
The University of Manchester Research

Functional units: Abstractions for Web service annotations

DOI:
10.1109/SERVICES.2010.21

Document Version
Accepted author manuscript

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Missier, P., Wolstencroft, K., Tanoh, F., Li, P., Bechhofer, S., Belhajjame, K., Pettifer, S., & Goble, C. (2010).
Functional units: Abstractions for Web service annotations. In Proceedings - 2010 6th World Congress on
Services, Services-1 2010|Proc. - World Congr. Serv., Serv. (pp. 306-313). IEEE Computer Society .
https://doi.org/10.1109/SERVICES.2010.21
Published in:
Proceedings - 2010 6th World Congress on Services, Services-1 2010|Proc. - World Congr. Serv., Serv.

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:04. Aug. 2022

https://doi.org/10.1109/SERVICES.2010.21
https://www.research.manchester.ac.uk/portal/en/publications/functional-units-abstractions-for-web-service-annotations(278fb195-f2f0-4757-9959-67e147dac889).html
/portal/sean.bechhofer.html
/portal/steve.pettifer.html
/portal/carole.goble.html
https://www.research.manchester.ac.uk/portal/en/publications/functional-units-abstractions-for-web-service-annotations(278fb195-f2f0-4757-9959-67e147dac889).html
https://doi.org/10.1109/SERVICES.2010.21

Functional Units: Abstractions for Web Service
Annotations

Paolo Missier, Katy Wolstencroft, Franck Tanoh, Peter Li, Sean Bechhofer, Khalid Belhajjame, Steve Pettifer, Carole Goble
School of Computer Science, University of Manchester

Oxford rd, Manchester, UK
Email: {firstname.lastname}@cs.manchester.ac.uk

Abstract—Computational and data-intensive science increas-
ingly depends on a large Web Service infrastructure, as services
that provide a broad array of functionality can be composed
into workflows to address complex research questions. In this
context, the goal of service registries is to offer accurate search
and discovery functions to scientists. Their effectiveness, however,
depends not only on the model chosen to annotate the services,
but also on the level of abstraction chosen for the annotations.
The work presented in this paper stems from the observation
that current annotation models force users to think in terms
of service interfaces, rather than of high-level functionality,
thus reducing their effectiveness. To alleviate this problem,we
introduce Functional Units (FU) as the elementary units of
information used to describe a service. Using popular examples
of services for the Life Sciences, we define FUs as configurations
and compositions of underlying service operations, and show how
functional-style service annotations can be easily realised using
the OWL semantic Web language. Finally, we suggest techniques
for automating the service annotations process, by analysing
collections of workflows that use those services.

I. INTRODUCTION

The popularity of Web Services for e-science applications is
not without its problems, as scientists find themselves explor-
ing a large space of available and potentially useful services,
with only a limited understanding of the functions they offer.
Part of the problem is that, despite a wealth of research over
the past few years, service annotations still reflect a interface-
oriented view, rather than a functional view of the service.
This is a central problem for large registries of services, and for
Biocatalogue in particular. Launched in 2009, the Biocatalogue
registry1 caters primarily to the bioinformatics and biomedical
community. Building upon previous work on service registries
and semantic annotation from the myGrid project2 and the
Embrace registry3, Biocatalogue positions itself as a high-
quality, annotation-rich clearinghouse for domain-specific ser-
vice descriptions on a large scale (hundreds or thousands of
services). Its primary goal is to provide descriptions of services
that can be used both for accurate search and discovery, and
to support the process of composing service invocations as
part of larger workflows. The project is now at a critical
juncture, where the choice of annotation model may determine
its adoption by the Life Sciences community.

1http://www.biocatalogue.org
2http://www.mygrid.org.uk/
3http://www.embraceregistry.net/

A variety of conceptual models have been proposed over
the years for service annotation. These include SAWSDL4,
a W3C recommendation containing syntactic conventions for
augmenting a WSDL interface specification with semantic
annotations; OWL-S [8]5, and WSMO6, amongst others. While
these are potentially viable annotation models, they are all
based on the common implicit assumption that the two core
tasks mentioned earlier are best served by annotating services
at the level of their individual operations, and of the data types
of the operations’ messages.

