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Abstract

Crohn’s disease (CD), a form of inflammatory bowel disease, has a higher prevalence in 

Ashkenazi Jewish than in non-Jewish European populations. To define the role of non-

synonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, 

followed by array-based genotyping and association analysis in 2,066 CD cases and 3,633 healthy 

controls. We detected association signals in the LRRK2 gene that conferred CD risk (N2081D 

variant, P=9.5×10−10) or protection (N551K variant, tagging R1398H-associated haplotype, 

P=3.3×10−8). These variants affected CD age of onset, disease location, LRRK2 activity, and 

autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in 

CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with 

Parkinson’s disease (PD), and healthy controls revealed extensive pleiotropy, with similar genetic 

effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 
N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the 

major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant 

is associated with increased kinase activity, whereas neither N551K nor R1398H on the protective 

haplotype altered kinase activity. R1398H, but not N551K, increased GTPase activity, thereby 

deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined 
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insight into disease mechanisms and may have major implications for the treatment of these two 

seemingly unrelated diseases.

INTRODUCTION

The inflammatory bowel diseases (IBD) are comprised of two major subtypes, Crohn’s 

disease (CD) and ulcerative colitis (UC), which are distinguished by the distribution of 

chronic inflammatory changes. In UC, the inflammation is relatively superficial and is 

confined to the colon. CD most commonly affects the terminal ileum (last part of the small 

intestine) and colon, and is frequently associated with deep, transmural inflammation, often 

resulting in obstruction and abscess formation requiring resectional surgery.

Approved medical therapies for moderate to severe IBD are the same for CD and UC, and 

include monoclonal antibodies against the pro-inflammatory TNF cytokine and, more 

recently, antibodies against the α4β7 integrin, which blocks leukocyte trafficking to the 

intestine. However, present therapies provide prolonged deep remission in only a minority of 

IBD patients. Consequently, there is a substantial unmet need for more effective medical 

therapies, especially for CD patients. Genome-wide association studies (GWAS) have 

identified over 200 loci associated with IBD (1, 2), providing many new potential 

therapeutic targets. The large majority of these loci are common to CD and UC, implicating 

numerous pathways, notably the pro-inflammatory interleukin (IL)-23 pathway. In 

particular, R381Q within the interleukin 23 receptor (IL23R) is a loss-of-function allele that 

confers protection against developing IBD (3). Importantly, monoclonal antibodies blocking 

the IL-23 pathway have demonstrated efficacy in IBD, as well as a favorable safety profile 

(4). CD-predominant loci include nucleotide-binding oligomerization domain-containing 

protein 2 NOD2 and a number of autophagy genes (e.g. ATG16L1, IRGM). NOD2 is an 

intracellular receptor for bacterial peptidoglycan and is expressed in a wide variety of cells 

including plasma cells, innate immune leukocytes (e.g. monocytes, macrophages, dendritic 

cells) and Paneth cells, which are located at the base of the small intestinal (but not typically 

colonic) crypts and produce potent antimicrobial peptides. Loss-of-function NOD2 risk 

alleles are associated with inflammation in the ileum rather than colon and an earlier age of 

onset with an earlier need for resectional surgery. Among the autophagy-associated signals 

are the ATG16L1 T300A allele that results in ATG16L1 degradation through caspase-3 

activation (5) and multiple polymorphisms in the 5q33.1 region that cause tissue-specific 

variation in immunity-related GTPase family M protein IRGM expression (6, 7).

However, a fundamental limitation of common variant-predominant GWAS is the imprecise 

definition of genes, specific alleles and mechanisms driving most association signals 

identified thus far, with the large majority of independent GWAS signals driven by common 

variants of modest statistical and functional effects. Furthermore, common variation in 

composite is predicted to contribute only a modest fraction of expected heritability for many 

diseases. For these reasons, major sequencing efforts to identify rare variants of potentially 

higher statistical and functional effects are of importance for refining the pathways 

associated with disease pathogenesis and designing new therapies.
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We hypothesized that uncommon CD susceptibility alleles with higher effects (i.e. odds 

ratios), which had eluded analysis in common variant-predominant GWAS, play an 

important role in genetic predisposition to CD and can elucidate new insights into CD 

pathogenesis. In this study, we sought to identify the strongest functionally relevant 

associations and to characterize their biological implications. Given that a major 

epidemiological feature of IBD is its several-fold higher prevalence in Ashkenazi Jewish 

cohorts (8, 9) compared to non-Jewish Europeans, we performed exome sequencing of 

Ashkenazi Jewish CD cases followed by custom array-based genotyping in a large case-

control cohort. We identified independent coding CD risk and protective alleles in LRRK2, a 

large multifunctional gene that confers the greatest genetic effects reported thus far in 

Parkinson’s disease (PD), a neurodegenerative movement disorder affecting the basal 

ganglia and characterized by resting tremor, bradykinesia, rigidity and postural instability 

(10). The presence of shared alleles in CD and PD provides refined insight into disease 

mechanisms and may have major implications for the treatment of these two seemingly 

unrelated diseases.

RESULTS

Exome sequencing and HumanExome chip study design

We first performed exome sequencing of 50 Ashkenazi Jewish individuals with CD, 

randomly selected from high quality DNA samples and confirmed using prior chip data (11) 

to have 100% Ashkenazi Jewish ancestry, in order to optimize cataloguing of new variants 

(Fig. S1, Table S1). From these results, we selected 4,277 putatively high-yield new 

mutations, adding these to the HumanExome beadchip (Fig. S2, Table S2). We next 

performed discovery-phase genotyping and association analyses in individuals with full 

genetic Ashkenazi Jewish ancestry (11) (Fig. S3, Table S3).

