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Abstract. Relationships between functional traits and average or potential demographic
rates have provided insight into the functional constraints and trade-offs underlying life-history
strategies of tropical tree species. We have extended this framework by decomposing growth
rates of ;130 000 trees of 171 Neotropical tree species into intrinsic growth and the response of
growth to light and size. We related these growth characteristics to multiple functional traits
(wood density, adult stature, seed mass, leaf traits) in a hierarchical Bayesian model that
accounted for measurement error and intraspecific variability of functional traits. Wood density
was the most important trait determining all three growth characteristics. Intrinsic growth rates
were additionally strongly related to adult stature, while all traits contributed to light response.
Our analysis yielded a predictive model that allows estimation of growth characteristics for rare
species on the basis of a few easily measurable morphological traits.
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INTRODUCTION

Life-history strategies of tropical tree species describe

how plants allocate resources to different organs and

how these allocation ‘‘decisions’’ translate into a species’

ability to compete for resources and finally to grow,

survive, reproduce, and disperse (e.g., Westoby et al.

2002). Allocation strategies are reflected by anatomical

and morphological plant traits, e.g., light vs. dense

wood, small vs. big seeds, or small vs. tall adult stature.

To understand the functional constraints and trade-offs

underlying different life-history strategies, it is essential

to gain insight into the relationships between traits and

demographic rates. Recent studies have mainly focused

on establishing relationships between traits and average

demographic rates (Poorter et al. 2008) or field-based

proxies of potential demographic rates (Wright et al.

2010). However, an equally important aspect of life-

history variation is the degree to which species are able

to adjust their performance to temporal changes in

resource availability or during ontogeny (Valladares and

Niinemets 2008) (see Plate 1). Do morphological traits

explain the sensitivity of growth with respect to light and

size?

A suite of functional traits is considered key among

forest trees. Maximum height, leaf area, seed mass, leaf

mass per area, and wood density have been proposed as

independent plant strategy axes representing fundamen-

tal aspects of tree anatomy and physiology: tree size, leaf

size, seed size, leaf economics, and wood economics,

respectively (e.g., Weiher et al. 1999, Westoby et al.

2002, Wright et al. 2004, Chave et al. 2009, Baraloto et

al. 2010, Muller-Landau 2010). Each of these reflect

trade-offs related to competition for resources, persis-

tence under resource shortage (e.g., shade tolerance),

dispersal, and/or resistance to pests or mechanical

damage. Although significant relationships between

maximum height and seed mass as well as between leaf

area and wood density have been reported, relationships

are typically weak, exhibit considerable residual varia-

tion, or only appear when contrasting life-forms (e.g.,

woody and herbaceous) are pooled (Wright et al. 2007).

The few studies that have analyzed the impact of

several of these traits on growth rates of tropical tree

species found that growth decreased with wood density

and, to a lesser extent, seed mass or volume, but

increased with maximum height. Leaf traits were at best

weakly related to growth (Poorter et al. 2008, Wright et

al. 2010). These results were consistent between large

trees (�10 cm diameter at breast height [dbh]) and

saplings (1–5 cm dbh) and independent of whether

average relative growth rate (RGR) or the 95th

percentile of RGR were analyzed. Using average RGR

to represent a species’ growth strategy and indication of

shade tolerance, however, introduces several problems.

First, RGR declines as plants grow (Hunt 1982). For

species with different size ranges, comparative analyses

based on average RGR at least partly confound growth

and size and, thus, may lead to erroneous conclusions

(e.g., Turnbull et al. 2008, Paine et al. 2012). Conse-

quently, a recent study explicitly modeling ontogenetic

growth curves reached slightly different conclusions.

Growth characteristics, such as maximum growth and
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the shape of the growth curve, were to a large degree

explained by wood density and maximum height,

whereas relationships with seed and leaf traits disap-

peared (Hérault et al. 2011).

Second, growth rates respond to local resource

availability, and species’ average growth rates may

reflect their differential distribution with respect to

resource availability (Clark and Clark 1999). As an

example, pioneer species may have higher average

growth rates because they occur primarily in gaps where

they receive high light or because they have a high

intrinsic growth potential or both. Therefore, we

propose that intrinsic growth rates of different species

should be compared at the same size and light

availability (cf. Rüger et al. 2011a). Moreover, estimat-

ing the light and size dependence of growth at the species

level opens up the possibility of assessing how the

response of growth rates to resource availability and tree

size relates to functional traits in tree species following

different life-history strategies.

We hypothesize that species with light wood, small

seeds, and/or leaf traits indicative of a high priority on

resource exploitation (e.g., low leaf mass per area, high

leaf nutrient content) should grow faster and possess a

higher capacity to adjust their growth rates to changing

light conditions because these traits are commonly

associated with a syndrome of low shade tolerance

(Grime 1994, Poorter and Rose 2005, Valladares and

Niinemets 2008). We also expect that taller species

respond more strongly to light because they potentially

experience increasing light levels as they grow to the

canopy, while small-statured species may remain in the

shaded understory for their whole life cycle. The

response of growth to tree size has been shown to be

significantly related to wood density and maximum

height (Hérault et al. 2011), but we lack clear hypotheses

on whether and in which direction leaf or seed traits

might affect the response of growth to size.