The OWL-S model, for example, includes three perspectives
on a service, namely its profile (what the service does), its
model (how it works), and its grounding (how to access the
service). Focusing on the profile, consider for example the
DDBJ database7. Its Blast service can be annotated to spec-
ify that the operation searchSimple accepts a biological
sequence as input, as follows:
<profile:serviceOperation>

<operation:name> searchSimple</operation:name>
<process:input id resource=”#biological sequence” />

</profile:serviceOperation>

In this example, the annotation makes a reference to the
biological_sequence concepts in the myGrid ontol-
ogy [15] (with namespace omitted).

The WSMO annotation model [10], [3], along with its
WSMO-Lite counterpart [14], adds expressivity to annotations
by accounting for functional descriptions. These are repre-
sented as capabilities, which define pre- and post-conditions
that must hold before and after the invocation of a service’s
operation, or as functionality classications that define the
service functionality using some classication ontology.

While these models abound in expressivity, their main
shortcoming is that they apply rigidly either to the entire
service, or to its individual operations, following the under-
lying WSDL-based structure of service description (a second
shortcoming is that they do not apply at all to REST-style
services, which lack a WSDL interface altogether. Recent
proposals like SA-REST[13] address this but suffer from the
same narrow perspective on annotations.) In this paper we

4http://www.w3.org/2002/ws/sawsdl/
5http://www.w3.org/Submission/OWL-S/
6http://www.w3.org/Submission/WSMO/
7http://www.ddbj.nig.ac.jp/

contend that, for the purpose of service discovery in the
context of a registry like BioCatalogue, this level of abstraction
is not always suitable, because the set of operations exposed
by the service may not easily translate into a scientific task,
or unit of work, that the users understand as being part of
their application domain. Two main elements contribute to the
problem, namely polymorphic operations, which are defined in
a generic way to perform a number of possible functions, and
operations that are used as part of some invocation pattern,
along with other operations. An example of the former is the
eSearch operation, which is part of the eUtils service
provided by NCBI. While it would be difficult to associate
a specific bioinformatic function to eSearch per se, the
operation becomes meaningful when it is surrounded by a
context in which some of its input parameters are configured,
including, in this simple case, the target database. The same
operation also provides an example of an invocation that is
defined as part of a pattern, since eSearch is normally used
in concert with the follow-on eFetch operation.

By annotating these services on individual operations (or
for the service as a whole), a gap remains between the users’
perspective of service operations as tasks with a well-defined
function in the context of broader a scientific goal, and the
service providers’ technological view. We argue that this gap
can be filled by choosing to annotate at a higher level of
abstraction, taking into account both polymorphic operations,
and operation patterns. We refer to these abstract descriptions
as Functional Units (FU), and we show that commonly used
bioinformatics services can be annotated at this higher level.

A. Paper organisation

The paper is structured into three part. Firstly, in Sec. II
we analyse a number of service examples to derive a general
definition of FU that is applicable to a broad class of public
Web services. In this definition, we stick to the principle that
the scope of a FU is limited to the set of operations that are
part of the same service, i.e., we assume that FUs do not cross
service boundaries. This is consistent with our primary goal
to facilitate the search and discovery in Biocatalogue, where
each service represents one atomic granule of information.

Secondly, in Sec. III we provide examples of concrete,
functional, semantic service annotations, to show how the
current OWL-based annotation style adopted in the past by
the myGrid project, applies with minimal additional effort to
functional units.

Thirdly, we address the problem of curating large collections
of services. We start from the observation that FUs are
“sensible combinations” of usage of configured service op-
erations, and thus, they are possibly application- or even user-
dependent, complicating their automated discovery. In many
cases, however, a service is designed so that its operations
“fit together”, i.e., can be effortlessly composed according to
some architectural pattern, in order to realise a domain-specific
function. In this case, eliciting functional units amounts to
recognising the original “intent” of the service as a cohesive
unit, as well as the patterns that govern its proper usage.

This observation suggests that a catalogue of tried-and-tested
service compositions, typically workflows, can be an important
asset when trying to automate, at least in part, service anno-
tations at the FU level. In Sec. IV we propose preliminary
ideas on how to partially automate the curation process, by
leveraging prior work on mining collections of worklows [1].

The approach presented in this paper is being implemented
as part of the ongoing development process for the Biocata-
logue service registry.

B. Related work

To the best our knowledge, the idea that comes closest to the
notion of functional units is described in the SemBOWSER
project [11], where a high level functional description of
services is advocated. Although similar in purpose, our ap-
proach goes one step further, by proposing to describe a
service in terms of a whole collection of functional units,
and furthermore, by accounting for different granularity, and
hierarchical composition, of those FUs.

