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Functional variation in allelic methylomes
underscores a strong genetic contribution
and reveals novel epigenetic alterations in
the human epigenome
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Abstract

Background: The functional impact of genetic variation has been extensively surveyed, revealing that genetic
changes correlated to phenotypes lie mostly in non-coding genomic regions. Studies have linked allele-specific
genetic changes to gene expression, DNA methylation, and histone marks but these investigations have only been
carried out in a limited set of samples.

Results: We describe a large-scale coordinated study of allelic and non-allelic effects on DNA methylation, histone
mark deposition, and gene expression, detecting the interrelations between epigenetic and functional features at
unprecedented resolution. We use information from whole genome and targeted bisulfite sequencing from 910
samples to perform genotype-dependent analyses of allele-specific methylation (ASM) and non-allelic methylation
(mQTL). In addition, we introduce a novel genotype-independent test to detect methylation imbalance between
chromosomes. Of the ~2.2 million CpGs tested for ASM, mQTL, and genotype-independent effects, we identify ~32%
as being genetically regulated (ASM or mQTL) and ~14% as being putatively epigenetically regulated. We also show
that epigenetically driven effects are strongly enriched in repressed regions and near transcription start sites, whereas
the genetically regulated CpGs are enriched in enhancers. Known imprinted regions are enriched among epigenetically
regulated loci, but we also observe several novel genomic regions (e.g., HOX genes) as being epigenetically regulated.
Finally, we use our ASM datasets for functional interpretation of disease-associated loci and show the advantage of
utilizing naïve T cells for understanding autoimmune diseases.

Conclusions: Our rich catalogue of haploid methylomes across multiple tissues will allow validation of epigenome
association studies and exploration of new biological models for allelic exclusion in the human genome.
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Background
The classic first step of the central dogma of molecular

biology, whereby information flows from the genome to

the transcriptome before continuing to the proteome

and the final phenotypic result, is nowadays bolstered

and modified by an ever-increasing pool of epigenetic

effects. Recent next-generation sequencing (NGS) ap-

proaches provide us with the opportunity to interrogate

not only the genome and the transcriptome but also epi-

genetic layers using comparable technologies. Moreover,

the use of single-base resolution sequencing allows us to

distinguish individual-level genetic differences, giving us

the additional ability to resolve differences between indi-

vidual chromosomes, allowing an allelically resolved

view of epigenetic modifications and gene expression

linked through personal genetics.

Understanding the functional non-coding variation

underlining complex disease has been one of the key

challenges in the past years. Genome-wide association

studies (GWAS) revealed that the majority of the

associated single nucleotide polymorphisms (SNPs) lie in

non-coding regulatory regions [1, 2]. To understand the

functional impact of these SNPs, various studies have

linked these to cellular traits, including gene expression

(expression quantitative trait loci (eQTLs) or allele-

specific expression (ASE) and splicing QTLs) [3–6], DNA

methylation (mQTLs) [7, 8], histone marks (hQTLs), or

allele specific chromatin immunoprecipitation (AS-ChIP))

[9, 10] effects, especially when cell types relevant to the

disease of interest are used. Many of these studies have

confirmed early efforts [1] showing that in fact a majority

of GWAS hits are enriched for these different QTLs.

Allele specific methylation (ASM), where one allele

exhibits a different methylation pattern compared to the

other, has been observed in imprinted genes as well as

in the female sex chromosomes through X-inactivation.

More recently, ASM was found to be prevalent across

the genome [11–13] with the majority of events being

cis-regulated [14]. Also, ASM appears to have a role in

the regulation of the ASE of autosomal non-imprinted

genes. A large portion of ASE events are enriched within

the vicinity of ASM events, where the hypomethylated

allele matches the highly expressed allele [15, 16]. Allele-

specific histone (ASH) has also been linked to allelically

biased gene expression. Allele-specific enhancers are

found close to genes showing ASE, with high concord-

ance of ASH signal to the corresponding ASE of the

same allele [9, 17]. Allele-specific independent events

(methylation, gene expression and histone) have been

shown to have genome-wide, autosomal associations for

complex traits, and particularly for complex disease

[18, 19]. To date, however, the parallel investigation

of ASM, ASH and ASE has only been carried out in

a limited set of samples.

To address this, we have performed the first compre-

hensive survey of the relationship between multiple

epigenetic layers and the functional transcriptome,

evaluating 1446 NGS (RNA-Seq, ChIP-Seq, whole gen-

ome bisulfite sequencing (WGBS), targeted bisulfite se-

quencing (methylC-capture sequencing; MCC-Seq)) data

sets from 910 samples (freshly isolated primary cells or

cryopreserved tissues) for allelic and non-allelic effects

of global DNA methylation. We linked ASM, ASE, and

ASH effects, and directly compared these to non-allelic

effects, which allowed us to establish allelic coordination

of the layers of epigenetics with the transcribed

phenotype.

Results

Allelic and non-allelic patterns of the global DNA

methylation landscape

In order to characterize allelic and non-allelic effects of

DNA methylation at CpGs genome-wide, we utilized

phased NGS data generated from 910 samples derived

from whole blood, adipose tissue, muscle, and purified

monocytes and T cells (Fig. 1a). Specifically, we used our

recently introduced MCC-Seq approach to enrich for

non-coding regulatory sequences [20, 21], thus permit-

ting high-resolution assessment of functional methy-

lomes (Table 1; Additional file 1).

We distinguish between genotype-dependent tests—allele-

specific methylation (ASM) and non-allelic methylation

quantitative trait locus (mQTL) analysis—and a novel

genotype-independent test (GIT) for the identification of

genetically and epigenetically regulated DNA methylation

loci. In our ASM pipeline, phased methylation mea-

surements at single CpG resolution are used together

with a global test to compare the methylation sequen-

cing reads for one allele against those for the other

allele. This allows us to leverage the power of all the

methylation reads across samples at the allelic level to

test for differences in methylation rate of the reads

between the two alleles. For the mQTL analysis, we as-

sess the cis-association (250-kb window surrounding

the CpG) between SNP genotypes and bi-allelic methy-

lation levels across individuals as previously described

[7, 8]. Finally, we use GIT to detect methylation imbal-

ance between chromosomes using phased methylation

measurements. This approach separates the allelic

methylation for each sample into reads for the high

methylated allele and the low methylated allele, then

considers all the reads for the high methylated alleles

together against all reads for the low methylated alleles.

GIT allows us to detect differences in methylation be-

tween the two alleles regardless of the genetics of the

underlying chromosome, permitting us for the first

time to interrogate phased methylation for putative epi-

genetically driven effects.
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We focused on the ~2.2 M CpGs that were tested

using ASM and mQTL analysis and GIT in any of our

datasets and identified a total of 1,043,828 CpGs that

were genetically or epigenetically regulated (Fig. 2). Of

these, 69.7% showed either significant (q < 0.1) ASM

(2.2%) or mQTL (60.1%) or both (7.5%), while the re-

mainder (30.3%) showed potentially significant (q < 0.01)

allelic imbalanced methylation (GIT) without genetic

basis, i.e., that was epigenetically driven (Fig. 2a;

Additional file 2). We noted 543,863 of the regulated

CpGs were significant in the GIT, which identified prox-

imal and distal genetic effects (ASM and mQTL) in

addition to putative epigenetic effects. In addition, 29%

of CpGs significant in the mQTL analysis were also sig-

nificant in the GIT, with 38% of GIT-significant CpGs

also being significant mQTLs. However, despite this sub-

stantial overlap, over half of the mQTLs do not have a

detectable allelic component. In contrast, 74% of the sig-

nificant ASM CpGs were also significant mQTLs. When

restricting to CpGs and SNPs tested by both mQTL and

ASM analyses, we note that the proportion of significant

allelic CpG–SNP pairs replicated in the mQTL analysis

remains comparable at 65%, but the significant GIT

pairs replicated in the ASM analysis is reduced to 17.8%

(Table 2); 31% of the GIT CpGs have a significant

genetic effect that is not from the SNP used for phasing,

potentially indicating more distal regulatory genetic

effects of DNA methylation.

