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Abstract
Functional data, where samples are random func-
tions, are increasingly common and important in
a variety of applications, such as health care and
traffic analysis. They are naturally high dimen-
sional and lie along complex manifolds. These
properties warrant use of the subspace assump-
tion, but most state-of-the-art subspace learning
algorithms are limited to linear or other simple
settings. To address these challenges, we pro-
pose a new framework called Functional Sub-
space Clustering (FSC). FSC assumes that func-
tional samples lie in deformed linear subspaces
and formulates the subspace learning problem as
a sparse regression over operators. The result-
ing problem can be efficiently solved via greedy
variable selection, given access to a fast defor-
mation oracle. We provide theoretical guaran-
tees for FSC and show how it can be applied to
time series with warped alignments. Experimen-
tal results on both synthetic data and real clini-
cal time series show that FSC outperforms both
standard time series clustering and state-of-the-
art subspace clustering.

1. Introduction
Classical machine learning models assume that each obser-
vation is represented as a finite dimensional vector. How-
ever, many applications involve functional data, where
samples are random functions (instead of standard vectors)
representing continuous processes and exhibiting structure
(Ferraty & Romain, 2011). Functional data are increasingly
common and important in a variety of scientific and com-
mercial domains, such as healthcare, biology, traffic anal-
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ysis, climatology, and video. As a result, many statistical
methods for analyzing functional data have been proposed
(Müller, 2011; Hall & Hosseini-Nasab, 2009; Hall, 2011).

Functional data present challenges and opportunities for
machine learning, especially in clustering and representa-
tion learning. The underlying process is a continuous func-
tion of infinite dimension, usually unknown and difficult
to represent directly. Even when only finite samples are
available, they can be difficult to work with. Time series,
for example, exhibit noise, different lengths, and irregular
sampling. Thus, the first step in functional data clustering
is often to transform the data into a more regular represen-
tation (Hall, 2011; Delaigle et al., 2012; Shang, 2013) to
which standard clustering can be applied (e.g., k-means).
Alternative non-parametric approaches define a measure of
similarity between samples and cluster in the similarity (or
affinity) space (Warren Liao, 2005; Cuturi, 2011). Such
approaches often utilize specialized measures of similarity
that provide invariance to transformations or deformations.
In object recognition, images of the same object should be
similar regardless of resolution, lighting, or angle. In time
series data mining, dynamic time warping (DTW) is used
to compare time series based on shape and permits distor-
tions (e.g., shifting and stretching) along the temporal axis,
as shown in Fig. 1 (Vintsyuk, 1968). Such similarities can
often be used to perform effective clustering (Warren Liao,
2005; Petitjean et al., 2014) but are not immune to the curse
of dimensionality inherent in functional data (Ferraty &
Vieu, 2006; Geenens, 2011). What is more, they can pro-
duce complex manifolds difficult to model using classic di-
mensionality reduction techniques (e.g., PCA) and cluster
models (Vidal, 2011).

Subspace clustering, an increasingly popular technique in
machine learning, addresses many of the aforementioned
challenges. Subspace clustering can capture more complex
manifolds and is robust in higher dimensional settings (Vi-
dal, 2011; Kriegel et al., 2012), both desirable properties
in practical applications. In health care, for example, hos-
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Figure 1. Illustration of the deformation operation for functional
data. Two functions are considered similar if a deformation of one
of them is similar to the other one. The figure has been regener-
ated from (Müller, 2007, Fig. 4.1).

pitalized patients with different underlying diseases (i.e.,
clusters) often exhibit shared or overlapping sets of symp-
toms (i.e., subspaces). However, most state-of-the-art sub-
space clustering algorithms with provable guarantees are
limited to linear settings, making them infeasible for func-
tional data and incompatible with deformation-based simi-
larity measures.

In this paper, we propose a new clustering framework
for functional data called Functional Subspace Clustering
(FSC). FSC extends the power and flexibility of subspace
clustering to functional data by permitting the deformations
that underlie many popular functional similarity measures.
The result is a framework that differs from most existing
approaches to functional data clustering. In particular, FSC
does not assume a structured generative model (e.g., a se-
quential model for time series) or a predefined set of basis
functions (e.g., B-splines). The FSC framework, described
in Section 3, works as follows: first, we define a subspace
model which allows the functional data to come from mul-
tiple deformed linear subspaces. Then we formulate the
subspace learning problem as a sparse subspace clustering
problem, similar to (Elhamifar & Vidal, 2013) but as an op-
timization over operators. Finally, we introduce an efficient
learning algorithm, based on greedy variable selection and
assuming access to a fast oracle that can return the optimal
deformation between two functions.

We provide theoretical guarantees for FSC with a general
class of deformations (Section 3.3). In Section 4, we apply
FSC to a common functional data setting: time series with
warped alignments. We provide an efficient implementa-
tion of the warping oracle and show how this algorithm
can also be used to retrieve the learned basis functions for
each deformed subspace. These bases can be used as lower-
dimensional features for either classification or clustering.
Experimental results on synthetic data and two real hospi-
tal data sets, described in Section 5, show that FSC signifi-
cantly outperforms both standard time series clustering and
state-of-the-art subspace clustering. In clinical data, our
framework learns physiological patterns that can be used
to discriminate patients based on risk of mortality.

