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Abstract

Purpose Although obesity is a risk factor for breast cancer, little effort has been made in the identification of druggable 

molecular alterations in obese–breast cancer patients. Tumors are controlled by their surrounding microenvironment, in which 

the adipose tissue is a main component. In this work, we intended to describe molecular alterations at a transcriptomic and 

protein–protein interaction (PPI) level between obese and non-obese patients.

Methods and results Gene expression data of 269 primary breast tumors were compared between normal-weight (BMI < 25, 

n = 130) and obese (IMC > 30, n = 139) patients. No significant differences were found for the global breast cancer popula-

tion. However, within the luminal A subtype, upregulation of 81 genes was observed in the obese group (FC ≥ 1.4). Next, 

we explored the association of these genes with patient outcome, observing that 39 were linked with detrimental outcome. 

Their PPI map formed highly compact cluster and functional annotation analyses showed that cell cycle, cell proliferation, 

cell differentiation, and cellular response to extracellular stimuli were the more altered functions. Combined analyses of 

genes within the described functions are correlated with poor outcome. PPI network analyses for each function were to search 

for druggable opportunities. We identified 16 potentially druggable candidates. Among them, NEK2, BIRC5, and TOP2A 

were also found to be amplified in breast cancer, suggesting that they could act as strategic players in the obese-deregulated 

transcriptome.

Conclusion In summary, our in silico analysis describes molecular alterations of luminal A tumors and proposes a druggable 

PPI network in obese patients with potential for translation to the clinical practice.

Keywords Breast cancer · Transcriptomic analysis · Protein–protein interaction · Clinical outcome · Novel druggable 

targets · Targeted therapy

Introduction

Breast cancer is the leading cause of cancer-related death 

among women worldwide [1]. To this regard, several factors 

are involved in the initiation and promotion of breast tumors 

including molecular alterations at the genomic level such as 

mutations or copy number alterations [2, 3]. Indeed, using 

functional studies, some of these genomic modifications 

have been clearly associated with a malignant phenotype, 

contributing to the oncogenesis of epithelial cells [4, 5]. In 

addition to these molecular alterations, cancer cells rely on 

the surrounding microenvironment, where non-transformed 

cells and stromal components facilitate tumor growth by 

the secretion of autocrine signals like growth factors [6]. 

Stimulation of cancer cells by paracrine-secreted factors 
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from interstitial cells including fibroblasts, neutrophils, or 

endothelial cells can stimulate functions such as prolifera-

tion, survival, or migration, which are necessary to the tumor 

formation and dissemination [7, 8]. However, components of 

the tumor stroma depend on different conditions and can dif-

fer among individuals. Of note, adipose tissue is one of the 

main components of the breast cancer microenvironment, 

and therefore, accumulation of fat tissue in the stroma can 

modify settings of tumor cells and influence their survival 

[8]. As an example, increased presence of insulin or insulin-

like growth factors can affect tumor growth but also response 

to treatment [9]. In this context, breast tumors that express 

estrogen receptors are more dependent on stimulating fac-

tors [10].

Besides being a risk factor for cancer, obesity has also 

been associated with detrimental patient outcome, especially 

in postmenopausal patients [5, 4]. A number of epidemiolog-

ical studies have demonstrated that how obesity is directly 

related to cancer mortality. In this sense, an increased body 

mass index (BMI) has been strongly linked with poor sur-

vival in postmenopausic patients carrying estrogen recep-

tor positive tumors [11]. One of the mechanisms proposed 

to explain how obesity increases breast cancer risk is that 

adipocyte-secreted hormones could be promoting tumor pro-

gression through an increase of cellular proliferation [12]. 

However, little effort has been put into clarifying how the 

excess of adipose tissue in the tumor niche influences the 

molecular characteristics of the residing malignant cells.

In the present article, we aimed to evaluate biological 

functions that differentiate breast cancer tumors from obese 

and non-obese patients. To do so, we performed transcrip-

tomic followed by protein–protein interaction network analy-

ses to recognize relevant biological functions with druggable 

implications.

