DNA (5 nM) and 30 nM streptavidin. 
 

TKu can also bind internal DNA sites in plasmid DNA. This mode of binding, which is 

most likely due to association with local secondary structure elements, is reminiscent of the 
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reported ability of eukaryotic Ku to bind DNA whose ends are closed with hairpin loops [27, 33]. 

The C-terminal extension also contacts internal DNA sites as evidenced by binding to shorter 

duplexes and the formation of additional complexes compared to TKu (Figure 3.9A and [10]). 

This extension does not appear to bind preferred DNA structures; considering the similarity to the 

C-terminus of eukaryotic histone H1, we imagine that this extension likewise folds into a helical 

segment upon association with DNA and contacts the DNA major groove [37]. Such contacts with 

DNA may impose a two-dimensional search and facilitate recruitment to sites of DNA damage. 
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CHAPTER 4 

MYCOBACTERIUM SMEGMATIS KU BINDS ZINC 

Introduction 

Ku protein is an important component of the non-homologous end-joining (NHEJ) 

pathway of DNA double strand break repair. Analyses of bacterial genomes have led to the 

identification in some bacterial species of a homolog of Ku, previously thought to be encoded only 

by eukaryotes [1-5]. The overall three dimensional topology of Ku is conserved from prokaryotes 

to eukaryotes even though the protein sequence has diverged significantly during the course of 

evolution. However, eukaryotic Ku proteins are heterodimers consisting of Ku70 and Ku80, 

whereas the 30-40 kDa prokaryotic Ku proteins are homodimers and composed of just the DNA-

binding core domain of eukaryotic Ku [1, 4-6]. The central core consists of a β-barrel domain that 

forms the base, pillar and bridge regions that together form a ring-like structure through which 

DNA is threaded (Figure 4.1) [4, 5, 7]. The bridge-region is an extension of the β-barrel core, 

which is conserved and important for dimerization and DNA-binding [7]. 

Sequence analysis has revealed that the bridge-region of Ku from several Gram-positive bacteria 

and their bacteriophages contains pairs of cysteine and histidine residues potentially forming a 

conventional HxxC and CxxC (where x is any residue) zinc binding site. In certain cases, the 

binding site is slightly modified with some cysteines being replaced by acidic residues, which can 

also participate in chelating zinc. By comparative sequence and structural analysis, Ku protein 

with putative zinc binding sites were detected in organisms belonging to firmicutes, actinobacteria 

(Gram-positive bacteria) and their viruses, whereas these sites have either deteriorated or been 

entirely lost in Ku from other organisms [7]. It was suggested that the Ku bridge region is derived 

from a regular Zn-ribbon by a segment-swapping event, and that it belongs to a new family of 

zinc-ribbon folding domain [7, 8]. 
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Figure 4.1. Model of M. smegmatis Ku. Each monomer (in purple and light pink) is modeled on 
template strands 1jeyA and 1jeyB. The residues predicted to coordinate with zinc are highlighted 
in different colors, Cysteine (red), histidine (orange) and aspartic acid (cyan). The image was 
prepared with PyMOL (www.pymol.org).  
 

Intrigued by the in silico prediction of a zinc-binding motif in Ku proteins from 

actinobacteria, we tested zinc binding of Mycobacterium smegmatis Ku. Using an in vitro metal 

binding assay we show that M. smegmatis Ku indeed binds zinc. Our data suggests a novel function 

of Ku in protecting cells against zinc toxicity.  

http://www.pymol.org/
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Experimental Procedures 

Metal binding by Ku 

M. smegmatis Ku was purified with an N-terminal His6-tag and characterized as described 

[9]. To rule out any zinc binding to the His6-tag, the tag was cleaved by enterokinase. Ku with and 

without His6-tag was treated with 50 mM bipyridyl (metal chelator) for 30 min at 4°C, to remove 

any metal from the protein. The bipyridyl-treated protein was then dialyzed overnight against 

buffer A (50 mM Tris-Cl (pH 8), 2 mM 2-mercaptoethanol, 100 mM NaCl, 10% glycerol) at 4°C 

to remove bipyridyl. The protein was then incubated with 1 mM ZnCl2 followed by overnight 

dialysis to remove excess metal. To denature, the protein was treated with 1% SDS and heated at 

90°C for 5 minutes. Samples were mixed with 100 µM 4-(2-pyridylazo) resorcinol (PAR) in buffer 

A, and the absorbance from 320 to 625 nm was recorded using an Agilent 8453 spectrophotometer. 

All experiments were performed in duplicate. 

Quantification of zinc bound to Ku 

The number of zinc ions bound to M. smegmatis Ku was determined by the PAR assay 

[10]. In absence of zinc, PAR has a low absorbance at 500 nm, however, the absorbance increases 

significantly in the presence of zinc due to the formation of PAR2·Zn2+ complex. To ensure the 

release of zinc from Ku, 0.5 µM (monomer) of the protein was denatured by heating at 90°C for 5 

minutes. Zinc-treated Ku without His6-tag was mixed with 100 µM 4-(2-pyridylazo) resorcinol 

(PAR) in buffer A, and the absorbance spectrum from 300 to 600 nm was measured using an 

Agilent 8453 spectrophotometer. The quantity of zinc was determined from a standard curve, 

obtained by titrating PAR (100 µM) with ZnCl2 and measuring absorbance at 500 nm. All 

experiments were performed in duplicate. 
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Thermal stability assay 

Ku protein, bipyridyl-treated Ku or Zn-treated Ku were diluted to 5 µM in a buffer 

containing 50 mM Tris (pH 8.0), 100 mM NaCl, and 5X SYPRO Orange (Invitrogen) as reference 

fluorescent dye. The fluorescence emission was measured over a temperature range of 5-90°C in 

1° increments for 40 s using an Applied Biosystems 7500 Real-Time PCR System (filter: SYBR 

green). Triplicate 50 µl samples were analyzed in a 96-well reaction plate. The total fluorescence 

yield measured was corrected using reactions without protein. The resulting data were analyzed 

with Sigma Plot 12 and the sigmoidal part of the curve was averaged for each triplicate. The 

averaged curves were subsequently fit to a four-parameter sigmoidal equation and the Tm values 

were determined. The S.D. values are derived from three replicates of an experiment. 