Of the top 500 CpGs (by corrected GIT q value)

deemed to be epigenetically controlled (ASM and mQTL

q ≥ 0.1), 291 (58.2%) CpGs formed clusters of three or

more CpGs within 2 kb. In total, these formed 48 clus-

ters across the genome—23 (47.9%) occurring at known

or presumed imprinted loci, six (12.5%) in the PCDH

gene cluster (reported to be subject to random monoallelic

regulation [22, 23]), and five (13.5%) at potentially novel

imprinted/random monoallelic loci (CTDP1, DIAPH3,

GLS2, ITGB1, and ZNF714). CpG clusters near known

imprinted loci were 124-fold enriched compared to ran-

dom expectation (GREAT analysis [24], p = 1.79 × 10−20).

Fig. 1 Samples having multiple layer of epigenetics profiles were used in this project. DNA methylation profiles were assessed for all samples
using either whole genome bisulfite sequencing (WGBS; green) or targeted bisulfite sequencing (MCC-Seq; red). Listed in this figure are the number of

samples used for analyses focusing on: a methylation sequencing alone (Methyl-Seq), b methylation with matched RNA-Seq from the same
sample, or c methylation sequencing with matched ChIP-Seq (using six different histone marks) and matched RNA-Seq from the same sample

Table 1 Summary of targeted bisulfite-sequencing methylome capture panel design

Total CpGs Total regions Total size (bp)

Regulatory regions in immune cells (DNaseI hypersensitive/active chromatin) 1,837,099 315,043 48,810,975

Hypomethylated footprints from immune cells (MethylSeekR) 3,539,071 477,795 86,414,084

Illumina 450 K methylation assay included regions 1,934,175 328,405 40,853,151

Autoimmune SNPs from GWAS catalog 14,572 7273 678,026

Unique (non-overlapping content) in custom MCC-Seq capture panel 4,609,564 822,884 119,089,296

Cheung et al. Genome Biology  (2017) 18:50 Page 3 of 21



A

D

B

C

Fig. 2 (See legend on next page.)
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This demonstrates that sites identified by GIT specifically

covered a large fraction of genetic-independent allelic

methylation in the human genome. We further generated

a list of high-confidence non-genetic CpG clusters by

examining windows of at least 15 consecutive CpGs and

selecting windows where all CpGs did not show sig-

nificant genetic methylation (ASM and mQTL q ≥ 0.1) but

showed significant imbalanced allelic methylation

(GIT q < 1 × 10−5), and where the median imbalanced al-

lelic methylation was highly significant (loge(q) < −10)

(Additional file 3). As expected, these regions were

enriched for maternal and genetic imprinting (p = 1.65 ×

10−6 and p = 2.79 × 10−5 at 5.4- and 3.6-fold enrichment in

mouse phenotype terms) as well as developmental process

terms (17 of the 20 significant Gene Ontology (GO) bio-

logical process terms). In addition, the developmental pro-

cesses appear to be driven by developmental regulatory

transcription factors (transcription regulatory region

sequence-specific DNA binding p = 3.65 × 10−8, GO mo-

lecular process) with specific 5′ enrichment of imbalanced

methylation (enrichment of HOXL, NKL, and Cadherin

gene families via Interpro and HGNC gene family GREAT

analysis; Additional file 4).

Next, we explored epigenetic and genetic allelic methy-

lation variation in different genomic contexts, via overall

population methylation variation in T cells. Focusing on T

cells allows us to limit the effect of tissue heterogeneity on

overall methylation variation. We inferred genomic con-

texts using states generated from available histone mark

data using ChromHMM [25] (see “Methods”). Direct

(ASM) and indirect effects (mQTLs) account for a large

fraction of total methylation variation; with 28% of the top

57% most variable sites (methylation variance >10) ex-

plained by one of the allelic methylation variation classes

(Fig. 2b). In fact, at highest total methylation variance

(methylation variance >500), essentially all methylation

variation (98%) shows an allelic basis via significant ASM.

In the case of variable methylation in promoter states, the

mQTL approach models a large proportion of the variabil-

ity, which is expected given their overall hypomethylated

status and hence lower potential for detection of signifi-

cant methylation differences between alleles. On the other

hand, genetic ASM is greatly enriched among extremely

variable CpGs, which is likely due to direct strong local in-

fluence of sequence differences altering methylation effi-

ciency [26]. Non-genetic allelic variation accounts for 21%

of highly variable CpGs (methylation variance >10) with a

tendency to explain a higher fraction in repressed states,

suggesting that overall methylation level variation within

these chromatin states arises stochastically in one or the

other allele. These analyses reveal the dichotomous nature

of methylation variation with the relative enrichment of

sequence-dependent variation in canonical regulatory ele-

ments (Fig. 2c, d), and non-genetic variation enriched in

larger repressed or transcriptional annotations.

Cell-type specific DNA methylation events

We also identified cell-type specific CpG methylation

events by comparing genetic and epigenetic CpG methy-

lation that is significant in one or more of our three cell-

types—adipose tissue, naïve T cells, and whole blood

(Table 3, Fig. 3). We compared the CpGs that were

tested in all three cell types and identified the CpGs that

are uniquely significant in the cell type (tissue-specific),

significant in all the cell types, and significant in two of

the cell types. As expected, we see the largest number of

tissue-specific sites in whole blood, which is our tissue

set with the largest number of samples and therefore our

most deeply interrogated tissue type. For mQTLs, we

observe over half of the CpGs are tissue-specific, with

naïve T cells sharing over twice as many CpGs with

whole blood compared to adipose (Fig. 3a). For allele-

specific genetic effects, we see a slightly weaker tissue-

specific effect, especially in adipose tissue. However, over

a quarter of the ASM CpGs are still clearly identified as

tissue-specific (Fig. 3b). The putative epigenetic CpGs

(See figure on previous page.)
Fig. 2 a CpGs showing significant (q < 0.01) imbalanced methylation, significant (q < 0.1) allelic methylation, and significant (q < 0.1) non-allelic

methylation. Percentages indicate the proportion of the total significant CpGs found in any of these three sets (n = 962,557 of the 2,233,846 CpGs
tested in all three tests). b Counts of CpGs showing allele-specific (AS)-genetic (ASM q < 0.1), non-allele-specific (NAS)-genetic (ASM q ≥ 0.1 and

mQTL < 0.1), epigenetic (GIT q < 0.01, ASM and mQTL ≥ 0.1), and no (GIT q > 0.01, ASM and mQTL q ≥ 0.1) associations. Frequencies are plotted for
all the CpGs, and also for CpGs in each of the ChromHMM regions. TSS transcription start site. c Fold change of the rate of putatively
epigenetic (GIT q < 0.01, ASM and mQTL q ≥ 0.1) versus genetic (ASM or mQTL q < 0.1). ***Ratios with Fisher p < 0.0001; all other p values

were >0.05. d Distribution of allelic ratios at significant GIT and ASM CpGs, for H3K27ac and H3K4me1 in normal T cells

Table 2 Summary of CpG phasing SNP overlaps between ASM, GIT, and mQTL

Test A Significant (test A) Test B Significant (test B) Significant (test A and B) Total (test A and B)

ASM 108,515 mQTL 164,671 70,700 2,319,084

GIT 818,954 ASM 158,444 146,012 4,462,724

GIT 603,033 mQTL 164,671 102,663 2,319,084
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show slightly more reduction but we still see almost an

eighth of the identified CpGs acting in a tissue-specific

manner. Moreover, over 50,000 of the putative epigen-

etic CpGs were replicated in all three cell types, replicat-

ing the genotype-independent methylation difference

between alleles in multiple cell type contexts (Fig. 3c).

Next, we took advantage of our rich ASM effects

detected in multiple tissues (i.e., naïve T cells, whole

blood, and visceral adipose tissue) to assess the overlap

between disease-associated loci from eight different

traits: celiac disease [27], Crohn’s disease (CD) [28],

inflammatory bowel disease (IBD) [28], ulcerative colitis

(UC) [28], multiple sclerosis (MS) [29], rheumatoid arth-

ritis (RA) [30], type 1 diabetes (T1D) [31], and type 2

diabetes (T2D) [32] (Fig. 3d). We tested for enrichment

of marginally associated disease SNPs (p < 10-5) for sig-

nificant ASM (q < 0.1) adjusting for linkage disequilib-

rium (LD) structure (r2 < 0.1). We observed strong

enrichment (three- to sevenfold) of autoimmune associa-

tions for ASM in naïve T cells whereas only moderate

enrichment was observed for ASM in whole blood and

even weaker enrichment for adipose ASM. However,

there was a suggestive enrichment (1.6-fold) of T2D loci

for ASM in adipose tissue, which all together suggest

evidence for cell type specificity in functional interpret-

ation of disease loci.