Another approach to abstracting the level of service de-
scription to better match the user’s functional requirements
can be found in Hashmi et al. [5]. Their method for facili-
tating the specification of bioinformatics workflows involves
the scientists specifying the steps required for performing
some analysis. The specification needs not mention either the
computation units (web services) responsible for the execution
of each of the steps, nor the order in which they should be
executed. Instead, these elements are specified using semantic
annotations that describe the capabilities of web services and
their data dependencies.

Large-scale semantic service registries have been receiving a
lot of attention in recent years. Among these, the ServiceFinder
European project, based on the experience of the commercial
SeekDA registry8, stands out in that it aims at scaling up
the size of their curated service registry, by automating the
semantic annotation task [4].

Finally, there is an important distinction, in both scope
and goals, between service registries that try to accommo-
date a large number of community-contributed services, like
Biocatalogue, and those that collect a “closed” world of ser-
vices, whose design and interface specification must adhere to
project-specific rules. Ostensibly, the latter scenario simplifies
the curation task, as the BioMoby project has shown over the
years [2]. It would be unfair, however, to put those two on the
same field, as services “in the wild” exhibit broader variations
even when restricted to the Life Sciences domain.

II. FROM SERVICE OPERATIONS TO FUNCTIONAL UNITS

In this section we define Functional Units as service descrip-
tion abstractions that may exist in latent form within a service,
and that can be elicited by service curators. Our common-
sense definition of FUs is driven by a cross section of service
examples from the BioCatalogue. These range over a variety
of scenarios, from the simplest case of a single functional

8http://seekda.com

unit mapping to a single service operation, to functional units
as patterns of composite services, and finally, as composition
of lower-level FUs, in a hierarchical fashion. For clarity,
the definitions in this section are organised along the four
possible cases of a many-to-many relationship between service
operations and FUs.

A. One operation, one FU

To begin, we consider services that are designed to expose
a set of functions that relate directly to the user’s domain, so
that the operations on their interface reflect precisely those
functions. In this simple case, FUs are exactly aligned with
service operations. Example services for this class of FUs
include SABIO-RK9, KEGG10, and BioMoby11.

Most of the operations in the SABIO-RK service are of
the form getX , i.e., they retrieve data from a database,
where X incorporates a domain-specific term for the entity
being retrieved, possibly along with the indication of an ac-
cess method, for example: searchEnzymesByECNumber,
getCompoundID, getCompoundName, etc. With this
highly disciplined organisation of the service interface,
the terms that appears in the operation’s name can sim-
ply be used directly to describe the FUs, for instance:
searchEnzymesByECNumber: performs a task (retriev-
ing) on a resource (Kegg_Gene_database), has input
parameters of some given type (ECNumber), and output
parameters (a simple formalisation of these annotations using
OWL are presented in the next section).

A similarly clean design can be observed in the KEGG
service12, where most of its over 70 operations perform
searches over the KEGG family of databases concerning
genes, proteins, ligands and pathways. Each operation defines
one specific type of query over one of the databases, with its
name often exhibiting an informational structure, for instance
getEnzymeByGene, used to perform a simple database
query to return enzyme identifiers encoded for by the genes
specified. There is one input, which is the gene identifier, and
one output, which is the enzyme identifier. In this case, the
functional unit is data retrieval and the operation runs over the
KEGG gene database.

Finally, in the case of BioMoby, the structure of a service
operation is dictated by compliance to the BioMoby service
model and to the annotation model prescribed at service
registration time. The natural abstraction of BioMoby service
descriptions using this model is at the functional unit level,
typically with one operation performing one function.

B. One operation, multiple FUs

In the services cited above, each operation performs pre-
cisely one function. Commonly in Life Science services,
however, operation are polymorphic, i.e., they can perform
multiple functions depending upon the combination and values

9http://sabio.villa-bosch.de/webservicedoc.jsp.
10http://www.genome.jp/kegg/
11http://www.biomoby.org/
12http://www.genome.jp/kegg/

of their input parameters. For example, the searchSimple
operation in the DDBJ database mentioned earlier can per-
form a variety of BLAST similarity searches of a biological
sequence over selected biological sequence databases. This
operation is polymorphic because its behaviour depends on the
input parameters for (a) one of several BLAST programs to
be executed, for instance blastn for a DNA query, blastp
for a protein query, etc.; and (b) one of several available
databases to align the input sequence against, for instance a
particular DNA database rather than a Protein database. Not all
of the combinations are valid, however. For instance tblastn
expects a Protein sequence to be aligned against a DNA
database: searching Uniprot in combination with a nucleotide
sequence would result in an invalid query. This suggests that
one can elicit all and only the Functional Units by enumerating
all the legal combinations for the input configurations. This
service, for example, offers five different FUs, corresponding
to the five legal combinations of its inputs (see Table I).
Finding legal combinations is the service curator’s job. Whilst
this is potentially a time-consuming task, it injects precious
additional knowledge into BioCatalogue, potentially making
it possible, for example, to automatically generate workflow
processors for a given FU, by driving the configuration of the
operations’ invocation.