Electrophoretic mobility shift assays 

Oligodeoxyribonucleotides used to generate duplex DNA constructs were purchased and 

purified by denaturing polyacrylamide gel electrophoresis. One strand was 32P-labeled at the 5′-

end with phage T4 polynucleotide kinase. Equimolar amount of complementary oligonucleotides 

were mixed, heated to 90°C and cooled slowly to room temperature to form duplex DNA. The 

concentrations of DNA were determined spectrophotometrically. 

Electrophoretic mobility shift assays (EMSAs) were performed using 8 % polyacrylamide 

gels [39:1 (w/w) acryl-amide:bis(acrylamide)] in 0.5X TBE (50 mM Tris borate, 1 mM EDTA). 

Gels were prerun for 30 min at 175 V at room temperature before loading the samples. For 

measuring half-maximal saturation, 5 nM of 32P-labeled 37 bp DNA was titrated with proteins, 

pretreated with either 10 mM of H2O2 or 10 mM of beta-mercaptoethanol in a total reaction volume 

of 10 µl in binding buffer (25 mM Tris-HCl (pH 8), 50 mM NaCl, 0.05% Triton X-100 and 2% 

(v/v) glycerol). The sequence of 37 bp DNA used was 5′-CCT AGG CTA CAC CTA CTC TTT 
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GTA AGA ATT AAG CTT C-3′. Reactions were incubated at room temperature for 1 h and then 

loaded onto the gel with power on. After electrophoresis, gels were dried, and protein-DNA 

complexes and free DNA were quantified by phosphorimaging using software supplied by the 

manufacturer (Image Quant 1.1). Percentage complex formation was plotted as a function of 

protein concentrations and fitted to the Hill equation, f= fmax ([Ku]n/Kd
n) / (1+ ( [Ku])n/ Kd

n) where 

[Ku] is the protein concentration, f is the fractional saturation, Kd reflects the half-maximal 

saturation, and n is the Hill coefficient. All bands corresponding to protein-DNA complexes, 

including the area between the fastest migrating complex and the free DNA were considered as 

complex. Fits were performed using the program Kaleidagraph. The half-maximal saturation value 

is reported as the mean ± S.D. Experiments were performed in duplicate. 

Growth of E. coli expressing M. smegmatis Ku  

Two hundred milliliter of LB medium was inoculated with 1 ml of overnight starter culture 

of E. coli Rosetta cells (control) or Rosetta cells transformed with Ku expression vector. Ku 

expression was induced with 1 mM IPTG 30 min after inoculation. All cultures were allowed to 

grow for 60 min at 37°C followed by addition of ZnCl2 to a final concentration of 1 mM. 

Absorbance at 600 nm was recorded every 30 min for 8 hours. 

Measurement of cysteine oxidation 

The oxidation state of Ku and zinc bound Ku was determined by adding Ellman’s reagent, 

5, 5′-dithiobis-(2-nitrobenzoic acid) (DTNB), and measuring the formation of 5-thio-2-

nitrobenzoic acid at 412 nm. A fresh solution of DTNB (12.5 mM) was prepared in 0.1 M Tris 

buffer, pH 8.0. The amount of thiol group in Ku before and after H2O2 (10 mM) treatment was 

measured by the addition of protein solution to a mixture containing 100 µM DTNB, 2 mM EDTA, 

and 6 M urea. The percentage of oxidized cysteine on treatment with H2O2 was calculated from a 
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calibration curve generated by using appropriate concentrations of β-mercaptoethanol. To 

determine the effect of cysteine modification on zinc binding, protein was modified with Ellman’s 

reagent as described above, followed by incubation with Zn2+ and dialysis to remove excess metal. 

Zinc binding was measured by PAR assay, as described above.  

Five microgram of Ku and Zn-bound Ku was treated with 10 mM of H2O2 and 10 mM DTT 

and incubated on ice for 30 minutes. The samples were then analyzed by SDS-PAGE. 

In vivo gene expression in response to zinc 

 An overnight culture of M. smegmatis was diluted 1:100 in fresh Middlebrook 7H9 media 

and challenged with zinc at a final concentration of 2 mM, which is above the reported minimal 

inhibitory concentration (MIC) of 1.5 mM for M. smegmatis mc2155 [11]. Cells were harvested 

by centrifugation when the cultures reached an optical density of ~0.5 at 600 nm, followed by 

isolation of total RNA with Illustra RNAspin Mini Isolation Kit (GE Healthcare). cDNA was 

prepared from 300 ng of total RNA with AMV reverse transcriptase according to Sambrook et al. 

[12] and quantitative PCR was carried out with a Applied Biosystems 7500 Real Time PCR 

system. DNA representing ku and marR and the internal control gene rrsA was amplified with 

specific primers using SYBR green 1 fluorescence as a reporter of amplification. Isolated RNA 

samples were included in all experiments as a control for DNA contamination. For each sample, 

melting curves were recorded and samples subsequently run on an agarose gel to confirm purity 

of the products. Necessary controls and validations were carried out before applying the 

comparative CT (2-ΔΔC
T) method for data analysis [13]. 