2. Related Work
Functional clustering There has been a significant
amount of research on functional data clustering. This is
commonly performed using a two step process, in which
functions are first mapped into a fixed size representations
and then clustered. For example, we can fit the data to pre-
defined base functions, such as splines or wavelets (Wang
et al., 2007). In time series data mining, researchers often
use motifs or common patterns discovered from the data
(Lin et al., 2007). There is a growing body of literature
on models for directly clustering functional data without
the two-step process (James & Sugar, 2003; Jacques &
Preda, 2014). These approaches sometimes make strong
assumptions about the underlying function or ignore im-
portant structure, such as time order (Hall, 2011).

Nonparametric clustering methods are popular in the data
mining literature, where researchers combine specialized
distance metrics with simple clustering methods. Func-
tional distance metrics allowing deformation date back sev-
eral decades (Vintsyuk, 1968; Sakoe & Chiba, 1978). How-
ever, it has been shown only recently in the functional data
analysis literature that deformation-based metrics can be
more robust to the curse of dimensionality than simple Eu-
clidean distance (Ferraty & Vieu, 2006; Geenens, 2011).
For time series, DTW is a popular technique for measuring
the distance between two time series with temporal defor-
mations (Vintsyuk, 1968; Sakoe & Chiba, 1978; Müller,
2007). Given the distance metric, we can use k-means di-
rectly (Petitjean et al., 2014) or construct an affinity matrix
and apply spectral clustering (Rakthanmanon et al., 2012).

Subspace Clustering Unlike much existing work on time
series clustering, FSC is based on subspace clustering.
Subspace clustering is a generalization of PCA that can
discover lower dimensional representations for multiple
principal subspaces, enabling it to model more complex
manifolds (Vidal, 2011). Subspace clustering is a com-
mon tool for cluster analysis in high dimensional settings
(Kriegel et al., 2012). Both of these properties make it
well-suited for functional data. Sparse subspace cluster-
ing (SSC) does not require local smoothness, permitting
disparate points to constitute subspaces (Elhamifar & Vi-
dal, 2009). It formulates subspace learning and neigh-
bor selection as a regression, and admits a variety of effi-
cient solutions based on LASSO (Elhamifar & Vidal, 2009;
2013; Soltanolkotabi et al., 2014), thresholding (Heckel &
Bölcskei, 2013; Heckel et al., 2014), and greedy orthogonal
matching pursuit (Dyer et al., 2013; Park et al., 2014). SSC
has strong theoretical guarantees and is robust to outliers,
which are common in functional data.

Alternative Approaches FSC does not assume any par-
ticular sequential generative process, as in (Afsari & Vi-
dal, 2014; Jebara et al., 2007; Kim & Smyth, 2006), or a
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predefined set of basis functions, such as B-splines, Bezier
curves, or truncated Fourier functions (Gaffney & Smyth,
2004; Saria et al., 2011; Yuan & Li, 2014). FSC also admits
a theoretical analysis, unlike many of alternative frame-
works. (Yuan & Li, 2014) propose a subspace cluster-
ing framework for images that uses predefined truncated
Fourier basis functions to implicitly capture different kinds
of image deformations. They enumerate all possible de-
formed bases and then apply Group LASSO to learn the
affinity matrix. However, this strategy does not general-
ize to many functional data problems where the space of
potential deformations can be too large to enumerate ex-
plicitly, such as warped alignments between time series. In
contrast, FSC does not require explicit enumeration or rep-
resentation of the deformations. Instead, it makes use of the
fast deformation oracles that have been proposed and stud-
ied for many common function data problems (e.g., DTW
for warping distance in time series). Combined with simple
greedy variable selection, this makes FSC computationally
more efficient than the Group LASSO formulation in (Yuan
& Li, 2014).

3. Functional Subspace Clustering
In this section, we present our proposed Functional Sub-
space Clustering (FSC) algorithm and elucidate the chal-
lenges that functional data present to traditional subspace
clustering methods. We first discuss our data model and
assumptions in Section 3.1, and then we describe the FSC
framework in Section 3.2 and provide a theoretical analysis
in Section 3.3. We will discuss how FSC can be applied to
time series data with warping in Section 4.

3.1. Data Model

Let X1, . . . , Xn denote n functions on a compact interval
I , such that

∫
I E[X2

i ] <∞ for i = 1, . . . , n. We observe
noisy instances as follows

Yi = Xi + εi, for i = 1, . . . , n. (1)

where εi for i = 1, . . . , n are i.i.d. instances from a random
function with zero mean and

∫
I E[ε2

i ] = σ2.

Subspace Assumption The functions (curves)Xi are se-
lected from L manifolds S` for ` = 1, . . . , L. Given a set
of basis functions Φ`, each manifolds S` is defined as the
set of all functions that are deformation (warping) of linear
combinations of basis functions in Φ`:

S` ,

{
X

∣∣∣∣ X = d

( ∑
φk∈Φ`

αkφk

)
; αk ∈ R, d ∈ D

}
, (2)

where φk are the basis functions and the set D contains all
possible deformation operators d. We denote the set of all

given functions that belong to a manifold S` with X` and
the corresponding noisy observation sets by Y`. Our main
goal is to groupX1, . . . , Xn according to their correspond-
ing subspaces as defined in Eq. (2).