Materials and methods

Transcriptomic and gene expression analyses using 
bioconductor

We used a public data set (GEO Data Set accession num-

ber: GSE 78958) to compare mRNA levels from 405 breast 

cancer tumors. Affymetrix CEL files were downloaded and 

analyzed with R 3.3.2 (Bioconductor package). Data from 

patients not matching our BMI criteria (BMI < 25 or ≥ 30) 

were excluded from the analysis, what reduced tumor sam-

ples to 269. Before proceeding with the comparative analy-

sis, we performed a statistical quality control (QC), includ-

ing relative log expression (RLE) and normalize unscaled 

standard error (NUSE) graphs. QC validated all samples for 

the following comparative analysis. Normalization was per-

formed using the robust multi-array (RMA) system, included 

in the affymetrix package, and screening with the genefilter 

package. Data comparison was done using the limma pack-

age, comparing array data from each patient group (nor-

mal weight: BMI < 25; obese: BMI ≥ 30). Once the matrix 

for the experimental design was established, we used the 

function lmFit to perform a linear adjustment and create the 

contrast matrix in agreement with the compared groups, nec-

essary to accomplish the Bayesian adjustment to determine 

the final fold change.

Analysis of patient characteristics

Comparison of proportions between normal-weight and 

obese groups we performed for each variable including 

grade, TNM stage, and patient ethnicity. This comparison 

was fulfilled using either Pearson’s Chi-square or Fisher’s 

exact test; *p < 0.05, **p < 0.001.

Construction and analysis of PPI networks 
and functional annotation

We used the online tool STRING (http ://www.stri ng-db.

org) to construct interactome maps of deregulated genes 

(STRING v10 data accessed: 14/02/17 and 10/07/17). Thus, 

we constructed a PPI map for the underexpressed genes and 

another for the overexpressed genes. The indicated network 

properties include:

Nodes: number of proteins in the network; Edges: number 

of interactions; Node degree: average number of interac-

tions; Clustering coefficient: indicates the tendency of the 

network to form clusters. The closer the local clustering 

coefficient is to 1, the more likely it is for the network to 

form clusters; PPI enrichment p value: indicates the sta-

tistical significance. Proteins are considered hubs when 

they have more interactions than the average (nº interac-

tions > node degree).

Functional screening for overexpressed genes was per-

formed using Ensembl database (http ://www.ense mbl.org).

Evaluation of clinical outcome

The free-access Kaplan–Meier (KM) Plotter Online Tool 

(http ://kmpl ot.com/anal ysis /) was used to investigate the 

relationship between gene expression levels and patient’s 

clinical outcome in luminal A breast cancer. Only overex-

pressed genes significantly associated with detrimental out-

come (Hazard Ratio > 1 and p value ≤ 0.05) were used for 

subsequent analysis (n = 39). This tool was also used to 

determine relapse free survival (RFS) and overall survival 

(OS) in combined analyses of all genes included within cell 

cycle, cell differentiation, cell proliferation, and cellular 

response to extracellular stimuli functions. All the analyses 

were performed independently by two authors (MNC and 

http://www.string-db.org
http://www.string-db.org
http://www.ensembl.org
http://kmplot.com/analysis/
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SMC) and reviewed by a third author (EMGM). No discrep-

ancies were observed.

Identi�cation of drug candidates

We initially used data from The Drug Gene Interaction 

Database (DGIdb) http ://dgid b.geno me.wust l.edu/ to iden-

tify potentially druggable genes and their associated drugs 

among PPI hub proteins. Next, we used information from 

Genecards (www.gene card s.org), which contains informa-

tion from several databases, to manually select further drug-

gable target among the PPI hub proteins of each function. 

Then, as described above, we used the STRING tool to build 

the druggable obese interactome.

Molecular alteration identi�cation

We used data contained at cBioportal (www.cbio port al.org), 

Breast Invasive Carcinoma TCGA, n = 816 [13], to identify 

potential copy number alterations (amplification or deletion) 

and the presence of mutations in the druggable genes.

Results

Di�erential gene expression 
between normal-weight and obese breast cancer 
patients with luminal A tumors

We performed gene expression analyses in a cohort of 

269 breast cancer patients based on their body mass index 

(BMI). The initial comparison between normal-weight 

(n = 130) and obese (n = 139) patients including all breast 

cancer tumors did not show statistical differences between 

both groups. Therefore, we decided to perform the analysis 

in each intrinsic tumor specific subtype (basal-like, HER2, 

luminal A, and luminal B). While no significant differences 

were found for the Basal-like, HER2, and luminal B sub-

types, we identified 177 deregulated genes in the luminal A 

subtype (Table 1). Using a fold change of 1.4, we selected 96 

and 81 genes that were underexpressed and overexpressed, 

respectively, in the obese group (Fig.1 and Table S1). Of 

note, the analysis of patient characteristics showed no sig-

nificant differences between groups in relation with clinical 

stage or tumor grade. However, African American women 

displayed a significant higher proportion of obese women 

(Table 2).