Results and Discussion 

Ku binds zinc 

A multiple sequence alignment of Ku proteins from Gram-positive bacteria such as 

Bacillus species shows retention of conventional zinc-binding motifs (i.e., HxxC and CxxC, where 
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x is any residue) whereas Ku from Gram-negative bacteria such as Pseudomonas species entirely 

lack these zinc-binding sites (Figure 4.2). Mycobacterial species also encode Ku with zinc-binding 

sites, however, with slight modifications, as one or more of the cysteine residues have been 

replaced by aspartic acid (Figure 4.2). These modified zinc-binding motifs in mycobacterial Ku 

have been suggested to have the potential to bind zinc [7]. To address this hypothesis, we examined  

 

Figure 4.2. Multiple sequence alignment of bacterial Ku homologs. The first and last residue 
numbers are indicated before and after each sequence in the alignment. Positions corresponding to 
zinc-binding residues are boxed in red. The conventional Zn-binding motifs are colored blue and 
modified residues are colored orange. The abbreviations of organisms used: B_meg, Bacillus 

megaterium; B_ant, Bacillus anthracis; B_pum, Bacillus pumilis; B_sub, Bacillus subtilis; 
M_smg, Mycobacterium smegmatis; M_JLS, Mycobacterium Sp. JLS; M_KMS, Mycobacterium 
Sp. KMS; M_gil, Mycobacterium gilvum; M_van, Mycobacterium vanbaalenii; M_tub, 
Mycobacterium tuberculosis;  M_bov, Mycobacterium bovis; M_mar, Mycobacterium marinum; 
M_ulc, Mycobacterium ulcerans; M_kan, Mycobacterium kansasii; M_avi, Mycobacterium 

avium; M_int, Mycobacterium intracellulare; S_coe, Streptomyces coelicolor; P_stu, 
Pseudomonas stutzeri; P_aeu, Pseudomonas aeruginosa; P_put, Pseudomonas putida. 
 
zinc binding by recombinant M. smegmatis Ku, which was expressed in E. coli using media 

without added zinc, as described [9]. As determined by gel filtration chromatography, M. 

smegmatis Ku exists as the expected dimer in solution [9]. 

To assess the ability of M. smegmatis Ku to bind zinc in vitro, we used 4-(2-pyridylazo) 

resorcinol (PAR), which is a metallochromic chelator that forms complex with various divalent 
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metals, resulting in a diagnostic absorbance of the metal-PAR complex. The uncomplexed PAR 

has an absorbance maximum at 416 nm, however when complexed with zinc its absorbance at 500 

nm increases significantly. No change in the PAR absorbance maximum was observed on addition 

of native Ku (Figure 4.3A; red line) or denatured Ku previously treated with bipyridyl to remove  

 

Figure 4.3. Zinc binding by Ku. A. Zinc binding by native Ku. Absorbance spectrum of native Ku 
(red line); native, zinc-treated Ku (blue line); native zinc-treated Ku without His6-tag (black line). 
B. Zinc binding by denatured Ku. Denatured Ku (red line); denatured, zinc-treated Ku (blue line); 
denatured, zinc treated Ku without His6-tag (black line). Denaturation by SDS resulted in an 
overall increase in the baseline (panel B).  
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divalent metal (Figure 4.3B; red line), suggesting that Ku purified from E. coli has no metal bound, 

possibly due to the presence of EDTA (metal chelator) in the purification buffer. However, a 

significant increase in absorbance maximum at 500 nm was seen when PAR was incubated with 

zinc-treated native Ku or zinc-bound Ku subsequently denatured (Figure 4.3A and B, respectively; 

blue lines). Ku protein was purified with an N-terminal His6-tag, hence to rule out the possibility 

of the His6-tag binding zinc, the PAR assay was performed with Ku protein whose His6-tag was 

cleaved by enterokinase. Again, a significant increase in absorbance maximum at 500 nm was seen 

when PAR assay was performed with zinc-treated native and denatured Ku (Figure 4.3A and B, 

respectively; black lines).  

The amount of zinc bound to the protein was estimated by the PAR assay. To ensure 

quantitative release of metal from zinc-bound Ku (without its His6-tag), the protein was denatured 

by heating. The released zinc was detected by PAR, which binds Zn2+ in a 2:1 ratio, and the amount 

of zinc bound per Ku molecule was estimated by comparison with a Zn2+ standard curve (Figure 

4.4). It was estimated that 0.5 µM of monomeric Ku protein bound 0.77 µM of Zn2+, indicating 

that dimeric Ku binds two zinc atoms, which is consistent with the number of predicted zinc-

binding motifs. Taken together, these data indicate that M. smegmatis Ku can bind zinc and they 

are consistent with zinc binding to each of the predicted sites. 