To assess the relationships between growth character-

istics and functional traits, we applied a two-level

hierarchical Bayesian model, where individual growth is

a function of light and size, whereas species-level

parameters, i.e., ‘‘intrinsic’’ growth rates, light, and size

dependence of growth, are related to the functional traits

of a species. Hierarchical models include rare species by

combining probability models for growth variation within

species and among species (Clark 2005). The Bayesian

approach allows incorporating intraspecific variation in

functional traits and negative growth observations by

correctly modeling measurement error (Clark et al. 2007,

Rüger et al. 2011a). The integration of various sources of

uncertainty represents a major methodological improve-

ment in the analysis of ecological data.

In summary, our aim was to predict size- and light-

standardized growth rates aswell as the response of growth

to light and size from functional traits across 171 tree

species occurring at Barro Colorado Island (BCI),

Panama. To our knowledge, this was the first time that

the sensitivity of tree performance to resource availability

has been related to functional traits across a diverse tree

community. Forest census data from the 50-ha plot at BCI

provided information on the spatial location, size, and

diameter growth of individual trees. Yearly canopy census

data that recorded vegetation density in six height layers

were usedas a proxyof light availability for each individual

tree (Rüger et al. 2011b), and an extensive trait data base

gave access to functional traits of the species (Wright et al.

2010).

METHODS

Growth and trait data

Weanalyzed data from the tropical moist forest onBCI,

Panama (9890 N, 798510 W). In the 50-ha Forest Dynamics

Plot, all free-standing woody stems �1 cm diameter at

breast height (dbh) were mapped, identified to species and

measured in 1981–1983, 1985, and every 5 years thereafter

(Condit 1998; data available online).4 Here we used the

census intervals from 1985–1990 and 1990–1995 because

these were the only intervals with consistent canopy census

data.We discarded cases where a tree survived but its stem

was measured at a different height, or where one stem

broke so a resprouted stem of the same tree was measured.

Due to their lack of secondary growth, we excluded palm

species. Because dbh values were rounded down to the

nearest 5mm for all stems,55mm in 1985but not in 1990,

it was necessary to round 1990 dbh values below 55 mm

down as well before calculating growth rates. Rounding

downmaybias growth estimates of small stems,butCondit

et al. (1993) showed that the bias is minimal. We estimated

the level of shading for each tree from a three-dimensional

canopy census conducted annually from 1983 to 1996,

except for 1994. We converted this measure of shading to

an estimate of light availability by comparing the

distribution of shade estimates to a published distribution

of irradiance (Wirth et al. 2001, Rüger et al. 2011b). To

avoid edge effects of the light availability calculation, we

excluded all individuals within 20 m of plot edges.

As species-level predictors of growth characteristics,

we used wood density (WD, g/cm3), maximum height

(Hmax, m), leaf area (LA, cm2), and seed mass (SM, g).

Additionally, we explored two variables related to the

leaf economics spectrum (Wright et al. 2004): leaf mass

per area (LMA, g/m2) and leaf nutrient content (NP, no

units). NP was calculated as the first axis of a PCA

between leaf nitrogen and leaf phosphorus concentra-

tions and represents a combined measure of the two

tightly correlated leaf nutrients. Our aim was to restrict

the species-level predictors to a set of nearly independent

traits. Therefore, we compared models including just

one of the two representatives of the leaf economics

spectrum (LMA or NP).

Traitsweremeasuredasdescribed inWright et al. (2010).

Wood density was estimated as an area-weighted average

4 http://ctfs.arnarb.harvard.edu/webatlas/datasets/bci/
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of wood specific gravity across wood cores. When wood

density was not available, we used wood density from

Chave et al. (2009). Maximum height equaled the mean

height of the six trees with largest dbh in the 50-ha plot and

a nearby 38.4-ha plot (King et al. 2006). LMA, leaf area,

and leaf nutrient concentrations were measured on shade

leaves only receiving indirect light. The leaves were taken

from the tallest foliage of six of the smallest individuals of

each species in the 50-ha plot. For eight pioneer species

lacking shade leaves, we used leaf traits measured on sun-

exposed leaves of the six smallest individuals instead. Seed

mass refers to endosperm and embryo. For 26 species, seed

mass was unavailable and we used diaspore dry mass from

Daws et al. (2005). SM and LA distributions were highly

right-skewed and we used log-transformed values.

Traits were measured on several individuals per species

and intraspecific trait variation was included as a fixed

prior in the model: N(mean, SD). For species lacking a

reported standard deviation, we used the average standard

deviation for the same trait across the other species. For

leaf N and leaf P, no information on uncertainty was

available, and we estimated SD of NP as 10% of the trait

value. To test the impact of accounting for this uncertainty

in predictor variables, we comparedmodels accounting for

intraspecific trait variation with models assuming fixed

(mean) trait values.

To control for phylogenetic relatedness between species,

we included the first two axes of a principal coordinate

analysis (PCoA; Gower 1966) on phylogenetic distances

calculated from a bar code phylogeny for the BCI 50-ha

plot (PH1, PH2; Diniz-Filho et al. 1998, Kress et al. 2009).

By including coarse phylogenetic relatedness among the

species, we controlled for similarity of growth character-

istics between closely related species that is not captured by

the functional traits (e.g., due to secondary compounds).

