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Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions
to cognitive impairment and dementia: mechanisms and consequences of cerebral
autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling
in aging. Am J Physiol Heart Circ Physiol 312: H1–H20, 2017. First published
October 28, 2016; doi:10.1152/ajpheart.00581.2016.—Increasing evidence from
epidemiological, clinical and experimental studies indicate that age-related cere-
bromicrovascular dysfunction and microcirculatory damage play critical roles in
the pathogenesis of many types of dementia in the elderly, including Alzheimer’s
disease. Understanding and targeting the age-related pathophysiological mecha-
nisms that underlie vascular contributions to cognitive impairment and dementia
(VCID) are expected to have a major role in preserving brain health in older
individuals. Maintenance of cerebral perfusion, protecting the microcirculation
from high pressure-induced damage and moment-to-moment adjustment of re-
gional oxygen and nutrient supply to changes in demand are prerequisites for the
prevention of cerebral ischemia and neuronal dysfunction. This overview discusses
age-related alterations in three main regulatory paradigms involved in the regula-
tion of cerebral blood flow (CBF): cerebral autoregulation/myogenic constriction,
endothelium-dependent vasomotor function, and neurovascular coupling responses
responsible for functional hyperemia. The pathophysiological consequences of
cerebral microvascular dysregulation in aging are explored, including blood-brain
barrier disruption, neuroinflammation, exacerbation of neurodegeneration, devel-
opment of cerebral microhemorrhages, microvascular rarefaction, and ischemic
neuronal dysfunction and damage. Due to the widespread attention that VCID has
captured in recent years, the evidence for the causal role of cerebral microvascular
dysregulation in cognitive decline is critically examined.
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MAINTENANCE OF ADEQUATE tissue perfusion through a dense
cerebromicrovascular network is vital for the preservation of
normal brain function (57, 119, 120, 260, 309). The total length
of capillaries in the human brain is ~600 km and virtually every
neuron is supplied by its own capillary. There is increasing
evidence that aging elicits multifaceted functional impairment
in the cerebral microcirculation, which plays a critical role in
brain aging and the pathogenesis of age-related cognitive
impairment (45, 54, 99, 123, 129, 166, 326). To recognize the

contribution of cerebromicrovascular mechanisms to cognitive
decline the phrase “vascular contributions to cognitive impair-
ment and dementia (VCID)” was coined (46, 97, 237). The
VCID concept implies that a spectrum of age-related vascular
pathologies (including stroke, microinfarcts, microhemor-
rhages, leukoaraiosis, and cerebral amyloid angiopathy) can
promote cognitive impairment in elderly patients. For the
purpose of this review, we focus on the role of age-related
dysregulation cerebral blood flow (CBF) in the development of
cognitive decline.

Regulation of CBF has to comply with unique requirements,
ensuring adequate delivery of nutrients and oxygen at all times,
avoiding both hypoperfusion and hyperperfusion of the brain
and enabling moment-to-moment adjustment of CBF. First, the
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brain has a very high metabolic demand for oxygen relative to
other organs. Second, neurons do not have sufficient energy
reserves. Third, metabolic demand rapidly changes with neu-
ronal activation. Fourth, in the closed cranium the space is
limited; thus regulation has to maintain normal blood flow and
volume and thus intracranial pressure. Fifth, penetration of
high pressure to the distal, vulnerable part of the cerebral
arterial tree and consequential microvascular damage has to be
prevented. To fulfill these requirements, regulation of CBF is
exceedingly complex with multiple overlapping regulatory
paradigms. There is increasing evidence that even mild impair-
ment of CBF regulation has significant consequences on cere-
bral function, including impairment of cognition in the elderly.
Furthermore, age-related alterations in homeostatic mecha-
nisms also render the aged brain more susceptible to the
damaging effects of the comorbid conditions (e.g., hyperten-
sion, obesity, neurodegenerative diseases) (50, 281, 287, 288).
In this review, the effect of aging on key local vasoregulatory
mechanisms acting in the cerebral circulation (myogenic auto-
regulation, endothelium-dependent pathways, and neurovascu-
lar coupling) is considered in terms of potential mechanisms
involved in cerebrovascular dysfunction and its pathophysio-
logical consequences.

Aging-Induced Changes in Autoregulation of CBF

Cellular mechanisms underlying autoregulation of CBF.
The integrated processes resulting in relatively constant CBF
and microvascular pressure in the face of changing central
arterial pressure are called autoregulation of CBF (153) (Fig.
1). Dynamic cerebral autoregulation refers to the ability to
compensate fast changes in perfusion pressure by adjusting
vascular resistance. Static cerebral autoregulation refers to
adjustments of vascular resistance in response to larger steady-
state changes in perfusion pressure. Dynamic and static cere-
bral autoregulations are not completely separate mechanistic
entities and act on a continuum. The net result is that in healthy
individuals CBF does not change in a linear manner with
changes in systemic blood pressure and vascular resistance is
readily adjusted to changes in perfusion pressure.

The myogenic response, which is intrinsic to the vascular
smooth muscle cells, is a key mechanism contributing to
autoregulation of CBF (26, 27, 72, 93, 101, 102, 173, 180, 281,
306) (Fig. 1). Accordingly, cerebral arterial vessels actively
dilate and constrict in response to decreases and increases in
blood pressure, respectively (5, 43, 83, 84, 170, 171, 192).
Importantly, in the cerebral circulation large proximal arteries
represent a significant part (up to 40%) of total cerebrovascular
resistance (73, 104, 147, 171, 258) and their myogenic re-
sponse is critical for preventing high pressure from reaching
the distal part of the cerebral circulation (236, 281). The
myogenic reactivity of serially connected cerebral arteries and
arterioles effectively protects the microcirculation against the
harmful effects of rapid changes in blood pressure, exemplified
by the maintenance of steady capillary perfusion pressure
during changes in arterial pressure. In addition, a pressure-
induced myogenic mechanism maintains intrinsic basal tone of
the arterial microvessels, thus enabling optimization of tissue
perfusion in the heterogeneous capillary network by neuro-
metabolic and neurovascular/gliovascular coupling mecha-
nisms.

Remarkable progress has been made in the past two decades
to elucidate the cellular and molecular mechanisms underlying
pressure-induced myogenic constriction of cerebral arterial
vessels (96, 142–144, 312). In the search for a soluble mediator
and a receptor-mediated signaling pathway previous studies
demonstrated that vascular smooth muscle cells located in the
wall of cerebral arteries express cytochrome P (CYP)450 4A
enzymes that catalyze the formation of the potent vasoconstric-
tor arachidonic acid metabolite 20-hydroxyeicosatrienoic-acid
(20-HETE) and that production of 20-HETE significantly in-
creases in response to elevations in intravascular pressure (71,
92, 93) (Fig. 1). Previous studies showed that 20-HETE lead to
activation of protein kinase C, inhibition of Ca2�-activated K�

channels, and activation of L-type Ca2� (LCa) and transient
receptor potential cation channel 6 (TRPC6) channels, which
promote depolarization of vascular smooth muscle cells, in-
creasing intracellular Ca2� levels and promoting vasoconstric-
tion (102). The concept that production of 20-HETE plays a
role in myogenic response is supported by the observations that
inhibition of 20-HETE formation attenuates pressure-induced
arterial myogenic constriction in vitro and impairs the auto-
regulation of CBF in vivo (102). Moreover, there is evidence
that upregulated production of 20-HETE underlies increased
myogenic response and autoregulatory adaptation to hyperten-
sion (68, 71, 271, 281). In addition to the role of 20-HETE
synthesis (158) other pathways, including other stretch-acti-
vated TRP channels (TRPM4) (214) and chloride channels
(183), integrins, and other cytoskeletal elements (42, 53) and
pathways governing smooth muscle cell Ca2� sensitivity (27,
230, 231) also contribute to pressure-induced depolarization
and consequent increase in intracellular Ca2� concentration in
vascular smooth muscle cells and the development of myo-
genic constriction of cerebral arteries.