Zinc stabilizes Ku 

Zinc sites are often structural, and zinc ions are known to stabilize the structure of a small and 

autonomously folded protein domain. To assess the effect of zinc binding on Ku protein stability, 
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Figure 4.4. Zinc (II) standard curve. One hundred micromolar PAR was titrated with ZnCl2 in 
buffer A at room temperature and OD at 500 nm was monitored. The amount of zinc released per 
monomer of M. smegmatis Ku is shown by an arrow. 
 
the thermal stability of untreated Ku, bipyridyl-treated Ku and zinc-bound Ku was compared using 

SYPRO orange as a fluorescent reporter of protein unfolding (Figure 4.5). The melting temperature 

(Tm) of untreated and bipyridyl-treated Ku was identical with Tm of 44.3 ± 0.3 °C (Figure 4.5A) 

and 44.3 ± 0.2 °C (Figure 4.5B), respectively, in accord with the inference from PAR-chelation 

experiments that Ku isolated from E. coli has no metal bound. However, zinc-bound Ku had a Tm 

of 47.1± 0.1 °C (Figure 4.5C), consistent with a role of zinc in stabilizing the protein. The relatively 

modest increase in thermal stability is consistent with stabilization of the flexible loops responsible 

for encircling DNA as opposed to stabilization of the globular protein core. 
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Figure 4.5. Melting temperature determination by differential scanning fluorimetry. A. Thermal 
denaturation curve of Ku. Tm (with SD) is 44.3 ± 0.3 °C. B. Thermal denaturation curve of 
bipyridyl-treated Ku. Tm (with SD) is 44.3 ± 0.2 °C. C. Thermal denaturation curve of zinc-treated 
Ku. Tm (with SD) is 47.1± 0.1 °C.   
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Zinc protects Ku from cysteine oxidation 

To determine if zinc binding prevents cysteine oxidation, the effect of oxidizing and 

reducing agents on Ku and zinc-bound Ku was analyzed by SDS-PAGE. Reduced Ku or bipyridyl- 

treated Ku migrate near the 55.6 kDa marker (Figure 4.6A, lanes 2 and 4). Both untreated and 

bipyridyl-treated Ku form a higher molecular weight oligomeric species with a molecular weight 

of about 158 kDa when treated with 10 mM H2O2, and oxidized monomeric Ku consistently 

migrated slightly slower than reduced Ku (Figure 4.6A, lanes 3 and 5). The slightly reduced 

 

Figure 4.6. SDS-PAGE analysis. A. Effect of oxidizing and reducing agent on Ku and bipyridyl-
treated Ku. Lane 1:molecular weight markers in kDa, lane 2: 5 µg of Ku and DTT (10 mM); lane 
3: 5 µg of Ku and H2O2 (10 mM); lane 4: 5 µg of bipyridyl-treated Ku and DTT (10 mM); lane 5: 
5 µg of bipyridyl-treated Ku and H2O2 (10 mM). B. Effect of oxidizing and reducing agent on Ku-
Zn. Lane 1: molecular weight markers in kDa; lane 2: 5 µg of zinc-treated Ku and H2O2 (10 mM); 
Lane 3: 5 µg of zinc-treated Ku and DTT (10 mM). 
 

mobility of monomeric oxidized Ku likely also reflects cysteine oxidation, which may result in 

different sulfur oxidation states, including an intramolecular disulfide bridge or sulfenic and 

sulfinic acids. On treatment with oxidizing agent, we also expected to see a dimeric Ku of ~110 
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kDa if intermolecular disulfide bonds were to form. However, the presence of oligomeric species 

of 158 kDa is most likely due to an anomalous migration of dimeric Ku as a trimer is difficult to 

reconcile with the dimeric Ku structure. We also note that the modest intermolecular disulfide 

bond formation is consistent with the model of Ku in which pairs of cysteine residues from each 

monomer are far apart and each pair of cysteines combines with histidine and aspartate from the 

other monomer to form a zinc site (Figure 4.1); the limited intermolecular disulfide bond formation 

suggests that the bridge region is only modestly flexible.  

In contrast to untreated and bipyridyl-treated Ku, treatment of zinc-bound Ku with H2O2 

did not produce higher oligomeric species, consistent with the interpretation that zinc coordinates 

with cysteine residues and prevents disulfide bond formation (Figure 4.6B). To confirm that zinc-

binding prevents cysteine oxidation, the proportion of free thiol was determined by modification 

with DTNB. While incubation of bipyridyl-treated Ku with 10 mM H2O2 resulted in 87% cysteine 

oxidation, only 14% of cysteines in zinc-bound Ku were oxidized. This indicates that Zn-binding 

prevents cysteine oxidation, and therefore that cysteines participate in metal coordination. The 

reverse assay was also performed, in which Ku was first modified with DTNB, followed by 

detection of zinc binding by PAR assay. This assay revealed significantly reduced zinc binding by 

DTNB-modified protein, consistent with a role for cysteines in metal coordination (data not 

shown). Importantly, these data imply binding of zinc to the predicted cysteine-containing motif. 

Zinc has little effect on DNA binding 

The conformation of eukaryotic Ku is sensitive to redox conditions and its interaction with 

DNA is favored under reducing conditions [14, 15]. To assess the effect of redox conditions on 

DNA binding affinity of M. smegmatis Ku, we performed EMSAs with native Ku and Zn-bound 

Ku using 37 bp DNA (Figure 4.7). Ku and zinc-bound Ku showed equivalent half-maximal 
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saturation values in absence of oxidizing and reducing agent, which shows that coordination of 

zinc in the bridge region of Ku did not affect the affinity for DNA (Table 4.1). Under reducing 

conditions, the DNA binding affinity of native and zinc-treated Ku increased modestly, as 

evidenced by an approximately two-fold reduction in half-maximal saturation values. Under 

oxidizing conditions, the affinity is similar to that observed for untreated Ku (exposed to air), 

although Zn-bound Ku appeared modestly resistant to the effect of oxidant (Table 4.1). These data 

show that coordination of zinc at the zinc-binding site in Ku has no effect on DNA-binding activity 

under reducing conditions; however, Zn2+ confers a marginal protection against the attenuation of 

DNA-binding associated with protein oxidation.  