While the sets defined in Eq. (2) are not linear subspaces
in general, they show similar properties under appropriate
conditions. In particular, suppose the set of deformations
are linear maps and form a finite group with group law
defined as the composition operation. The group assump-
tion requires that composition of two deformations belong
to the set d1 ◦ d2 ∈ D for every d1, d2 ∈ D and for ev-
ery d ∈ D there exists an inverse operation d−1 such that
d−1(d(X)) = X for every X ∈ S`. The permutation
groups are prominent groups satisfying these conditions.
We can show that under this assumption, every function in
the manifold with s basis functions can be written as lin-
ear combination of s or more other functions in the same
manifold. Specifically, for every Xi ∈ S`, we can write the
following generalization of the self-expressive equation

Xi =
∑

Xj∈S`,j 6=i

βjdj(Xj), (3)

with some deformation dj ∈ D and scalars βj ∈ R. A
proof is provided in Appendix A. Note that our algorithm
will not rely on these assumptions to operate; for example it
will not need to compute the inverse of a deformation. FSC
can be applied to any data for which the self-expressive
property in Eq. (3) holds.

3.2. Functional Subspace Clustering

Given the result in Eq. (3), the cluster assignments of the
functional data generated according to Eq. (2) can be un-
covered using a novel variant of sparse subspace clustering.
We solve the following sparse regression problem for all
functions Y1, . . . , Yn:

B̂i,: = argmin
Bi,:,{dj}

∥∥∥∥Yi −∑
j 6=i

Bi,jdj(Yj)

∥∥∥∥2

2

, (4)

subject to ‖Bi,:‖0 ≤ s.

where B ∈ Rn,n. The L0 sparsity pseudo-norm indicates
the number of non-zero elements of a vector. The goal
of this regression is to find the best sparse approximation
for Yi by selecting a few functions Yj , deforming them
by optimizing dj , and scaling them by multiplying with
Bi,j . After solving Eq. (4) for all functions, similar to
subspace clustering we define the symmetric affinity ma-
trix A = |B| + |B|> and apply spectral clustering (Ng
et al., 2002; Von Luxburg, 2007) on A, described in Algo-
rithm 2 in Appendix C. We can also compute the Laplacian
embedding to extract a lower dimensional representation of
the functions, useful for other machine learning tasks (e.g.,
classification) (Schölkopf & Smola, 2002, Chapter 14).
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Algorithm 1: Functional subspace clustering.
Data: Noisy functional observations {Yi}ni=1 and a

termination criteria ε.
Result: Clustering assignments for Yi, i = 1, . . . , n.

1 for i = 1, . . . , n do
2 Initialize F ← ∅, J ← {i} , R1 ← Yi , l← 1

3 while maxj 6∈J ,dj
|〈Rl,dj(Yj)〉|
‖dj(Yj)‖2‖Rl‖2 > ε do

4 φ̂j ← argmaxj 6∈J ,dj
|〈Rk,dj(Yj)〉|
‖dj(Yj)‖2

5 Fl ← Fl−1 ∪ {φ̂j}
6 J ← J ∪ {j}
7 B̂i,: ← argminBi,:

‖Yi −
∑

φj∈Fl
Bi,jφj‖22

8 Rl+1 ← Yi −
∑
φj∈Fl

B̂i,:φj

9 l← l + 1

10 end
11 end
12 A← |B|+ |B|>
13 Apply spectral clustering toA (e.g., Algorithm 2 in

Appendix C) to obtain cluster assignments.

Unlike the linear sparse subspace clustering setting, Eq. (4)
is a large-scale sparse regression which requires optimiza-
tion over bothB and d. The optimization over the deforma-
tion operator can be especially difficult, as it is an operator
optimization.

Fast Sparse Regression with an Oracle Our approach
for efficiently solving Eq. (4) is summarized in Algorithm
1 and is based on three main steps: a relaxation to a regular
sparse linear regression problem, use of a fast oracle to find
the best deformation, and then greedy variable selection. In
the first step, we consider all possible deformations of each
Yj as covariates in the regression. This relaxation makes
the problem linear and convex but introduces a new com-
putational challenge: it dramatically increases the dimen-
sionality of the regression. For example, given two time
series Y1 ∈ RT1 and Y2 ∈ RT2 , there areO(exp(T1 +T2))
possible warping-based alignments. Merely enumerating
all possible warpings and updating the gradient becomes
computationally expensive, and solving Eq. (4) becomes
practically intractable.