Allelic and non-allelic patterns of non-CpG methylation

Recent studies have shown evidence of non-CpG (or CpH)

methylation in multiple human tissues [15]. However, we

recently showed that CpH methylation might partly be

driven by potentially “erroneous/nonspecific” methylation

from the methylation machinery at neighboring CpGs

[33]. To study this further as well as to characterize allelic

and non-allelic effects of CpH methylation events at the

genome-wide level we extended our analysis to include

CpH sites. We restricted this to sites interrogated in at

least 50 individuals from our deepest covered dataset,

adipose tissue. First, we confirmed our earlier results that

most CpH contexts show complete unmethylation in

adipose tissue [33]; therefore, we restricted the data set to

CpH sites where at least 25 individuals have methylation

greater than zero (N = 189,891 CpHs). Next, we filtered

this set further to exclude CpHs overlapping a SNP

(dbSNP146) at the dinucleotide position (e.g., to avoid an

adjacent SNP creating a CpG context) and then repeated

our ASM and GIT analyses on these CpHs (N = 49,172)

using the same strategy as applied to CpGs. We found that

1627 (3.3%) were significantly associated with an ASM

event (q < 0.1), with a slightly smaller proportion (2.96%)

showing potentially significant allelic imbalanced methyla-

tion (GIT, q < 0.01) without genetic basis. These epigeneti-

cally driven effects on CpH methylation are significantly

smaller (sixfold) than for CpG (Table 3) methylation and

may indicate less dynamic influences on CpH methylation

variation due to an overall static CpH pattern in differenti-

ated cells. Overall, true allelic methylation in a CpH

context remains an extremely rare event, as observed in

non-allelic CpH methylation variation studies [33].

Validation of NGS-based genotype-dependent tests

In an attempt to validate our NGS-based genotype-

dependent tests (i.e., ASM and mQTL), we performed a

number of analyses by comparing results from one of

the cohorts (naïve T cells) with estimates by an inde-

pendent non-NGS based approach—Illumina Infinium

HumanMethylation450 BeadChip (Illumina 450 k array).

To rule out underlying allelic biases in NGS approaches,

we validated our ASM results by comparing our aligned

sequencing results against matched methylation from

the Illumina 450 K array for the same samples (Fig. 1b)

[34]. First, we fetched all CpGs tested in the ASM pipe-

line that were also covered on the 450 K array and con-

firmed the usual pattern of predominantly hypo- and

hypermethylation (Additional file 5: Figure S1a), as well

as a strong correlation (R = 0.97) between the expected

methylation rates (unweighted average of the allelic methy-

lation) called from these sites by MCC-Seq and the rates

estimated by the Illumina 450 k array (Additional file 5:

Figure S1b). Second, by restricting to CpGs showing sig-

nificant ASM (q < 0.1), we noticed a marked shift from the

usual, expected hypo- and hypermethylation towards

hemi-methylation (Additional file 5: Figure S1a) using the

Illumina 450 K array. However, the expected (combined)

methylation called from allelic sequencing at these sites re-

mains highly correlated to the methylation measured via

the array (Additional file 5: Figure S1c; R = 0.92). Taken to-

gether, these results indicate the high accuracy of our

Table 3 Tissue-specific number of CpGs tested and number of significant CpGs for the mQTL, ASM, and GIT analyses

Cell type Naïve T cells Visceral adipose tissue Whole blood Common

All mQTLs tested 3,140,791 1,959,622 4,261,030 1,602,686

Significant mQTLs (q < 0.1) 501,606 170,155 769,853 555,423

All ASM tested 3,109,121 1,713,482 1,636,884 1,079,807

Significant ASM (q < 0.1) 60,559 38,827 81,126 7,682

All GIT tested 2,944,290 1,714,250 1,076,251 622,721

Significant GIT (q < 0.01) 278,516 301,517 486,201 88,599
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detected ASM events with no clear evidence of the pres-

ence of technical artifacts in calling allelic data using NGS

approaches. Next, we focused on our mQTLs identified by

MCC-Seq significant at q < 0.01 and q < 0.001 (Additional

file 5: Figure S1) and fetched overlapping SNPs and

CpG information from the Illumina 450 K array for

the same samples [34]. Here, we note that as much

as 53.8% (for q < 0.01) and 72.0% (for q < 0.001) of the

CpGs lead SNP mQTLs from the MCC-Seq replicate in

the Illumina 450 K data for the same SNP–CpG com-

bination (q < 0.1), confirming the robustness of mQTL

discovery by MCC-Seq.

Allelic analysis to link methylation and gene expression

Next, we contrasted correlations between methylation

and gene expression between the methylome and the

transcriptome in both allele-specific (AS) and non-allele-

specific (NAS) contexts as a proxy for functional out-

comes of methylome variation.

We limited the analysis to individuals where both gene

expression and DNA methylation were available, corre-

sponding to 41 paired RNA-Seq and WGBS samples,

and 122 paired RNA-Seq and MCC-Seq samples (Fig. 1c;

“Methods”; Additional files 1 and 6). In NAS tests, we

correlated total gene expression against total methyla-

tion and compared to AS tests, where allelic methylation

was correlated against allelic gene expression estimates.

Due to the larger number of samples and coverage avail-

able via MCC-Seq, we were able to test a larger number

of CpGs and thus perform more CpG–gene expression

tests, which allowed us to identify more weakly corre-

lated relationships between methylation and gene ex-

pression compared to WGBS.

While the total number of nominally significant (p < 0.05)

correlations detected was slightly lower in AS analyses

(27,324 versus 38,585 in MCC-Seq, 2927 versus 3274 in

WGBS), AS analyses detected a higher rate of strong cor-

relations when compared with NAS correlations for both

MCC-Seq (Fig. 4a) and WGBS (Fig. 4b) across our data-

sets (Kolmogorov–Smirnov p value < 2.2 × 10−16 for both

WGBS and MCC-Seq). We observed significant differ-

ences in the magnitude of the detected correlations from

AS analysis compared to NAS analysis, where the median

NAS significant correlation was R = 0.23 and R = 0.54

for WGBS and MCC-Seq, respectively, compared to the

median AS significant correlations of R = 0.58 and R =

0.83, respectively (chi-squared p value <2.2 × 10−16 at |R|

= 0.5 in both cases). At all quantiles, the AS curve domi-

nates the NAS curve, showing higher correlation values

(Fig. 4c, d). We also assessed the overall concordance be-

tween AS and NAS methylation–expression correlations

(Fig. 4e, f ) and observed, across approaches, that both

analyses have the same direction of effect for significant

associations (R = 0.25, p = 0.0005 and R = 0.47, p < 2. 2 ×

10−16 for WGBS and MCC-Seq, respectively). These ef-

fects were again pronounced in MCC-Seq comparisons,

reflecting the larger number of relationships evaluated

and the wider range of significant correlation values that

could be compared.

Allelic effects on genomic features

We then sought to study the patterns of coordinated

methylation, looking for enrichment of ASM regions in

the context of genomic states. We observed that ASM re-

gions (three or more ASM CpGs) occurred with higher

frequency than expected in enhancer states (WGBS 2.39-

fold, MCC-Seq 1.26-fold; Fisher p < 2. 2 × 10−16) when

compared with all CpGs (Fig. 5a). States associated with

transcription were depleted for ASM regions (WGBS

4.34-fold, MCC-Seq 2.63-fold; p < 2. 2 × 10−16) compared

with all CpGs. These findings support the use of targeted

interrogation of methylomes by MCC-Seq as it success-

fully diverts sequencing from functionally less active re-

gions to regions with functional epigenetic activity. In fact,

by contrasting the two methods (WGBS versus MCC-Seq)

for methylome profiling, we noted that many of the evalu-

ated CpG–gene expression relationships are skewed to-

wards the silent state when using the WGBS method

(40%), whereas MCC-Seq reduces this fraction to 15%

(Fig. 5b). On the other hand, MCC-Seq interrogates

more correlations at enhancer states—from 9% in

WGBS to 34%—and transcription start site (TSS)

states, where the fraction was increased from 2 to 20%.