Table 4.1. Half-maximal saturation of Ku under oxidizing and reducing conditions 

Proteins Half-maximal saturation 

Ku 8.6 ± 0.5 nM 

Ku-Zn 10.2 ± 1.7 nM 

Oxidizing Conditions 

Ku 10.7 ± 0.4 nM 

Ku-Zn 7.8 ± 0.4 nM 

Reducing Conditions 

Ku 4.7 ± 0.2 nM 

Ku-Zn 4.6 ± 0.2 nM 
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Figure 4.7. Effect of Zn and oxidant on DNA binding by Ku. A. Titration of Ku with 37 bp DNA 
under oxidizing conditions. Lane 1, 37 bp DNA (5 nM) only; lanes 2-15, 37 bp DNA titrated with 
increasing concentrations (4-280 nM) of Ku treated with H2O2 (10 mM). B. Binding isotherm for 
Ku binding to 37 bp DNA. The best fit to the data were obtained using the Hill equation (R2 = 
0.9899 and n = 2.5 ± 0.2). Error bar represents standard deviation. C. Titration of Ku with 37 bp 
DNA under reducing conditions. Lane 1, 37 bp DNA (5 nM) only; lanes 2-15, 37 bp DNA titrated 
with increasing concentrations (4-280 nM) of Ku treated with β- mercaptoethanol (10 mM). D. 
Binding isotherm for Ku binding to 37 bp DNA. The best fit to the data was obtained using the 
Hill equation (R2 = 0.99 and n = 1.7 ± 0.1). Error bars represent standard deviation. 
 

Ku confers zinc tolerance 

 M. smegmatis Ku can bind zinc, and the stoichiometry of binding and ability of bound zinc 

to prevent cysteine oxidation is consistent with binding to the predicted sites in the bridge region. 

However, the main effect of zinc binding appears to be an increase in thermal stability, with no 

significant effect on DNA binding. We therefore wondered about other potential factors that might 

have exerted sufficient evolutionary pressure to retain the zinc sites in Ku from select 
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mycobacterial species. Zinc is an essential nutrient for mycobacteria as it is required for many 

enzymes such as alcohol dehydrogenase, superoxide dismutase, and carbonic anhydrase. However, 

despite its physiological importance, a high concentration of zinc is toxic, for example because it 

competes with other metals for binding to the active sites of enzymes [16]. Therefore, homeostasis 

of zinc ion concentration inside the cell is essential for mycobacterial species, many of which are 

environmental or pathogenic species that are exposed to assorted stress conditions, including the 

release of zinc from host mucosal surfaces in response to bacterial infection [17]. For instance, the 

existence of a zinc ion resistance determinant and a zinc-induced transcriptional regulator in 

mycobacteria speaks to the importance of zinc ion homeostasis [11, 18, 19].   

If M. smegmatis Ku were to bind zinc as a mechanism to attenuate toxicity, we reasoned 

that it might be upregulated under conditions of increased intracellular [Zn2+]. Examination of the 

annotated M. smegmatis genome revealed that the gene encoding Ku (MSMEG_5580) is oriented 

divergently from a gene encoding a predicted zinc-dependent multiple antibiotic resistance 

regulator (MarR) family protein (MSMEG_5579) (Figure 4.8A). This type of gene arrangement is 

not conserved in other mycobacterial species such as M. tuberculosis, M. bovis, M. vanbaalenii, 

and M. gilvum. The predicted zinc-dependent MarR family transcription regulator has a conserved 

domain belonging to the ubiquitous ArsR (or ArsR/SmtB) family of metalloregulators whose 

members act as metal sensors and de-repress gene expression when metal ion becomes abundant 

[20-23]. The general mechanism employed by ArsR family proteins is common for MarR family 

transcriptional regulators that are often divergently encoded from other genes or operons and 

respond to specific ligand binding by de-repressing the gene(s) under their control (for review, see 

[24]). The genomic locus encoding M. smegmatis Ku and the MarR homolog predicts upregulation 

of both genes on ligand binding to the transcription factor. 
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Figure 4.8. Effect of zinc on expression of M. smegmatis ku and marR. A. Genetic locus 
organization of M. smegmatis ku and marR genes. B. Relative abundance of transcript levels of ku 

and marR genes after addition of 2 mM zinc. mRNA levels were measured with qRT-PCR and the 
relative abundance was calculated by comparative CT method with reference to transcript level of 
control. The error bars represent the S.D. of three experiments. 
 

To assess whether expression of these genes is altered by zinc, mid-log phase cultures of 

M. smegmatis were exposed to exogenous zinc (2 mM), a concentration chosen based on the 

reported minimum inhibitory concentration [11], and the effect on transcription of both genes was 

determined. As evidenced by quantitative RT-PCR analysis, growth in the presence of zinc led to  
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Figure 4.9. Growth curve of Rosetta (E. coli) cells in presence of 1 mM ZnCl2. Growth curve of 
cells induced for Ku expression (solid diamond); growth curve of uninduced cells (solid circle); 
growth curve of E. coli cells harboring plasmid without ku gene (solid square). Point of addition 
of ZnCl2 is marked with an arrow. 
 
an increase in the transcript level of both marR and ku genes by 2.1 ± 0.2 and 6.0 ± 1.6 fold, 

respectively (Figure 4.8B). This indicates that zinc functions as a ligand for the MarR homolog in 

vivo, causing de-repression of marR and ku genes. The significant increase in ku gene activity in 

response to zinc is consistent with the hypothesis that Ku may function to sequester excess metal. 

The ability of M. smegmatis Ku to protect cells against toxic levels of zinc was tested in E. coli. 