We address this computational bottleneck by assuming that
we have access to a fast oracle that can identify the best
deformation for any pair of functions Y1 and Y2, defined as
d? = argmaxd |〈Y1, d(Y2)〉 |/‖d(Y2)‖2. Now rather than
solving a complex nonlinear regression or enumerating all
possible deformations, we can simply query the oracle for
the best deformation for each Yj . Computationally, avail-
ability of this oracle significantly simplifies the sparse re-
gression problem and yields an efficient algorithm for solv-
ing Eq. (4). DTW is an example of such an oracle for

measuring time series similarity, especially when it is com-
bined with constraints and early-stopping heuristics (Rak-
thanmanon et al., 2012).

With such a fast oracle available, we can use greedy vari-
able selection with orthogonal projections (OMP) to solve
Eq. (4) efficiently, as it only requires a limited number of
calls to the oracle to solve the sparse regression problem.
We could also use the thresholding approach for sparse sub-
space clustering, as in (Heckel & Bölcskei, 2013; Heckel
et al., 2014), but as the authors note and we also confirm in
the experiments, the greedy approach typically has better
empirical performance. The full algorithm for solving Eq.
(4) is shown in Algorithm 1.

3.3. Analysis

One major advantage of sparse subspace clustering is that
we can find conditions under which the success of the al-
gorithm is guaranteed. We begin by defining two quantities
to describe the similarity of subspaces and the density of
points in each cluster, respectively. To measure subspace
similarity, we define the principal angle between two de-
formed subspaces S` and S`′ as

θ`,`′ = arccos sup
V ∈S`,U∈S`′ ,d,d

′

| 〈d(V ), d′(U))〉 |
‖d(V )‖2‖d′(U)‖2

,

where the supremum is over functions V and Z from S`
and S`′ , respectively, and over their respective deforma-
tions. We also define the minimum principal angle θ` =
min`′ 6=` θ`,`′ over all pairs of subspaces, in order to pro-
vide a uniform bound for all `. To measure cluster density,
we define the covering radius r` as

r` = max
Yj∈Y`

max
V ∈S`

min
Y ∈{Y`\Yj}

dist(V, Y ),

where dist(V, Y ) = supd,d′
√

1− |〈d(V ),d′(Y ))〉|2
‖d(V )‖2‖d′(Y )‖2 . The

following theorem provides a sufficient condition for suc-
cess of our algorithm in the noiseless setting:
Theorem. For any function Yi ∈ Y`, Algorithm 1 will
select only the functions from the same subspace as Yi’s
neighbors if the termination criterion is ε > cos(θ`)(1 +√

2r`).

The full proof is provided in Appendix B. The theorem’s
main implication is that the algorithm will not make any
mistake in identifying Yi’s cluster neighbors, provided that
the subspaces are sufficiently different and each cluster
is sufficiently large. Thus, if the algorithm finds enough
neighbors for each data point, then the functions in each
subspace will create connected clusters, ensuring the suc-
cess of spectral clustering.

Discussion One implication of this theorem is that we
need to control the flexibility of the deformation operator



Functional Subspace Clustering with Application to Time Series

because of its influence on the performance of FSC. Exces-
sive flexibility increases the overlap of (i.e., decreases the
principal angle between) the subspaces, which can degrade
performance. Furthermore, we need to restrict the num-
ber of possible deformations to be polynomial in order to
ensure asymptotic consistency of our variable selection al-
gorithm. Thus, we need to carefully manage the flexibility
of the deformation operator. In time series analysis, for ex-
ample, it is common to use a constrained warping window
with DTW (Sakoe & Chiba, 1978).

4. Functional Subspace Clustering of Time
Series with Warping (FSC-TW)

In this section, we show how FSC can be applied to time se-
ries data with warping-based alignment deformations. An
alignment deformation (or warping function) d maps the
samples of one time series Yi onto those of a second time
series Yj , while preserving the time order. We assume that
we are given only a finite set of observations from each Yi,
indexed as Yit for t ∈ Ti ⊂ I where 0 < |Ti| <∞. Thus,
an alignment is typically realized as a list of non-decreasing
pairs of indices with constraints on neighboring pairs (e.g.,
each index can change by at most one from one pair to
the next). Given a measure of discrepancy (or similarity)
between individual time points, the minimum warping dis-
tance (or maximum warping similarity) can be computed in
quadratic time using dynamic programming. This is known
as dynamic time warping (DTW) (Vintsyuk, 1968). The set
of all warping deformations is not a group as it does not sat-
isfy the conditions in Section 3.2, nevertheless we can still
perform approximate clustering via FSC with time warping
deformations.

DTW is, in principle, a fast oracle for returning the best
warping alignment between two time series, but because it
computes an un-normalized distance (making distances be-
tween different pairs of time series incomparable), it cannot
be used with FSC in practice. Thus, we develop an alter-
native algorithm for quickly computing the optimal align-
ment between two time series, which returns a normalized
distance and can be used as a deformation oracle for FSC.
We describe this algorithm in Section 4.1 and then show in
Section 4.2 how its formulation can be used to recover the
latent basis functions learned for time series under warping
deformations.