Hierarchical Bayesian model

Wefit a two-level hierarchical model inwhich individual

tree growth was a species-specific function of light

availability and initial dbh, and species-level parameters

were predicted by the functional traits (Gelman and Hill

2007). At the core of the model is the functional

relationship predicting the absolute dbh growth rate

(mm/yr) of individual i of species j (predi, j) as a power

function (linear log-log relationship) of light availability

and initial dbh

logðpredi; jÞ ¼ aj þ bj 3 logðlighti; jÞ þ cj 3 logðdbhi; jÞ ð1Þ

where parameters aj, bj, and cj describe the intrinsic growth

rate and the light and size response of growth of species j,

respectively (Rüger et al. 2011a). In contrast to recent studies

on larger trees (dbh�10 cm) that fit unimodal relationships

between absolute dbh growth and dbh (e.g., Hérault et al.

2011), we only allowed monotonic increases or decreases of

growth with dbh. In previous studies, we found that only a

small proportion of BCI species showed a unimodal

response of growth to dbh (Rüger et al. 2011a, Rüger and

Condit 2012). Moreover, our data set includes many rare

species. As species become rarer, it gets increasingly difficult

to fit complex models, and in our case the more complex

modelspredictedartificially loworhighgrowth rates at large

dbh in some species (Rüger et al. 2011a, Paine et al. 2012).

Process error, i.e., variation of growth at a given light

availability and dbh was modeled using a lognormal

distribution:

truei; j ;Lnormðpredi; j;rp; jÞ ð2Þ

where truei, j is the estimated true growth rate of tree i.

The process error (rp, j) was estimated for each species.

Using a lognormal distribution, the process error

automatically scales with predicted growth. The process

error (rp,j) was assumed to vary lognormally across the

community with hyperparameters lh and rh. Uniform,

non-informative priors for both parameters were

lh;rh ;Uð0:001; 100Þ: ð3Þ

Data entered our model as the observed annual dbh

growth of individual i (obsi, j, mm/yr) and were assumed

to be subject to measurement error. We used remea-

surement data to fit dbh measurement error assuming

there are two types of error: routine error caused by a

slightly different placement of the calipers or tape

measure, and large error caused by missing a decimal

place or recording a number with the wrong tree. We fit

the error as the sum of two normal distributions (Chave

et al. 2004, Rüger et al. 2011a). Thus,

obsi; j ;ð1� f Þ3N ðtruei; j;SD1=intiÞ

þ f 3Nðtruei; j;SD2=intiÞ ð4Þ

with standard deviation SD1 describing the size-depen-

dent error component and standard deviation SD2 the

size-independent error component affecting f ¼ 2.7% of

the observations (Rüger et al. 2011a). Standard devia-

tions have to be adjusted to the time period elapsed

between the two dbh measurements of the tree (inti )

from which the annual growth rate has been calculated.

Functional traits were used as linear species-level

predictors of aj, bj, and cj. Thus,

aj ;Nða0 þ a1 3WDj þ a2 3Hmax; j þ a3 3 SMj þ a4

3LAj þ a5 3LEj þ a6 3 PH1; j þ a7 3 PH2; j;raÞ

ð5Þ

bj ;Nðb0 þ b1 3WDj þ b2 3Hmax; j þ b3 3 SMj þ b4

3LAj þ b5 3LEj þ b6 3 PH1; j þ b7 3 PH2; j;rbÞ

ð6Þ

cj ;N ðc0 þ c1 3WDj þ c2 3Hmax; j þ c3 3 SMj þ c4

3LAj þ c5 3LEj þ c6 3 PH1; j þ c7 3 PH2; j;rcÞ

ð7Þ
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where LE is the predictor that represents the leaf

economics spectrum, i.e., LMA or NP.

Visual inspection revealed that the relationship

between Hmax, j and aj differed for small and large trees.

Therefore, we fit separate regression lines for small

(Hmax, j , 25 m) and tall-statured (Hmax, j � 25 m) trees

a2
a2;small if Hmax; j , 25 m

a2;large if Hmax; j � 25 m :

�

ð8Þ

The deviance information criterion (DIC) of the model

with two separate regression lines was smaller than the

DIC of the model with an overall regression (DDIC ¼
60) indicating a substantially better fit.

The standard deviations ra, rb, and rc measure the

between-species variation. As we did not have prior

knowledge, we used non-informative priors for these

hyperparameters:

a0�7;b0�7;c0�7; ;N ð0; 100Þ ð9Þ

ra;rb;rc; ;Uð0; 2Þ: ð10Þ

Posterior distributions of the model parameters were

obtained using a Markov chain Monte Carlo (MCMC)

method (Gelman et al. 2004). To speed up the

convergence, we weakened the within-chain correlation

of a with b and c by centering the light and dbh data on

light ¼ 0.05 and dbh ¼ 50 mm:

logðpredi; jÞ ¼ aj þ bj 3
�

logðlighti; jÞ � logðlightÞ
�

þ cj 3
�

logðdbhi; jÞ � logðdbhÞ
�

: ð11Þ

Thus, aj represents the log of predicted annual growth of

a tree with 5 cm dbh that receives 5% light and enables a

comparison of intrinsic growth rate at fixed light and

size. We chose 5 cm as the size for comparison because

many understory treelets do not reach much larger sizes;

and 5% light is a common light level for trees with a dbh

of 5 cm. For an in-depth exploration of the growth

model, see Rüger et al. (2011a). We monitored

convergence by running two chains with different initial

values and used Gelman and Rubin’s convergence

diagnostics (implemented in the coda package in R)

and a value of 1.1 to detect convergence (Gelman et al.