Exposure to 1 mM of ZnCl2 was sufficient to inhibit the growth of E. coli harboring plasmid 

without any insert or cells in which Ku expression was not induced. In contrast, cells induced for 

Ku overexpression continued to exhibit vigorous growth (Figure 4.9), consistent with Ku 

conferring protection against zinc toxicity. 
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Conclusions 

As predicted from sequence analyses, M. smegmatis Ku can bind zinc (Figure 4.3). The 

binding of zinc enhances protein stability and protects the protein from damage due to oxidative 

stress, a situation encountered by pathogenic mycobacteria such as M. tuberculosis when host cells 

release reactive oxygen species as a defense mechanism and by non-pathogenic soil dwelling 

mycobacterial species such as M. smegmatis when exposed to desiccation.  

Similar to eukaryotic Ku [25, 26], the interaction of M. smegmatis Ku with DNA is favored 

under reducing conditions, albeit very modestly. Eukaryotic Ku undergoes structural changes upon 

oxidation, which in turn results in an increased rate of dissociation from DNA. The residence time 

of Ku on DNA is important for the activation and recruitment of other proteins involved in NHEJ, 

hence oxidation can impair the NHEJ process. For M. smegmatis Ku, zinc moderately prevents 

loss of DNA binding affinity under oxidizing conditions, which would be beneficial for DNA 

double strand break repair under oxidative stress.  

Zinc-binding sites within the Ku bridge-region have only been retained in Ku from select 

bacterial species (Figure 4.2). However, the modest increase in thermal stability and protection 

against oxidative damage afforded by zinc binding does not appear to rationalize the evolutionary 

pressures to retain these sites. An alternate explanation is suggested by the observation that excess 

zinc is toxic and used by host cells as an antibacterial agent. For example, host macrophages release 

Zn2+ into phagosomes to limit the growth of M. tuberculosis [27]. Moreover, the presence of heavy 

metal efflux P1-type ATPases in pathogenic as well as non-pathogenic mycobacteria signifies the 

importance of a mechanism to reduce the toxic effects of metals [27, 28]. Overexpression of Ku 

increased zinc tolerance of E. coli cells, and exposure to toxic levels of zinc increased transcription 

of the gene encoding Ku in M. smegmatis (Figures 4.8 and 4.9). Thus, zinc-binding by 
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mycobacterial Ku can provide additional protection against zinc toxicity by sequestering free Zn2+ 

without compromising normal Ku function. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

 
Bacteria have evolved different mechanisms to deal with environmental stress conditions 

such as ionizing radiation, desiccation, and hypoxia [1-4]. One of the important mechanisms of 

survival adopted by many bacteria is to enter dormancy, in which the active growth of the bacteria 

arrests until the return of ideal conditions. The genus Mycobacterium, which encompasses 

pathogenic and environmental bacteria, has successfully acquired this mechanism to survive stress 

conditions. For example, the survival of Mycobacterium tuberculosis, the causative agent of 

tuberculosis, as a leading cause of death worldwide is associated with its ability to latently infect 

humans whereby it becomes dormant and survives hypoxic conditions within human macrophage 

cells without causing any symptoms [5-7]. 

During dormancy, the bacteria exit an active dividing phase and enter stationary phase. 

Such prolonged exit from division cycle is often associated with a number of important 

consequences for genome stability such as accumulation of DNA double strand breaks (DSB), 

when cells are exposed to desiccation or genotoxic agents. As a mechanism to repair such breaks, 

some bacteria have evolved a non-homologous end-joining DSB repair mechanism [8, 9]. Ku 

along with ATP-dependent DNA ligase forms an integral part of this repair mechanism [10]. In 

this dissertation, I have elucidated the functional significance of unique features identified in the 

amino acid sequence of Mycobacterium smegmatis Ku protein, that include low complexity repeats 

at the C-terminus and a putative zinc binding site in the bridge region of the protein. 

The first chapter in this dissertation describes the role of lysine-rich C-terminal repeats, 

exclusively present in Ku protein encoded by soil-dwelling mycobacteria such as M. smegmatis, 

M. gilvum, Mycobacterium sp. KMS, Mycobacterium sp. JLS and certain other free living 

mycobacterial species inhabiting natural reservoirs. Interestingly, such repeats are entirely absent 
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in Ku from pathogenic mycobacteria such as M. tuberculosis and M. leprae [11]. An end-joining 

assay showed that the full length Ku containing the C-terminal extension promoted DNA end-

joining in presence of heterologous ligase, whereas truncated Ku (TKu) lacking the C-terminal tail 

strongly inhibited the end-joining, indicating that the C-terminal extension can interact with DNA 

ends, thereby bringing them together and promoting intermolecular ligation. Binding affinity 

measurement by electrophoretic mobility shift assay (EMSA) showed that removal of the lysine-

rich extension enhanced DNA binding affinity, also evidenced by inhibition of exonuclease and 

end-joining activity by TKu. The stoichiometry measurement showed that both Ku and TKu 

require 15-18 bp DNA to bind [11]. That the C-terminal extension interacts with DNA was evident 

from EMSA with a hairpin substrate containing a duplex region of less than 15 bp and from EMSA 

with 37 bp revealing that Ku formed additional discrete complexes compared to TKu.  

I propose that Ku protein encoded by soil dwelling M. smegmatis has acquired the rapidly 

evolving low complexity repeats to modulate properties of the protein. I suggest that such 

modulation facilitates non-homologous end-joining (NHEJ)-mediated double strand break repair 

by enhancing the ability to bring together broken DNA ends, thereby providing protection against 

environmental stress such as desiccation.  