4.1. Fast Warping Selection for Time Series

Here we develop an alternative oracle for efficiently se-
lecting the best warping between two time series. We
begin by observing that during greedy variable selection
in Algorithm 1, the best direction is given as Ỹj =

argmaxd(Yj)
(〈Ri,d(Yj)〉)2
‖d(Yj)‖22

where we have used Ri to de-

note the residual of Yi at some iteration of Algorithm 2.
For simplicity, we assume that the length of the time series
Ri and Yj are equal to T1 and T2, respectively. In order
to efficiently find the optimal warping for a time series Yi,
we note that every warping is an assignment of each point
in Yj to one point in Ri. Thus, we can use a list of binary
indicator vectors Z = (z1, . . . ,zT1

), zk ∈ {0, 1}T2 to rep-
resent every deformation as d(Yj) = (z>1 Yj , . . . ,z

>
T1
Yj).

Now we can reformulate the warping selection process as
an integer program

{z?k} = argmin
{zk}

∑T1

k=1(z>k Yj)
2(∑T1

k=1Rikz
>
k Yj

)2 (5)

s.t. zk,` ∈ {0, 1},
T2∑
`

zk,` = 1.

We impose additional linear constraints to guarantee that
the warping preserves the time order. In particular, if Yjt
is assigned to Rit′ , Yjs is assigned to Ris′ , and t < s, we
require t′ ≤ s′. To enforce this constraint, it suffices to
consider the integer number z̄ corresponding to the binary
vector z and require z̄k ≤ z̄k+1 for k = 1, . . . , T1 − 1.
This constraint can be implemented as a set of linear con-
straints by considering the positional binary notation. In
practice, we also restrict the warping to not map data points
that are apart from each other by more than ∆ time stamps
(Sakoe & Chiba, 1978). Implementing this constraint re-
duces the number of variables in the optimization from
T1T2 to T1(2∆ + 1) which can accelerate the algorithm
if the time series are long. Notice that the optimization in
Eq. (5) can be readily used in irregular and multivariate
time series, as well.

Relaxing the integer constraint in Eq. (5), the problem be-
comes convex and can be efficiently solved. Given the fact
that we need to solve Eq. (5) for all time series Yj , j 6= i,
we use Frank-Wolfe’s algorithm (Jaggi, 2013) because it
provides an inexpensive certificate for the duality gap in
each iteration of the optimization problem. We can use
this to disqualify suboptimal directions during the greedy
search in Algorithm 1 by checking the current search di-
rection’s duality gap against the previous optimum. Given
the simple form of Eq. (5) and the fact that it is strongly
convex, we further accelerate the optimization by perform-
ing a line search on a grid of step size values, followed by
a few iterations of Newton’s method. In practice, the opti-
mization converges within very few iterations.

4.2. Identifying the Latent Basis Functions

The formulation of warping operator in Eq. (5) enables us
to recover the deformed latent functions by solving Eq. 6.
Without loss of generality, suppose Y1, . . . , Ym have been
clustered into a single cluster and that the underlying latent
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space is r dimensional. We need to solve the following
optimization problem (PCA-TW)

min
Z,φ,W

m∑
i=1

∥∥∥∥Yi − r∑
k=1

Zi,kφkwi,k

∥∥∥∥2

2

(6)

s.t. Zi,k ∈ L, ‖φk‖2 = 1.

where L denotes the set of constraints described in Section
4.1. We need to solve for the bases φk, alignment variables
Zi,k, and weights wi,k. To solve this problem, we alternate
between optimizing over φk and {wi,j , Zi,k}, while fixing
the other one. For learning the φk, we initialize them using
PCA and optimize the loss function together with the fused
lasso regularizer (Tibshirani et al., 2005) to obtain a smooth
function. For optimization over Zi,k and wi,k, analytical
solution of optimization over wi,k leads to an optimization
problem similar to Eq. (5) for Zi,k which can be solved by
the same method described in the previous section.

Discussion The formulation of deformation in Eq. (5)
is not limited to time warping but encompasses many ex-
isting deformation operations discussed in the literature.
For example, two time series may be considered similar
if only certain subsequences are similar. We can capture
this phenomenon by relaxing the constraint

∑T2

` zk,` = 1

to
∑T2

` zk,` ≤ 1. The formulation in Eq. (5) is also ap-
propriate for handling the missing data settings. Note that
because of the subspace clustering nature of the algorithm,
smoothness of the time series will be automatically incor-
porated in the clustering process.

5. Experiments
To demonstrate the effectiveness of FSC, we perform ex-
periments using one synthetic dataset and two real world
datasets related to health and wellness. All data are time
series, so we use the time series with warping variant of our
algorithm, FSC-TW. We compare FSC-TW’s performance
to the following baselines:

ED+SC We apply spectral clustering to an affinity matrix
based on Euclidean distance, created as follows: first, we
construct a distance matrixD and normalize it by its largest
element. Then we defineA = exp(−D)+exp(−D>) and
apply spectral clustering toA.
DTW+SC We apply spectral clustering to a DTW-based
affinity matrix, constructed using the same procedure.
GAK+SC We apply spectral clustering to an affinity ma-
trix constructed using the Global Alignment Kernel (GAK)
(Cuturi et al., 2007; Cuturi, 2011), a variant of DTW that
yields a valid positive semidefinite kernel.
SSC We apply the original Sparse Subspace Clustering al-
gorithm proposed in (Elhamifar & Vidal, 2009), without
deformations.

