
Functional Verification Methodology Based on Formal Interface Specification
and Transactor Generation

Felice Balarin
Cadence Berkeley Laboratories
1995 University Ave Suite 460

Berkeley CA 94704
felice@cadence.com

Roberto Passerone
Dip.Informatica e Telecomunicazioni

Universit degli Studi di Trento
Via Sommarive 14 - Povo, Italia

roberto.passerone@unitn.it

Abstract

Transaction level models promise to be the basis of the
verification environment for the whole design process. Re-
alizing this promise requires connecting transaction level
and RTL blocks through an object called a transactor, which
translates back and forth between RTL signal-based com-
munication, and transaction level function-call based com-
munication. Each transactor is associated with a pair of in-
terfaces, one at RTL and one at transaction level. Typically,
however, a pair of interfaces is associated to more than one
transactor, each assuming a different role in the verification
process. In this paper we propose a methodology in which
both the interfaces and their relation are captured by a sin-
gle formal specification. By using the specification, we show
how the code for all the transactors associated with a pair
of interfaces can be automatically generated.

1. Introduction

Transaction level models have been traditionally used to
clarify design requirements, and for early architectural per-
formance estimations. Typically, these models could not in-
teract with RTL blocks, so once the design of these blocks
started, transaction level models would soon become obso-
lete. To improve verification productivity, there is a growing
trend toward establishing transaction level models as the ba-
sis of the verification environment for the entire design pro-
cess, which requires connecting transaction level and RTL
blocks. However, they often communicate in a very differ-
ent way, so they cannot be connected directly, but rather
through an object called a transactor. The purpose of trans-
actors is to translate back and forth between RTL, signal-
based communication, and transaction-level, function-call
based communication.

Each transactor is associated with a pair of interfaces,
one at RTL and one at transaction level, but typically more

than one transactor is associated with each pair of inter-
faces. Different transactors correspond to roles of differ-
ent actors in a protocol, typical ones being master, slave,
and monitor. The three transactors must deal with differ-
ent actions at the higher level, such as sending data as op-
posed to receiving or monitoring the data. In addition, RTL
signals which are inputs for one transactor may be outputs
of another, and vice versa. For these reasons, the transac-
tors required for characterizing a single interface are often
described as three distinct entities, despite the fact that all
three transactors implement the same protocol.

In this paper, we propose a methodology where both the
interfaces and their relation are captured by a single for-
mal specification. This specification is loosely based on
the Property Specification Language (PSL) [16], and can
be thought of as an extension of assertion based verifica-
tion. We also describe a technique to automatically gener-
ate transactors from such a specification. The transactors
are generated either in some flavor of C/C++, in Verilog,
or in a combination of the two. We also describe the archi-
tecture of the transactor generation software. Because only
a slim front-end depends on the input language, the tool
can be easily extended to specification formalisms based
on languages that are semantically similar to PSL, but syn-
tactically quite different, such as System Verilog Assertions
(SVA) [19]. Finally, we describe three case studies to show
that automatically generated transactors can indeed replace
hand-crafted ones in realistic designs.

1.1. Related work

There have been many proposals for formal interface
specifications. In particular, two formalisms have emerged
as a foundation of most of the approaches: regular expres-
sions [8] and temporal logic [15]. The formalisms are sim-
ilar in that they can both be expressed with finite-state au-
tomata. More recently, standard languages have been pro-
posed to specify system properties. Two notable examples

3-9810801-0-6/DATE06 © 2006 EDAA

are PSL [16] and SVA [19]. They are both based on tem-
poral logic logic, but both of them also include a capability
to specify regular expressions. In PSL, such an extension is
called Sequential Extended Regular Expressions (SEREs).
We have found this part of PSL, with some extensions, to
be the most suitable for our purpose.

The properties specified in PSL or SVA can be used as
a front-end to formal verification tools. In addition, many
simulation environments are capable of generating simula-
tion monitors from such properties, so that they can be veri-
fied by simulation, as well. Oliveira and Hu [12] have stud-
ied the suitability of regular expressions to specify complex
interfaces for the purpose of generating simulation moni-
tors. They have found that certain extensions to regular ex-
pressions to model pipelining and data can make interface
specification significantly simpler and more compact. Our
work is of similar nature, but our goals is complete inter-
face specification and transactor generation.

As indicated by the discussion above, most of the previ-
ously published work is focused on generating simulation
monitors, and almost nothing has been published on more
general transactors (a monitor is a special case of a trans-
actor). However, transactor generation has attracted some
industrial interest, including TransactorWizard from Struc-
tured Design Verification [22], Bus Compiler from CoW-
are [10], and Cohesive from Spiratech [5].

Generating a simulation monitor in a C-like program-
ming language from a regular expression is usually a two-
step process. First, an equivalent finite-state automaton is
generated for the regular expression. This is a fairly stan-
dard procedure, described in [8]. The second step is code
generation for the finite state automaton, e.g. [3]. Generat-
ing a simulation monitor in HDL could in principle follow
the same two-step procedure, but there are also direct ways
to generate circuits from regular expressions [6, 17]. These
technologies form a foundation of transactor generation as
well, but they need to be adjusted in some details.

Our approach to transactor synthesis is based on the
synthesis of converters between incompatible protocols.
There are several techniques that can be used to achieve
the correct result, including the use of signal transition
graphs [4], matching of constructs in hardware descrip-
tion languages [11], and approaches based on finite au-
tomata [14, 1, 13]. We follow the latter approach, which fits
well with our specification mechanism and that can be eas-
ily supported by formal analysis tools.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the formalism to specify interfaces and
their relations. In Section 3 we present the architecture of
the transactor generation tool. Code generation techniques
are described in Section 4, and in Section 5 we present sev-
eral case studies. Conclusions are given is Section 6.