The second chapter addresses the role of the C-terminal tail in binding to diverse DNA 

substrates and the requirement of free DNA ends for Ku binding. In contrast to other prokaryotic 

Ku proteins that only bind to DNA ends, both Ku and TKu from M. smegmatis showed binding to 

the internal sites of DNA. Compared to another prokaryotic Ku, where truncation at the C-terminus 

prevented translocation along DNA, M. smegmatis Ku showed no indication of impediment of 

translocation on deletion of the C-terminal tail. As opposed to the expected characteristic of a 

lysine-rich C-terminal extension of enhanced DNA binding affinity, removal of this extension in 



103 
 

M. smegmatis Ku reduced the binding affinity. A thermal shift assay showed that the melting 

temperature of Ku is higher than that of the truncated version TKu, suggesting that the C-terminal 

extension is not an isolated segment, but interacts with the DNA binding core of the protein. I 

suggest that this interaction of the DNA binding core with the C-terminal extension might hinder 

the protein core from making contacts with DNA, hence resulting in reduced affinity.  

A DNA binding assay with Ku and TKu showed that they both bind linear and nicked 

plasmid DNA, consistent with earlier observations. Surprisingly, in contrast to other prokaryotic 

Ku, both Ku and TKu bound supercoiled DNA comparably to linear DNA, as evidenced by a 

competition assay. Analysis of tryptophan fluorescence revealed a similar fluorescence quenching 

profile for both Ku and TKu when bound to supercoiled or linear plasmid DNA, further supporting 

the interpretation that both Ku and TKu bind supercoiled DNA. The binding to supercoiled plasmid 

DNA could possibly be attributed to interaction with various secondary structure elements that 

could form; hence, a competition assay was performed with unmodified 37 bp DNA (which would 

be too short to form local secondary structures) and doubly biotinylated DNA wherein both ends 

were blocked by binding to streptavidin. The complex with TKu was competed out by unmodified 

37 bp duplex only, whereas complexes with Ku were competed out by both normal 37 bp duplex 

and streptavidin-bound DNA, suggesting that TKu requires free DNA ends for binding to linear 

DNA, whereas full-length Ku does not. The ability of full-length Ku to bind internal DNA sites 

may be attributed to its C-terminal extension. I propose that such contacts with internal DNA 

segments would facilitate a two-dimensional search and recruitment to DNA damage sites. 

The third chapter deals with the verification of an in silico prediction, which revealed that 

several Gram positive and acid fast bacteria such as M. smegmatis encode Ku protein with putative 

zinc binding sites in the bridge region, derived by a segment swapping event and belonging to a 
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new family of zinc ribbon folding domain [12, 13]. In comparison to conventional zinc binding 

motifs (HxxC and CxxC, where x is any residue) present in certain gram-positive bacteria, the site 

in M. smegmatis Ku is slightly modified as one of the cysteine residues is replaced by aspartic 

acid. Zinc binding by recombinant M. smegmatis Ku was tested by utilizing a metallochromic 

chelator, 4-(-2-pyridlazo)-resorcinol (PAR) [14]. Both His6-tagged Ku and Ku with cleaved His6-

tag bound zinc.  Quantification of the number of zinc ions bound per Ku molecule showed that 

each Ku dimer binds two zinc ions, consistent with the number of predicted Zn-binding sites in 

the Ku molecule. Zinc binding prevented cysteine oxidation, and protein with covalently modified 

cysteine residues showed reduced zinc binding, further confirming the involvement of cysteine 

residues of the predicted zinc-binding motifs in zinc binding.  

The functional significance of zinc binding was studied. Thermal stability shift assay 

showed a modest increase in thermal stability on zinc binding, suggestive of stabilization of the 

DNA binding loop instead of the protein core. Binding affinity measurement by electrophoretic 

mobility shift assay under oxidizing condition showed that coordination of zinc at the zinc-binding 

site provides modest resistance to the effect of oxidant. Under selective evolutionary pressure, 

retention of the zinc binding sites in Ku from selected mycobacterial species only to ensure a 

modest increase in thermal stability and a marginal protection against the effect of oxidizing agent 

on DNA binding is perplexing. However, examination of the M. smegmatis Ku genome led to the 

identification of a gene encoding a zinc-dependent MarR homolog, oriented divergently from the 

gene encoding Ku. The MarR homolog contains a conserved domain belonging to the ArsR family 

of metalloregulators that act as metal sensor and derepress expression of genes that are under their 

control [15-19]. My qRT-PCR result showed significant upregulation of both ku and marR 

transcript levels upon treatment with exogenous zinc. Based on these data I predict that analogous 
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to other MarR homologs that respond to ligands, zinc is a ligand for the MarR homolog under in 

vivo conditions and causes derepression of ku and marR gene activity. The upregulation of genes 

encoding a zinc-dependent MarR homolog and Ku led me to hypothesize that Ku may function to 

sequester excess zinc. That M. smegmatis Ku provided protection against toxic levels of zinc was 

tested in E. coli cells, which exhibited vigorous growth when expressing Ku even on exposure to 

toxic level of zinc, whereas cells not expressing Ku failed to grow under such conditions. In all, 

these results have unfolded a novel and previously uncharacterized function of Ku according to 

which conservation of the zinc-binding site in M. smegmatis Ku provides protection against zinc 

toxicity by sequestering zinc ions without compromising DNA binding by Ku.   