TSC-TW We apply the Thresholded Subspace Clustering
(TSC) algorithm from (Heckel et al., 2014), combined with
our warping deformation oracle from Eq. (5).

The ED+SC, DTW+SC, and GAK+SC baselines enable us
to evaluate the benefit provided by sparse subspace cluster-
ing, in comparison to simple deformation-based clustering.
The SSC baseline allows us to determine whether allowing
deformed subspaces improves the performance of subspace
clustering. The TSC-TW provides a comparison with an al-
ternative sparse subspace clustering with time warping and
another variable selection technique.

5.1. Synthetic Data Experiments

We begin with synthetic data experiments to investigate
how FSC-TW performs on data generated from the as-
sumed deformed subspace model described in Section 3.1
and to explore the impact of data dimensionality, subspace
separation, and cluster density. First, we generate two syn-
thetic datasets with different basis time series, shown in
Fig. 2(a). We create three subspaces, each including two
of the basis functions. We use two forms of deformation
operators: (i) a random shift in time, selected uniformly
from [−10, 10] and (ii) time warping with maximum win-
dow of length 10. We then investigate how increasing both
the length of the synthetic time series and the number of
points per cluster impacts the cluster error rate of the dif-
ferent algorithms. The results in Fig. 2 confirm the utility
of the deformed subspace assumption and the superior per-
formance of FSC-TW.

Comparing the baseline algorithms, we can divide them
into two categories: subspace clustering based algorithms
(FSC-TW, TSC, SSC) and regular spectral clustering with
different distance metrics. Given the true subspace model
in the synthetic data, we expect the first group to perform
better. Among the algorithms in the first group, SSC does
not capture the deformations in the data. While TSC-TW
captures deformations, subspace clustering with threshold-
ing is empirically shown to have inferior performance com-
pared to sparse subspace clustering (Heckel & Bölcskei,
2013). Thus, we expect FSC-TW to perform superior com-
pared to SSC and TSC-TW.

In Fig. 2(b) we fix the number of examples in each cluster
to 50 and evaluate performance as the length of the time
series increases. Increasing the length of the time series
increases the dimensionality of the data, which in turn in-
creases the sparsity of each point’s neighborhood and the
separation of the subspaces; i.e. the principal angles θ` in
Section 3.3 increases. As expected, the error for all sub-
space clustering algorithms improve as length increases,
while the performance of non-subspace methods gradually
degrades. This is consistent with two previous findings:
first, that DTW provides minimal advantage over ED for
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Figure 2. Synthetic data experiments. (a) The bases used for constructing the synthetic data. (b,c) The clustering error rate for six
algorithms as (b) the length of time series grows and (c) the number of time series per cluster grows.

long time series (Lin et al., 2012); and second, that sub-
space clustering is especially beneficial in higher dimen-
sions (Kriegel et al., 2012). FSC-TW outperforms the base-
lines at all tested lengths.

In Fig. 2(c) we fix the length of the time series to 150 and
increase the number of data points in each cluster, which
also increases the density of points within each cluster and
potentially increasing overlap between clusters and a more
complicated neighborhood structure. The overall trend is
similar to that of length: FSC-TW is clearly superior for
all sizes, and the subspace cluster methods improve rapidly
as the clusters grow in size. Again, this is consistent with
what is known about DTW (it provides less benefit in large
scale time series datasets (Lin et al., 2012)) and about sub-
space clustering. As we increase the number of data points
per cluster, the probability that subspace clustering finds
the correct clustering increases because the probability that
two points from the same cluster are subspace neighbors in-
creases. Once again, FSC-TW outperforms the baselines.

It is very interesting that plain SSC becomes increasingly
robust to deformations as the time series become longer
and as the data set size grows. This suggests that the
subspace model assumptions are well-suited to functional
data, at least under these conditions. However, it performs
quite poorly for small numbers of short time series. FSC-
TW is robust to length, yielding the best performance for
both short and long time series. Together, these results
suggest that our combination of subspaces, deformations,
and greedy variable selection yields a powerful clustering
framework for functional data.

5.2. Real World Data

We apply FSC-TW and our baselines to two real world data
sets related to health:

ICU This is a collection of multivariate clinical time series
extracted from a major hospital’s electronic health records
(EHRs) system, recorded by clinical staff during care in

an intensive care unit (ICU). Each time series includes 24
hours of measurements for 13 variables, including vital
signs, lab tests, or clinical observations, with one obser-
vation per hour. In these data, subspaces correspond to col-
lections of physiologic signs and symptoms, while clusters
represent cohorts of similar patients. We treat in-hospital
mortality prediction as a binary classification task.

Physionet The Physionet dataset1 is a publicly available
collection of multivariate clinical time series, similar to
ICU but with additional variables. The time series are also
48 hours long and include in-hospital mortality as a binary
label. Fig. 4 in Appendix C shows that the two classes are
very difficult to distinguish on the basis of their raw time
series data alone.