Top coding-region associations in CD

In the discovery-phase cohort of 1,477 unrelated CD cases and 2,614 independent healthy 

controls, non-synonymous variants at three loci on chromosomes 1, 12, and 16 demonstrated 

associations that reached a chip-wide significance (Table 1). Importantly, in addition to the 

previously reported NOD2 and IL23R alleles, non-synonymous variants, N2081D in 

LRRK2 and S6N in SLC2A13, in strong linkage disequilibrium (LD) with each other 

(r2=0.91), were identified to be associated with CD risk (minor allele frequency in CD 

[MAFCD]=8.1%, odds ratio [OR]=1.73, P=2.56×10−9 and MAFCD=8.1%, OR=1.73, 

P=2.68×10−9, respectively). The LRRK2 N551K variant was also associated with CD 

protection (MAFCD=6.6%, OR=0.65, P=7.06×10−7; Table 1, Fig. 1A, Fig. S4). We then 

evaluated the evidence for CD association in an independent Ashkenazi Jewish cohort of 589 

CD and 1019 controls (Table S3). This replicated the association signals at LRRK2 N2081D 

(MAFCD=7.4%, OR=1.34, P=4.40×10−2), at SLC2A13 S6N (MAFCD=7.7%, OR=1.46, 

P=9.58×10−3), and at LRRK2 N551K (MAFCD=7.0%, OR=0.72, P=1.27×10−2). Meta-

analysis revealed genome-wide significant CD risk at LRRK2 N2081D (P=9.51×10−10) and 

at SLC2A13 S6N (P=1.39×10−10), and protection at LRRK2 N551K (P=3.28×10−8). A list 

of all coding variants with discovery-phase association P-values<2×10−5 is provided in 

Table S4. Notably, R1398H (MAFCD=6.6%, OR=0.71, P=7.33×10−5) and K1423K 
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(MAFCD=5.9%, OR=0.66, P=4.4×10−6) in the LRRK2 gene, which previously have been 

reported to combine with N551K to form a protective haplotype in PD (12–15), were found 

to show weaker associations in CD (Table S4).

Prior studies have implicated distinct common alleles in the LRRK2 region as being 

associated with CD (1, 16, 17). To further elucidate the genetic structure of the LRRK2 
signal, we conducted a conditional analysis using the discovery cohort, which demonstrated 

that this broad association peak was entirely dependent on the coding mutation at N2081D 

in LRRK2 (Fig. 1B); SLC2A13 S6N, as well as the association signal from the previously 

reported GWAS hits, including non-synonymous variant rs3761863 (M2397T) (16, 18), 

were substantially attenuated. Conditioning on N2081D genotypes verified the independence 

of the protective association signal at LRRK2 N551K linked to lower CD risk (OR=0.67, 

P=1.4×10−6; Fig. 1B). Conditioning on N551K or R1398H genotypes from the protective 

haplotype as a covariate had minimal effect on the association signal. Interestingly, in 

phased haplotype association analysis (Table S5), the 2081D risk variant occurred 

completely on the background of the protein-destabilizing allele M2397(18) (MAFCD=45%; 

pairwise D’=1.0, r2=0.09), whereas the 551K protective variant co-resided with the 

stabilizing 2397T(18) allele (pairwise D’=0.94, r2=0.06). Conditioning on both N551K and 

N2081D together effectively eliminated the association signal at M2397T (conditioned 

P=0.015; unconditioned P=5.9×10−7).

The multi-functional kinase, LRRK2, has attracted considerable attention given that variants 

in this gene have been recognized as major risk factors for PD (19). Notably, the G2019S 

mutation in LRRK2, the best known genetic cause of familial and sporadic PD worldwide 

and located in the same kinase domain as N2081D, showed suggestive, but not genome-wide 

significant, association with CD (unconditioned OR=1.9, P=4.8×10−3) and no LD with 

N2081D (r2=0.0) in the Ashkenazi Jewish cohort.

Further replication and validation of the shared CD and PD risk allele within the LRRK2 
locus

To replicate our findings in the non-Jewish cohorts and to explore the pleiotropic effect of 

LRRK2 variation on CD and PD risk, we expanded our analysis to include a total of 8,314 

independent Ashkenazi Jewish and 16,401 independent non-Jewish participants comprising 

6,538 CD cases, 5,570 PD cases, and 12,607 healthy controls genotyped in previous studies 

(Table S3). After performing imputation and quality control measures, we conducted 

association testing on the set of LRRK2 variants in these datasets (see Supplementary 

Material and Methods). As in the discovery cohort, in both Ashkenazi Jewish and non-

Jewish validation cohorts, we observed a multi-marker CD-associated signal within the 

LRRK2 gene (Table S6) that was fully conditioned on N2081D (Fig. S5A-B). Also, 

conditioning on N551K or R1398H as a covariate had minimal effect on the broad 

association peak. Importantly, in the non-Jewish dataset, association results showed similar 

marginal effects for N2081D (ORAJ=1.7 [1.4-2.0] vs. ORNJ=1.6 [1.3-2.0]) and N551K 

(ORAJ=0.67 [0.57-0.79] vs. ORNJ=0.89 [0.79-1.0]) or R1398H (ORAJ=0.71 [0.60-0.84] vs. 

ORNJ=0.88 [0.78-0.99]) but with substantially lower MAF’s, especially for N2081D 

(MAFAJ_CD=8.0% vs. MAFNJ_CD=2.9%; Table 2). Notably, G2019S did not have 
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nominally significant CD association (P = 0.12), likely due to subtle stochastic fluctuations 

in allele frequencies during imputation.