C. Multiple operations, one FU

Unlike the examples in the previous section, in some
services the operations are designed to be orchestrated, and
it is only when they are executed as part of a particular
pattern that they produce a functional unit. In the case of
many asynchronous services, for instance, one operation will
submit the job to a queue and return a JobID, another will
poll the execution with that JobID to check the status, and
a third one will retrieve the results when they are ready.
The functional unit of the service is only realised by the
orchestration of all three operations in that particular order.
The EBI Web Services work in this way. The InterproScan
service13, for example, has one functional unit composed from
the interaction of three operations, runInterProScan,
CheckStatus and getResults. This service compares
a protein sequence against a collection of protein motif and
domain databases to identify interesting domains within the
sequence. The scientist can control which data is analysed,
the format in which the data is returned, and the values of
certain algorithmic parameters. The underlying mechanism for
execution, however, should not be part of the functional unit
definition.

An example of this pattern in action as part of a Taverna
workflow involving InterProScan is shown in Fig. 1. Each
processor in a Taverna workflow represents the invocation of
a single service operation (but note that normally a work-
flow involves multiple services). Note that multiple concrete
realisations of this common pattern are possible, depending
on the available workflow language primitives. In particu-

13http://www.ebi.ac.uk/interpro/

FU input parameters
Blast Algorithm Sequence Database Query Sequence

proteinBlast Blastp Protein database (e.g Uniprot) ProteinSequence
nucleotideBlast Blastn Nucleotide (e.g. DDBJ) nucleotideSequence
proteinNucleotideBlast tBlastn Nucleotide (e.g. DDBJ) proteinSequence
nucleotideProteinblast Blastx Protein (e.g. UniProt) nucleotideSequence
nucleotideBlast with frame translation tBlastx Nucleotide (e.g. DDBJ) nucleotideSequence

TABLE I
FUNCTIONAL UNITS AS LEGAL COMBINATIONS OF INPUT PARAMETERS TO AN OPERATION

!"#$% &'()

*)&+,-.+/)012&

/)012& 3&&3456)7&.$0&

(3/360 4"7&)7&

/1787&)/9/":437

3&&3456)7&.$0& !"#$%

!"#$%

45)4;:&3&10

3&&3456)7&.$0& 0&3&10

Fig. 1. Asynchronous operation pattern for the EBI InterPro service

lar, the figure shows a typical realisation done in Taverna,
where the checkStatus processor encapsulates a while-
loop construct, whereby the processor periodically polls the
server using the native operation checkStatus until the job
result becomes available. Thus, the three operations are used
in concert to realise the complete pattern.

We observe a similar pattern in the eUtils service from
the NCBI14, which also requires asynchronous communica-
tion. A set of records, for example, is obtained by first
specifying search criteria using the eSearch operations, and
then retrieving the actual records using eFetch. The service
is stateful, i.e., a user session is created as a result of the first
invocation, which is available to subsequent operations. Note
that these operations are highly polymorphic, as noted earlier.

The SoapLab tool15 provides a final, but not less important
example of operations that are designed for orchestration [12].
SoapLab generates service wrappers for “legacy” applications
that are natively available only through a command-line in-
terface from an OS shell. Examples of services generated
using this tool are available from the EBI, for example16. As
a consequence of the “cookie-cutter” approach to automated
service generation, all SoapLab services expose the same
set of operations, namely getResults, getStatus, run,
runAndWaitFor. This is an example of a server-oriented
approach to service design, whereby none of the service
operations’ domain semantics, and thus none of the latent
functional units, are exposed by the service interface. While
this service style provides basic primitives to interact with any
service, it stands in contrast with the initial examples of this
section, where a functional style of service design facilitates

14http://eutils.ncbi.nlm.nih.gov/
15http://soaplab.sourceforge.net/soaplab2/
16http://www.ebi.ac.uk/soaplab/

Fig. 2. Composite functional unit in the SABIO-RK service

the curator’s annotations task and the user’s understanding.