Next, we constructed protein–protein interaction (PPI) 

maps of both identified groups and analyzed the potential 

functional modules within the networks. Notably, we found 

a higher number of interactions among proteins in the over-

expressed PPI network (node degree: 16.2; clustering coef-

ficient: 0.569) when compared with the underexpressed 

(node degree: 1.58; clustering coefficient: 0.398). Indeed, 

while proteins in the underexpressed map did not exhibit 

any cohesion, the overexpressed PPI network contained a 

marked cluster unit (Fig.1). Functional annotation analyses 

of the overexpressed genes identified 32 biological functions 

(Fig. S1 and Table S2).

Identi�cation of upregulated genes associated 
with worse outcome

Next, we intended to identify the role of the 81 overex-

pressed genes in relation with patient outcome. We used data 

contained in the KM plotter online tool [14] that enclose 

information for more than 5000 breast cancer patients. We 

identified that 39 genes were significantly associated with 

detrimental patient outcome, including relapse free survival 

(RFS), overall survival (OS), or both (Fig. 2a, b), in the sub-

group of luminal A breast tumors. To investigate how these 

genes are interacting among them, we constructed their PPI 

network. Notably, the PPI map of the proteins codified by 

the bad prognosis-associated genes formed a highly inter-

connected cluster (node degree: 30.1; clustering coefficient: 

0.901) (Fig. 2a), suggesting that they could act as compo-

nents of a protein complex with functional links.

Functional annotation analyses of worse outcome

We performed functional annotation analyses of the genes 

which predicted unfavorable outcome to identify biological 

functions that led to a high clustering coefficient [15]. In 

line with our previous result, many of these genes partici-

pated in multiple functions and were, therefore, included in 

more than one functional group (Table S3). We identified 12 

biological functions (Fig. 2c), being cell cycle (33 genes), 

cell proliferation (19 genes), differentiation (12 genes), and 

cellular response to extracellular (EC) stimuli (12 genes) the 

most represented.

The combined analysis of genes contained in each of 

the functions was associated with detrimental RFS and 

Table 1  Gene expression comparison between normal-weight 

(B.M.I < 25) and obese (B.M.I ≥ 30) breast cancer patients for each 

molecular subtype

Breast cancer patients (GSE 78958; n = 269)

Intrinsic subtypes groups Normal weight 

(B.M.I < 25)

Obese 

(B.M.I ≥ 30)

Deregu-

lated 

genes

Basal-like (n = 64) n = 30 n = 34 NS

HER2-enriched (n = 27) n = 15 n = 12 NS

Luminal A (n = 145) n = 68 n = 77 177

Luminal B (n = 33) n = 17 n = 16 NS

http://dgidb.genome.wustl.edu/
http://www.genecards.org
http://www.cbioportal.org
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OS in luminal A (Figs. 3, 4). Cell cycle showed the best 

correlation with RFS [HR = 2.22 (1.86–2.65), log rank 

p < 1e-07] and a significant association with detrimen-

tal OS [HR  =  2.71 (1.85–3.97), log rank p  =  1e-07] 

(Fig. 3). Cell differentiation gene cluster predicts poor 

RFS [HR = 1.9 (1.6–2.27), log rank p = 3.4e-13] and 

OS [HR  =  2.36 (1.62–3.43), log rank p  =  4.2e-06] 

(Fig. 3). Cell proliferation was also associated with lower 

RFS [HR = 2.12 (1.78–2.53), log rank p < 1e-16] and 

demonstrated the strongest association with poor OS 

[HR = 2.73 (1.86–4.01), log rank p = 9.4e-08] (Fig. 4). 

Finally, cellular response to EC stimuli gene showed poor 

RFS [HR = 1.93 (1.62–2.3), log rank p = 1e-13] and OS 

[HR = 2.34 (1.61–3.4), log rank p = 4.6e-06] (Fig. 4). We 

also explored the potential of these functional groups to 

predict patient outcome in the other molecular subtypes. 