In cerebral arteries pressure-induced myogenic constriction
also appears to be augmented by a unique mechanism: flow-
induced vasoconstriction. Since the original observations of
Schretzenmayr in 1933 (229), there have been hundreds of
reports documenting that arteries from virtually all vascular
beds in the peripheral circulation (including brachial, femoral,
mesenteric, and coronary arteries) dilate in response to in-
creases in blood flow (145). The cerebral circulation is an
important exception. While basilar arteries were reported to
dilate in response to increases in flow (86) similar to peripheral
vessels, isolated middle cerebral arteries of the rat (33, 273),
mouse (281) and cat (163) and fronto-temporal small arteries
isolated from the human brain (273) exhibit significant con-
striction in responses to increases of intraluminal flow/shear
stress. Flow-induced constriction of both human and rodent
cerebral arteries was shown to be mediated by 20-HETE acting
via thromboxane/endoperoxide receptors (273). The initial ob-
servation that isolated rabbit pial resistance arteries dilate in
response to increases in flow when intraluminal pressure is
low, but they constrict in response to the same increases in flow
when pressure is high (90, 91), led to the formulation of the
hypothesis that flow-induced constriction may play a role in
autoregulation of CBF (145). Interestingly, like the myogenic
response flow-induced constriction is enhanced in hyperten-
sion, as well, probably representing another adaptive vaso-
motor mechanism to high blood pressure (90, 281). In
theory, if cerebral arteries dilated to flow, it would reduce
the magnitude of myogenic constriction, counteracting myo-
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Fig. 1. Aging impairs adaptation of cerebral blood flow (CBF) autoregulation to hypertension. A: scheme depicting that under normal conditions autoregulation
of CBF maintains a nearly constant blood flow when perfusion pressure changes. This is ensured by pressure-induced myogenic constriction of the cerebral
arteries (C), a homeostatic mechanism that rapidly adjust vascular resistance to changes in perfusion pressure. The significant increases in the resistance of
proximal arteries also assure that increased arterial pressure does not penetrate the distal portion of the microcirculation and cause damage to the thin-walled
arteriolar and capillary microvessels in the brain (103, 147). In young organisms in hypertension the myogenic constriction of cerebral arteries is enhanced
(C) and the range of cerebrovascular autoregulation is extended (A), which represent functional adaptation of these vessels to higher systemic blood
pressure, optimizing tissue perfusion and protecting the cerebral microcirculation. Aged cerebral arteries do not exhibit a hypertension-induced adaptive
increase in myogenic constriction (D) and cerebrovascular autoregulatory dysfunction is manifested (B) (271, 281). E and F: proposed scheme showing
that in young organisms activation of a 20-hydroxyeicosatrienoic-acid (20-HETE)/transient receptor potential cation channel (TRPC)-dependent pathway
underlies functional adaptation of cerebral arteries to hypertension (blue arrows) and that this adaptive response is dysfunctional in aging (red arrows).
Accordingly, in smooth muscle cells within the wall of young cerebral arteries (E), high pressure-induced mechanical stress leads to the activation of
arachidonic acid metabolism (AA) by phospholipase A2 (PLA2), and upregulation of the 20-HETE producing CYP450 isoforms. The resulting increased
production of the vasoconstrictor eicosanoid 20-HETE activates TRPC6 channels, resulting in increases in vascular smooth muscle Ca2� concentration
and subsequent sustained myogenic constriction (281). 20-HETE also blocks the activation of the hyperpolarizing Ca2� activated potassium (BKCa)
channels on vascular smooth muscle cells, which contributes to the increased pressure-induced activation of voltage-dependent L-type Ca2� (LCa)
channels and enhanced myogenic constriction. F: in aged cerebral arteries the functional adaptation to hypertension mediated by activation of the
20-HETE/TRPC-dependent pathway is impaired (red arrows).
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genic autoregulation of CBF. In contrast, flow-induced con-
striction is predicted to act as a negative feedback mecha-
nism to autoregulate CBF in concert with pressure-induced
myogenic constriction. Further in vivo studies should pro-
vide direct experimental evidence to support or reject this
hypothesis (308).

Role of autoregulation in cerebromicrovascular protection.
The myogenic response of proximal cerebral arteries plays a
critical role in neuroprotection, by preventing the penetration
of high pressure to the thin-walled distal portion of the micro-
circulation and protecting the microcirculation from high pres-
sure-induced damage (41, 281, 283). Direct measurements of
cerebromicrovascular pressure demonstrate that approximately
half of the total vascular resistance in brain depends on
changes in the segmental resistance of vessels upstream
from the penetrating arteries (for an excellent review see
Ref. 57). As a result of the significant resistance of larger
proximal arteries, the high central systolic pressure cannot

penetrate the microcirculation under steady-state conditions
(Fig. 2). In healthy young individuals increases in blood
pressure, episodic or sustained, result in proportionate in-
creases in cerebral vascular resistance such that, due to a
larger pressure drop along the proximal resistance arteries,
the increased pressure does not penetrate the thin-walled
microvessels (Fig. 2). Studies in young experimental ani-
mals show that during chronic hypertension resistance of
both larger and smaller resistance arteries increases (168,
313). Because of these adaptive changes in resistance,
capillary pressure is maintained relatively constant (Fig. 2).
Thus the thin-walled cerebral microvessels are protected
from barotrauma as long as the autoregulatory protective
mechanisms are intact and the blood pressure remains
within the physiological autoregulatory range. It is believed
that alterations in the cerebral autoregulatory capacity in
different pathological conditions significantly contribute to
cerebromicrovascular damage (281).