2004). Convergence required 100 to 3700 iterations. We

used a burn-in period of 5000 iterations and an

additional 10 000 iterations were used for analysis. All

analyses were carried out using R version 2.11.1 (R

Development Core Team 2010). The R code of the

model is provided in the Supplement.

Analysis of results

From the posterior distributions we computed the

mean and credible intervals (CI) of all species-specific

parameters and the hyperparameters. The significance of

traits as predictors of species-specific growth parameters

was assessed by a 90% CI, 95% CI, 99% CI, or 99.9% CI

that did not include zero. The goodness-of-fit of the

species-level predictions of growth characteristics from

traits was assessed by a measure of explained variance

(r2) and the root mean square error of prediction

(RMSEP). Explained variance r2 was calculated as

r2 ¼ 1�
E
�

Varðe ¼ ppred � pÞ
�

E
�

VarðpÞ
� ð12Þ

where ppred is the species-specific parameter p (a, b, or c)

predicted from the traits, i.e., the predicted position of

the species on the regression line at a given time step,

and p the ‘‘true’’ value of the parameter for the species at

that time step (Gelman and Hill 2007).

We simulated growth trajectories for four hypothet-

ical species. The four species correspond to combina-

tions of WD and Hmax that represent 10th and 90th

percentiles of WD and Hmax: a tall species with light

wood (Hmax¼ 34.6 m, WD¼ 0.39 g/cm3), a small species

with light wood (Hmax¼ 7.7 m, WD¼ 0.39 g/cm3), a tall

species with dense wood (Hmax ¼ 34.6 m, WD¼ 0.73 g/

cm3), and a small species with dense wood (Hmax ¼ 7.7

m, WD ¼ 0.73 g/cm3). We predicted the growth

characteristics for these trait combinations (assuming

the other traits were equal to the average across species)

and simulated dbh trajectories for low and high light

using the 10th and 90th percentile of light at a given dbh,

respectively. We limited this analysis to 10 cm dbh for

small species (Hmax ¼ 7.7 m) because they rarely get

much bigger and to 30 cm dbh for tall species (Hmax ¼
34.6 m) because our analysis is dominated by smaller

trees and for larger trees parameter estimates are

increasingly uncertain.

To compare these same hypothetical species in terms of

biomass growth, we calculated their biomass increment

per year and unit height (i.e., for a 1 cm thick wood disk)

from their predicted annual dbh growth (dbh.growth):

biomass:growth ¼ WD3

�

ðdbhþ dbh:growthÞ2 � dbh2
�

:

ð13Þ

RESULTS

Complete trait data were available for 169 species

with 129 774 individuals in the first and 171 species with

130 550 individuals in second census interval. Species-

level correlations between mean trait values were

consistently low (r , 0.28), but often significant (Table

1). The model including NP as a predictor performed

slightly better in terms of r2 and RMSEP than the model

including LMA. Otherwise, results were qualitatively

very similar. Therefore, we report results for models

including LMA in the Supplemental Material (Appendix

A). Coefficients of the species-level regressions are given

in Appendix B.

Growth rates at standardized conditions (5% light, 5

cm dbh) significantly decreased with WD and increased
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with Hmax for trees reaching Hmax , 25 m (Table 2, Fig.

1). For trees with Hmax � 25 m, there was no significant

relationship between intrinsic growth rates and Hmax.

Light response (b) significantly decreased with WD and

SM, and increased with Hmax. The size response (c)

changed from being negative (c, 0) at low WD to being

positive (c . 0) at high WD, on average. In the first

census interval, the size response was also significantly

positively correlated with Hmax. In the first census

interval, LA was significantly positively related to light

response and negatively to size response, while in the

second census interval the same was true for NP. Among

the growth parameters, light response was best ex-

plained by functional traits (r2 ¼ 0.49–0.54, Table 2).

When we did not account for intraspecific variation in

traits, r2 increased by up to 10 percentage points and

credible intervals for the relationships of traits with

model parameters got narrower leading to slightly

stronger significance of relationships (Appendix A).

When we did not account for phylogenetic relatedness

among species, r2 decreased by up to 5 percentage

points, although the first phylogenetic axis was only

marginally significantly related to the light response in

the first census interval (Appendix A).

Light response was positively correlated with intrinsic

growth rates (r¼ 0.61) and negatively with size response

(r¼�0.38). Size response and intrinsic growth rates were

only weakly correlated (r ¼ �0.17). Species with high

intrinsic growth rates and high sensitivity to light were

less abundant than species with the opposite character-

istics (Fig. 2). We identified several species with

uncommon parameter combinations (Fig. 2). The most

conspicuous one was Alseis blackiana, which had the

slowest intrinsic growth but responded strongly and

positively to both light and size. Cordia bicolor had an

intermediate intrinsic growth rate but the strongest

response of growth to light and the fourth most negative

response to size (Fig. 2). Zanthoxylum belizense grew

fastest at standardized conditions, responded positively

to light and negatively to size (Fig. 2).