Of note, combined analysis of these functional genes 

groups in Luminal B, HER2 and basal-like subtypes poorly 

or no significantly correlated with prognosis (Table S4). 

NEK2, BIRC5, and TOP2A are potential therapeutic 
targets in luminal A obese patients

Protein interactions can be used to prioritize gene candidates 

in in silico studies and to identify potential druggable targets 

[16]. PPI networks for these four functions confirmed their 

functional clustering unity (Fig. S2) and uncovered 18, 10, 

6, and 5 hub proteins for cell cycle, cell proliferation, cellu-

lar response to extracellular stimuli, and cell differentiation, 

respectively (Table S5). Of note, BUB1 and CDK1 were the 

components showing more interactions (edges).

Once we had identified core proteins for each functional 

cluster, we searched for druggable targets within the net-

works. Based on their interaction with existing drugs and/or 

Deregulated genes

n=177
Overexpressed genes

n=81

Underexpressed genes

n=96

Breast Cancer Patients (n=269)

GSE 78958

1,4 linear 

fold change

Average node degree: 16.2

Clustering coefficient: 0.569

PPI enrinchment p-value: 0

Average node degree: 1.58

Clustering coefficient: 0.398

PPI enrinchment p-value: 0

Underexpressed

PPI network

Overexpressed

PPI network

Fig. 1  Gene expression comparison between normal-weight and 

obese luminal A breast cancer patients. We identify 177 deregu-

lated genes (fold change  ≥  1.4) in luminal A obese patients. Then, 

using the online tool STRING, PPI networks for the underexpressed 

(n = 96) and the overexpressed (n = 81) genes were constructed
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the existence of chemical inhibitors, we identified 16 poten-

tially druggable candidates (Supplementary Table 6). We 

used the identified targetable proteins to construct a drug-

gable PPI map (Fig. 5a). The resulting druggable network 

has a clustering coefficient tightly close to 1 (0.977), with 12 

out of the 16 nodes showing interactions with all the network 

components (node degree ≥ 15), what support the idea of 

a biological functional unit. Thus, the use of compounds 

against any node within the system might potentially affect 

the whole network, producing a wider response.

To complete our study, we searched for information about 

copy number alterations or mutations of the 16 identified 

druggable genes in the cancer genomics database (cBiopor-

tal, [13, 17]. Deletions and mutations were present at a very 

low frequency. However, NIMA (Never in Mitosis Gene 

A)-Related Kinase 2 (NEK2), Apoptosis Inhibitor Survivin 

(BIRC5) and Topoisomerase (DNA) II Alpha (TOP2A) were 

found to be amplified in breast cancer (12, 6.3, and 5.4%, 

respectively) (Fig. 5b), suggesting a high potential role for 

them as therapeutic targets in luminal A patients.

Discussion

In the present article, we describe biological functions and 

PPI networks associated with obesity in luminal A tumors, 

which we found generally associated with worse outcome 

in luminal A patients. Moreover, we uncover a druggable 

PPI network on luminal A obese patients which could be of 

utility to design potential therapeutic strategies.

Although we initially investigated all four subtypes 

of breast cancer, we only found significant differences 

between normal-weight and obese patients for the lumi-

nal A subtype.

Although this might be due to the fact that luminal A 

group was the most abundant, the relevant association with 

outcome and the strong PPI network suggests a relevant 

biological role. Moreover, the combined analysis of genes 

within each function was associated with poor outcome in 

luminal A patients. Of note, the subgroup analysis did not 

correlate with patient outcome in the other three molecular 

subtypes (luminal B, HER2, and basal-like). This supports 

the idea that deregulation of these functions has a specific 

role in luminal A breast cancers. Our results are in line with 

those obtained in another study using the same transcrip-

tomic database (GSE 78958) [18], although in this study, 

PPI analysis and druggable target opportunities were not 

explored. In addition, our study also identified a signature 

that is specific for luminal A tumors and explored the rela-

tion of this signature with patient outcome.

Although the level of deregulation between obese and 

non-obese patients was not highly elevated, we found sig-

nificant differences using a fold changed of 1.4. We are 

aware that the fold change used is smaller than the one used 

in other studies [19, 20]. However, this finding could be 

explained by the fact that obese patients included in our 

study lack the exact BMI information. It could be expected 

that the exclusion of the obese-I subtype might have been 

of utility to increase the difference among our study groups. 