Fig. 2. Age-related autoregulatory dysfunction exacerbates hypertension-induced cerebromicrovascular injury. Shown is a schematic illustration of the likely
consequences of autoregulatory dysfunction in the aging brain. The model proposed implies that in healthy young organisms pressure-induced myogenic
constriction of the proximal cerebral arteries acts as a critical homeostatic mechanism that assures that increased arterial pressure does not penetrate the distal
portion of the microcirculation and cause damage to the thin-walled arteriolar and capillary microvessels in the brain (103, 147). In aging, proximal resistance
arteries lose their capability to adapt to hypertension with an enhanced pressure-induced constriction, which leads to a mismatch in perfusion pressure and
segmental vascular resistance (resistance is inversely related to the 4th power of vessel radius). Lack of proper autoregulatory protection in aging likely allows
high blood pressure to penetrate the vulnerable downstream portion of the cerebral microcirculation. The hemodynamic burden exacerbates age-related disruption
of the blood-brain barrier (BBB), leading to extravasation of plasma factors, which promote neuroinflammation (e.g., activation of microglia by IgG via the IgG
Fc receptors). Microglia-derived proinflammatory cytokines, chemokines, proteases [i.e., matrix metalloproteinase (MMP)] and reactive oxygen species (ROS)
promote neuronal damage (273, 281). In addition, the increased microvascular pressure activates matrix metalloproteinases in the vascular wall in a
redox-sensitive manner, contributing to the development of microhemorrhages (276). The age-related autoregulatory dysfunction and its consequences may also
contribute to the dysfunction of the glymphatic system (128, 148), and the development of age-related vascular rarefaction (281). We posit that exacerbation of
neuroinflammation, cerebral microhemorrhages, glymphatics dysfunction and/or microvascular rarefaction are causally linked to hypertension-induced cognitive
impairment in aging (85, 210, 285) and contribute to the increased prevalence of Alzheimer’s disease in hypertensive elderly individuals. Bottom: representative
images showing cerebral microhemorrhages (brown lesions after diaminobenzidine-hematoxylin staining, scale bar � 200 �m) in the brain of aged (24 mo old)
hypertensive mice, which associate with autoregulatory dysfunction. Note that most hypertension-induced microhemorrhages are located in the cortical and
subcortical region. Hypertension was induced in the mice by treatment with angiotensin II and the nitric oxide synthase inhibitor nitro-L-arginine methyl ester
(L-NAME) (279).
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Age-related changes in dynamic and static components of
cerebral autoregulation. Recent studies suggest that age-re-
lated alterations in the cerebral autoregulatory capacity may
play an important role in the pathophysiology of brain aging. In
mice aging impairs the dynamic component of the myogenic
response of isolated cerebral arteries induced by a sudden
increase in pressure (281) and impairs myogenic adaptation to
pulsatile pressure (250). In contrast, the static component of the
myogenic response and static autoregulation of CBF are
largely unaffected in the autoregulated range (269, 281). In
aged rodents the upper limit of CBF autoregulation appears to
be unchanged (281), whereas the lower limit of CBF autoreg-
ulation increases by ~20 mmHg (152, 284). The diminished
compensatory dilatation of aged cerebral resistance arteries
during hypotension likely increases the risk of ischemia of the
brain during hypotensive conditions. Analysis of the available
human data yielded mixed results (216). In elderly patients
Lipsitz et al. (154) found retained dynamic autoregulation by
transfer function analysis during standing and sit-to-stand chal-
lenges. Other studies also reported retained dynamic autoreg-
ulatory function in aged patients challenged by negative pres-
sure release, Valsalva maneuver, thigh cuff test, or sit-to-stand
maneuver indicated by normal autoregulatory index and unaf-
fected transfer function in lower frequencies of oscillation in
blood pressure (36, 181). Studies of Yam at al. (319) found
also no differences between dynamic autoregulatory response
of younger and older groups of patients. The findings of studies
investigating aging-induced changes in response to sudden
hypotension in humans are also controversial. Aging is asso-
ciated with a higher incidence of postural symptoms (such as
syncope), a common condition of sudden blood pressure drop
(35), which can cause temporal hypoperfusion in the brain in
case of ineffective compensatory decrease in cerebrovascular
resistance. Larger postural reduction in cerebral cortical oxy-
genation (by near-infrared spectroscopy) and in mean blood
flow velocity in middle cerebral arteries was found in elderly
patients compared with young controls (160, 172). Preliminary
studies also show that in the elderly impaired dynamic auto-
regulation (assessed using gain and phase) predicts develop-
ment of symptoms during orthostatic tolerance test (226). In
contrast, in another study autoregulatory response to hypoten-
sion during orthostatic stress was found to be unaffected by
aging (140). Wollner et al. (318) investigating aged individuals
with postural hypotension demonstrated that patients with
clinical signs of cerebral ischemia exhibited autoregulatory
failure, meanwhile a similar pressure drop did not cause any
symptoms when autoregulatory function was intact. During
ergomotor exercise dynamic autoregulation was reported to be
intact; however, onset of autoregulatory correction of CBF was
found to be delayed in older patients (110). Sorond et al. (244)
found regional differences in changes of cerebrovascular resis-
tance: there appears to be a significantly greater decline in
blood flow velocity in the area of posterior cerebral artery than
in the territory of middle cerebral artery indicating regional
differences in dynamic autoregulatory function. Interestingly,
the Lipsitz laboratory (232) reported an even more effective
autoregulatory response to hypotension and during spontane-
ous oscillations in blood pressure both in treated and untreated
hypertensive elderly patients, which was associated with a
disturbed vasoreactivity to changes in CO2 levels. In summary,
studies investigating dynamic autoregulation in elderly patients

reported variable results, mostly depending on the measured
parameter of dynamic features of autoregulation. Further stud-
ies are evidently needed to resolve these controversies. When
interpreting the aforementioned data, several limitations should
also be considered, including methodological limitations (e.g.,
lack of direct measurement of cerebrovascular pressure and/or
volumetric flow in most studies); potential confounding effects
of lifestyle factors and medications, small sample size used in
many of the studies relative to the age range of the participants,
especially that of older subjects; the substantial interindividual
variability in many of the parameters assessed; and the cross-
sectional nature of most of the studies. In contrast to findings
obtained under steady-state conditions, age-related autoregula-
tory dysfunction is more evident under conditions of hyperten-
sion (281) and increased pressure pulsatility (251) (see below).

Impaired autoregulatory adaptation to hypertension in
aging. In industrialized societies, there is a consistent age-
related increase in systolic blood pressure (80). In healthy
young individuals, the elastic conduit arteries (including the
aorta and carotid artery) provide a Windkessel effect to
dampen hemodynamic pulsatility and facilitate a continuous
blood flow into the cerebral microvessels (23, 267). Due to the
age-related stiffening and impaired Windkessel function of
conduit arteries, the amplitude of systolic pressure in the aorta
significantly increases with age (63, 206). The existing evi-
dence suggests that such an increase in central pulse pressure
is transmitted into organs that are characterized by low resis-
tance and high blood flow (108, 175, 311). Arterial wave
reflections returning from the peripheral resistance vessels may
augment pressure pulsatility in the aged cerebral microcircu-
lation. Hypertension in the elderly is a major risk factor for
both large hemorrhagic strokes and microvascular injury (cap-
illary damage, blood-brain barrier disruption, and microhem-
orrhages) contributing to the development of vascular cogni-
tive impairment (97).