To examine the genetic link between CD and PD, we then assessed PD association with 

LRRK2 N2081D and N551K/R1398H in Ashkenazi Jewish and non-Jewish cohorts, 

observing association signals for all polymorphisms (Table 2). Specifically, the OR estimates 

of the protective variants, 551K and R1398H, were similar between CD and PD with slight 

differences between Ashkenazi Jewish and non-Jewish cohorts (N551K: ORAJ_CD=0.67 

[0.57–0.79] and ORAJ_PD=0. 77 [0.67-0.90]; ORNJ_CD=0.89 [0.79-1.0] and ORNJ_PD=0.87 

[0.77-1.0], and R1398H: ORAJ_CD=0.71 [0.60–0.84] and ORAJ_PD=0.84 [0.72-0.98]; 

ORNJ_CD=0.88 [0.78-0.99] and ORNJ_PD=0.88 [0.77-1.0]). However, in both populations, 

the risk allele, N2081D, showed higher ORs in association with CD (ORAJ_CD=1.7 [1.4–

2.0], ORNJ_CD=1.6 [1.3–2.0]) than with PD (ORAJ_PD=1.1 [1.0–1.4], ORNJ_PD=1.3 [CI 1.0–

1.6]). Conditioning on N2081D or N551K demonstrated no difference, with G2019S 

remaining the dominant PD signal (Fig. S5C-D).

To determine the degree of pleiotropy in the LRRK2 locus, we selected variants at least 

nominally (P < 0.05) associated with both CD and PD and assessed their direction and 

magnitude of effect across diseases. Following LD pruning (i.e. removal of correlated 

mutations with pairwise r2>0.8, thus ensuring statistical independence among the remaining 

mutations), we detected a consistent pattern of correlated effect sizes, with 23 of 26 

independent variants (88%) exhibiting effects in the same direction for both diseases in the 

Ashkenazi Jewish dataset (binomial P=5.2×10−6) and, similarly, 25 of 29 variants (86%) in 

the non-Jewish dataset (P=7.6×10−6; Fig. 2). Taken together, our findings suggest extended 

pleiotropy between CD and PD throughout the LRRK2 locus.

Network analysis of IBD patient tissues further implicates LRRK2 in CD

Given strong LD within the LRRK2 locus containing several plausible candidate genes, 

including SLC2A13 and MUC19 (Table S6), we conducted network analysis to explore 

which of these genes participate in biological pathways involved in CD pathogenesis. We 

constructed an IBD Bayesian network using previously described methodology (20), from 

gene expression data for 8,382 genes. The expression data were collected in 203 intestinal 

biopsies that included ileum, ascending colon, descending colon and transverse colon, and 

inflamed and non-inflamed sigmoid and rectum, all collected at baseline from 54 anti-TNFα 
resistant CD patients enrolled in the Ustekinumab (anti-IL12/IL23) clinical trial (21, 22). 

Among the full set of genes, we defined a specific subset, located within IBD-associated loci 

previously defined in an Immunochip-based large-scale genetic analysis (1) with the goal of 

projecting these genes onto the intestinal network and identifying co-expressed genes that 

act together. We then excluded genes previously associated with PD (23), including LRRK2, 

as well as genes within 1 Megabase (Mb) of LRRK2 to see whether either LRRK2 or other 

genes would be “recovered” by the network as being co-expressed with the IBD-associated 

genes. We found that the largest connected sub-network of genes, which represents a set of 

co-expressed IBD-associated genes, contained LRRK2, but no other genes in the genomic 

neighborhood of LRRK2 (Fig. 3), thus implicating LRRK2 in particular in IBD 

pathogenesis. Notably, of the 622 genes in this sub-network, there were 102 (16.4%) IBD-
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associated genes, a 2.5-fold enrichment compared to the full intestinal network 

(hypergeometric P=7.6×10−8). Importantly, LRRK2 was closely connected to GPR65, a 

proton-sensing G-protein coupled receptor associated with IBD and altered lysosomal 

function (24) and to HLA-DPA1, an α-subunit of the major histocompatibility complex 

protein/peptide-antigen receptor and a graft-versus-host disease antigen complex linked to 

both IBD(25) and PD (26).

Effect of LRRK2 mutations on protein kinase and GTPase activity

Prior studies in PD suggest a central role for increased LRRK2 kinase activity in disease risk 

resulting from gain-of-function mutations in the LRRK2 kinase domain. Given that both 

PD-risk G2019S and CD-risk N2081D are located in the kinase domain (Fig. 4A), we 

investigated the effect of CD-associated LRRK2 mutations on kinase activity. Specifically, 

we quantified phosphorylation of a newly identified LRRK2 substrate, Rab10 (27), by 

wildtype LRRK2 protein and mutant LRRK2 proteins bearing G2019S, R1398H, N551K, 

N551K+R1398H or N2081D mutations that were expressed and purified from HEK293T 

cells (Fig. 4B). We demonstrated a ~30% increase in phosphorylated Rab10 (pRab10) in the 

presence of the LRRK2 N2081D mutation compared to wildtype LRRK2 (Fig. 4B) and also 

confirmed a previous report that the G2019S mutation increased pRab10 (27). In contrast, no 

change was observed in pRab10 in the R1398H, N551K, or N551K+R1398H carrier cells. 

Roc, a Ras/GTPase domain in complex proteins, is also a common site of PD-linked LRRK2 
mutations, which presumably retain a higher fraction of LRRK2 in a GTP-bound ‘on’-state, 

thereby promoting increased kinase activity and subsequent neurodegeneration (28, 29). 