Overall, less than 4% of correlations involved CpGs in

heterochromatin or repressed states for both MCC-Seq

and WGBS, making these types of regions particularly

difficult to characterize.

(See figure on previous page.)
Fig. 3 The proportion and number of sites of cell type-specific methylation in adipose tissue, naïve T cells (nTC), and whole blood (WB). The red

segments at the top show the proportion of CpGs that are specific to the specific tissue, and the purple segments at the bottom show the proportion of
CpGs that were found in all three cell types. The yellow, green and blue bars show CpGs that are shared between the specific cell type and adipose

tissue, naïve T cells, and whole blood, respectively. Shown is the breakdown in the three cell types for a significant mQTL CpGs (q < 0.1), b significant
ASM CpGs (q < 0.1), c putative epigenetic (filtered for ASM and mQTL q > 0.1) GIT CpGs (GIT q < 0.01). d Enrichment GWAS SNPs associated with
significant ASM in three different tissues—naïve T cells (TC, blue), whole blood (WB, green) and visceral adipose tissue (VAT, red). We show enrichment

for disease-associated loci from eight different traits (celiac disease, Crohn’s disease (CD), inflammatory bowel disease (IBD), ulcerative colitis (UC),
multiple sclerosis (MS), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D)) and SNPs associated with ASM
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Next, we examined the enrichment of significant AS

and NAS methylation (|R| > 0.4, p < 0.05) in each of

these genomic features (Fig. 5c–f ). The non-allelic ana-

lysis clearly shows enrichment of the significant negative

correlations (R < -0.4, p < 0.05) in the TSS state and en-

hancers (Fig. 5c–d) confirming our earlier findings [7].

Positive correlations (R > 0.4, p < 0.05) were enriched in

the repressed state. Similarly, when we look at significant

allelic correlations (|R| > 0.4, p < 0.05) at CpGs where we

have ASM (p < 0.05), we replicate the enrichment of

negative correlations in TSS states and the positive cor-

relations in repressed states (Fig. 5e, f ).

In an attempt to disentangle the genetic effects under-

lying functional methylation variation (i.e., correlated

with gene expression), we contrasted functional epigen-

etic methylation and functional genetic methylation. Of

the 3066 AS CpG–gene correlations (n = 414,954 tested),

where AS methylation was strongly correlated to AS

A B

C D

E F

Fig. 4 Density of allelic and non-allelic methylation versus gene expression correlation (R) and cumulative distribution of the absolute allelic and
non-allelic correlation (|R|) for each dataset. a Density plot of significant (p < 0.05) correlations detected among sites (NCpG = 241,687, Ntests =
441,931) tested for allelic and non-allelic correlation for CpGs measured via MCC-Seq. b Density plot of significant correlations for sites (NCpG= 40,315,

Ntests = 58,106) with methylation estimated by WGBS. c Empirical cumulative density function (ECDF) plot of the absolute correlation for sites evaluated
using MCC-Seq. d ECDF for sites evaluated by WGBS. e Smoothed color density scatter plot of sites comparing significant non-allelic (x-axis) and allelic
(y-axis) correlation (p < 0.05 for both correlation tests) for MCC-Seq. Red indicates high density, blue indicates low density, and white indicates no data.

f Smoothed color density scatter plot of significant non-allelic versus allelic correlations for WGBS
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gene expression (|R| > 0.4, p < 0.05), we observed that

65.7% are under genetic control (43.7% with significant

ASM and a further 22% with significant mQTLs) and

25.8% link to putative epigenetic regulation (significant GIT

but no significant ASM or mQTLs). The putatively

epigenetic AS CpGs are strongly enriched (5.7-fold

enrichment, p < 2.2 × 10−16) in repressed regions and in

transcribed regions (2.3-fold, p = 3.2 × 10−8) when com-

pared to the genetically regulated CpGs, which are enriched

near the TSS (3.1-fold, p = 2.97 × 10−16) and enhancers

(1.5-fold, p= 2.53 × 10−14) (Fig. 2c). In fact, 65.7% of corre-

lations have an identified strong genetic methylation basis

(in ASM or mQTLs), while a further 25.8% have imbal-

anced allelic methylation with no identified genetic basis.

A

B

C D

E F

Fig. 5 a Fold change difference in fraction of CpG regions (three or more consecutive significantly allelically differentially methylated CpGs) in
ChromHMM-assigned state versus the fraction of single significantly allelically differentially methylated CpGs in the same ChromHMM state. The

x-axis lists the eight ChromHMM states and each colored bar shows a different cell type/methylation interrogation technology. b Proportion of
correlations tested in each ChromHMM state with CpG methylation sequenced by WGBS and MCC-Seq. c Fold-enrichment of positively correlated
CpGs evaluated by MCC-Seq in each ChromHMM state. d Fold-enrichment of positive WGBS correlations. e Fold-enrichment of negatively correlated

MCC-Seq CpGs per state. f Fold-enrichment of negatively correlated WGBS CpGs per state
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Linking allelic histone deposition, DNA methylation, and

gene expression

Next we examined the effect of functional CpG methyla-

tion on histone marks, combining ASM and ASE with

chromatin modification data from ChIP-Seq using an

allele-specific histone (ASH) test to measure the allelic

chromatin modification overlapping functional CpGs

with allelic methylation (Fig. 1d, “Methods”).

When comparing genetic to putatively epigenetic

allelic methylation, we observe that genetic allelic

methylation (mQTL or ASM q < 0.1) is much more

strongly linked to a concordant difference in histone

mark deposition as measured by the ASH test using

ChIP-Seq data. We note that the higher methylation al-

lele at genetically regulated CpGs shows a lower rate of

H3K4me1 and H3K27ac deposition (p < 2.2 × 10−16;

Fig. 2d), whereas a substantially smaller difference in

methylation is observed at the putative epigenetically

regulated sites (GIT q < 0.01, mQTL and ASM q > 0.1).

We also found that the largest proportion of significant

interactions occurred when the high chromatin modifica-

tion rate via H3K27ac, H3K4me1, and H3K4me3 tracked

with high gene expression and were found on the low

methylation allele (Fig. 6a). This is consistent with the

roles of these chromatin modifications as activating and

enhancer marks and the methylation indicating repression

of transcription. Conversely, we observed for the more re-

pressive H3K27me3, H3K36me3, and H3K9me3 marks

that the high histone occupancy chromosome was the

same as the high methylation chromosome and was the

allele having lower gene expression. We again observed a

strong effect for the activating and enhancer marks in the

WGBS data, while the more repressive marks did not

show a strong, consistent pattern. Using the MCC-Seq

data we then compared the distribution amongst the dif-

ferent combinations of direction of effect, considering all

levels of differential methylation, expression, and histone,

and the cases where the differential effects were significant

(p < 0.05) for methylation, expression, and histone simul-

taneously (Fig. 6b–e). Here we found that while we tested

roughly the same proportion of allelic sites for all four

possible allelic combinations, the enrichment for the

canonical direction of effect is particularly strong. For

activating H3K27ac (Fig. 6b) and H3K4me1 (Fig. 6c), we

observed high methylation and low histone mark corre-

sponding to low expression as the strongest signal. For re-

pressive H3K36me3 (Fig. 6d) and H3K27me3 (Fig. 6e), we

see high methylation and high histone corresponding to

low expression as the strongest signal instead. We also

used the genotype-independent signal correlation and im-

balance (G-SCI) ASH test, and found that SNPs linked to

ASH are enriched for association to allelic differential

methylation, further strengthening the links between these

allelic effects (Fig. 6f).