There is increasing evidence in support of the concept that
age-related impairment of autoregulatory adaptation to hyper-
tension contributes to the increased susceptibility of the elderly
to hypertension-induced microvascular damage and cognitive
decline (262, 287). Recently, we demonstrated that in mice
aging is associated with impaired myogenic adaptation of
cerebral arteries to pulsatile pressure (250). If arteries of
elderly hypertensive patients also show impaired myogenic
constriction when exposed to pulsatile pressure, this is proba-
bly associated with a significant hydrodynamic resistance de-
crease in the proximal larger resistance arteries, imposing a
significantly larger burden on the downstream portion of the
cerebral microcirculation. Importantly, a recent study demon-
strated that in elderly individuals, higher pulse pressure led to
increased CBF pulsatility (262). This finding supports the idea
that with aging the cerebral microcirculation lacks protection
against increases in pulsatile pressure (250). Recent findings
provide important evidence to support the concept that pressure
pulsatility and, consequently, CBF pulsatility increase due to
age-related increases in central arterial stiffness and wave
reflection in elderly patients (265). Cerebromicrovascular dam-
age has long been hypothesized to result from the penetration
of increased pulsatile pressure into the vulnerable distal portion
of the microcirculation in the elderly (reviewed in Refs. 188,
247). Importantly, in aged individuals increased central arterial
stiffness and higher pressure/CBF pulsatility are associated
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with increased incidence and volume of white matter damage
(287). In the elderly activities that result in significant transient
increases in blood pressure also represent a dynamic challenge
to the autoregulatory mechanisms of the cerebral circulation.
For example, the Valsalva maneuver, which causes a signifi-
cant transient rise in arterial pressure for a short period of time,
inadvertently occurs during daily activities in which straining
is present (266). Heavy-weight lifting, defecation straining,
playing of wind instruments, nose blowing, heavy coughing,
and vomiting are all events that cause a sudden increase in
arterial pressure, which simulates the Valsalva maneuver. An-
ger, startling, sexual intercourse, and vigorous physical exer-
cise, all of which are documented trigger factors for intracere-
bral hemorrhage, are also characterized by significant transient
increases in blood pressure, posing a challenge to the autoreg-
ulatory mechanisms of the cerebral circulation. There are also
studies showing an association of early morning increases in
blood pressure, which is coincident with arousal and arising
from overnight sleep (131), with cerebrovascular events in
elderly patients.

Previous studies provide evidence that in young organisms
cerebral arteries exhibit functional and structural adaptation to
hypertension, which protect the injury-prone distal portion of
the cerebral microcirculation from pressure overload (179, 203,
222, 223, 254–256, 271, 281). Among these physiological
adaptive responses the increased pressure-induced myogenic
constriction of cerebral arteries is of great significance (103,
147, 191). Previous studies demonstrated that in young hyper-
tensive animals increased pressure-induced myogenic constric-
tion leads to an increased resistance at the level of the larger
pial arteries (269, 281). With the manifestation of this adaptive
vascular response, the protective CBF autoregulatory range
extends to higher pressure values in hypertensive patients as
well as in laboratory animals with pharmacologically induced
hypertension (203, 254–256, 281) (Fig. 1). Recently, we pro-
vided evidence that cerebral arteries of aged mice do not
exhibit a hypertension-induced adaptive increase in myogenic
tone observed in young mice and aged-hypertensive animals do
not show extension of CBF autoregulation to high pressure
values (269, 281). The mechanisms responsible for the age-
dependent loss of myogenic protection in hypertension likely
involve dysregulation of the pressure-induced activation of the
20-HETE/TRPC6 pathway (271, 281). In theory, dysregulation
of potassium channels, including BKCa channels, may contrib-
ute to functional maladaptation of resistance arteries to high
pressure (29, 143). 20-HETE inhibits BKCa channels, which
are known to be activated in the high pressure range (200) in
the vascular smooth muscle cells in cerebral arteries. Yet,
pharmacological inhibition of BKCa channels does not appear
to significantly increase myogenic tone in cerebral arteries
isolated from hypertensive aged mice (271). Future studies are
warranted to elucidate the role of other mechanisms, including
other TRP channels potentially involved in the mediation of
myogenic mechanisms (TRPM4 etc.) in age-related functional
maladaptation of cerebral arteries to hypertension.

In recent years a growing amount of evidence has provided
support to the view that endocrine mechanisms play a crucial
role in cerebrovascular alterations associated with advanced
aging (241, 294). In particular, the age-related decline in
circulating insulin-like growth factor-1 (IGF-1) levels appears
to contribute significantly to vascular aging and age-related

cerebrovascular alterations (11, 241, 275, 281, 294). Low
circulating IGF-1 levels in humans are also associated with an
increased risk for hypertension-induced microvascular brain
damage (3) and stroke (130, 151), findings that have been also
replicated in laboratory animals (240). Using a novel mouse
model of endocrine IGF-1 deficiency (adeno-associated viral
knockdown of IGF-1 specifically in the mouse liver using
Cre-lox technology; Igf1f/f � TBG-iCre-AAV8) (11), we
showed that low circulating IGF-1 levels lead to impaired
autoregulatory protection in the brain of hypertensive mice,
potentially exacerbating cerebromicrovascular injury and neu-
roinflammation (281). Importantly, in IGF-1-deficient mice
hypertension fails to upregulate TRPC6 expression and the
TRPC-dependent component of the myogenic constriction
(281), mimicking the aging phenotype. Experimental IGF-1
deficiency also mimics other aspects of cerebromicrovascular
aging (11, 12, 241, 262, 275). For example, hypertension in
rodent models of both aging (281) and IGF-1 deficiency (262)
promotes cerebromicrovascular rarefaction. It should be noted
that in response to hypertension cerebral arteries also exhibit
structural adaptation. Vascular hypertrophy reduces wall stress.
Inward remodeling contributes to adaptive increases in seg-
mental vascular resistance, protecting the microcirculation
(17–19, 57). Thus it is significant that both aging and IGF-1
deficiency are associated with impaired structural adaptation of
cerebral microvessels to hypertension (unpublished observa-
tions), which likely exacerbates microvascular injury. There
may be a cross talk between IGF-1 and insulin signaling
pathways in the smooth muscle cells. There is initial evidence
that both insulin resistance (132, 133) and IGF-1 deficiency
(48) may impact mitochondrial function and mitochondrial
reactive oxygen species (ROS) production in vascular smooth
muscle cells, which may affect mechanotransduction of pres-
sure, myogenic constriction, and vasomotor responses. Given
the incidence of insulin resistance in aging, further studies are
evidently needed to test these possibilities.

In elderly hypertensive patients, the lower limit of autoreg-
ulation of CBF is shifted to the right. Previous studies in
spontaneously hypertensive rats also demonstrated an age-
related shift in the lower limit of autoregulation, which results
in significant reduction in CBF in response to experimentally
induced hypotension (87, 115). The age- and hypertension-
related mechanisms, which impair dilation of cerebral vessel in
response to decreases in blood pressure, are presently poorly
understood. Arterial morphological changes with aging, in-
cluding thickening, stiffening, and eccentric remodeling (150),
might contribute to the decreased capability of the cerebral
vessels to dilate when intraluminal pressure is decreasing. An
interesting consideration of the possible mechanisms is the role
of endothelium. Recently, Bagher et al. (10) demonstrated that
decreasing intraluminal pressure activates TRPV4 channels in
endothelial cells of pressurized arterioles leading to increased
frequency of spontaneous endothelial calcium events and ac-
tivation of calcium-activated K� channels, which then lead to
dilation of the vessel. Age-associated endothelial dysfunction
of cerebral vessels (109, 116, 166, 199, 281) might impair
these mechanisms. These possibilities should be experimen-
tally tested in the future.