D. Composite FUs

The final, and more general case of functional units in-
volves the hierarchical composition of existing FUs into new,
higher-level FUs. Prime examples of these compositions are
service-based workflows, often used to describe complex data
pipelines as part of in silico experiments. We continue to use
Taverna as an example of intuitive workflow model that ac-
counts for hierarchical composition. As mentioned, at a basic
level a workflow processor represents the invocation of a single
service operation. When such operations are themselves FUs,
as described in Sec. II-A, we expect the resulting workflow to
perform a meaningful function to the user, as well, and thus
potentially forming a new FU. Remember, however, that we
limit the scope of FUs to compositions of operations within a
single service, consistent with the service-level granularity of
BioCatalogue. Even with this constraint, many services can be
found that contain operations that form autonomous functional
units, but can also be combined into composite FUs. Both
KEGG and SABIO-RK provide good examples. The workflow
fragment in Fig. 2 illustrates a composite functional unit from
SABIO-RK. The first operation in the highlighted box retrieves
a compound identifier from the ChEBI database, the second
operation maps this identifier to a compound name. Either
operation can be used independently, but they are designed
and intended to be called as part of the same workflow,
which forms a new FU. A hybrid case, for KEGG, of a
pattern that contains an FU is shown in Fig. 3, where the
search_compounds_by_name operation is an FU, but
bget, a generic operation for retrieving data given their ID,
only becomes a FU when it is properly configured.

These examples show higher-level FUs as mini-workflows

Fig. 3. KEGG composite functional unit

where the participating operations (processors) are simply
connected to each other through data dependency links. This
tidiness, however, can only be achieved when the operations
are indeed designed to fit together according to a natural
pattern. In general, workflows designers often need to program
additional bespoke adapters, encoded as local scripts, which
perform necessary data transformations. While this would
not be surprising when trying to connect operations from
heterogeneous services, single-service workflows that require
adapters seem indicative of a poor service interface design
or to perform a complex query using data from a single
database. The following example illustrates one of these com-
plex composite FUs involving SABIO-RK. Fig. 4(a) shows a
composite FU as an ideal sequence of processors. The purpose
of this biochemical FU is to find chemical reactions that are
associated with a given metabolite, and the kinetics associated
with those reactions. This is an ideal workflow in the sense that
it “skips over” the adapters that are required to make the data
pipeline work in practice for identifying chemical reactions for
a given set of metabolites using data within SABIO-RK. The
relevant fragment of the actual workflow is shown in Fig. 4(b).
The additional processors are scripts that perform local data
manipulation (in this case, set intersection, parsing of lines in
a text file).

When these composite functional units are properly anno-
tated, the significant effort required for their design translates
into high added value for third party users who discover them
through BioCatalogue. In the next section we use some of
these FUs to provide examples of such FU-style annotations.
Fig. 5 shows a summary of the hierarchical definitions of
functional units, from a single operation FU1 , to a configured
single operation (FU2), to a pattern potentially involving other
FUs (FU3), and finally, to composite FUs (FU4).

III. SPECIFYING FUNCTIONAL UNITS

Earlier in the paper, we made the point that the main dis-
tinction between operation-level and functional-level service
annotations is one of abstraction, rather than of annotation
model or language. For FU-level service annotations to be
successful in practice, this change in abstraction level should
not require curators to learn a new and unfamiliar annotation
model. In particular, in the previous section we have identified
the need to describe combinations of input parameters to a

Fig. 5. Summary of functional unit definitions relative to service operations

polymorphic operation, something that standard, attribute-level
notations like SAWSDL are not designed for.

In this section we present functional annotations for our
previous working examples, to show that such requirements
can be met by adopting an OWL-based semantic annotation
model. As we have noted earlier, this is by no means a
new idea. Importantly, however, we show that functional-style
annotations only require a slight extension to the annotation
model used extensively in the myGrid project, and thus, it will
keep Biocatalogue curators on familiar ground.