Positional allelic methylation in enhancer regions

Finally, we focused on the enhancer signals in ChromHMM

states—specifically, regions where we detect correlation

between gene expression and H3K27ac or H3K4me1

peaks. We note that CpGs have overall high mean methy-

lation (>75%) in transcription and silent states, low mean

methylation (<25%) in the TSS state, and intermediate

methylation in genic enhancer and enhancer states (Fig. 7a;

Additional file 7). We also observed high methylation for

the Polycomb repressed state, detected only in H3K4me1,

and low methylation in the repressed state, only seen in

H3K27ac, highlighting the different locations of these

chromatin modifications. When we look at the methyla-

tion on the allele with high gene expression versus methy-

lation on the low gene expression allele, we see a strong,

consistent negative relationship between gene expression

and methylation for genic enhancer, enhancer, and espe-

cially TSS states, which is consistent with the role of

methylation marking the regulation of gene expression.

We note that many of the CpGs are located near the

enhancer state for both H3K27ac and H3K4me1 (Fig. 7b),

and both marks show most of the CpGs involved at

around 300–500 bp from the center of the ChromHMM

state bin. In the case of H3K27ac, there is also signifi-

cant presence in the TSS state, concentrated in the first

300 bp from the center of the ChromHMM state bin.

The CpGs in the genic enhancer state also showed a

concentration slightly away from the center of the bin

(100–400 bp) as well as further away from the center

(800–900 bp). The majority of the H3K4me1 CpGs fall

in the enhancer state, with some additional sites in genic

enhancer and TSS states. Interestingly, we see the major-

ity of the TSS state CpGs falling 400–500 bp away from

the center, rather than near the center of the bin as with

H3K27ac, indicating that regulatory element “edges”

may be most informative to monitor for function.

Finally, the genic enhancer CpGs are concentrated

slightly away from the center of the bin (100–400 bp) as

in H3K27ac, but without a second concentration further

away from the center. These results show that not only

can aggregated analyses detect enrichment of CpGs near

functional genomic elements by combining with chro-

matin modification data, but that we can see distinctive,

function-dependant positional patterns.

When looking at the positional effect of the GIT

methylation (Fig. 7c), we see for H3K4me1 an overall

negative ratio between the high and low expression

allele, except for a loss of allelic methylation located

600–900 bp away from the genic enhancer state centers

and 200–400 bp from the enhancer center. For H3K27ac,

we again see the canonical negative methylation ratio

between high and low gene expression alleles, except very

distinctly at 500–700 bp from the center of the TSS states

where we see a very strong spike in positive ratios.
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Discussion

We report a comprehensive integrative analysis from

multiple large-scale human epigenomic datasets, across

methylation, transcription, and chromatin modifications.

For the first time we used tests that integrate allelic

events across populations linked either to the reference

allele or purely to recurrent imbalanced methylation

states of chromosomes observable only in population

NGS data. We have not only generated the largest

catalogue of methylation changes in haploid human ge-

nomes, but by combining these three levels of genomic

data with allelic profiling, we reveal novel relationships

A

B C

D E

Fig. 6 a Proportion of sites showing differential allelic methylation, histone occupancy, and gene expression. All four combinations of high and

low methylation rate, histone occupancy rate, and gene expression are compared, described from the perspective of the high methylation allele,
and whether this allele is the one with high or low histone occupancy, and high or low gene expression (note that high methylation allele with
low histone occupancy also refers to the low methylation allele with high histone occupancy). For the histone marks b H3K27ac, c H3K4me1,

d H3K36me3, and e H3K27me3, we show the proportions of all the differential allelic methylation, histone occupancy, and gene expression
tested (blue), and proportions of the tested sites that passed significance p < 0.05 (red). f The percentage of allelic differentially modified histone

sites as identified by GSCI that have an ASM ratio at the SNP-associated CpG in the top 1% versus the percentage of histone sites not having an
allelic effect detected by GSCI but having an ASM ratio at the SNP-associated CpG in the top 1%
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Fig. 7 (See legend on next page.)
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between genetic and non-genetic allelic variation. Non-

genetic effects are seen in imprinted regions of the

human genome but are also strikingly enriched in classes

of developmental transcription factors. The non-genetic

variation appears to have less involvement in active

allelic chromatin states (28% of functional AS CpG–gene

correlations). Our CpG allelic variation catalogue can be

utilized to intersect with other population variation data-

sets to interrogate potential epigenetically variable (e.g.,

partial imprinting) regions in the genome. However, our

allelic methylation observations are based on terminally

differentiated cells and tissues, whereas these effects may

be rooted in epigenetic memory of allelic exclusion

events not active in the studied cells. The ~350,000

allelic events not driven by detectable genetic or known

imprinted events call for further studies in developmen-

tal cell lineages to further clarify their potential func-

tional roles.

We show that allelic CpG methylation and gene ex-

pression analysis allows for more sensitive detection of

functional epigenetic effects and has the ability to reveal

correlations not seen in non-allelic methylation to gene

expression analyses. As each allele can contribute a sep-

arate methylation/expression data pair, allelic analysis

has the advantage of potentially doubling the number of

data points usable for the correlation analysis. As well, it

is particularly interesting for disentangling relationships

at hemi-methylated sites, where intermediate levels of

gene expression and methylation may confound non-

allelic methylation and expression analysis, but resolving

the alleles separately shows different methylation rates

and gene expression rates. While non-allelic analysis of

MCC-seq data still results in more significant correlated

sites than non-allelic analysis, most of the additional

non-allelic correlations are far weaker—the bulk of the

non-allelic correlations have |R| < 0.4, whereas over half

the allelic correlations have |R| > 0.4. This trend is repli-

cated when we look in the WGBS dataset, where there

are distinctly far fewer significantly correlated sites and

the correlations are higher when passing significance

due to the smaller numbers of samples involved.

However, allelic analysis comes at the price of a

reduced read depth for the individual alleles, thereby

increasing the error rates in the allelic methylation and

expression rate estimation. We observe that the allelic

analysis of the lower coverage WGBS data shows fewer

significant highly correlated sites, highlighting the

impact of lower read depth coverage when profiling all

CpGs genome-wide. Conversely, when examining the

MCC-Seq data—where the read coverage is focused on a

much smaller subset of the genome and we have a larger

number of samples—we are able to identify a far greater

number of significant, highly correlated sites. Developing

deeper and larger WGBS datasets will be useful to

further investigate some of our observations, such as

primary concentration of epigenetic variation outside

canonical regulatory elements. Further meta-analyses,

incorporating additional eQTL/ASE, mQTL/ASM and

hQTL/AS-ChIP sequencing datasets, would allow us to

independently confirm the same relationships in similar

cells, determine whether the observed relationships are

maintained in more distantly related cell types, as well

as further differentiate cell type-specific patterns. Corre-

sponding sequencing datasets in other species would

allow us to investigate the evolutionary conservation of

these multi-level effects.

The large number of relationships detected uniquely

by allelic or non-allelic analysis alone indicates that these

analyses can identify fundamentally different relation-

ships between the epigenome and the transcriptome.

Non-allelic correlation between methylation and gene

expression focuses on global trends of methylation ex-

pression between cells affecting global gene expression

levels. Allelic correlation, however, normalizes the gene

expression across both alleles in a cell, and so the trend

is no longer across the total gene expression between

cells, but rather a normalized allelic imbalance of ex-

pression, as affected by allelic methylation. We see that

while allelic functional methylation analysis is highly

sensitive and reveals many non-canonical relationships

outside regulatory elements. On the other hand, the sub-

set of variation in enhancers/promoters coinciding with

allelic active histone deposition results in a very coherent

picture that shows the expected relationships between the

epigenetic layers of control and functional gene expres-

sion. These strong, consistent patterns indicate that com-

bined allelic analysis of multiple epigenetic layers allows

us to track interactions with direct functional effects.

We also see the canonical relationship between methy-

lation and gene expression in an allelic manner, with the

high gene expression allele being coincident with the

low methylation allele. However, we see a positional loss

of this canonical relationship (in H3K4me1) or even re-

versed to a positive relationship (in H3K27ac), a short

(See figure on previous page.)
Fig. 7 a The distribution of the mean methylation of CpGs by ChromHMM state, for CpGs in ChromHMM states where we see high correlation

between gene expression and H3K27ac (left) or H3K4me1 (right) histone peaks. Bar graphs show the log2 mean allelic ratio of the methylation on
the high gene expression allele versus the low gene expression allele (green; indicating p < 0.05) b Positional distribution of CpGs by distance

from the center of the ChromHMM state, for all the ChromHMM states having at least 100 CpGs c Summary of log2 mean allelic methylation
ratio of CpGs at each distance from the center of the ChromHMM state bin, for the high gene expression allele versus low gene expression allele
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distance from the center of the enhancer feature (Fig. 7c).