Downstream consequences of cerebrovascular autoregula-
tory dysfunction. The functional maladaptation of aged cere-
bral arteries to hypertension is likely responsible for the loss of
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autoregulatory protection in the aging brain, which likely
allows high blood pressure to penetrate the distal, injury-prone
portion of the cerebral microcirculation (Fig. 1). It is likely that
when in elderly patients blood pressure exceeds the threshold
for vascular injury and the autoregulatory ability of the resis-
tance arteries to protect the cerebral capillaries is breached,
microvascular damage also ensues (Fig. 2). Potential down-
stream consequences of cerebrovascular autoregulatory dys-
function (in the high pressure range) and pressure/volume
overload include exacerbated disruption of the blood-brain
barrier, neuroinflammation and neurodegeneration, structural
damage to capillaries and capillary rarefaction, and increased
propensity for intracerebral hemorrhages (Fig. 2). The existing
data support this concept showing that in mice aging exacer-
bates hypertension-induced cerebromicrovascular damage and
increases the incidence of cerebral microhemorrhages (276,
281). In aged mice increased blood-brain barrier permeability
is exacerbated by hypertension, which associates with in-
creased presence of activated microglia (281). The exacerba-
tion of microvascular damage [including blood-brain barrier
disruption (325, 326)] in aged hypertensive subjects is likely
causally linked to increased neuroinflammation and cognitive
decline (281) and is likely to contribute the known association
between hypertension and Alzheimer’s disease in aging (50,
56, 59, 60, 64, 75, 77, 94, 97, 114, 118, 122, 124, 125, 138,
169, 178, 205, 215, 218, 235, 238, 239, 248). In that regard it
is interesting that a high-impact recent study from the Zlokovic
laboratory demonstrates that the level of blood-brain barrier
disruption in the aged human hippocampus predicts cognitive
impairment in elderly patients (177).

Although a direct cause-and-effect relationship is difficult to
prove experimentally, the available clinical evidence strongly
support the concept that cerebrovascular autoregulatory dys-
function is causally linked to downstream microcirculatory
damage (185, 212, 228, 257, 264). Critical proof of concept
was provided recently by the studies of Fan at al. (71) showing
that experimental disruption of the myogenic machinery in
cerebral arteries (by genetic inhibition of 20-HETE synthesis)
results in significant microvascular damage, including blood-
brain barrier disruption.

Hypertension in the elderly is often associated with small
vessel disease (detected as white matter hyperintensities on
MRI images) (reviewed in Ref. 194), which leads to gait
disturbances and a decline in cognitive performance, executive
function, and processing speed (139, 207, 310). The pathogen-
esis of with diffuse white matter disease is thought to involve
microvascular injury, blood-brain barrier disruption, and con-
sequential demyelination. There is growing evidence suggest-
ing a causal relationship between cerebral autoregulatory dys-
function and brain white matter hyperintensity in older adults
(30, 156, 212). The concept that age-related impairment of
myogenic autoregulatory protection promotes hypertension-
induced downstream microvascular damage and barrier disrup-
tion is supported by the observations that in the renal circula-
tion of older hypertensive Faw-Hooded rats impairment of
myogenic constriction of the afferent arterioles is associated
with increased proteinuria, an indicator of downstream renal
microvascular damage (302). The renal circulation features a
prominent autoregulatory function similar to the cerebral cir-
culation and previous studies show that in hypertensive hu-

mans renal microvascular injury often associates with clinical
markers of cerebral microvascular damage (40, 272).

Aging-induced autoregulatory failure is also likely to con-
tribute to increased prevalence of hypertension-induced intra-
cerebral hemorrhages, especially cerebral microhemorrhages
(261) (Fig. 2). Cerebral microhemorrhages are small (�5 mm
in humans) vascular lesions associated with rupture of small
intracerebral vessels and are considered of emerging impor-
tance as a contributing factor to the progressive impairment of
neuronal function in aging. Epidemiological studies demon-
strate that hypertension in aging is the major risk factor for the
development of cerebral microhemorrhages (208). Recent data
from animal models extend the clinical findings, showing that
impaired functional adaptation of the aged cerebral arteries to
hypertension exacerbates the development of cerebral micro-
hemorrhages (279). Importantly, aging not only promotes the
penetration of high pressure in the microcirculation but also
alters pressure-induced mechanosensitive cellular and molec-
ular pathways in the vascular wall, which render aged cerebral
vessels vulnerable to the deleterious effects of hypertension
(250, 279). Among other factors, aging was shown to exacer-
bate pressure-induced oxidative stress and promote activation
of matrix metalloproteinases, compromising the structural in-
tegrity of cerebral arteries (250, 279).

In addition to prevention of high pressure-induced microcir-
culatory damage, autoregulation has also to avoid hypoperfu-
sion of cerebral tissue. Due to dysfunction of cerebral autoreg-
ulation in hypertensive aged subjects (in whom the lower limit
of autoregulation is shifted to higher pressures), inadequate
dilation in response to hypotension may cause hypoperfusion
and thus ischemic neuronal damage (74).