Future Directions 

 Analogous to the lysine-rich C-terminal tail of histone H1 that is unstructured and attains 

a helical conformation on DNA binding, I predict that the C-terminal extension of M. smegmatis 

Ku also shows similar characteristics; this can be verified by CD spectroscopy.  Furthermore, the 

induced helical conformation of the C-terminal tail of histone H1 is predicted to interact with the 

major groove of DNA, which could be true for the C-terminus of M. smegmatis Ku, hence it would 

be interesting to study such interactions. The annotation of M. smegmatis Ku shows an N-terminal 

extension, not present in other Ku homologs. Truncation of the N-terminal extension would be 

useful in understanding the effect of such extension, if any. Full-length Ku promoted end-joining 

in presence of non-cognate T4 DNA ligase, therefore analyzing end-joining with cognate ligase 

(LigD) would be insightful as perhaps the C-terminal extension interacts with this ligase. Also, the 

C-terminal extension confers binding to internal DNA sites and is predicted to facilitate 

recruitment to double strand breaks, hence a strain expressing TKu instead of Ku should be 

impaired in repair. It would be interesting to verify this prediction by plasmid repair assay in an 
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M. smegmatis strain in which the gene encoding full length Ku is replaced with a gene encoding 

TKu. 

I have shown that each M. smegmatis Ku dimer binds two zinc ions, consistent with the 

number of predicted zinc-binding sites; however, this could be further tested by site-directed 

mutagenesis. In addition, quantification of zinc bound to Ku could be further verified by 

inductively coupled plasma mass spectrometry (ICP-MS). My study shows upregulation of 

divergently oriented zinc-dependent marR and ku genes in response to zinc toxicity. It would be 

interesting to study the mode of regulation of both genes. Analysis of DNA binding of the MarR 

homolog to the intergenic region between marR and ku genes in presence or absence of zinc would 

be insightful. 

A dogma in Ku binding to closed end DNA  
 

That Ku protein requires free DNA ends for DNA binding and translocation along the DNA is 

a widely accepted mechanism of Ku interaction with DNA because of its circular DNA binding 

domain, which is conserved in both eukaryotes and prokaryotes. Studies have shown that 

eukaryotic Ku first binds to the free ends of DNA and thereafter translocates along DNA to free 

the ends for the binding of the next protein [20]. However, eukaryotic Ku binds DNA even when 

the ends of DNA are closed by hairpin loops [21]. In addition, the reported binding of eukaryotic 

Ku to nicked DNA that contains an intact single strand is counter-intuitive to the widely held 

mechanism of DNA binding by Ku. My study has shown that M. smegmatis Ku binds both 

supercoiled and linear plasmid DNA (Figure 3.4A and 3.9A-B). Similar results were obtained with 

TKu (Figure 3.5A, 3.10 and 3.11). Similar to eukaryotic Ku [22], both full length Ku and TKu 

bind nicked plasmid DNA (Figure 3.4B and 3.5B), and both Ku (data not shown) and TKu (Figure 

3.5C) bind covalently-closed relaxed plasmid DNA. As discussed in chapter 3, the interactions of 
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M. smegmatis Ku with various conformations of plasmid DNA could be due to its association with 

local secondary structure elements that can form in plasmid DNA [23]. In addition, my study has 

shown that interaction with internal DNA sites by full-length M. smegmatis Ku is due to its lysine-

rich C-terminal extension that can interact with DNA.  

Although interaction with local secondary structures of plasmid DNA and interaction of the C-

terminal domain of full length Ku with DNA provides a reasonable explanation for M. smegmatis 

Ku and TKu binding to DNA without free ends, the possible existence of an alternate mechanism 

of DNA binding by M. smegmatis Ku cannot be ruled out for reasons listed below:  

1) Studies on Ku protein form another member of the actinomycetes, M. tuberculosis, showed 

that it preferentially binds to linear DNA over closed circular DNA or single stranded 

DNA; however, supercoiled DNA was not tested and binding to closed circular DNA has 

not been precluded [9].  Notably, M. tuberculosis Ku lacks not only the LCR, but also the 

sequence immediately preceding the LCR.  

2) Although passive translocation of Ku along DNA has been reported for both eukaryotic 

Ku and M. tuberculosis Ku, there is no convincing explanation as to the fate of Ku trapped 

on DNA or the mechanism by which trapped Ku is unloaded from DNA.  

3) Ku proteins have been shown to play a role in maintaining telomeres, which do not have 

free DNA ends but instead are kept in “T-loops” [24, 25].  

4) Besides telomere maintenance, Ku proteins have been implicated in various biological 

functions other than NHEJ, which calls for a mechanism by which it can interact with 

sequences internal to intact chromosomes [26].  

As an explanation of M. smegmatis Ku binding to DNA without free ends, I propose an 

alternate ‘padlock’ mechanism of DNA binding. The predicted structure of M. smegmatis Ku 
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homodimer shows that the N-terminal part of the protein, immediately preceding the DNA-binding 

loop, lies on the surface of the protein and might clamp down when DNA is bound, thus allowing 

binding of Ku to DNA without free ends (Figure 5.1). This mechanism not only explains the 

binding of Ku to DNA without free ends but also provides a mechanism by which it can be 

unloaded from DNA.  

In conclusion, it would be imperative to have the crystal structure of M. smegmatis Ku to 

understand the unusual behavior of M. smegmatis Ku in comparison to other prokaryotic 

counterparts and to elucidate the mechanism of its interaction with DNA.    

 
 

Figure 5.1. Model of M. smegmatis Ku. A. Predicted structure of M. smegmatis Ku homodimer. 
Each monomer (in cyan and light pink) is modeled on template strands 1jeyA and 1jeyB, 
respectively. The N-terminal part of both monomers is colored red. The N- and C-termini are 
indicated by black arrows. Double stranded DNA is shown in orange. The image was prepared 
with PyMOL (www.pymol.org). 
 

http://www.pymol.org/
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