The loss of allelic methylation may delineate the bound-

ary of the enhancer region and the adjacent “marginal”

CpGs can actually serve as sensors of enhancer element

function, showing strongest correlation with expression

states. Interestingly, it appears that the promoters of

genes with expression coupled to H3K27ac deposition

have distinctly different positional methylation architec-

ture, with a larger density of CpGs clustered by the cen-

ter of the TSS region, whereas for H3K4me1 the CpGs

are grouped (Fig. 7b).

Conclusions
We combine allelic analysis across multiple epigenomic

and transcriptomic layers, revealing interactions between

the varied layers of the effects. Models that can simul-

taneously use the allelic and non-allelic data could allow

us to supplement the non-allelic analysis with allelic in-

formation when it is available, rather than analyzing this

information in a completely disjoint manner, and with-

out losing the relationships that allelic or non-allelic

analyses alone can discover. As it has been shown that

correlations link many layers of functional signals in an

allele-specific manner in more limited contexts (e.g.,

GM12878 cells [35]), further analyses could go beyond

coordinating three layers of effects and consider multiple

histone marks and transcription factor binding simultan-

eously with gene expression and methylation in an allelic

manner in a population context.

At present, we are using non-allelically resolved his-

tone mark datasets to train the ChromHMM model, and

we show different behavior of the epigenome and tran-

scriptome in different states. We could more tightly

integrate allelic data into the genomic state analysis by

adapting the allelic information and incorporate allele-

specific epigenomic information in the ChromHMM

inputs so that the states themselves take into account

allelic information, while integrating across multiple

epigenome and transcriptome layers, and see how this af-

fects the model of the genome that is generated. As well,

our case study demonstrates how the allelic relationships

between methylation and histone marks are altered in the

different forms of the disease, further emphasizing the fu-

ture utility of allelic resolution in disentangling the func-

tional outcome. Finally, more sequencing in distinct

tissues and cell types would allow us to confirm the pre-

liminary cell-specific methylation results we observe as

well as allow us to investigate the interaction of cell-

specific effects across the epigenetic layers.

In summary, we have generated the largest combined

human allele-specific methylation, chromatin modifica-

tion, and transcription dataset to date (Additional files 2,

3, 4, 6, and 7). We show allelic methylation enables dis-

covery of novel links to transcription, whereas total

methylation shows weaker correlations in layers of the

epigenome. We further demonstrate that harnessing the

power provided by allelic resolution across methylation,

transcription, and chromatin modification is key to

interpreting population variation in our epigenomes and

its alterations in disease.

Methods

Sample collections

We recruited 208 donors from the Cambridge NIHR

BioResource as a representative sample of healthy indi-

viduals from the general UK population. Whole blood

was used to purify “classic” naive CD4+ T cells (CD4 +

CD45RA+, average purity 93%) using a multi-step purifi-

cation strategy. Purified cell aliquots were pre-processed,

stored, and transported to processing institutes for

sequencing as previously described [34].

We obtained 114 visceral adipose tissue (VAT)

samples from the Quebec Heart and Lung Institute’s

(Quebec City, Quebec, Canada) Quebec Tissue Bank

collection of 1906 severely obese men (N = 597) and

women (N = 1309) that underwent biliopancreatic diver-

sion with duodenal switch [36] between June 2000 and

July 2012. The VAT samples were obtained as previously

described [37] and processed for methylation sequencing

as reported in Allum et al. [21] and below.

We obtained 599 whole blood samples from 358

individuals in the framework of the EGEA (https://egeanet.

vjf.inserm.fr/), a French longitudinal cohort study based on

an initial group of asthma cases and their first-degree

relatives and controls (first survey EGEA1). The protocol

and descriptive characteristics have been described

previously [38–42].

Blood samples from the Uppsala Bioresource, Uppsala,

Sweden were drawn from 28 normal healthy Swedish in-

dividuals and purified to extract T cells (CD14− CD4+)

and monocytes (CD14+). Nine skeletal muscle human

samples were also obtained. Sequencing data are avail-

able through the McGill Epigenomics Mapping Portal

(http://epigenomesportal.ca).

These samples and the sequencing datasets derived

from them are described globally in Fig. 1, with further

detail specifying the cell types and mean read depth

available for each dataset in Additional file 5: Figure S2

and Additional file 8: Table S1. At each step, we per-

formed tests on each dataset (all samples of a particular

cell type and methylation sequencing methodology

combination, matched with RNA-Seq and ChIP-Seq if

needed) and report the combined results of these tests.

Methylation sequencing

Targeted bisulfite sequencing (MCC-Seq) and whole

genome bisulfite sequencing was performed as previ-

ously described [21]. A whole-genome sequencing
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library is prepared and bisulfite converted, amplified and

a capture enriching for targeted bisulfite-converted DNA

fragments is carried out. The captured DNA is further

amplified and sequenced. More specifically, whole-

genome sequencing libraries were generated from 700 to

1000 ng of genomic DNA spiked with 0.1% (w/w)

unmethylated λ DNA (Promega) previously fragmented

to 300–400 bp peak sizes using the Covaris focused-

ultrasonicator E210. Fragment size was controlled on a

Bioanalyzer DNA 1000 Chip (Agilent) and the KAPA

High Throughput Library Preparation Kit (KAPA

Biosystems) was applied. End repair of the generated

dsDNA with 3′ or 5′ overhangs, adenylation of 3′ ends,

adaptor ligation, and clean-up steps were carried out as

per KAPA Biosystems’ recommendations. The cleaned-

up ligation product was then analyzed on a Bioanalyzer

High Sensitivity DNA Chip (Agilent) and quantified by

PicoGreen (Life Technologies). Samples were then bisul-

fite converted using the Epitect Fast DNA Bisulfite Kit

(Qiagen) according to the manufacturer’s protocol.

Bisulfite-converted DNA was quantified using OliGreen

(Life Technologies) and, based on quantity, amplified by

9–12 cycles of PCR using the Kapa Hifi Uracil + DNA

polymerase (KAPA Biosystems) according to the manu-

facturer’s protocol. The amplified libraries were purified

using Ampure Beads, validated on Bioanalyzer High

Sensitivity DNA Chips, and quantified by PicoGreen.

For targeted bisulfite sequencing, we used the MCC-Seq

protocol developed and optimized in collaboration with

Roche NimbleGen R&D. SeqCap Epi Enrichment System

protocol (Roche NimbleGen) was carried out for the

capture. The hybridization procedure of the amplified

bisulfite-converted library was performed as described by

the manufacturer using 1 μg of total input of library,

which was evenly divided by the libraries to be multi-

plexed, and incubated at 47 °C for 72 h. Washing and

recovering of the captured library, as well as PCR amplifi-

cation and final purification, were carried out as recom-

mended by the manufacturer. The quality, concentration,

and size distribution of the captured library were deter-

mined by Bioanalyzer High Sensitivity DNA Chips.

Sequencing of both the MCC-Seq libraries and the

WGBS libraries was performed on the Illumina HiSeq2000/

2500 system using 100-bp paired-end sequencing.

WGBS and MCC-Seq data processing

In-house generated methylome libraries were aligned

using BWA 0.6.1 [43] after converting all the reads in

bisulfite mode to the human hg19/GRCh37 genome

reference. Both reads in a pair were trimmed of any

low-quality sequence at their 3′ ends (with Phred

scale score ≥30). Post-process read mappings were made

as previously described [44], including clipping 3′ ends of

overlapping read pairs in both forward and reverse strand

mappings, filtering duplicate, low-mapping quality reads,

read pairs not mapped at the expected distance based on

the library insert size, as well as reads with more than 2%

mismatches. Methylation calls of individual CpGs were

extracted using Samtools in mpileup mode. CpGs overlap-

ping SNPs from dbSNPs (137) and CpGs located within

ENCODE DAC blacklisted regions or Duke excluded re-

gions [35] were discarded. CpGs with the number of total

reads less than 5× were also discarded.