Tall species (34.6 m) with lowWD (0.39 g/cm3) always

grew fastest and grew from one to 30 cm dbh within 60

years under high light conditions (Fig. 3). Small-statured

species with high WD grew slowly and required more

than 150 years to grow from one to 10 cm dbh under low

light conditions (Fig. 3). Surprisingly, biomass growth

up to a dbh of 20 cm was identical for light-wooded and

dense-wooded species that reach the same Hmax (Fig. 4).

For larger trees, biomass growth began to diverge and

dense-wooded species produced more biomass than

light-wooded species.

DISCUSSION

Modeling growth as a function of light availability

and tree size allowed us to decompose growth rates of

tropical tree species into the intrinsic growth rate at

TABLE 1. Pearson correlation coefficients for pairwise relationships between key functional traits and variables describing
phylogenetic relatedness.

Variable Hmax SM NP LA PH1 PH2

WD �0.13 0.17* �0.16* �0.28*** �0.12 0.17*
Hmax 0.12 0.27*** 0.23** 0.36*** 0.01
SM �0.12 0.13 0.14 0.05
NP 0.18* 0.07 �0.03
LA 0.27*** �0.04

Notes: Abbreviations are wood density (WD), maximum height (Hmax), seed mass (SM), leaf nutrient content (NP), leaf area
(LA), and the first and second axis of a principal coordinate analysis of a bar code phylogeny (PH1, PH2). NP is the first axis of a
principal component analysis between leaf tissue nitrogen and phosphorus concentrations. LA and SM are log-transformed.

* P , 0.05; ** P , 0.01; *** P , 0.001.

TABLE 2. Coefficients of determination of the species-level regressions between key functional traits and parameters of the
individual-level growth model.

Growth
parameters

Independent variables (species’ traits)

r2 RMSEPWD Hmax SM LA NP PH

1985�1990

Intrinsic growth, a �10.1%*** 15.7%*** �2.2%* 0.35 0.51
Light response, b �12.1%*** 4.8%* �7.2%*** 2.5%* 4.5%� 0.54 0.16
Size response, c 11.7%*** 8.2%** �6.7%*** 0.30 0.26

1990�1995

Intrinsic growth, a �15.4%*** 12.9%*** 0.37 0.51
Light response, b �5.1%*** 3.3%*** �5.5%*** 5.2%** 0.49 0.18
Size response, c 7.9%*** 0.6%� �0.4%� 0.21 0.29

Notes: Entries express the proportion of variance (r2) that each trait explains in addition to all other traits (difference in r2

between the full model and the model excluding the focal trait). Variance r2 is a measure of explained variance taking into account
the uncertainty in a, b, and c (Eq. 12). RMSEP is the root mean square error of prediction. Significant entries are preceded by the
sign of the relationship if negative. Empty cells occur where the relationship was not significant.

* P , 0.05; ** P , 0.01; *** P , 0.001; � P , 0.1.
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FIG. 1. Relationships between functional traits and species-level growth characteristics. Means (points) and 95% credible
intervals (lines) of the species-specific parameters of the growth model for 171 tree species in the census interval 1990–1995 at BCI,
Panama. The intercepts of the regression lines are calculated for average values of the other traits. Significance of predictors is
indicated by asterisks and daggers.

** P , 0.01; *** P , 0.001; � P , 0.1.

FIG. 2. Pairwise plots of the species-specific parameters of the growth model. The size of the dots is proportional to log
abundance of the species. Correlation coefficients are: a–b, r¼ 0.61; a–c, r¼�0.17; b–c, r¼�0.38. Three species with uncommon
parameter combinations are identified with symbols: 3, Alseis blackiana; stars ( ), Cordia bicolor; open diamonds (^),
Zanthoxylum belizense.
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standardized conditions and the response of growth to

light and size. Relating these growth characteristics to

multiple functional traits in a hierarchical Bayesian

model permitted a more mechanistic understanding of

trait–rate relationships than previous studies while at the

same time accounting for several sources of uncertainty

including measurement error in growth rates and

intraspecific trait variability. Our three key findings

were that (1) all traits (wood density, adult stature, seed

mass, leaf nutrient content) contributed independently

to light response, (2) intrinsic growth rates were mostly

determined by wood density and adult stature, and (3)

size response was less well predicted by functional traits

with the exception of wood density.

Relationships between functional traits

and growth characteristics

Wood density has already been identified as a key trait

determining average or potential growth rates (Muller-

Landau 2004, Poorter et al. 2008, Chave et al. 2009,

Wright et al. 2010, Hérault et al. 2011) and the size

response of growth (Hérault et al. 2011). However, we

could additionally show that wood density is also an

important predictor of the ability of a species to respond

to temporal changes in light availability. Species with

low wood density grew fast, were able to respond to

periods of higher light availability and showed declining

growth rates at larger sizes. In contrast, species with

dense wood grew slowly, were less able to exploit

temporally favorable growth conditions but sustained

increasingly faster diameter growth at larger sizes. These

findings are in line with the common view that species

with low wood density prioritize short-term gains over

long-term benefits. These characteristics might result

from a trade-off between low construction cost (for

given strength) in low-density wood vs. low maintenance

cost through reduced stem respiration in stems with

dense wood as suggested by Larjavaara and Muller-

Landau (2010). Whether more mechanistic wood traits

(e.g., vessel diameter or hydraulic conductivity) would

be even better predictors of tree growth than wood

density, remains highly controversial and may depend

on the level of water stress the trees experience (Poorter

et al. 2010, Fan et al. 2012).