Aging-Induced Endothelial Dysfunction

The endothelial layer of cerebral vessels is capable of
producing a variety of vasoactive substances [nitric oxide
(NO), eicosanoid mediators, endothelium-derived hyperpolar-
izing factors (EDHFs), and endothelins] and it is in direct
contact with blood flow making sensitive to changes in hemo-
dynamic forces and various hormones present in the sera. The
microvascular endothelium is involved in many aspects of the
regulation of CBF. Endothelial NO contributes to setting rest-
ing CBF demonstrated by studies showing that acute blockade
of NO synthases attenuates basal CBF and leads to hypoper-
fusion (117). Also, systemic administration of the NO precur-
sor L-arginine increased CBF velocity in humans (88). Aging is
associated with endothelial dysfunction in the cerebral circu-
lation, similar to other vascular beds (31, 166, 176). The
mechanisms underlying age-related endothelial dysfunction
are multifaceted and involve oxidative stress. Accordingly,
aging is associated with increased production of ROS in the
vasculature of the brain and other organs (52, 195) in part due
to an increased activity/expression of NADPH oxidases (195,
279). Aging also leads to increased mitochondrial production
of superoxide (250) and impairment of Nrf2-dependent cellular
antioxidative pathways (11, 47, 292, 293). Increased levels of
superoxide readily react with NO to form peroxynitrite, de-
creasing the bioavailability of NO and leading to endothelial
dysfunction (25, 281). Previous studies suggest that decreased
endothelium-dependent vasodilation in aging is a universal
phenomenon (89, 149, 198, 220) and may be exacerbated by
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upregulation of arginase (24, 134), which decreases cellular
L-arginine supply, uncoupling of endothelial nitric oxide syn-
thase, increases in assymetric dimethylarginine (ADMA) lev-
els, endocrine changes (58), and age-related upregulation of
angiotensin signaling and chronic vascular inflammation (55,
82, 184). Furthermore, aging-induced endothelial dysfunction
is likely exacerbated by comorbid conditions, including meta-
bolic diseases and hypertension (132, 281, 288, 290). Age-
related endothelial dysfunction likely contributes to the chronic
cerebral hypoperfusion observed in aging and consequent ce-
rebral dysfunction, including cognitive decline (221, 309).
Endothelium-dependent NO production also contributes to
neurovascular coupling responses (38, 276, 279). Accordingly,
recent studies demonstrate that endothelial dysfunction plays a
critical role in aging-induced impairment of moment-to-mo-
ment adjustment of regional CBF to changes in neuronal
activity (195). Endothelium-derived NO is also an important
inhibitor of platelet aggregation, smooth muscle cell prolifer-
ation, and leukocyte adhesion and exerts potent anti-inflamma-
tory, antiapoptotic, and proangiogenic effects (recently re-
viewed in Ref. 136). It also modulates cellular metabolism,
mitochondrial function, and synaptic transmission (135, 213,
234, 238). Age-related decline in microvascular NO produc-
tion, therefore, is likely to exert multifaceted detrimental ef-
fects on cerebrovascular, neuronal, astrocytic and microglial
functions. Age-related impairment of microvascular endothe-
lial cells also impairs angiogenic processes (15, 47, 298, 299),
promoting microvascular rarefaction (290). Moreover, there is
growing evidence implicating endothelial dysfunction in the
pathogenesis of Alzheimer’s disease (61). Experimental stud-
ies also demonstrate that impaired endothelial NO production
increases amyloid precursor protein, A� levels, promotes mi-
croglial activation, and exacerbates A�-induced impairment of
cognitive function (6). For further reading on the effects of
age-related endothelial dysfunction on the blood-brain barrier
and its relation to neurodegenerative diseases (e.g., Alzhei-
mer’s disease) we refer to the excellent recent review of Di
Marco et al. (61). Aging may also modulate the endothelial
production of arachidonic acid metabolites. For example, sol-
uble epoxide-hydrolase [which catalyzes the hydrolysis of the
dilator epoxyeicosatrienoic acids (EETs) into their inactive
metabolites] was reported to be enhanced in the microvascular
endothelium of older patients with cerebral small vessel dis-
ease and vascular cognitive impairment (182). There are also
studies suggesting that the balance of constrictor and dilator
eicosanoid metabolites produced in the microcirculation is
altered by aging (16).

Aging-Induced Impairment of Neurovascular Coupling
Responses

Cellular and molecular mechanisms of neurovascular
coupling. The energetic demand of neurons is very high, but
the brain has very little reserve capacity. During neuronal
activity there is a requirement for rapid increases in nutrients
delivery, as well as washing-out of toxic metabolic by-prod-
ucts. Fulfilling this requirement regional CBF is closely ad-
justed to neuronal activation in a spatially and temporally
well-regulated manner (69, 165). This is ensured by neurovas-
cular coupling responses (“functional hyperemia”; Fig. 3),
which maintain the optimal microenvironment for normal

neuronal function (4). Neurovascular coupling responses de-
pend on a coordinated interaction of neurons, astrocytes, en-
dothelial cells and smooth muscle cells of cerebral arterioles
(4). Recent findings also implicate pericytes and capillary
dilation in the initial phase of the CBF response (100). Based
on current models of neurovascular coupling, interaction of
several parallel processes ensure that neuronal activity is cou-
pled to localized vasodilation and increases in regional CBF.
Upon neuronal activation, neuronal nitric oxide synthase-de-
rived NO (34, 162) and/or neuronal prostaglandin release (37)
can contribute to dilation of cerebral arterioles both indirectly,
through modulating astrocytic mechanisms, and directly, act-
ing on the arteriolar smooth muscle cells. Since astrocytes are
positioned between neurons and vascular cells they are in ideal
position to transform neuronal activation into blood vessel
responses. It appears that the main astrocytic responses that
contribute to increases in CBF during neuronal activation are
triggered by glutamate released from synapses (209). Gluta-
mate activates metabotropic glutamate receptors (mGluR) and
NMDA receptors (253) on astrocytes, leading to increased
Ca2� influx, which activates the metabolism of arachidonic
acid by cyclooxygenases to prostaglandins (PGE2) and by
epoxygenases to EETs. These mediators can cause dilation of
cerebral blood vessels via mechanisms that involve activation
of BKCa channels and TRPV4 channels on vascular smooth
muscle cells (79, 187). Under pathological conditions arachi-
donic acid can be converted into 20-HETE in the neurovascular
unit, which elicits constriction of cerebral arterioles counter-
acting the dilatory stimuli mediated by EETs, prostaglandins,
and NO (39, 157). The current view is that the balance between
production of dilator and constrictor metabolites of arachidonic
acid is influenced by the preceding tone of cerebral vessels, the
O2 level and the availability of NO, among other factors. One
of the most important signaling molecules by which astrocytes
communicate with each other and with other cells is ATP and
its metabolites, adenosine, and ADP. Since ATP is directly
linked to astrocytic metabolism, it is logical to assume that
purinergic pathways are involved in neurovascular coupling.
Indeed, astrocyte-derived ATP, after hydrolyzed to adenosine,
contributes to cerebral reactive hyperemia via A2A purinergic
receptors on vascular smooth muscle cell. In addition to this
pathway, astrocytic ATP released in response to neuronal
activation may also act on endothelial P2Y1 receptors trigger-
ing the production of endothelial NO and subsequent vasodi-
lation. Indeed, most studies (95, 323) (95, 253, 280), but not all
(9), suggest that endothelium-derived NO, released in response
to astrocyte-derived signals, contributes importantly to neuro-
vascular coupling. Another hypothesis concerning astrocytic
mechanisms of arteriolar dilation during neurovascular cou-
pling centers on the potential dilator role of extracellular K�.
According to the K� syphoning theory (202, 317), after neu-
ronal activation astrocytes take up excess extracellular K� and
transport it to the arterioles where they release it. K� in the
perivascular space is believed to activate Kir in smooth muscle
cells. Since the membrane potential of smooth muscle cells is
higher than the reversal potential of Kir, the resulting outward
K� flux leads to hyperpolarization, decreasing smooth muscle
cell intracellular Ca2� concentration ([Ca2�]i), and dilating
cerebral arterioles (317). The glutamate-induced [Ca2�]i in-
crease can open BKCa channels on astrocyte endfeet and
release astrocytic K� onto blood vessels, as well (81). An
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important recent study suggested that pericytes may also be
involved in activity-evoked increase in CBF by dilating capil-
laries before arterioles dilate via a PGE2-dependent pathway,
which requires NO to suppress the production of constrictor
20-HETE (100).