In myGrid, services were annotated using terms from the
myGrid ontology [15] and descriptions stored and searched
through the Feta semantic discovery component [7]. The
myGrid ontology describes the bioinformatics research domain
and the dimensions with which a service can be characterised
from the perspective of the scientist. The ontology provides
an annotation vocabulary, including descriptions of core bioin-
formatics data types and their relationships to one another. It
also describes the physical and operational features of web
services, such as, inputs and outputs and where the service is
hosted. In myGrid, the ontology is currently used to describe
individual properties of services and operations. Over 800 op-
erations have been annotated in this way and their descriptions
are available in the BioCatalogue. The myGrid ontology is
expressed in OWL, which means it could be used to fully
describe an individual service or operation as a collection of
all of its properties instead of as individual properties. As a
proof of concept, we used this ontology to describe some of
the functional units identified previously.

A. One operation, one or multiple FUs

In the simplest case, FUs map exactly to a non-
polymorphic operation. For example, the KEGG operation
getEnzymeByGene mentioned in Sec. II-A performs a
simple database query to return enzyme identifiers encoded
for by the genes specified. There is one input, which is the
gene identifier, and one output, which is the enzyme identifier.
An human-readable rendering17 of its formal OWL annotation
is shown in Fig. 6. Intuitively, the annotation specifies the
semantic types of the input and output parameters, and it
specifies that the function is to retrieve data from the KEGG
database. More precisely, an axiom like

inputParameter some KEGG_gene_id

17The rendering is provided by the Protegé OWL editing tool, available at
http://protege.stanford.edu/.

(a) FU as an ideal Taverna work-
flow

(b) The actual workflow fragment

Fig. 4. Composite FU for SABIO-RK

Fig. 6. OWL description of the getEnzymeByGene functional unit

in the context of concept getEnzymeByGene defines
the constraint: “at least one of the input parameters of
getEnzymeByGene must be a KEGG_gene_id”.18 This
is interpreted as a constraint, which allows input parame-
ters to have any type, as long as KEGG_gene_id is one
them. Note that the definition in Fig. 6 also asserts that
KEGG_Gene_database must be one of the resources used
by the functional unit, but others may be used as well.

When operations are polymorphic, as in the DDBJ ex-
ample of Sec. II-B, the annotations need to describe legal
combinations of values for the input parameters. An example
of these combinations, for operation SearchSimple, was
shown earlier in Table I. Fig. 7 shows the OWL specification

18Formally, this Protegé syntax renders the OWL axiom:

getEnzymeByGene v ∃ inputParameter . KEGG_gene_id

Fig. 7. OWL description of the protNucBlast functional unit

for one of these functional units, namely protNucBlast. It
generalises the previous cases by specifying a set of types for
the input parameters, as well as a method (blastn). Note that
now the specification defines the necessary types for the input
parameters,19 by asserting that the types of the input param-
eters form a superset of {tblastn, protein_sequence,
nucleotide_sequence_database}.

B. Pattern-based FUs

We now present OWL definitions for the last two types of
functional units, namely those that involve multiple operations
arranged in a pattern. The first is for the InterproScan
service, which is represented by a FU when three of its oper-
ations, InterProScan, checkStatus and getResult,
are orchestrated to realise the asynchronous job submission

19However, it does not specify which type is associated to which input
parameter.

pattern shown in Fig. 1. The corresponding FU definition
(Fig. 6) requires the service to exhibit all three operations.
Note that the inputs and outputs are now those of the FU,
rather than those of each operation. Also, the new concept
wsdl-asynch has been added to the myGrid ontology to
characterise the type of pattern required by this FU. Note that
this definition includes the operations and type of the pattern,
but not its structure. We are planning to complement the OWL-
based definitions with Taverna workflows that formalise the
pattern.

Finally, Fig. 8 shows the definition for the composite FU
of Fig. 3, involving the two units compoundName and
compoundRetrieval, the latter being the FU resulting
from the combination of search_compound_by_name
and bget.

C. Further FU modelling options

The OWL definitions shown earlier in this section apply to
classes of services, in that they formalise the conditions that
define “what it means for a service to be a certain functional
unit”. In particular, note that the OWL axioms in these
examples are placed in the equivalent classes box of the class
definition in the figure, indicating that they define both neces-
sary and sufficient conditions for a service to be a functional
unit of type (i.e., an instance of class) getEnzymeByGene,
or ProtNucBlast. To see what this means, suppose that an
actual service S, that appears for example in BioCatalogue,
has been annotated with assertions that include “S has inputPa-
rameter X”, “X has type Kegg_gene_id”, and so forth for
all the other conditions that define the getEnzymeByGene
FU. A standard OWL reasoner will be able to infer that
S is of type getEnzymeByGene. In general, specifying
functional units in terms of necessary and sufficient conditions
(constructed classes, in OWL parlance) provides a powerful
way to automatically classify actual services based on their
specific annotations.