FIG. 3. Diameter trajectories under low and high light for
four hypothetical species. The four species correspond to
combinations of wood density (WD) and maximum height
(Hmax) that represent 10th and 90th percentiles: a tall species
with light wood (Hmax ¼ 34.6 m, WD ¼ 0.39 g/cm3), a small
species with light wood (Hmax¼ 7.7 m, WD¼ 0.39 g/cm3), a tall
species with dense wood (Hmax ¼ 34.6 m, WD ¼ 0.73 g/cm3),
and a small species with dense wood (Hmax¼ 7.7 m, WD¼ 0.73
g/cm3). Light conditions represent the 10th (low) and 90th
(high) percentile of light at a given dbh, respectively.

FIG. 4. Diameter and biomass growth of four hypothetical
species. The four species correspond to combinations of wood
density and maximum height that represent 10th and 90th
percentiles (see legend of Fig. 3). Growth was calculated for
median light availability for each 1-cm dbh class.
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Maximum height was the second most important

determinant of growth characteristics and was especially

strongly related to intrinsic growth rates. Tall species

grew faster than small-statured species (e.g., Thomas

1996, Poorter et al. 2008). However, within the species

that potentially emerge over the main forest canopy

(Hmax . 25 m), there was no relationship between

maximum height and intrinsic growth rate. This might

explain why RGR–Hmax relationships in Wright et al.

(2010) became insignificant when tree species with Hmax

, 20 m were excluded. Tall species also responded more

strongly to higher light. This may be because they

eventually reach the canopy and gain access to sunlight

while small-statured species may remain in the shaded

understory for their whole life cycle.

Seed mass was unrelated to intrinsic growth rates, but

was negatively correlated with the response of growth to

light. Similarly, in an earlier study, seed mass was

significantly correlated with growth rates of the fastest

growing saplings (95th percentile of RGR), which

presumably grow under more favorable conditions

(Wright et al. 2010). Seed mass is unlikely to directly

affect growth of plants �1 cm dbh, but the negative

association between seed mass and light response in a

model including several traits confirms that seed mass is

indeed an independent component of a syndrome of

traits related to the light sensitivity of a species (Poorter

and Rose 2005). Species with small seeds survive less

well in deep shade than species with large seeds (Grime

and Jeffrey 1965) but have larger dispersal distances

(Muller-Landau et al. 2008) and a greater chance of

being deposited in gaps where they can take advantage

of the high light.

Leaf traits (LMA, leaf nutrient content, and leaf area)

were not related to intrinsic growth rates. This is in line

with findings of previous studies (Poorter et al. 2008,

Wright et al. 2010, Hérault et al. 2011). Neither the

association of high leaf nutrient content (or low LMA)

with higher photosynthetic capacity per unit leaf mass

(Wright et al. 2004, Poorter and Bongers 2006), nor with

higher susceptibility to herbivory (e.g., Coley 1983) seem

to affect intrinsic growth rates. Likewise, traits related to

leaf toughness (e.g., cellulose content, lamina density,

and thickness) were not related to growth rates in 197

shade-tolerant species at BCI, possibly because the

higher cost of constructing tough leaves is compensated

by their longer life span (Westbrook et al. 2011).

Although high photosynthetic capacity is expected to

allow for a flexible response to temporal changes in

resource availability (Grime 1994), only leaf nutrient

content, and not LMA, contributed significantly to

higher light response (see Appendix A). This stronger

relationship of leaf nutrient content with light sensitivity

may be due to its lower correlation with the other traits

in the multivariate analysis as compared to LMA.

Alternatively, leaf nutrient content may be more

mechanistically linked to plant metabolism and growth

than LMA, which incorporates tissue density and tissue

thickness (Westbrook et al. 2011).

PLATE. 1. Tree-fall gap on Barro Colorado Island (BCI), Panama. Tree species differ in their ability to exploit temporal
increases in light availability. Photo credit: Christian Ziegler.
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However, the relationships between leaf traits (nutri-

ent content, leaf area) and growth characteristics were

inconsistent between the two census intervals. This may

be due to relatively large correlations between leaf traits

and other traits. In contrast to conclusions from

bivariate analyses (Poorter and Bongers 2006), in

multivariate analyses including wood density and

maximum height as predictors of tree growth, leaf traits

appear to be only weak predictors of growth character-

istics (Wright et al. 2010). Thus, using leaf traits,

especially LMA (or its inverse, SLA) to describe a

plant’s growth strategy is not justified, at least for

tropical tree species.

Comparing models that did or did not account for

intraspecific variation in traits revealed that r2 was

larger and relationships were slightly more significant

when trait uncertainty was ignored. This indicates that

studies ignoring intraspecific trait variation tend to

overestimate the predictive power of relationships.