Importantly, the PD-protective R1398H variant, which is in strong LD with the CD-

protective N551K variant, is located in the Roc domain (Fig. 4A). To determine the effects 

of LRRK2 variants on LRRK2 GTPase activity, we compared the ratio of GDP/GTP-bound 

LRRK2 in vitro across the variants (Fig. 4C). We found that the GTPase activity was 

increased in both LRRK2 R1398H and N551K+R1398H-transfected HEK293T cells, but 

not in G2019S, N2081D, or N551K mutants (Fig. 4C).

Role of LRRK2 mutations in cytoskeletal and autophagic function in macrophages from 
CD patients

To further investigate the properties of the LRRK2 mutations (Fig. 4A), we characterized 

human monocyte-derived M1 macrophages collected from CD patients who carried LRRK2 
N2081D (n=4), N551K+R1398H (all samples selected for their 551K carrier status also 

carried 1398H; n=5) or neither mutation (n=4) in response to cellular serum-nutrient 

starvation (Fig. 5). No differences were detected in total LRRK2 expression by mutation 

status. As LRRK2 has been reported to influence acetylation of α-tubulin, thus regulating 

cellular protein trafficking via the microtubule cytoskeleton, we determined the effect of the 

LRRK2 mutations on α-tubulin protein acetylation (Fig. 5A). Lower acetylation of α-

tubulin was detected in macrophages from N2081D carriers under normal and PBS-stressed 

conditions, suggesting impaired resting acetylation activity and a lack of response to cellular 

stress. In contrast, the highest basal acetylation of α-tubulin was detected in macrophages of 

non-carriers and carriers of the protective 551K+1398H mutations, which proportionally 

decreased following cellular stress induced by nutrient starvation. As α-tubulin acetylation 

is associated with autophagy (30), one of the major pathophysiological processes involved in 
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CD (and in PD) development, we next investigated the effect of the mutations on autophagy 

markers, LC3-II, an autophagosome-bound form of the microtubule-associated protein 1 

light chain 3β (LC3B), and sequestosome-SQSTM1/p62 (p62), a ubiquitin-associated 

protein facilitating cargo recognition. Following nutrient starvation, we observed a smaller 

reduction in p62 expression in N2081D macrophages compared to N551K+R1398H 

macrophages, whereas all cells displayed a similar LC3-II ratio (stress/control) regardless of 

LRRK2 genotype (Fig. 5A). Despite little change in LC3-II, which is sometimes insensitive 

to autophagy alterations, a low response of p62 expression to stress suggested an impairment 

of cargo clearance. Finally, using a lysosome permeable fluorescent pH indicator 

(lysosensor), we compared lysosomal acidity, a key factor in autophagy, in response to 

stress, between the LRRK2 N2081D and N551K mutant macrophages (Fig. 5B). We found 

that the relative change in mean fluorescence intensity following starvation, although 

varying among individuals, was decreased (alkaline) in risk N2081D carriers and increased 

(acidic) in carriers of the protective 551K+R1398H variant (Fig. 5B). These data suggest 

that N2081D and N551K+R1398H mutations in CD patient macrophages have opposing 

effects on LRRK2 protein function that, in turn, can alter the autophagy-lysosome response 

to cellular stress.

Additive effects and phenotypic impact of LRRK2 variants

In contrast to the dominant effect of the G2019S mutation in PD risk, we observed an 

additive effect of N2081D mutations on CD risk, as testing for dominant and recessive 

disease models did not show any increase in association statistical significance (Table S4). 

To assess the strength of the combined effect across the LRRK2 variants, we calculated 

additive burden scores (defined as the log sum of the number of risk-conferring alleles 

carried by each individual, weighted by the CD odds ratio, which is highly correlated with 

PD odds ratio as shown in Fig. 2) based upon their genotypes. The additive effects of the 

LRRK2 risk alleles strongly correlated with both CD and PD risk (Fig. S6), indicating an 

overall similar genetic architecture throughout the LRRK2 locus underlying both diseases. 

There was no evidence of interaction effects between any of the nominally associated 

variants.

Moreover, because of a recent study implicating essential roles for both NOD2 and LRRK2 
in proper lysosomal sorting in Paneth cells (31), a group of secretory cells in the ileum with 

a vital role in maintaining the function of the epithelial barrier, we next examined the effect 

of LRRK2 N2081D risk alleles on CD disease location. Whereas 80.5% of CD patients 

homozygous for the wildtype LRRK2 allele had ileal involvement, heterozygous and 

homozygous carriers of the N2018D variant demonstrated ileal involvement in 86.1% and 

90.9% of individuals, respectively (P=0.01, chi-square test, Table 3). Also, carrying the 

N2081D allele was significantly associated with a younger age of onset (26.5 years for non-

carriers, 24.6 years for heterozygous carriers, and 20.8 years for homozygous carriers; 

P=0.002, linear regression). Neither LRRK2 N551K nor R1398H showed any meaningful 

correlation with age of onset or ileal involvement in CD (Table 3).
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DISCUSSION

In this study, we performed exome sequencing followed by array-based exome chip 

genotyping in several independent cohorts of Ashkenazi Jewish CD cases and controls. 