In all of the datasets, we normalize each time series to have
zero mean and unit variance. Then, we apply each algo-
rithm to learn the affinity matrix and then extract lower
dimensional representations as described in Algorithm 2
in Appendix C. We then evaluate the utility of these rep-
resentations by using them as features in a RBF-SVM bi-
nary classifier. For evaluation, we create 30 randomly di-
vided training and testing partitions. For each partition, we
train the RBF-SVM on the training partition set using 5-
fold cross validation, then test it on the corresponding test
set. Table 1 summarizes the AUC for each method and data
set, averaged across partitions.

Results The results in Table 1 reveal several interesting
trends. First, FSC-TW once again yields the best classifier,
and only FSC-TW and SSC yield a classifier that is statis-
tically different from guessing at random in both datasets,
validating the sparse subspace assumption. This confirms
our intuition that the complex latent manifold structure of
critical illness (in terms of symptoms and signs) is cap-
tured better by subspace clustering than by simpler meth-
ods. What is more, the subspace assumption alone may
provide some robustness to deformations, as observed in

1http://physionet.org/challenge/2012/

http://physionet.org/challenge/2012/
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Table 1. Average AUC obtained by the algorithms on the real world datasets.

Dataset FSC-TW TSC-TW SSC GAK+SC DTW+SC ED+SC

ICU 62.32± 8.37 56.54± 9.78 61.99± 7.89 56.35± 8.06 59.55± 8.17 58.76± 9.83
Physionet 66.27± 6.08 52.41± 6.61 62.51± 8.56 51.30± 7.99 50.56± 7.99 49.73± 7.25
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Figure 3. Synthetic data experiment: PCA-TW is the only algo-
rithm that successfully recovers the principal component under
deformation.

the synthetic data results.

The more interesting trend is the interaction between sub-
spaces and warping. Using a warping-based distance ben-
efits subspace clustering more than spectral clustering; we
can see this when we compare the improvements in FSC-
TW (vs. SSC) and DTW+SC (vs. ED+SC). This suggests
that different patients may have conditions with different
time courses in symptoms and treatment responses. How-
ever, we observe that the performance gains when adding
warping for the clinical data sets are smaller than those ob-
served in the synthetic data. Our hypothesis is that the de-
gree of warping (shifts and stretches) in the real world clin-
ical data may be relatively small (i.e., an hour or two) with
respect to the hourly sampling rate.

Finally, we note that this is a very challenging classifica-
tion problem: the patient outcome (i.e., death or discharge)
can occur anywhere from hours to weeks after admission,
but we are considering only the first 48 hours of data (Silva
et al., 2012). Also, the outcome often depends upon a com-
plex set of factors beyond initial presentation, including
treatments, which are not available in these data and may
occur after the first 48 hours (Paxton et al., 2013). What is
more, the natural cluster structure is likely less correlated
with outcome than it is with disease. Mortalities appear as
outliers, rather than as a coherent cluster. In future work,
we would like to apply FSC-TW to data with diagnostic
labels to examine whether subspaces and clusters reflect
known disease patterns.

5.3. Deformed basis function recovery

Next, we demonstrate PCA-TW’s ability to learn and re-
cover deformed basis functions (described in Section 4.2).

We first demonstrate this using synthetic data, as follows:
first, we select a principal vector (the dashed black line in
Fig. 3). Then we generate 25 time series that are randomly
shifted versions of this principal component. We then ap-
ply the algorithms to identify the true principal compo-
nent, including basic PCA (red dashed line), our PCA-TW
algorithm (solid blue line, Section 4.2), and PCA with a
fused LASSO regularizer (PCA-fused, purple dashed line),
which is also used by our algorithm. Figure 3 clearly shows
that PCA-TW is the only algorithm that recovers the true
shape of the basis and that its performance is not solely due
to its use of the fused LASSO regularizer.

One of the main advantages of the proposed latent function
learning algorithm in Section 4.2 is that it preserves more
variance than the regular principal component analysis. At
the same time, it is able to capture the main trend in the
functional data without overfitting to the particular realiza-
tion of the time series. The deformation allows us to ob-
tain a principal component that preserves a larger amount
of variance. The fraction of variance preserved in the first
component by our algorithm is 30.52% and 39.36%, com-
pared to 19.44% and 24.30% by PCA, for survivals and
mortalities, respectively.

6. Conclusion and Future Work
We proposed Functional Subspace Clustering (FSC), a
nonparametric functional clustering framework that can be
applied to functional data with complex subspace structures
and used with general deformation operations, including
time series with warped alignments. We showed that this
can be formulated as a sparse subspace clustering problem
and solved using an efficient greedy algorithm with theo-
retical guarantees. Applied to time series data, FSC outper-
forms both standard time series clustering and linear sub-
space clustering.