Given this potential for automated inference, it is important
to understand the exact meaning of the FU class definitions.
For example, class protNucBlast may include services
that have input parameters of arbitrary type, provided that the
parameter types specified in the definition also apply to some
of the parameters. This is because the definition only includes
existential quantifiers, i.e., “there must exist a parameter of
type X”. One could, however, further constrain the set of
acceptable parameter types to be all and only those in the
set above, by adding universal quantifiers (“if parameter X
has a type, it shall be t1 or t2 or t3”). This has the effect of
“closing” the set of possible types that appear in the list of
parameters.

Which constraints are appropriate is largely a modelling
issue, often based upon the trade-off between accuracy of
the annotations, and potential for automated classification. For
example, one may not want to completely determine the set of
acceptable input types, because some of the input parameters
(e.g. the max number of returned hits in Blast) do not affect
the definition of the service as a functional unit. In this case,

Fig. 8. OWL description of the InterProScan functional unit

Fig. 9. OWL description of the compoundGetFU functional unit

one could decide to characterise the parameters as belonging
to one of two classes (FU-critical vs all the others), and then
apply the stronger, closed-world type constraints to only the
FU-critical ones. We plan to evaluate these and similar options
in practice, using an upcoming version of BioCatalogue that
supports functional-style annotations.

IV. ELICITING FUNCTIONAL UNITS

Annotating a web service is a challenging task that requires
deep knowledge of both the implementation of the web service
and the domain ontology used for annotation. Asking the anno-
tator to additionally be knowledgeable of the functional units
that can be constructed out of the operations that compose the
web service makes the annotation task even more challenging
and prone to errors. Therefore, if the notion of functional units
is to be adopted in practice, a means for assisting human
annotators in identifying relevant functional units that can be
obtained by aggregating the operations of a given web service
is needed.

A naive approach to automating the identification of func-
tional units would involve constructing all workflows that can
be obtained by composing subsets of the service operations
of the web service in question. Such an approach is, however,
neither efficient nor effective. The number of workflows that
can be obtained by composing the operations of a web service
is large. Also, combining any subset of service operations does
not necessarily guarantee obtaining a valid functional unit.
Therefore, we need a means for identifying service operation
combinations that are relevant to the domain in question, and
that can be used as building block for constructing other
applications, in particular workflows.

The idea is to exploit the specifications of a collection of
tried-and-tested workflows for guiding the human annotator.
To explain this idea, we will use the workflow example
illustrated in Fig. 3. Given that the three operations that
constitute this workflow are supplied by the same web service,

we can suggest it to the human annotator as a potential relevant
functional unit that can augment the semantic description of
the web service in question.

More specifically, the task of elicitation of functional units
can be defined as follows. Given a repository of tried and
tested workflows, the elicitation task consists in extracting sub-
workflows, the component operations of which are supplied by
the same web service. Note that a single workflow definition
may lead to the identification of multiple functional units of
the same and/or different web services. Therefore, the number
of functional units that can be identified by simply parsing the
workflow definitions in a repository such as myExperiment20,
can be potentially large.

Notice that we only consider tried-and-test workflows in
the functional units elicitation task. This is because a workflow
that suffers from errors may lead to erroneous functional units.
A simple example of an error that may occur is that of mis-
match between connected operations. If a workflow connects
operations with incompatible parameters, then the functional
unit that we extract form that workflow may inherit such an
error, and its execution, therefore, can lead to execution errors.

It is worth mentioning that the elicitation of functional
units as discussed in this section tackles the problem of
identifying the participant operations, and the way they are
to be combined to deliver the functional unit in question. In
addition, the annotation task involves annotating the inputs and
outputs of the workflow that incarnates the functional unit by
relating them to concepts from the domain ontology used for
annotation. This tasks can be performed in a manual manner,
or in a semi-automatic fashion by using tools developed by
the semantic web service community such as Meteor-S [9],
Assam [6] and QuASAR [1]. Indeed, the workflow that realises
a given functional unit can be seen as “black box’ service
operation, in which case the task of annotating the input and
output parameters can be seen as that of annotating the inputs
and outputs of a web service operation.

The above discussion underlined the fact that workflow
repositories can be exploited for the automatic identification
of functional units. We are in the process of implementing and
exploring these ideas within the context of the BioCatalogue
web service registry to assist human annotators identifying
functional units by parsing the workflow specifications readily
accessible from the myExperiment workflow repository.