Among protein-coding variants, in addition to the well-established NOD2 and IL23R 
associations, we observed genome-wide significant associations for chromosome 12q12 S6N 

in SLC2A13 and N2081D in LRRK2 (P<5×10−8), in high LD with each other (r2=0.91), and 

an independent protective CD-association signal at LRRK2 N551K. All previous GWAS 

association signals in or near LRRK2, including the common coding variant, M2397T (16), 

reported in one study to lower post-transcriptional LRRK2 protein (18), were significantly 

attenuated after conditioning on N2081D. Given the high LD between S6N in SLC2A13 and 

N2081D in LRRK2, we applied co-expression approaches to define the likely contributing 

gene. In our Bayesian network analysis of IBD intestinal tissue, we observed a highly 

connected subnetwork with LRRK2, but with no other genes within the chromosome 12q12 

region including SLC2A13, demonstrating similar connectivity. SLC2A13 (solute carrier 

family 2 member 13) is a glucose transporter that is not expressed in the gut or the immune 

system and has not been previously linked to IBD, further suggesting that the observed 

12q12 signal is driven by the LRRK2 gene. Intriguingly, LRRK2 was tightly linked with 

GPR65, where the IBD-associated risk allele, I231L, is associated with impaired lysosomal 

function (24) and HLA-DPA1, with variants in this locus linked to both IBD (25) and PD 

(26).

Notably, both LRRK2 N2081D and N551K variants were also associated with PD in both 

Ashkenazi Jewish and non-Jewish cohorts (Table 2). Whereas previous reports have 

documented that LRRK2 N2081D confers PD risk, and the N551K-R1398H-K1423K 

haplotype confers protection (12–15), we now demonstrate that these specific non-

synonymous variants in LRRK2 genetically link CD to PD. Importantly, despite the same 

direction of the effect, the effect size for the risk variant N2081D was substantially higher 

for CD compared to PD (Table 2). Of interest, G2019S, the maximally-associated risk allele 

in PD (32, 33) occurring in the same domain as N2081D (Fig. 4A), although not in LD with 

it, showed suggestive association with CD in the Ashkenazi Jewish discovery cohort only. 

Further association analysis of independent common variants in >24,500 PD and CD cases 

and controls suggested additional extensive genetic pleiotropy between CD and PD within 

the extended LRRK2 locus with a consistent pattern of correlated effect sizes (Fig. 2) in both 

Ashkenazi Jewish and non-Jewish datasets. Intriguingly, a recent independent report has 

suggested that PD is associated with an increased risk of IBD (34). Taken together, these 

results point toward potential shared genetic and epidemiological links between these two 

diseases and can help to identify a subgroup of patients with CD who are at a higher risk for 

developing PD.

Numerous functional roles for LRRK2 have been reported, including vesicular trafficking 

and endocytosis, protein synthesis, immune response regulation, inflammation, and 

cytoskeleton homoeostasis, among others (35). In addition to their association with PD and 

CD risk, variations in the LRRK2 locus have been also independently linked to excessive 

inflammatory responses in patients with leprosy (36) and risk of particular types of cancer 

(37). In the gastrointestinal tract of CD patients, LRRK2 expression is restricted to lamina 
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propria macrophages, dendritic cells and B lymphocytes and is induced by interferon-γ, 

which is consistent with its role in IBD (38). A recent study has found high expression of 

LRRK2 in Paneth cells in the ileum demonstrating that both NOD2 and LRRK2 are required 

for proper lysosomal sorting within Paneth cells (31). Our correlations of N2081D in 

LRRK2 to an earlier age of CD onset and an ileal location mirror previously reported NOD2 
risk allele phenotypic correlations. Specifically, we showed that carriers of two copies of the 

risk allele N2081D had almost a 6-year earlier age of onset compared to non-carriers and 

predominantly ileal disease involvement, which may be consistent with the recent report of 

LRRK2’s effects in Paneth cells (39) that are exclusively located in the small intestine. 

These findings are of clinical importance as a large recent phenotype-genotype analysis of 

all IBD-associated loci identified only a handful of mutations, including in NOD2, that had 

considerable effects on age of onset and disease location in CD; in that study, the LRRK2 
N2081D variant was not specifically tested (40). Defining altered Paneth cell function 

stratified according to various LRRK2 and NOD2 genotype combinations should be a focus 

of future studies.

The majority of PD-causing mutations fall within the kinase and RocCOR domains, 

resulting in increased kinase activity or GTP-binding, leading to neurodegeneration. Our 

findings showed that both kinase domain disease-associated mutations, G2019S (PD) and 

N2081D (CD) increased the phosphorylation of the LRRK2 substrate Rab10. Previous 

studies have reported that the G2019S mutation increases phosphorylation of several RAB-

family members leading to an abnormal cytosol-membrane Rab protein distribution, which 

could result in the disruption of autophagy (27). Consistent with this report, our studies in 

human monocyte-derived macrophages from CD patients carrying the N2081D mutation 

demonstrated faulty stress responses directly related to autophagy, including impaired 

autophagic cargo clearance, lysosomal acidification as well as defective tubulin acetylation, 

defects also found in PD models (41).

Moreover, we also showed the link between the protective Roc domain R1398H mutation 

and an increase in GTPase activity (42). Importantly, although our statistical analysis 

prioritized the N551K mutation as significantly associated with a reduced risk of CD, in our 

biochemical analysis, N551K alone did not yield any detectable effect. Based on a high LD 

between N551K and R1398H mutations and the fact that all N551K human carriers that 

were analyzed also carried R1398H, we tested the combined effect of N551K+R1398H on 

GTPase activity and concluded that the actual physiological protective effect is driven by 

R1398H and not N551K.Notably, human macrophages from N551K+R1398H carriers also 

demonstrated an enhanced autophagy response to cellular stress.

However, we speculate that the precise nature of the lysosomal alterations likely differs 

between these two diseases. Autosomal recessive mutations in the GBA (glucosylceramidase 

beta) gene, which cause Gaucher’s disease and are highly associated with PD (with most 

cases involving dominant transmission) also are prevalent in Ashkenazi Jewish populations. 