In any case, even the number of deregulated genes and the 

level was not high, the upregulation of these transcripts was 

associated with an important detrimental outcome.

The most frequent functions identified in the overex-

pressed genes and linked with worse outcome included: 

cell cycle, cell differentiation, cell proliferation, and cel-

lular response to EC stimuli. Control of cell cycle was the 

most frequent pathway with genes involved in the forma-

tion of the mitotic spindle and centrosome or microtubules 

formation like BUB1, NUSAP, CENPF, CEP55, or the 

KIF family [21]. In addition, other genes were associated 

with the regulation and control of the cell cycle such as 

CDK, GTSE1, CDC25C, or CCNB [22]. Finally, FOXM1, 

a transcription factor linked with the presence of a Lumi-

nal phenotype, was found to be upregulated [23]. Of note, 

our study also uncovered some interesting downregulated 

genes in the obese group. Notably, while EGFR is over-

expressed in around 50% TNBC and inflammatory breast 

cancers [24], we found that this gene, as well as its ligand 

AREG, was downregulated in the luminal A obese group. 

Wnt signaling has been implicated in carcinogenesis as 

well as in obesity promotion [25, 26]. In this line, luminal 

A obese group also showed a lower expression of Wnt 

pathway inhibitors, such as WIF1, BICC1, and the secreted 

Table 2  Proportion comparison of patients’ clinical characteristics 

based on patients BMI

% (n) p value

Normal 

weight < 25 

(n = 68)

Obese ≥ 30 (n = 77)

Grade

 Well (Grade 1) 50.9% (27) 49.1% (26) 0.182

 Moderate (Grade 

2)

48.7% (37) 51.3% (39)

 Poor (Grade 3) 25.0% (4) 75% (12)

TNM Stage

 Stage I 53.0% (35) 47.0% (31) 0.886

 Stage II 42.6% (26) 57.4% (35)

 Stage III 37.5% (6) 62.5% (10)

 Stage IV 50.0% (1) 50.0% (1)

Ethnicity

 African American 30.0% (9) 70.0% (21) 0.008

 European Ameri-

can

48.6% (53) 51.4% (56)

 Other 100.0% (6) 0.0% (0)
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proteins SFRP1 and SFRP4, together with a downregu-

lation of the negative regulators of MYC, TFAP2B, or 

TCF7L [27, 28].

Protein–protein interaction (PPI) networks offer informa-

tion of how different proteins cooperate with others to trig-

ger biological processes within the cell [15, 29]. In this con-

text, we have constructed PPI networks for the deregulated 

genes in luminal A obese patients. While proteins coded by 

deregulated genes poorly interact, we have found that exist a 

solid-clustering unit within the overexpressed PPI network. 

Remarkably, this dense cluster was comprised by proteins 

specifically coded by overexpressed genes that were associ-

ated with detrimental patient outcome. Thus, interference 

of one of its components might have an impact on several 

nodes, which could in turn lead to the destabilization of the 

network. This could open the window to new therapeutic 

strategies targeting this overexpressed PPI network in lumi-

nal A obese patients.

Next, we decided to search for potential drug targets 

within the PPI networks, linked with poor prognosis. Using 

Drug Interaction Database [30], we first identified eight 

druggable genes: BUB1, TOP2A, BIRC5, KIF11, NEK2, 

RRM2, TYMS, and PBK. Then, expanding the search to 

other drug databases, we added eight more druggable can-

didates: CCNB1, CDK1, FOXM1, KIF4A, KIF20A, MELK, 

NEK2, and CDC25C. The PPI network built with them 

exhibited a high degree of interactions and, as indicated by 

its high clustering coefficient, might act as a cohesive func-

tional unit.

Mitotic-related targets in this druggable network are the 

aim of new chemical entities with potential for preclinical or 

clinical translation development [31]. For instance, a well-

described target is TOP2A, where doxorubicin-like chemo-

therapies inhibit their effect [32, 33]. Similarly, strategies to 

target BUB1 are under preclinical evaluation as this kinase 

has been described as associated with detrimental prognosis 

A
%

 t
o

ta
l 
g

e
n
e
s

B
KAPLAN MEIER PLOTTER

ARRAY RFS OS

Gene FC P-Value HR P-Value HR P-Value

GDF15, Growth/differentiation factor 15 1.801 0.000 1.3(1.1-1.54) 0.003 1.45(1.02-2.07) 0.040