While we provided a theoretical discussion about geo-
metric properties of FSC, several theoretical questions re-
main unanswered. For example, under a random subspace
model, what are the theoretical conditions for successful
clustering? Also, while both the greedy variable selection
and our deformation oracle algorithms are efficient, we can
further accelerate their speed. We are interested in finding
ways to scale up FSC. One possibility is to use an approxi-
mate fast oracle for selecting the greedy direction update.
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A. Proof of the statement in Eq. (3)
In order to show the the result in Eq. (3), we break-
down the process in Eq. (2) into two steps: Let us denote
X̃ =

∑
φk∈Φ αkφk and X = d(X̃) where Φ is a set of s

basis functions. Since the set of X̃ functions create a linear
subspace, every member can be written as a linear combi-
nation of at least s other functions:

X̃i =
∑
j 6=i

βjX̃j . (7)

Given the fact that the set of deformations is a group, the
inverse of deformation operators are also in the set and we
can rewrite Eq. (7) as

d−1
i (Xi) =

∑
j 6=i

βjd
−1
j (Xj), (8)

Xi = di

(∑
j 6=i

βjd
−1
j (Xj)

)
. (9)

Since the operators are assumed to be linear maps, we can
rewrite Eq. (9) as follows

Xi =
∑
j 6=i

βjdi(d
−1
j (Xj)). (10)

Group’s closure property guarantees that for all i and j,
there exists d̃j in the group such that d̃j = di ◦ d−1

j . Thus
we can rewrite Eq. (10) as

Xi =
∑
j 6=i

βj d̃j(Xj).

B. Proof of the Theorem
To prove the statement of the theorem, we need to show
that by selection of the termination criterion as the theorem
suggests, the Algorithm 1 will stop before adding any func-
tions from other subspaces. In other words, Let us study
the correctness of the theorem for neighbors of an arbitrary
function Yi ∈ Y`; heretoafter we drop the i index for sim-
plicity of notation whenever it is not ambiguous. If Rk de-
notes the residual at kth step, define the normalized residual
as R̄k = Rk/‖Rk‖2; we need to show that the following
quality cannot be larger than ε:

max
V 6∈Y`,d

〈
R̄k, d̄(V )

〉
< ε.

where d̄(Y ) = d(Y )/‖d(Y )‖2 for any function Y . Fur-
thermore, define

µ` = max
`′ 6=`

sup
V ∈S`,U∈S`′ ,d,d

′

| 〈d(V ), d′(U))〉 |
‖d(V )‖2‖d′(U)‖2

.

We note that we always have µ` ≤ θ`, as Y` ⊂ S`. Also,
let us define the span of d(Y`) as the span of the set of
functions {d(Y )

∣∣Y ∈ Y`}.
To prove the main statement, we proceed with induction, as
in (Dyer et al., 2013). Given the assumptions and the value
of ε in the theorem, the first step holds, because Rk = Yi.
For induction, assume that at kth iteration all of the previ-
ous functions have been selected from the correct subspace.
Given the result in Eq. (3), the residual is still in the span of
the d(Y`). Thus, we can write R̄k = d̄1(U) + E where U
is the closest function in Y` to R̄k and E ∈ S`. The latter
is due to the assumptions about the deformation operators
that require them to be linear map and form a group with
composition operation as the group law. We can write:

max
Yj 6∈Y`,d1,d2

|R̄k, d̄2(Yj)〉|

= max
Yj 6∈Y`,d1,d2

|〈d̄1(U) + E, d̄2(Yj)〉|

≤ max
Yj 6∈Y`,d1,d2

|〈d̄1(U), d̄2(Yj)〉|+ |〈E, d̄2(Yj)〉|

≤ µ` + max
Yj 6∈Y`,d1,d2

|〈E, d̄2(Yj)〉|

≤ µ` + cos θ0‖E‖2‖d̄2(Yj)‖2, (11)

where θ is the minimum principal angle between Si and all
other subspaces. We can bound the ‖E‖2 as follows:

‖E‖2 = ‖R̄k − d̄1(U)‖2

=
√
‖R̄k‖22 + ‖d̄1(U)‖22 − 2〈R̄k, d̄1(U)〉

≤
√

2− 2
√

1− r2
` . (12)

Plugging the result in Eq. (12) in Eq. (11) yields:

max
Yj 6∈Y1,d1,d2

|R̄k, d̄2(Yj)〉| ≤ µ` + cos θ0

√
2− 2

√
1− r2

`

≤ µ` +
√

2 cos θ0r`,

where the last step is due to the fact that
√

1−
√

1− x2 ≤
x for x ∈ [0, 1]. Given the fact that cos θ is an upper bound
for µ`, we conclude that the algorithm will not make a mis-
take in selection of function in its k + 1st step and the in-
duction step is correct. Thus, we obtain the statement in the
theorem.

C. Spectral Clustering
Note that we use the eigen-gap statistic (Line 4 in Algo-
rithm 2 to determine the dimension of the embedding (Tib-
shirani et al., 2001; Von Luxburg, 2007).
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Figure 4. Mean and standard deviation trajectories for twelve variables in Physionet dataset, for patients who survived (blue) and de-
ceased (red). Note the similarity of time series and the fact that they are almost indistinguishable by naked eye.

Algorithm 2: Spectral clustering for FSC.
Data: Affinity matrixA
Result: Clustering assignments for Yi, i = 1, . . . , n.

1 D ← diag(A1)

2 L←D−
1
2AD−

1
2

3 λ,V ← eig(L)
4 m? ← argmaxi=1,...,n−1(λi − λi+1)

5 Apply k-means to the first m? column of V .