V. CONCLUSIONS

In this paper we have proposed a functional style of service
annotation that involves Functional Units as the information
elements that describe a service’s functionality at a level that
service consumers are likely to understand. This is in contrast
to interface-style annotations, which often fail to reveal the
service’s intent. We have defined FUs through a number of
examples as combinations of operation configurations and
compositions, and have shown how they can be expressed

20http://www.myexperiment.org

using OWL DL. Finally, we have presented initial ideas on ex-
ploiting collections of service-based workflows for automating
the discovery of functional units.

Our approach is currently being implemented as part of the
Biocatalogue service registry.

ACKNOWLEDGEMENTS

We would like to thank all the members of the Biocatalogue team, and in
particular Jiten Bhagat in Manchester, and Eric Nzuobontane at the EBI.

REFERENCES

[1] Khalid Belhajjame, Suzanne M. Embury, Norman W. Paton, Robert
Stevens, and Carole A. Goble. Automatic annotation of web services
based on workflow definitions. TWEB, 2(2), 2008.

[2] M. DiBernardo, R. Pottinger, and M. Wilkinson. Semi-automatic web
service composition for the life sciences using the biomoby semantic
web framework. Journal of Biomedical Informatics, 41(5):837–847,
2008.

[3] C. Feier, D. Roman, and A. Polleres. Towards intelligent web services:
The web service modeling ontology (WSMO). In Proc. of the Int’al
Conf on Intelligent Computing (ICIC), Hefei, China, August 2005.

[4] Adam Funk, Holger Lausen, Nathalie Steinmetz, and Kalina Bontcheva.
D3.3 - automatic semantic annotation research report - version 2.
Technical report, ServiceFinder Consortium, November 2009.

[5] Nada Hashmi, Sung Lee, and Michael P. Cummings. Abstracting work-
flows: unifying bioinformatics task conceptualization and specification
through semantic web services. In in: W3C Workshop on Semantic Web
for Life Sciences, 2004.

[6] A. Heß, E. Johnston, and N. Kushmerick. ASSAM: A tool for semi-
automatically annotating semantic web services. In Procs. ISWC, 2004.

[7] Phillip W Lord, Pinar Alper, Chris Wroe, and Carole A Goble. Feta:
A Light-Weight Architecture for User Oriented Semantic Service Dis-
covery. In Asunción Gómez-Pérez and Jérôme Euzenat, editors, Procs.
ESWC, volume 3532 of Lecture Notes in Computer Science, pages 17–
31. Springer, 2005.

[8] D. Martin, M. Paolucci, and S. McIlraith. Bringing semantics to web
services: The OWL-S approach. In First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC), San
Diego, CA, 2004.

[9] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma.
Meteor-s web service annotation framework. In Proceedings of the 13th
international conference on World Wide Web, WWW 2004, New York,
NY, USA, pages 553–562. ACM, 2004.

[10] D. Roman, J. de Bruijn, A. Mocan, H. Lausen, C. Bussler, and D. Fensel.
WWW: WSMO, WSML, and WSMX in a nutshell. In Proceedings of
the first Asian Semantic Web Conference (ASWC 2006), Beijing, China,
September 2006.

[11] S S Sahoo Sheth, A.P., Hunter, B., York, W.S., Christopher J O Baker
Cheung, and Kei-Hoi. SemBOWSER - Semantic Biological Web Services
Registry. Springer, 2007.

[12] M. Senger, P. Rice, A. Bleasby, and M. Uludag. Soaplab: Open source
web services framework for bioinformatics programs. In Procs. of the
10th Annual Bioinformatics Open Source Conference, 2009.

[13] Amit P. Sheth, Karthik Gomadam, and Jon Lathem. Sa-rest: Seman-
tically interoperable and easier-to-use services and mashups. IEEE
Internet Computing, 11(6):91–94, 2007.

[14] Tomas Vitvar, Jacek Kopeck, Jana Viskova, and Dieter Fensel. WSMO-
lite annotations for web services. In Proceedings of 5th European
Semantic Web Conference (ESWC), 2008.

[15] K Wolstencroft, P Alper, D Hull, C Wroe, P W Lord, R D Stevens, and
C A Goble. The myGrid ontology: bioinformatics service discovery.
International Journal of Bioinformatics Resesearch and Applications,
3:303–325, 2007.