Genotyping and phased genome

The T-cell, mono cell (in Temporal Change project), and

muscle tissue samples were genotyped using the Illumina

HumanOmni2.5-8 (Omni2.5 M) or HumanOmni5-4

(Omni5M) BeadChip according to protocols recom-

mended by Illumina. Genotypes of BluePrint samples were

obtained from whole genome sequencing [34]. Genotypes

of samples from other tissues which were not genotyped

using BeadChip were inferred directly from the WGBS

data using BisSNP [45]. Rare variants and singletons were

confirmed using targeted sequencing data of coding and

non-coding regulatory regions.

We used 1000 Genomes project data as a reference set

(release 1000G Phase I v3, updated 26 Aug 2012) for the

imputation of genotypes (either genotyped from Illumina

BeadChip or inferred from BisSNP). Untyped/un-inferred

markers were inferred using algorithms implemented in

IMPUTE2 [46].

mQTLs were computed using matrixQTL using

default parameters, considering only cis-effects within

250 kb and minor allele frequency of 0.05. P values were

corrected by false discovery rate (FDR) [47].

RNA-Seq

RNA-Seq was performed as described previously. RNA

was isolated using the miRNeasy Mini Kit (Qiagen)

according to the manufacturer’s protocol. We used as

input 500 ng RNA (RNA integrity number >7) for library

preparations using the Illumina TruSeq Stranded Total

RNA Sample preparation kit according to the manufac-

turer’s protocol. Final libraries were quality controlled

on a Bioanalyzer and underwent 100-bp paired-end se-

quencing on the Illumina HiSeq2000 system. Generated

raw reads were filtered for quality (phred33 ≥ 30) and

length (n ≥32), and adapter sequences were removed

using Trimmomatic v.0.32 [48]. Reads passing filters

were then aligned to the human reference (hg19) using

TopHat v.2.0.10 [49] and bowtie v.2.1.0 [50]. UCSC gene

counts for non-allelic analysis were obtained using

htseq-count v.0.6.1 [51].

ChIP-Seq

Sonication of nuclei was performed on a BioRuptor

UCD-300 for 90 cycles, 10 s on, 20 s off, centrifuged
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every 15 cycles, chilled in a 4 °C water cooler. Samples

were checked for sonication efficiency using the criteria of

150–500-bp by gel electrophoresis. The ChIP reaction was

performed on a Diagenode SX-8G IP-Star Compact using

Diagenode automated Ideal Kit reagents (C01010011).

Protein A beads (25 μL) were washed and then incubated

with 3–6 μg of antibody and two to four million cells of

sonicated cell lysate combined with protease inhibitors for

10 h, followed by a 20-minute wash cycle with provided

wash buffers. Reverse cross-linking took place on a heat

block at 65 °C for 4 h. ChIP samples were then treated

with 2 μl RNAse cocktail at 65 °C for 30 minutes followed

by 2 μL Proteinase K at 65 °C for 30 minutes. Samples

were then purified with a Qiagen MiniElute PCR purifica-

tion kit as per the manufacturers’ protocol. Library prepar-

ation was carried out using Kapa HTP Illumina library

preparation reagents. Briefly, 25 μl of ChIP sample was in-

cubated with 20 μl end repair mix at 20 °C for 30 minutes

followed by Ampure XP bead purification. A tailing, bead-

bound sample was incubated with 50 μL buffer enzyme

mix at 30 °C for 30 minutes, followed by PEG/NaCl purifi-

cation. Adapter ligation, further Ampure purification, and

library preparation were completed by 14 cycles of PCR

amplification. Size selection was performed using a Sage

Pippin prep system and set to collect 200–400-bp

fragments, targeting a 300-bp peak fragment size and final

libraries were purified with Qiagen GeneRead Size

Selection kit.

ChIP libraries were sequenced at McGill using Illu-

mina HiSeq 2000 with 100-bp single-ended reads. Gen-

erated raw reads were filtered for quality (phred33 ≥ 30)

and length (n ≥ 32), and adapter sequences were re-

moved using Trimmomatic v.0.22 [52]. Reads passing fil-

ters were then aligned to the human reference (hg19)

using BWA v.0.6.1. Peak calls were obtained using

MACS2 v.2.0.10.07132012 [4].

Allele-specific methylation pipelines

Imputed and phased genotypes were used to create two

allele-specific copies of the reference genome. Reads

were then mapped to these two reference genomes using

the sample pipeline as described above [44], except that

no mismatches were allowed during the alignment step

in order to ensure that reads coming from a specific al-

lele will map to the appropriate reference. An in-house

software takes the genotypes and their positions and

scans the alignment files to obtain the methylation states

of the CpGs surrounding the alleles. The width of the

area scanned spans 500 bp upstream and downstream of

a heterozygous SNP. For the cases where imputed

phased genomes are not available, we considered the

methylation status of CpGs from paired-end reads

containing the same heterozygous SNP (as inferred by

BisSNP). As a strand-specific WGBS protocol, reads

mapped from both strands were counted. When there is

a “C/T” heterozygous SNP neighboring a CpG, only

reads from the reverse strand were considered while for

a “G/A” heterozygous SNP, only reads from the forward

strand were considered. In order to appropriately esti-

mate methylation levels, a bare minimum number of five

reads per allele (from both strands) is required. We then

summed the reads across all individuals based on alleles’

genotyping to detected genetic ASM. After obtaining the

methylation states of individual CpGs per allele, the

differential methylation between the two alleles at CpGs

were then determined using a two-sided Fisher’s exact

test. CpGs with p < 0.05 were considered nominally

significant.

For each cell type, we performed a test of methylation

imbalance (GIT) by merging allele-specific methylation

reads across samples. At a CpG, we categorized one

allele per sample as the high methylation allele and the

other as the low methylation allele. We then considered

the total methylated and total unmethylated reads for

the high methylation alleles, and similarly for the low

methylation alleles. In this way, we obtained sample-

merged read counts of individual CpGs per allele. Differ-

ential methylation between high and low methylation

alleles at CpGs was then determined using a two-sided

Fisher’s exact test. CpGs showing p < 0.05 were consid-

ered nominally significant.

To determine significant ASM and mQTL sites, we

applied FDR [47] at q < 0.1. For GIT, we performed a one-

sided Fisher’s exact test, corrected by the total probability

of all possible contingency tables where methylation on

the high methylation allele is greater than the low methy-

lation allele. We then applied a more stringent FDR cutoff

of q < 0.01 to identify the significant GIT sites. Putative

epigenetically regulated CpGs are significant imbalanced

CpGs (corrected q < 0.01) having no significant genetic

methylation (ASM and mQTL q ≥ 0.1).

Allele-specific chromatin modifications

Reads from ChIP-seq data were trimmed for quality

(phred33 ≥ 30) and length (n ≥ 32) using Trimmomatic

v.0.22 [52]. The filtered reads were aligned to the hg19

reference genome using BWA v.0.61. We then binned

genomic regions with 100 bp-window to get the aligned

read counts and arbitrarily chose top 300 K of 100-bp

bins as the candidate peaks for different types of histone

markers, including H3K27ac, H3K27me3, H3K36me3,

H3K4me1, H3K4me3, and H3K9me3. When calculating

the allele-specific marker regions, for each heterozygous

SNP within the region we counted the number of reads

of different origin that overlapped with the SNPs. The

allele bias was then tested using a binomial test against

the null hypothesis that the ratio between these two

alleles is equal. SNPs with p < 0.05 were considered
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allele-specific. The allelic ratio for the high methylation

allele was computed as 0.5-fraction of ChIPSeq reads on

the high methylation allele compared to the total (high

and low allele) reads, and similarly for the low methyla-

tion allele using the fraction of ChIPSeq reads on the

low methylation allele.

Gene expression versus RNA expression correlations

Non-allelic methylation was measured as the percentage

of methylated CpG reads compared to the total methyl-

ated and unmethylated reads overlapping the CpG site.