Aging-induced alterations in neurovascular coupling. There
is increasing evidence that neurovascular coupling is impaired
in aging both in humans and laboratory animals (14, 195, 269,
322). Previous studies demonstrate that in healthy aged persons
occipital blood flow responses to visual evoked potentials,
measured by transcranial Doppler flowmetry, are significantly
decreased compared with young ones (269, 322). Although
another study using a similar approach did not report an
age-related decline in flow response to visual signals, in this
study all the participants were under 60 yr of age (219), which
makes the interpretation of the findings in the context of aging
difficult. Similar to the findings obtained in elderly humans
laboratory rodents also exhibit age-related neurovascular un-

coupling (195, 280). There are also studies extant suggesting
that aging-induced changes in blood flow response to neuronal
activation may show regional differences. For example, Sorond
et al. found that aged individuals, unlike young subjects, during
word stem completion cognitive task show decreased frontal
responses (a brain region supplied by the anterior cerebral
artery) as compared with occipital responses (a brain region
supplied by posterior cerebral artery) (245).

The mechanisms by which aging impairs neurovascular
coupling mechanisms are likely multifaceted (Fig. 3). Al-
though attenuation of the underlying neuronal activity may
theoretically contribute to impaired functional hyperemia, age-
related neurovascular uncoupling appears to be reversible by
interventions that improve cerebrovascular reactivity. The ex-
isting evidence suggests that increased production of ROS
plays a central role in cerebromicrovascular impairment and
neurovascular uncoupling in aging. This concept is supported
by experimental findings showing that acute inhibition of

Fig. 3. Aging impairs neurovascular coupling responses: potential role of insulin-like growth factor-1 (IGF-1). Shown is a schematic illustration of age-related
alterations in glio-endothelial coupling mechanisms, which are responsible for impaired functional hyperemia in the elderly. Accordingly, under normal
conditions astrocytes mediate the interaction between neurons and vascular cells by physically connecting neuronal synapses to cerebrovascular smooth muscle
wall. Glutamate released from active excitatory synapses triggers a calcium wave that travels through the astrocyte and reaches the end-feet wrapped around the
vessel wall. The glutamate-induced calcium surge activates CYP450- and cyclooxygenase (COX)-mediated production of vasodilator eicosanoids [epoxyeico-
satrienoic acids (EETs) and prostaglandins, respectively] and promotes activation of ATP release machinery. Astrocyte-derived ATP promotes endothelial release
of vasodilator nitric oxide (NO) via activation of P2Y1 receptors (276). The model predicts that aging impairs all of these mechanisms involved in glio-vascular
coupling responses. Of particular importance is the purinergic endothelial NO-mediated pathway, which may be affected by both endothelial oxidative stress
[increased ROS production by NOX oxidases (195) and mitochondrial sources] and astrocyte-derived ROS production. The known age-related changes are
showed using red arrows. Age-related decreases in levels of circulating IGF-1 is one of the most important endocrine changes accompanying aging. On the basis
of evidence obtained in IGF-1-deficient mouse models of aging (275) the model predicts that age-related decline in IGF-1 impairs both astrocyte function and
endothelium-mediated mechanisms of functional hyperemia. Note, that the scheme does not include IGF-1 deficiency-induced potential alterations in neuronal
release of vasodilator substances and/or the role of IGF-1-related changes in astrocyte-mediated capillary dilation.

H9AGING-INDUCED CEREBROMICROVASCULAR DYSFUNCTION

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00581.2016 • www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart (106.051.226.007) on August 9, 2022.



NADPH oxidases is able to rescue neurovascular coupling in
aged mice (195). Furthermore, aging is associated with in-
creased ROS production in microvessels both in the brain and
other vascular beds (52, 195) due, at least in part, to an
increased activity/expression of NADPH oxidases (195). Inter-
estingly, in mouse models of age-related AD-type neurodegen-
eration, enhanced generation of NADPH-derived ROS was
also reported to contribute to neurovascular uncoupling (196,
197). There are multiple pathways through which increased
ROS production may impair CBF responses induced by neu-
ronal activation. An increasing body of literature supports the
concept that endothelial NO production has an important role
in neurovascular coupling (95, 159, 253). In aged rodents
increased O2

� reacts with NO produced by the endothelial cells
of cerebral microvessels forming ONOO�. The resulting de-
creases in bioavailability of NO likely contributes to the
impaired neurovascular responses (195). Supporting this con-
cept is the finding that in young rodents inhibition of endothe-
lial NO synthesis using L-NAME significantly attenuates CBF
responses to both whisker stimulation and the endothelium-
dependent dilator acetylcholine, whereas it does not affect
neurovascular responses and endothelium-dependent dilations
in aged animals (279). Interestingly, in APP transgenic mice
the antioxidants N-acetyl-L-cysteine and tempol also restored
neurovascular function (186), suggesting that oxidative stress
associated with the pathological processes of Alzheimer’s
disease plays a causal role in neurovascular uncoupling in this
age-related neurodegenerative diseases as well. Age-related
endothelial dysfunction is reversible, which offers a potential
target for therapeutic interventions for improvement of neuro-
vascular coupling and, consequently, higher brain function in
the elderly. Recent studies demonstrate that treatment of aged
mice with resveratrol, which decreases cellular ROS produc-
tion and downregulates NADPH oxidases (49, 204, 291, 295–
297), restores microvascular endothelial function and neuro-
vascular coupling in the brain of aged mice (279). It is possible
that rescued neurovascular coupling contributes to the benefi-
cial effects of resveratrol treatment on cognitive function
reported in aged rodents (155, 190, 324). It is plausible to
hypothesize that aging and age-related increased oxidative
stress also impair other mechanisms of neurovascular signal-
ing, such as the neuronal production of nitric oxide (321),
astrocytic Ca2�-dependent signaling (164), and metabolism of
arachidonic acid (137), the K�-dependent mediation of vascu-
lar dilation and the metabolism and action of glutamate (2).
Since ischemic injury of pericytes has been causally linked to
impaired neurovascular response (100) and the number peri-
cytes and pericyte coverage of microvessels tend to decrease
with age (288); it is also possible that age-related alterations of
pericytes contribute to neurovascular uncoupling. Future stud-
ies are warranted to experimentally test the aforementioned
hypotheses.

As discussed above, age-related IGF-1 deficiency was
shown to significantly contribute to cerebromicrovascular al-
terations associated with aging (241, 294). Each cell type
involved in neurovascular coupling (i.e., neurons, astrocytes,
endothelial cells) abundantly expresses IGF-1 receptors and is
a known target of IGF-1 (241). Importantly, we recently found
that experimentally induced circulating IGF-1 deficiency im-
pairs neurovascular coupling in the mouse somatosensory cor-

tex via dysregulation of astrocytic glutamate-signaling, impair-
ing production of astrocyte-derived EETs and increasing pro-
duction of 20-HETE (275). In addition, IGF-1 deficiency also
promotes cerebral oxidative stress and endothelial dysfunction,
which also contribute to neurovascular uncoupling (273). Fu-
ture studies are warranted to determine whether IGF-1 defi-
ciency also predicts impaired functional hyperemia in elderly
patients and to assess the efficacy of IGF-1 treatment to
improve neurovascular coupling responses in animal models of
aging.