In our study, we did not find GBA mutations to be associated with CD. This would suggest 

that PD and CD pathophysiologies differ in the cell-specific properties of the lysosomes in 

neurons or glia versus inflammatory or Paneth cells, respectively, or with respect to distinct 

hydrolytic targets, namely glycolipids versus bacterial peptidoglycans, respectively. 
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Nevertheless, naturally occurring protective alleles, such as the R1398H variant in LRRK2, 

are of particular importance as they define a desired functional effect for therapeutic 

development. Just as the loss-of-function, protective R381Q variant in IL23R would predict 

that blocking the IL-23 pathway would be safe and effective, our present findings suggest 

that targeting LRRK2-mediated signaling may be beneficial in the treatment of both CD and 

PD.

Among the limitations to our study is the fact that our CD cohorts were not explicitly 

screened for PD and vice versa, potentially allowing for the inclusion of individuals with 

both diseases in one disease category (either CD or PD). However, both CD and PD are 

relatively rare in the general population (~0.2% and ~1%, respectively) and misclassification 

of such patients would be expected to have minimal impact on any analyses. Also, we 

studied the Ashkenazi Jewish population given its higher CD prevalence, but this focus 

limited our cohort size and thus the power to identify new, rarer contributing alleles. Because 

the exome-sequencing phase of our study involved only 50 individuals, there are certainly 

many rare Ashkenazi Jewish - specific variants that were not tested in the association phases, 

and some of these likely play a role in CD pathogenesis. Finally, our Bayesian network 

analysis, while offering a method to examine gene function in an unbiased manner apart 

from disease association, did so indirectly and with only gene-expression data from whole 

tissue used to construct our network.

Our study strongly implicates the contribution of LRRK2 in CD risk as shown through 

multiple complementary approaches, including genome-wide screening, Bayesian network 

analysis, genotype-phenotype correlations, and functional studies. The LRRK2 N2081 risk 

allele and the N551K/R1398H protective alleles, as well as numerous other variants within 

the LRRK2 locus, revealed pleiotropy between CD and PD risk, providing a potential 

biological basis for clinical co-occurrence. Our findings suggest that LRRK2 may be a 

useful target for developing drugs to treat CD.

MATERIALS AND METHODS

Study design

We first performed exome sequencing of 50 Ashkenazi Jewish individuals with CD (44 

independent individuals and 3 full-sibling pairs) having sufficient power to detect new 

variants with MAF>0.015 in order to catalog variation in the Ashkenazi Jewish population 

that may confer risk for CD (43). Because little genetic variation in Ashkenazi Jewish 

datasets was available from prior public genome sequencing, we sought to extend the 

coverage of available commercial genotyping platforms by adding new variants detected in 

our exome sequencinganalyses. In particular, we favored polymorphic sites that were less 

likely to be tagged in a previous well-powered genome-wide association study of CD in the 

Ashkenazi Jewish population. From these results, we selected 4,277 putatively high-yield 

new mutations that were added to the base content of the Illumina HumanExome 1.0 array to 

create a semi-custom genotyping platform. With this weperformed discovery-phase 

genotyping and association analyses in 1,477 CD cases and 2,614 controls with full genetic 

Ashkenazi Jewish ancestry (11), providing sufficient power to detect associations with 

modest effect sizes. The top association signals were then replicated in an independent 
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cohort of 589 CD cases and 1,019 controls, recruited throughout North America, Europe, 

and Israel. Disease diagnosis was confirmed using standard criteria as described elsewhere 

and full Ashkenazi Jewish ancestry was validated using principal components analysis (11, 

44). Our second stage genetic association analysis included a total of 8,619 independent 

Ashkenazi Jewish and 16,401 independent non-Jewish participants comprising CD cases, 

PD cases, and healthy controls, genotyped in previous studies (45, 46). PD diagnoses were 

supported by standard UK Brain Bank criteria (47), with a modification to allow the 

inclusion of cases that had a family history of PD. We performed imputation of genotypes 

across diseases and within populations in order to allow direct comparison of genetic 

association at each site between CD and PD. We next conducted experimental validation 

studies for LRRK2 N2081D and N551K/R1398H mutations using HEK293 cell lines and 

whole blood from human subjects enrolled in our prior studies, who consented to be 

contacted for future research, and who were recalled based on their LRRK2 genotype status. 

Four N551K+R1398 carriers and five N2081D carriers were matched to five non-carriers, all 

with CD, for age, sex and disease severity. All experiments were performed in at least 3 

biological replicates.

Discovery and replication of new variants associated with CD

We performed chi square-based association testing on all variants genotyped by the Exome 

chip. We tabulated all non-synonymous variants with P-values suggestive of CD association 

(P<2×10−5), a threshold we estimated using Bonferroni correction with the approximate 

number of polymorphic variants genotyped using our platform. This enabled strong and 

widespread correlations among exomic variants (i.e. “chip-wide significance”). We collected 

genotypes at these markers in independent case and control cohorts with full Ashkenazi 

Jewish ancestry. These replication data were combined with those generated by Exome chip 

genotyping for a meta-analysis using the METAL program with default parameters (49); 

coding variation with genome-wide significant P-values (P<5×10−8) are presented as 

positive association signals (Table 1).

Imputation-based comparative analysis of CD and PD

Additional non-Jewish CD and PD and Ashkenazi Jewish PD datasets were added to the 

Ashkenazi Jewish CD data (imputation cohorts, Table S3), and reference-free imputation 

using MACH was performed in order to facilitate direct comparisons across groups at 

specific variants (50). Both unconditioned and conditional analyses were conducted using 

logistic regression on pooled empiric (directly genotyped) and probabilistic (imputed) 

genotypes.