The continuum of growth strategies

Low sensitivity of growth with respect to light is part

of a syndrome of life-history characteristics related to

conservative resource use, including slow intrinsic

growth rates and high shade tolerance (Strauss-Debe-

nedetti and Bazzaz 1991, Valladares and Niinemets

2008). This syndrome characterizes the majority of tree

species in the 50-ha plot and the most abundant species.

Among these are many understory trees with dense

wood and well-defended leaves to withstand the

numerous disadvantages of being small (Kitajima

1994), such as being shaded, being hit by falling trees

or branches (Romero and Bolker 2008) and being

exposed to high levels of herbivory or pathogen attack

(Coley and Barone 1996, Gilbert and Reynolds 2005).

At the other extreme are species with high intrinsic

growth potential, high sensitivity of growth to light, and

a tendency to grow slower at larger size. These species

tend to be rarer and include many pioneer species,

among them canopy and emergent long-lived pioneers

(e.g., Apeiba membranacea, Cavanillesia platanifolia,

Ceiba pentandra, Jacaranda copaia, Spondias mombin)

and short-lived medium-sized pioneer species (Cecropia

spp., Cordia alliodora, Miconia argentea, Ochroma

pyramidale, Pourouma bicolor, Trema micrantha, Zan-

thoxylum spp.). Although these coarse syndromes

describe general growth strategies, interspecific variation

is large. For example, species with average intrinsic

growth rates covered nearly the full range of light

sensitivity.

There are also exceptions. The most conspicuous

exception was Alseis blackiana, a tall species (Hmax¼ 29

m) with dense wood (0.58 g/cm3), which would be

expected to have an intermediate intrinsic growth rate

and light sensitivity. However, Alseis is an unusual

species as it has slow growth in the shade but is highly

sensitive to light and size. This finding extends

conclusions from the early life-history to the sapling

and adult stage. Alseis seedlings showed characteristics

of pioneers (higher seed germination in gaps and strong

plastic response to light) as well as of shade-tolerant

species (high persistence of established seedlings in

understory) and was classified by Dalling et al. (2001)

as a shade-persistent pioneer tree.

Interestingly, biomass production was nearly constant

for species differing widely in wood density. This means

that trees of similar adult stature sequester similar

amounts of carbon, independent of whether the carbon

is allocated to a large volume of light wood or a small

volume of dense wood. Thus, knowing a species’

maximum height theoretically allows the calculation of

its average biomass growth. This again shows that tree

species take an allocation ‘‘decision’’ prioritizing either

short-term gains through faster growth of light-wooded

stems at the cost of increased maintenance expenditures

and mortality vs. long-term carbon gain and survival by

growing slower but investing in well-defended stems of

high wood density that are less costly to maintain in the

long run (Kraft et al. 2010, Larjavaara and Muller-

Landau 2010). This result also extends the finding of

constant productivity independent of average wood

density at the stand scale (Baker et al. 2009, Falster et

al. 2011) to the scale of individual trees.

CONCLUSIONS

Decomposing tree growth into intrinsic growth rates

and the response of growth to light and size yielded a

predictive model that allows estimation of growth

characteristics for rare species on the basis of a few

easily measurable morphological traits. This may be

especially useful given the high proportion of rare

species in the tropics. Established relationships between

traits and demographic rates may also facilitate the trait-

based parameterization of dynamic forest simulation

models (Purves and Pacala 2008, Valladares and

Niinemets 2008). However, the relationships established

here for BCI might not hold across sites with different

climate and soils. For example, in less dynamic forests in

French Guiana, fast-growing species responded less to

variation in resource availability than did slow-growing

species (Hérault et al. 2010).

Future research should also integrate trait-rate studies

focusing on the response to resource availability of all

demographic processes, i.e., growth, mortality, and

recruitment, to identify fundamental trade-offs and

evolutionary constraints of life-histories of tropical tree

species (Wright et al. 2003, 2010). Such analyses would

provide a more complete picture of tropical tree

demographics allowing for multidimensional ordination

of species in life-history space (e.g., Dalling et al. 2001).

Another line of research worth further attention is the

identification of the mechanisms underlying the patterns

of trait–rate and trait–plasticity relationships explored

here. To this end, mechanistic models of tree growth

explicitly representing metabolism and allocation should
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be applied (e.g., Ogle and Pacala 2009, Falster et al.

2011, Sterck et al. 2011).
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APPENDIX A. Significance of functional traits in alternative models excluding phylogenetic information,

intraspecific variability of functional traits, or replacing leaf nutrient content with LMA.

Note: In Tables A1–A3 and A5–A8 the direction of all significant relationships (positive or negative) is

the same as in Table 2 of the main manuscript.