MELK, Maternal embryonic leucine zipper kinase 1.625 0.000 2.09(1.75-2.49) 0.000 2.17(1.5-3.15) 0.000

CEP55, Centrosomal protein of 55 kDa 1.620 0.000 2.21(1.85-2.65) 0.000 2.48(1.71-3.62) 0.000

RRM2, Ribonucleoside-diphosphate reductase subunit M2 1.591 0.000 2.09(1.75-2.49) 0.000 2.1(1.45-3.04) 0.000

1.585 0.000 1.81(1.52-2.15) 0.000 2.2(1.52-3.18) 0.000

TYMS, Thymidylate synthase 1.575 0.000 1.72(1.44-2.04) 0.000 2.01(1.4-2.9) 0.000

TOP2A, DNA topoisomerase 2-alpha 1.572 0.002 2.04(1.71-2.44) 0.000 2.15(1.48-3.11) 0.000

PRC1, Protein regulator of cytokinesis 1 1.547 0.000 2.28(1.9-2.73) 0.000 2.56(1.75-3.74) 0.000

CCNB2, G2/mitotic-specific cyclin-B2 1.525 0.000 2.29(1.9-2.75) 0.000 2.73(1.86-4.01) 0.000

1.522 0.000 1.96(1.64-2.33) 0.000 2.4(1.65-3.48) 0.000

ASPM, Abnormal spindle-like microcephaly-associated protein 1.520 0.002 1.91(1.61-2.28) 0.000 2.08(1.44-2.99) 0.000

RIPPLY3, Protein ripply3 1.515 0.002 1.19(1-1.41) 0.044 1.4(0.98-1.99) 0.063

CDK1, Cyclin-dependent kinase 1 1.506 0.001 1.6(1.34-1.9) 0.000 1.67(1.16-2.4) 0.005

BIRC5, Baculoviral IAP repeat-containing protein 5 1.505 0.000 2.14(1.78-2.55) 0.000 3.03(2.04-4.5) 0.000

CENPF, Centromere protein F 1.505 0.000 1.89(1.58-2.25) 0.000 2.24(1.54-3.25) 0.000

NEK2, Serine/threonine-protein kinase Nek2 1.495 0.001 1.97(1.65-2.35) 0.000 2(1.39-2.89) 0.000

TPX2, Protein TPX2 1.484 0.000 1.96(1.64-2.34) 0.000 2.4(1.64-3.51) 0.000

CDC25C, M-phase inducer phosphatase 3 1.479 0.000 1.54(1.29-1.82) 0.000 1.9(1.32-2.74) 0.001

HMMR, Hyaluronan mediated motility receptor 1.479 0.001 1.72(1.45-2.06) 0.000 2.01(1.39-2.88) 0.000

OIP5, Protein Mis18-beta 1.476 0.000 1.35(1.14-1.61) 0.001 1.7(1.19-2.44) 0.032

FOXM1, Forkhead box protein M1 1.461 0.000 1.88(1.58-2.25) 0.000 2.86(1.94-4.23) 0.000

BUB1, Mitotic checkpoint serine/threonine-protein kinase BUB1 1.461 0.000 2.12(1.78-2.53) 0.000 2.42(1.67-3.51) 0.000

DLGAP5, Disks large-associated protein 5 1.461 0.005 2.36(1.97-2.83) 0.000 2.63(1.8-3.85) 0.000

ISG15, Ubiquitin-like protein ISG15 1.460 0.007 1.43(1.2-1.7) 0.000 1.34(0.94-1.91) 0.109

NUSAP1, Nucleolar and spindle-associated protein 1 1.458 0.000 2.17(1.81-2.59) 0.000 2.76(1.88-4.06) 0.000

MKI67, Proliferation marker protein Ki-67 1.457 0.000 1.92(1.61-2.29) 0.000 2.66(1.81-3.89) 0.000

KIAA0101, PCNA-associated factor 1.449 0.001 1.92(1.61-2.29) 0.000 1.92(1.33-2.77) 0.000

ZWINT, ZW10 interactor 1.445 0.000 1.83(1.53-2.18) 0.000 1.57(1.1-2.24) 0.012

PBK, PDZ Binding Kinase 1.443 0.008 1.89(1.58-2.25) 0.000 1.7(1.19-2.44) 0.003

MMP1, Matrix Metallopeptidase 1 1.443 0.081 1.89(1.58-2.25) 0.000 1.72(1.2-2.47) 0.003