Network analysis

We constructed an adult IBD Bayesian network, using previously described methodology 

(20), from gene expression data generated on 203 intestinal biopsies that included ileum, 

ascending colon, descending colon and transverse colon, and inflamed and non-inflamed 

sigmoid and rectum, all collected at baseline from 54 anti-TNFα resistant CD patients 

enrolled in the Ustekinumab (anti-IL12/IL23) clinical trial (21) with the goal of projecting 

these genes onto the intestinal network and identifying co-expressed genes that act together. 

This type of probabilistic causal network structure has previously been demonstrated to 
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represent biologically functional pathways across a broad range of diseases including 

obesity and diabetes (20, 51–53), asthma and COPD (54, 55), and Alzheimer’s disease (56). 

We next excluded genes previously associated with PD (23), including LRRK2, as well as 

genes within 1 Mb of LRRK2 to see whether either LRRK2 or other genes could be 

“recovered” by the network as being co-expressed with the IBD-associated genes. We then 

identified the largest connected sub-graph from the set of IBD-associated genes projected 

onto the network. To focus on pathways potentially relevant to CD pathogenesis, we 

removed from our analysis all genes more than two edge lengths away from any of these 

IBD-associated genes.

RAB10 In Vitro Kinase Assay

LRRK2 was incubated with Rab10 or inhibitor for 30 min incubation on ice in 30uL kinase 

buffer (20mM Tris pH 7.5, 1mM DTT, 15mM MnCl 2, 20mM β-glycerophosphate). 

Reactions were initiated by adding 50μM cold ATP. After 30 minutes at 37°C, reactions 

were stopped by addition of Laemmli buffer and boiling at 95°C for 10 minutes. Samples 

were resolved on 4-12% SDS-PAGE pre-cast gels (Invitrogen, Madison, WI, USA). Samples 

were then subjected to Western blot, using anti-Rab 10 (Cell Signaling, #4262) and anti-

pT73 Rab10 (University of Dundee, UK). Licor imaging was used to detect phospho- and 

total Rab10 on the same membrane and Image Studio Lite was used for quantification.

GTP Hydrolysis Assay

GTPase activity of LRRK2 was measured in 30uL GTPase buffer (20mM Tris pH 7.5, 

150mM NaCl, 1mM DTT, 5mM MgCl2, 1mM EDTA) at 30°C for 90 minutes, where the 

reaction rate is still in a linear phase as previously established, allowing for quantification by 

densitometry (29). Reactions were initiated with the addition of 50μM cold GTP and 

[α-32P]GTP (3000Ci/mmol; PerkinElmer Life Sciences, Waltham, MA). Reactions were 

terminated by adding 0.5M EDTA. 2uL of the reaction mixture were dotted onto Thin-Layer 

Chromatography (TLC) plates (EMD Millipore, Darmstadt, Germany) and GDP and GTP 

were separated by TLC using 0.5M KH2PO4 pH 3.5 for 60 minutes. The TLC plate was 

dried for 15 minutes and radioactive signal was captured using a phosphor-screen (GE 

Lifesciences, Pittsburgh, PA, USA) and a Typhoon scanner. ImageQuant densitometry was 

used to quantify the phosphor-signal.

Autophagy studies in human samples

M1-macrophages from CD patients were derived from whole peripheral blood monocytes 

according to the manufacturer’s instructions (Promocell, Heidelberg, Germany). Monocytes 

were polarized to mature M1-macrophages in the DXF M1-macrophage generation medium 

(M1-medium, resting condition, Promocell) for 12 days and then incubated in PBS and M1 

medium for 45 minutes. Cells were then lysed and 10 micrograms of total protein were 

loaded onto 4-12% Bis-Tris Plus precast SDS-polyacrylamide gels, transferred onto a PVDF 

membrane and probed with primary rabbit anti-LRRK2 antibody (ab133474, abcam), mouse 

anti-acetylated alpha-tubulin (T7451, Sigma-Aldrich, St. Louis, MO), rabbit anti-alpha 

tubulin (ab4074, abcam), mouse anti-SQSTM1 (sc-28359, Santa Cruz Biotechnology), and 

rabbit anti-LC3B (NB100-2220, Novus Biologicals). The corresponding HRP-conjugated 

secondary antibody was applied for detection. Total alpha-tubulin was used as a loading 
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control for normalization and protein densitometry was performed using ImageJ software. 

LRRK2 degradation was assessed as the ratio of degraded LRRK2 to total LRRK2 (full 

length + degraded) protein. Alpha-tubulin acetylation was assessed as the ratio of acetylated 

to total alpha-tubulin.

Next, M1 macrophages (1×10ˆ5 cells per experiment), in M1-medium and PBS, were pulsed 

with lysosensor green DND-189 (L-7535, Life Technologies) for 45 minutes (58). 

Antibodies for cell surface markers were added and cells incubated for 30 minutes at 4°C. 

After staining, the cells were washed and analyzed on a CANTOII (BD) multi-parameter 

flow cytometer and data were analyzed using FlowJo software (Tree Star). A fluorescence 

minus one (FMO) was used for the FITC lysosensor control samples. The fluorescent ratio 

was calculated between PBS and M1-medium and compared by the LRRK2 genotype.