Allelic methylation considers only reads with a heterozy-

gous SNP that could be resolved to one of the two

chromosomes:

MethylationalleleA ¼
unmethylatedReadsalleleA

unmethylatedReadsalleleA þmethylatedReadsalleleA

Non-allelic gene expression was measured as the

library size and quantile normalized, asinh transformed

read counts of aligned RNA reads:

NonAllelicExpression ¼ asinh quantileNormalised
GeneReads

TotalReads

� �� �

Allelic gene expression only considered reads resolved

to one of the two chromosomes. Gene expression for an

allele A was the number of reads aligning to allele A

divided by the total of reads aligning to allele A and

reads aligning to allele B.

AllelicExpressionalleleA ¼
readsalleleA

readsalleleA þ readsalleleB

Pearson correlation was used to evaluate relationships

between CpGs and genes with TSS within 50 kb of the

CpGs, for cases where at least three samples had match-

ing gene expression and methylation data.

ChromHMM genomic states

An eight-state ChromHMM [25] model trained using

default parameters on a panel of 352 T-cell, monocyte,

and muscle histone (H3K27ac, H3K27me3, H3K36me3,

H3K4me1, H3K4me3, and H3K9me3) ChIP-Seq datasets

was used to assign states to each CpG position. State

identities were assigned based on the ChromHMM

report (Additional file 9).

G-SCI test

We also performed allelic regulatory QTL analysis on

multiple histone marks using a recent published method

called the genotype-independent signal correlation and

imbalance (G-SCI) test [53]. It was originally designed

for detecting histone acetylation QTLs (haQTLs) from

deep, long-read ChIP-seq data without requiring geno-

typing or whole genome sequencing. It first called vari-

ants with base calling information directly from the

ChIP-seq sequence reads in peaks and then correlated

these variants with chromatin states to prioritize the

genetic variants. The G-SCI test itself only required vari-

ant base calling information and the peak height score

information; thus, it can also apply to detect the associ-

ation between any histone marker peak regions and

concerned variants within peak regions. We applied the

G-SCI test to all available histone mark ChIP-Seq data

with SNPs detected from imputed genotypes of each

corresponding individual. Peak heights of each region

were normalized by quantile-quantile normalization and

were finally log-transformed. We also filtered out SNPs

if the total number of non-reference reads across all

ChIP-Seq data was less than five or none of the ChIP-

seq datasets had three or more non-reference reads.

After obtaining the p value of each G-SCI test, the

Benjamini and Hochberg (BH) approach for FDR [54]

was used to correct for multiple testing and the adjusted

p value of 0.01 was chosen as the significant cutoff.

ASM versus ASH

We mapped heterozygous SNP-based histone marker

read counts from two alleles to CpGs by matching with

the same SNPs. For GIT, when the imputed phased gen-

ome was available, then ASH counts of SNPs 500 bp

away from the corresponding CpGs were added up.

Otherwise, when an imputed phased genome was not

available and for ASM, only the ASH counts of the same

SNPs were considered.

Genome feature association

Based on human genome hg19, annotation tables of

genomic features were downloaded from the UCSC

Genome Browser [55] on 10 September 2013. Overlap-

ping between any two regions were calculated using

bedtools [56].

Positional allelic methylation in enhancer regions

Focusing on the deposition of the enhancer histone marks

H3K27ac and H3K4me1, we linked to allelic gene expres-

sion, histone deposition, and methylation back to the gen-

omic states and looked at the positional pattern of allelic

methylation. We identified ChromHMM state regions

where we observed a correlation (|R| > 0.4, p < 0.05) be-

tween gene expression and the histone mark deposition in

nTC cells (100-bp windows from the center of H3K27ac

peaks, 500-bp windows for H3K4me1 peaks) overlapping

the state region, considering ChromHMM state regions

up to 10 kb in size. For each of these putative enhancer re-

gions, we then phased the allelic methylation for all CpGs

in the region based on the high gene expression and the

low gene expression allele—for genes with multiple tran-

scripts, we selected the transcript isoform with the highest

number of exonic reads, breaking ties with the largest
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overall gene reads. CpGs were grouped based on their ab-

solute distance from the center of the bin in 100-bp incre-

ments, calculating overall methylation on each allele for

each bin separately.

Disease GWAS enrichment of ASM event

We used GWAS variants from eight diseases (celiac dis-

ease [27], Crohn’s disease [28], inflammatory bowel dis-

ease [28], ulcerative colitis [28], multiple sclerosis [29],

rheumatoid arthritis [30], type 1 diabetes [31], and type 2

diabetes [32]) for which we retrieved publicly available

genome-wide summary statistics [34]. We tested genome-

wide enrichment for independent variants (LD r2 < 0.1)

nominally associated with disease (p value ≤10−5) among

significant ASM-SNPs (q < 0.1) or with a SNP in high LD

(r2 > 0.8). The background was defined as all independent

GWAS SNPs tested overlapping any SNPs’ ASM that was

tested. The significance of the enrichment was assessed

using Fisher’s exact test. LD information was calculated

for each SNP ±250 kb using phased data from whole gen-

ome sequencing of the whole blood samples.

Additional files

Additional file 1: Description of MCC-Seq capture panel. This file
contains: (1) summary of CpGs and genomic regions targeted by the
MCC-Seq capture panel design (.xlsx Excel spreadsheet format), and (2) a
list of the targeted regions (.bed text file). (ZIP 3465 kb)

Additional file 2: Summary of AS and NAS methylation tests on the
2.2 million CpGs tested across any of the datasets. This file contains a
file of tab-separated values (.txt text file) with the following columns:
(1) CpG chromosome, (2) CpG location, (3) corrected GIT p value,
(4) corrected mQTL p value, (5) corrected ASM p value, (6) ChromHMM
state. (ZIP 19804 kb)

Additional file 3: High-confidence non-genetic CpG regions. This file
contains a list of genomic regions (.bed text file) containing at least 15
consecutive CpGs and where all CpGs did not show significant genetic
methylation (ASM and mQTL q ≥ 0.1) but showed significant imbalanced
allelic methylation (GIT q < 1 × 10−5), and where the median imbalanced
allelic methylation was highly significant (loge(q) < −10). (ZIP 8 kb)

Additional file 4: GREAT analysis results of the high-confidence
non-genetic CpG regions. This file lists over-representation analysis results
from GREAT for GO biological process, Interpro, and HGNC Gene Families.
For the GO biological process analysis, child terms of the GO term
“developmental process” are highlighted in green, and child terms of the
GO term “metabolic process” are highlighted in yellow. For Interpro and
HGNC gene families, homeobox/homeodomain genes are highlighted
in green and cadherin/adhesion genes are highlighted in yellow.
(XLSX 17 kb)

Additional file 5: Figure S1. Validation using 450 k array. Figure S2.

Detailed description of samples per cell type. (PDF 440 kb)

Additional file 6: AS and NAS CpG methylation to RNA expression
correlations. This mini-website describes the file format and links to
individual correlation results for each cell type (.txt tab-separated text file).
(ZIP 18638 kb)

Additional file 7: Allelic methylation in enhancer peaks. In this file, we
report the ChromHMM bin and the allele-sepcific CpG methylation and
RNA read coverage at CpGs within H3K27ac and H3K4me1 ChIP-Seq
peaks. (XLSX 1899 kb)

Additional file 8: Table S1. This file details for each cell type mean fold
coverage (for CpG methylation sequencing) and total aligned reads
(for RNA-Seq and ChIP-Seq). (XLSX 10 kb)

Additional file 9: ChromHMM state report. This file is the report generated
after machine learning of the eight-state ChromHMM model. (PDF 261 kb)

Additional file 10: Source code. This file contains the code for
generating the ASM p values: Get_CpG.SNP.pairs.mergedSamples.
Profile.PhasedAlleles.pl (.pl perl code script), Get_ASMsite_FisherTesting.
PhasedAlleles.MergedReads.r (.R R statistics script); the code for
generating the GIT p values: Get_CpG.SNP.pairs.mergedSamples.
Profile.FlippedHL.pl (.pl perl code script), Get_ASMsite_FisherTesting.
FlippedHL.MergedReads.r (.R R statistics script); and the code for the GIT
q value statistic correction: GIT-qvalue.correction.R (.R R statistics code
script). (ZIP 8 kb)
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