MYBL1, MYB Proto-Oncogene Like 1 1.443 0.011 1.47(1.23-1.74) 0.000 1.45(1.02-2.07) 0.039

UBE2C, Ubiquitin-conjugating enzyme E2 C 1.441 0.000 1.81(1.51-2.15) 0.000 1.98(1.37-2.86) 0.000

BUB1B, Mitotic checkpoint serine/threonine-protein kinase 

BUB1 beta
1.438 0.000 2.02(1.69-2.41) 0.000 3(2.04-4.41) 0.000

EZH2, Histone-lysine N-methyltransferase EZH2 1.437 0.000 1.57(1.32-1.86) 0.000 2.19(1.51-3.16) 0.000

GTSE1, G2 and S phase-expressed protein 1.436 0.000 1.69(1.42-2.01) 0.000 3.17(2.14-4.7) 0.000

KIF15, Kinesin Family Member 15 1.434 0.000 1.63(1.37-1.94) 0.000 2.14(1.48-3.08) 0.000

CCNB1, G2/mitotic-specific cyclin-B 1.431 0.000 1.73(1.45-2.05) 0.000 1.86(1.29-2.68) 0.001

KIF11, Kinesin Family Member 11 1.427 0.002 1.78(1.49-2.11) 0.000 2.22(1.53-3.2) 0.000

KIF18B, Kinesin Family Member 18B 1.421 0.000 1.51(1.27-1.79) 0.000 2.56(1.76-3.72) 0.000

Overexpressed genes 

n=81

Good prognosis n=6 

C

Fig. 2  PPI map and functional annotation of bad prognosis-associated 

upregulated genes in luminal A breast cancer obese patients. a Using 

the K–M plotter tool, we identified overexpressed genes associated 

with bad prognosis and used them to construct a network of detri-

mental outcome in luminal A obese patients. b List of overexpressed 

genes associated with bad prognosis. Probe and transcript ID together 

with the symbol are indicated for each gene. Table includes the infor-

mation for specific fold change difference, Hazard ratio (HR) for 

relapse free survival (RFS), and overall survival (OS). c Functional 

enrichment analyses of bad-prognosis-associated genes identifies cell 

cycle, cell differentiation, cell proliferation, and cellular response to 

extracellular stimuli as the most altered functions in luminal A obese 

patients
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in breast and ovarian cancer [20, 34]. Compounds against 

KIF11 are under development [35] and some in clinical 

development [36].

BIRC5 codifies for a protein which is vital for the growth 

and survival of cancer cells. Survivin is found to be essential 

for several functions linked with oncogenic transformation 

[37]. It is known that normal tissues do not express survivin, 

and high expression in tumors is an indicative of poor prog-

nosis and intrinsic resistance to radio- and chemotherapy 

[38]. As obese patients express high levels of BIRC5, evalu-

ation of BIRC5 inhibitors, alone or in combination, could 

be a potential option.

Finally, NEK2 codifies for a serine–threonine kinase with 

a key role in mitosis that has been found to be aberrantly 

overexpressed in several cancer types, among them breast 

cancer [39, 40]. NEK2 expression levels are associated 

with tumor progression and detrimental outcome, as well as 

with drug resistance [41]. Besides, preclinical studies have 

shown that high NEK2 levels can induce tumorigenesis by 

mediating chromosome instability and aneuploidy, while its 

downregulation can lead to cancer cells death [42], suggest-

ing a role for NEK2 as a potential target to treat cancer. Its 

elevated levels in obese patients points at NEK2 as a good 

candidate for targeted therapy in these patients. However, 

although several inhibitors have been developed for NEK2, 

some of them being highly specific and showing an irrevers-

ible inhibition, they have not been taken to clinical evalua-

tion yet [43].

Notably, NEK2 as well as BIRC5 and TOP2A were 

amplified in more than 12, 6, and 5% of breast cancers, 

respectively, reinforcing their potential role as key thera-

peutic targets.