Statistical analysis—Genotyping quality control was performed following guidelines 

produced by the Cohorts for Heart and Aging Research in Genome Epidemiology 

(CHARGE) consortium (48). This procedure included removing samples with low quality 

metrics (genotype call rate < 0.96 and/or p10GC < 0.4125) and removing markers with 

overall low probe intensity. A subset of SNPs was subsequently excluded according to 

clustering criteria based on fluorescent probe intensities and genotype frequencies, as well as 

visual inspection of markers with uncertain genotyping quality. All experimental values 

represent mean±standard error, and significance was calculated by ANOVA, mixed model 

ANOVA with a random effect of a biological sample or order-constrained ANOVA (57).
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Refer to Web version on PubMed Central for supplementary material.
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Single Sentence Summary

A coding Crohn’s disease (CD)-associated risk variant in the LRRK2 gene, N2081D and 

the coding CD-protective LRRK2 N551K variant, mediate similar effects in Crohn’s 

disease and Parkinson’s disease.
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Figure 1. Crohn’s disease association within the LRRK2 locus
(A)Single-point association without covariates, using Exome chip-genotyped variants only. 

(B)Association conditioned on N2081D genotypes, using Exome chip-genotyped variants 

only.

Hui et al. Page 24

Sci Transl Med. Author manuscript; available in PMC 2018 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Odds ratios for Crohn’s disease (CD) and Parkinson’s disease (PD) analysis
(A)Ashkenazi Jewish cohort odds ratios: 23 of 26 independent variants (88%) exhibited 

effects in the same direction for both diseases (binomial test P=5.2×10−6). (B)Non-Jewish 

cohort odds ratios: 25 of 29 variants (86%) exhibited effects in the same direction for both 

diseases (P=7.6×10−6). Red indicates LRRK2 variants for which both diseases have the 

same direction of effect; blue indicates opposite-direction effects. Only the variants with at 

least nominal significance (P<0.05) in both CD and PD analysis after linkage disequilibrium 

pruning are shown. Circle sizes correspond inversely to the significance (P-value) of CD 

association at each variant.
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Figure 3. A LRRK2-focused sub-network within the inflammatory bowel disease-associated gene 
network
The full intestinal Bayesian network was comprised of 8,382 genes, 551 (6.6%) of them 

were IBD-associated. From the intestinal network, the largest connected sub-network of 

genes that were within a path length of two IBD-associated genes was identified; this portion 

of the network that includes LRRK2 is shown.
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Figure 4. Effect of LRRK2 mutations on protein kinase activity and GTPase activity
(A)Schematic representation of LRRK2 domain structure and the respective locations of the 

N551K, R1398H, and N2081D amino acid substitutions relative to the previously reported 

PD-associated G2019S mutation and CD-associated M2397T mutation. (B) Representative 

immunoblot (left panel) and quantification (right panel) of Rab10 phosphorylation by wild-

type (WT) and LRRK2 variants in patient macrophages in vitro. (C) GTPase activity of WT 

and LRRK2 variants. Representative GTP hydrolysis assay (left) and the fraction of 

hydrolyzed GTP (GDP) over bound GTP (right panel). All values represent the mean of 3 

independent experiments ± standard error, and significance was calculated by ANOVA. 

*P≤0.05, **P≤0.01.ARM, armadillo; ANK, ankyrin repeat region; LRR, leucine-rich repeat; 

Roc, Ras in complex protein; COR, C terminal of Roc; MAPKKK, MAP kinase kinase 

kinase, WD40, WD40 protein-protein interaction domain.
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Figure 5. Effects of CD-associated LRRK2 mutations on human monocyte-derived macrophages
(A) Representative immunoblot showing expression of acetylated α-tubulin, p62, and LC3B 

(forms I-II) under control (culture medium, Med) or starvation (saline, PBS) conditions in 

macrophages from patients with different LRRK2 genotypes (left panel). Bar graphs 

depicting normalized protein expression ratio of acetylatedα-tubulin to total α-tubulin and 

the ratio during autophagy-inducing starvation. Ratio of protein expression during control 

(Med) and starvation (PBS) for p62 and LC3-II are also shown. Studies were performed in 

macrophages from non-carriers (n=4), and carriers of the N551K (n=4) or N2081D variants 

(n=2). Three independent technical replicates were performed for each sample.(B) 

Representative flow cytometry data presented as histograms illustrating lysosensor 

fluorescence after starvation (saline PBS, top), culture medium control (Med, middle) or 

isotype antibody control (bottom). Flow cytometry was performed on macrophages from 

non-carriers (n=4), and N551K (n=5) or N2081D variant carriers (n=4) (left panel). The 

mean Lysosensor fluorescence ratio for PBS versus culture medium control are shown. All 

values represent mean ± standard error, and significance was calculated by mixed model 

ANOVA with a random effect of a biological sample (panel A) or order-constrained ANOVA 

(57) (panel B). *P≤0.05, **P≤0.01.
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Table 3

Subphenotypic values by LRRK2 N2081D and R1398H genotype in pooled Ashkenazi Jewish and non-Jewish 

CD cohorts

N2081D genotype Age of CD onset (SD) [N] Disease location in ileum [N]

AA 26.5 (14.0) [5601] 80.5% [5311]

GA 24.6 (13.1) [482] 86.1% [453]

GG 20.8 (9.0) [12] 90.9% [11]

P=0.002 P=0.01

R1398H genotype

GG 26.3 (13.9) [5365] 81.1%[5095]

GA 26.4 (14.1) [701] 80.7% [652]

AA 27.2 (19.4) [29] 71.4% [28]

ns ns

SD, standard deviation. N, group sample size. ns, not significant. Similar results were found for the N551K variant (in strong linkage 

disequilibrium with R1398H, r2=0.81). P values were calculated using simple linear regression.
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