Significance of predictors in alternative models excluding phylogenetic information and/or

intraspecific variability of functional traits

TABLE A1. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model with phylogenetic information but without intraspecific variability of

functional traits (PH noSD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA NP PH

1985–1990 Intrinsic growth (a) *** ***/- *    0.35 0.52

Light response (b) *** *** *** ***   0.61 0.14

Size response (c) *** ***  ***   0.38 0.25

1990–1995 Intrinsic growth (a) *** ***/-     0.37 0.51

Light response (b) *** *** ***  **  0.59 0.17

Size response (c) ***    .  0.28 0.28

TABLE A2. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model with intraspecific variability of functional traits but without

phylogenetic information (noPH SD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA NP  

1985–1990 Intrinsic growth (a) *** ***/- .    0.35 0.52

Light response (b) *** *** ** *   0.49 0.16

Size response (c) *** *  ***   0.29 0.26

1990–1995 Intrinsic growth (a) *** ***/-     0.35 0.51

Light response (b) *** *** ***  ***  0.51 0.18

Size response (c) ***  .  .  0.22 0.28
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TABLE A3. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model with-out intraspecific variability of functional traits and phylogenetic

information (noPH noSD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA N/P  

1985–1990 Intrinsic growth (a) *** ***/- .    0.35 0.52

Light response (b) *** *** ** ***   0.60 0.14

Size response (c) *** **  ***   0.39 0.25

1990–1995 Intrinsic growth (a) *** ***/-     0.36 0.51

Light response (b) *** *** ***  **  0.61 0.16

Size response (c) ***    .  0.25 0.28

Significance of predictors in models including leaf mass per area (LMA) as a predictor instead of

leaf nutrient content (NP)

TABLE A4. Pearson correlation coefficients between LMA and other functional traits. LA and SM were

log transformed.

 WD H
max

SM LA PH
1

PH
2

NP

LMA 0.15* -0.09 0.11 -0.004 0.16* 0.15* -0.56***

TABLE A5. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model with phylogenetic information and intraspecific variability of

functional traits (PH SD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA LMA PH

1985–1990 Intrinsic growth (a) *** ***/- *    0.36 0.52

Light response (b) *** * **   * 0.51 0.16

Size response (c) *** **  ***   0.30 0.26

1990–1995 Intrinsic growth (a) *** ***/-     0.38 0.51

Light response (b) ** ** ***    0.43 0.19

Size response (c) ***  *    0.19 0.29

TABLE A6. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model with phylogenetic information but without intraspecific variability of
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functional traits (PH noSD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA LMA PH

1985–1990 Intrinsic growth (a) *** ***/- *    0.37 0.52

Light response (b) *** ** ** *** *  0.63 0.14

Size response (c) *** ***  ***   0.40 0.25

1990–1995   Intrinsic growth (a) *** ***/-   .  0.41 0.50

Light response (b) *** ** **  .  0.54 0.17

Size response (c) ***      0.24 0.28

TABLE A7. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model with intraspecific variability of functional traits but without

phylogenetic information (noPH SD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA LMA  

1985–1990 Intrinsic growth (a) *** ***/- *    0.36 0.52

Light response (b) *** ** ** **   0.49 0.16

Size response (c) *** **  ***   0.29 0.26

1990–1995 Intrinsic growth (a) *** ***/-  .   0.38 0.51

Light response (b) *** *** **    0.45 0.19

Size response (c) ***  .    0.19 0.29

TABLE A8. Significance of predictors, proportion of explained variance (R2), and root mean square error

of prediction (RMSEP) of the model without intraspecific variability of functional traits and phylogenetic

information (noPH noSD).

Growth parameters Independent variables (species' traits) R
2 RMSEP

WD H
max

SM LA LMA  

1985–1990 Intrinsic growth (a) *** ***/- *    0.37 0.52

Light response (b) *** ** ** ** *  0.60 0.14

Size response (c) *** ***  ***   0.39 0.24

1990–1995 Intrinsic growth (a) *** ***/-   .  0.40 0.50

Light response (b) *** *** *** .   0.54 0.16

Size response (c) ***  . .   0.24 0.28
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APPENDIX B. Coefficients of the species-level regressions between functional traits and growth parameters as well as

residuals of the final growth model.

TABLE B1. Coefficients of the species-level regressions between key functional traits and parameters of the individual-level

growth model (a, b, c). Significant coefficients are highlighted in bold.

Growth parameters Independent variables (Species' traits) PH
1

PH
2

Intercept WD H
max

SM LA NP

1985–1990 Intrinsic growth (a) 0.347 -1.323 small 0.035

large -0.005

-0.045 0.012 0.002 0.001 0.001

Light response (b) 0.408 -0.544 0.005 -0.030 0.032 0.022 0.001 0

Size response (c) -0.197 0.640 0.008 0.006 -0.072 -0.018 -0.001 0

1990–1995 Intrinsic growth (a) 0.315 -1.613 small 0.031

large -0.005

-0.031 0.012 -0.001 0.001 0.001

Light response (b) 0.370 -0.479 0.006 -0.033 0.019 0.056 0.001 0

 Size response (c) -0.296 0.677 0.004 0.021 -0.022 -0.045 0 0

FIG. B1. Residuals of the final growth model (1990–1995). Note that the increase of growth error with growth, and hence

light, is accounted for (see Eq. 2 of the main manuscript).

[Back to E093-244]

Ecological Archives --A2 http://esapubs.org/archive/ecol/E093/244/appendix-B.php

1 von 1 03.01.2013 13:26


	2012_Ruger_TraitsGrowth.pdf
	Ecological Archives --A1.pdf
	Ecological Archives --A2.pdf