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (months)

P
ro

b
a

b
ili

ty

Expression

low

high

Number at risk

967 768 364 85 9 1low     

966 635 274 57 10 1high     

HR = 2.22 (1.86  2.65)

logrank P < 1E 16

P
ro

b
a
b
ili

ty

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

0 50 100 150 200 250

Number at risk

low 967 768 364 85 9 1

high 966 635 274 57 10 1

Time (months)

HR=2.22(1.86-2.65)

logrank P <1e-07

Expression

low
high

1
.0

0
.4

0
.6

0
.8

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (months)

P
ro

b
a

b
ili

ty

Expression

low

high

Number at risk

306 279 161 51 5 0 0low     

305 254 122 31 8 2 0high     

HR = 2.71 (1.85  3.97)

logrank P = 1e 07

P
ro

b
a
b
ili

ty

0
.0

Number at risk

low  306       279        161         51          5          0            0

high 305       254        122         31          8           2            0

Time (months)

0 50 100 150 200 250 300

HR=2.71(1.85-3.97)

logrank P=1e-07

0
.2

1
.0

0
.4

0
.6

0
.8

Expression

low
high

0
.0

0
.2

0
.4

0
.0

0
.2

0 50 100 150 200 250 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (months)

P
ro

b
a

b
ili

ty

Expression

low

high

Number at risk

306 277 158 42 5 0 0low     

305 256 125 40 8 2 0high     

HR = 2.36 (1.62  3.43)

logrank P = 4.2e 06

P
ro

b
a
b
ili

ty

Number at risk

low 306 277 158 42 5 0 0

high 305 256 125 40 8 2 0

Time (months)

Expression

low
high

HR=2.36(1.62-3.43)

logrank P =4.2e-06

0 50 100 150 200 250 300

1
.0

0
.6

0
.8

0
.4

0
.0

0
.2

0 50 100 150 200 250

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time (months)

P
ro

b
a

b
ili

ty

Expression

low

high

Number at risk

966 757 344 64 5 0low     

967 646 294 78 14 2high     

HR = 1.9 (1.6  2.27)

logrank P = 3.4e 13

Number at risk

low 966 757 344 64 5 0

high 967 646 294 78 14 2

P
ro

b
a
b
ili

ty

0 50 100 150 200 250

Time (months)

Expression

low
high

HR=1.9(1.6-2.27)

logrank P =3.4e-13

1
.0

0
.6

0
.8

0
.4

0
.0

0
.2

RFS OS

C
e
ll
 c

y
c
le

C
e
ll

 d
if

fe
re

n
ti

a
ti

o
n

RFS OS

Fig. 3  Association with relapse free survival (RFS) and overall survival (OS) of gene sets included in the cell cycle and cell differentiation func-

tions in luminal A breast cancer
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In conclusion, in the present work, we describe func-

tional pathways and protein–protein interacting networks 

associated with clinical outcome in luminal A tumors from 

obese patients. Moreover, we identify a druggable inter-

acting map with potential for target inhibition. Although 

we acknowledge that this is an in silico analyses, and data 

should be confirmed in samples from patients, our results 

open new venues for further characterization and have 

potential for translation into the clinical setting.
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621Breast Cancer Research and Treatment (2018) 168:613–623 

1 3

A

B
Breast Invasive Carcinoma (TCGA)

Edges (n) Amplification Deletion Mutation

BIRC5 15 6,3% 0,1% -

BUB1 15 0,5% - 0,4%

CCNB1 15 0,1% 1,3% 0,5%

CDK1 15 2% 0,2% 0,2%

FOXM1 15 2,8% 0,1% 0,5%

KIF11 15 0,1% 0,2% 0,5%

KIF20A 15 0,4% 0,1% 0,5%

KIF4A 15 - 0,5% 1,3%

MELK 15 1,3% 0,1% 0,2%

PBK 15 0,5% 5,4% 0,2%

RRM2 15 1,3% 0,5% 0,4%

TOP2A 15 5,4% 0,5% 0,2%

NEK2 14 12% - 0,1%

TYMS 14 0,9% 0,1% 0,1%

CDC25C 13 0,4% 0,1% 0,5%

EZH2 13 0,9% 0,1% 0,4%

Druggable PPI Network

Nodes 16

Edges 117

Node degree 14.6

Clustering coefficient 0.977

PPI enrichment p-value 0

Fig. 5  Druggable PPI network in luminal A obese patients. a We 

used the online tool STRING to construct the PPI network of the 

druggable targets. b Percentage of copy number alterations (amplifi-

cations and deletions), and presence of mutation for each druggable 

gene, obtained from cBioportal data
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