Potential consequences of neurovascular uncoupling in
aging. Because the increased energy consumption has to be
fueled by adequate amount of nutrients during neuronal acti-
vation (126), the attenuated increase in CBF to neuronal
activation most likely disrupts the balance between the meta-
bolic demand of the functioning cerebral tissue and the supply
of nutrients (201). Therefore, age-related neurovascular uncou-
pling is expected to impair neuronal function in the brain. This
concept is supported by studies conducted in aged laboratory
animals and elderly humans (70, 252, 269, 322) showing that
dysfunction of neurovascular coupling is associated with cog-
nitive decline (243). The direct link between neurovascular
uncoupling and cognitive decline is supported by recent studies
showing that pharmacological treatment of young mice with
inhibitors of the mediators of neurovascular coupling impairs
functional hyperemia, which is associated with impairment of
spatial and recognition memory (260). Importantly, elderly
patients living with AD exhibit exacerbated impairment of
neurovascular coupling responses (113, 127, 217), which may
be contributing to worsening cognitive outcomes over time.
Factors impairing neurovascular signaling, such as hyperten-
sion and accumulation of A� peptide in Alzheimer models
(120–122, 141, 186, 268), are also associated with cognitive
impairment in laboratory animals, which seem to be reversible
by pharmacological treatments that improve neurovascular
coupling (186, 268). On the basis of these observations, the
neurovascular unit could be considered as a target for pharma-
cological intervention to reverse/delay cognitive decline asso-
ciated with both aging and age-related neurodegenerative dis-
eases.

Gait dysfunction of varying severity is present in a signifi-
cant portion of elderly patients (189, 305) and is a major
contributor to falls and predicts increased risk of institutional-
ization and death (1, 303, 304). Frontal executive functions
play an important role in the cortical control of gait and there
are studies extant suggesting that an association exists between
neurovascular coupling and gait speed (242, 245). Future
studies should determine whether pharmacological treatments,
which improve neurovascular coupling are also effective in
improving gait in the elderly.

Vasomotor responses associated with spreading depolariza-
tion highlight additional potential pathophysiological roles for
neurovascular coupling responses. Cortical spreading depolar-
ization is an intense depolarization wave that propagates in the
cortex, triggering rapid vasoconstriction, followed by a pro-
nounced hyperemic response and then a long-lasting oligemic
phase (often called post-spreading depolarization oligemia) (7,
8, 21, 22, 44, 78, 111, 174, 300). There is strong clinical and
experimental evidence that cortical spreading depolarizations
occur after intracerebral hemorrhage, ischemic stroke, sub-
arachnoid hemorrhage, as well as traumatic brain injury (7, 8,
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13, 65–67, 105, 107, 112, 161, 193, 225, 227, 307, 316, 318).
The clinical significance of these observations lies in the fact
that injury-induced depolarizations (e.g., in stroke) propagate
along ischemic, but viable, areas adjacent to the damaged core
areas, exacerbating the mismatch between blood supply and
metabolic demand and thereby worsening the clinical outcome
(76, 106). Importantly, age-related alterations in neurovascular
coupling pathways significantly increase both the incidence of
spreading depolarizations and exacerbate their functional con-
sequences (44, 78, 111, 174).

Perspectives

In the present review we have outlined the current under-
standing of mechanisms and consequences of age-related im-
pairment of autoregulation of CBF, endothelial dysfunction,
and neurovascular uncoupling (Fig. 4). Better understanding
the specific age-related cellular and molecular mechanisms that
underlie cerebromicrovascular aging is imperative to create
usable tools for preventive and therapeutic interventions for
age-related cognitive impairment. Future studies should pro-
vide answers to a number of critical questions about microvas-
cular dysregulation in VCID. What is the functional role of
mitochondrial oxidative stress in microvascular aging? What
are the vascular effects of newly discovered mechanisms of
aging? How astrocyte phenotype and function are altered in
aging? What is the role of dysregulation of glymphatic flow in
VCID? What therapeutic interventions are effective to protect
the aging glymphatic system? Under what circumstances do
perivascular macrophages contribute to cerebromicrovascular
dysregulation and the pathogenesis of VCID? In the past

decade significant progress has been made to understand the
role of pericyte dysfunction in the pathogenesis of VCID (20,
224, 301, 314, 315). Treatments that target pericytes, prevent-
ing/reversing microvascular dysregulation in aging, are needed
to be tested. An important area of future research is the link
between age-related cerebromicrovascular dysregulation and
its role in diffuse white matter disease. The vast majority of
previous studies have focused on mainly the somatosensory
cortex, whereas age-related microcirculatory alterations in the
white matter are less understood. Furthermore, mechanisms
involved in autoregulation of CBF and neurovascular coupling
are potentially affected by medications used in the elderly. For
example, recent studies indicate that widely used, non-steroid
anti-inflammatory drugs (NSAIDs), given orally in usual ther-
apeutic doses, inhibit neurovascular coupling in humans (32,
259). A number of drugs (including calcium antagonists) have
also the potential to interfere with cerebral autoregulation.
Potential cerebrovascular effects of these drugs should be
considered in elderly patients, especially in those with ad-
vanced atherosclerosis of the arteries supplying the brain, as
they may increase the risk of cerebral ischemia. Furthermore,
the complex effects of multiple comorbidities and aging (e.g.,
co-occurrence of hypertension and obesity in geriatric patients
with the metabolic syndrome) must be studied simultaneously.
Most extant studies investigate the effects of only one disease
state in young animal models. To mimic real-life conditions,
animal models of aging have to be utilized and interaction of
various risk factors has to be elucidated. A critical area for
future research will be to develop therapeutic interventions that
improve autoregulatory protection of the microcirculation and

Fig. 4. Functional vascular contributions to cognitive impairment and dementia in aging. The schematic representation illustrates the interrelated microvascular
mechanisms that contribute to age-related cognitive decline. The model highlights that age-related IGF-1 deficiency compromises the neurovascular unit,
impairing the function of astrocytes, endothelial cells and smooth muscle cells. The resulting endothelial dysfunction and decreased NO bioavailability, increased
oxidative stress, and/or dysregulation of astrocytic mediators contribute to neurovascular uncoupling, which impairs cognitive function due to inadequate supply
of oxygen and nutrients to active brain regions. Age-related impairment of microvascular homeostasis, including alterations of myogenic autoregulatory
mechanisms, renders the aged brain more susceptible to damage induced by comorbid conditions such as hypertension. In particular, the model predicts that
impaired myogenic adaptation to hypertension promotes both the pathogenesis of cerebral microhemorrhages and blood-brain-barrier disruption, contributing to
neuronal damage and cognitive decline. Aging and age-related IGF-1 deficiency also promote structural remodeling of the cerebral microcirculation, including
microvascular rarefaction, contributing to an age-related decline in cerebral blood flow. They also promote structural maladaptation to hypertension, increasing
microvascular fragility. Additionally, age-related microvascular proinflammatory alterations, impairment of vascular clearance of toxic waste products (such as
A�) and metabolic by-products from the brain parenchyma and impaired trophic function of the microvascular endothelium that regulate stem cell self-renewal
and differentiation in neurogenic niches could be implicated in impaired cognitive function.
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prevent microhemorrhages. Finally, future studies should de-
termine whether interventions that target the microvasculature
can prevent and/or reverse cognitive decline associated with
aging and age-related pathologies.
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