2. Transactor specification

In this section we introduce our formalism by specify-
ing the transactor protocol used in the Utopia interface [21].
Our presentation is simplified and somewhat incomplete,
but it nevertheless captures the essence of the protocol,
which is typical of many other similar protocols.

Utopia is a standard protocol used to connect devices im-
plementing PHY and ATM layers [21]. Here we focus on
the Receive part which covers a transfer of an ATM cell
from a PHY to an ATM device. The latter is often referred
to as Master, because it generates the clock that drives the
transfer. For the same reason, the PHY device is referred to
as Slave.

A possible design and its transaction level model are
shown in Figure 1. At the transaction level, the PHY and
ATM devices communicate through a simple mailbox. The
transaction level PHY model calls the function SendCell
to put a cell in the mailbox where it is picked up by the
ATM device model, when it calls GetCell. At RTL, the
PHY device asserts the Clav signal when it has a new cell
available. After the ATM device confirms that it is ready to
receive by asserting the Enb signal, the PHY device starts
transmission by setting the Data signals and asserting the
Soc signal to indicate the start of a cell. Thereafter, the
PHY device may put fresh Data on each cycle that fol-
lows one in which Enb is asserted, or it may temporarily
stop the transfer by de-asserting the Clav signal. The pro-
cess continues until all 53 bytes of the cell are transferred.

ATM
Dev.
RTL

PHY
Dev.
RTL

ATM
Dev.
FVP

PHY
Dev.
FVP FVP

RTL

GetCell

Enbl
Clk
Addr[0..4]

Data[0..15]
Clav
Soc

SendCell
cell

Figure 1. Utopia Receive interface

Transactors deal with the signals crossed by the thick line
in Figure 1. Typically, there are at least three transactors as-
sociated with such a pair of interfaces, as shown in Figure 2.
All three transactors essentially describe the same relation-
ship over the same signals. The difference is that signals
that are inputs to one transactor may be outputs to a differ-
ent one. The relationship specifies which sequences of RTL
signals correspond to which transaction-level calls. It is thus
natural to call this relationship a protocol. It is clearly in-

efficient to repeat the specification of the same protocol for
each transactor, so we explore an alternative, where all three
transactors are generated from a single protocol specifica-
tion.

PHY
Dev.
FVP

PHY
Dev.
RTL

ATM
Dev.
FVP

PHY
Dev.
RTL

ATM
Dev.
RTL

ATM
Dev.
RTL

FVP
RTL

FVP
RTL

FVP
RTL

Data[0..15]
Clav
Soc
Enbl
Clk
Addr[0..4]

SendCell

Data[0..15]
Clav
Soc
Enbl
Clk
Addr[0..4]

GetCell

Data[0..15]
Clav
Soc

GetCell

Addr[0..4]
Clk
Enbl

SendCell

cell cell

cell

M
A

ST
E

R

SL
A

V
E

M
O

N
IT

O
R

Figure 2. Master, Slave and Monitor transac-
tors for Utopia Receive interface

A portion of a possible specification of Utopia Receive
is shown in Figures 3 and 4. The specification is a conjunc-
tion of four “SEREs”. The largest one, dealing mostly with
RTL signals, is shown in Figure 3, and some of the others in
Figure 4. We have put SEREs in quotation marks, because

// it starts with Clav asserted, waiting for Enb asserted
(!Soc && Clav && Enb)[*];
(!Soc && Clav && !Enb);�

// transfer the first cell, Enb stays active ...
(Soc && Clav && Data==cell[0] && !Enb)�����

// ... or Enb inactive for a while
...�

;�
// repeat 52 times, for cell[1] ... cell[52]
// first, Clav can be inactive for a while�

(!Soc && !Clav && Enb)[*];
(!Soc && !Clav && !Enb)�

[*];
// then, transfer cell ...�

// ... with Enb staying active ...
(!Soc && Clav && Data==cell[i+1] && !Enb)�����

// ... or Enb inactive for a while
...�

�
[*52;;i]

Figure 3. Receive interface RTL signals.

the code in Figures 3 and 4 contains extensions that we find
necessary to completely specify interfaces, but which are
not a part of the standard SERE formalism. In the following
paragraphs, we motivate these extensions. The first exten-
sion is the addition of data, e.g. in Figure 3 we use an array
of 53 bytes called cell. The second addition is loop coun-
ters, e.g. in Figure 3 we associate counter i (which ranges
from 0 to 51) with the loop that repeats 52 times. We also
use i to index the cell array. Both of these extensions
(data and loop counters) make it very easy to add many ex-
tra state bits to the interfaces specification, which is likely
to cause a state-space explosion in formal verification. How-
ever, for transactor generation, neither one represents a ma-
jor problem, as the generated code represents them as com-
pactly as the original specification.

// Sendcell is followed by asserting Clav
(!Clav && B(SendCell, inCell) && inCell==cell);
(!Clav && N(SendCell))[*];
(Clav && N(SendCell));
(N(SendCell))[*]; (E(SendCell))

// GetCell is preceeded by a complete cell transfer�
N(GetCell)[*]; B(GetCell); N(GetCell)[*]

�
&&�

[*];�
(Clav && !prev(Enb)); [*]

�
[*53];�

;
(E(Getcell, outCell) && outCell==cell);

// SendCell and GetCell come in non-overlapping pairs,
// GetCell finishes before the coresponding SendCell�

(N(SendCell))[*]; (B(SendCell, inCell));
(N(SendCell))[*]; (E(SendCell))�
&&

�

(N(GetCell))[*]; (B(GetCell); (N(GetCell))[*]�
;

E(Getcell, outCell)

Figure 4. Receive interface, other SEREs.

In addition to data and loop countersi, another class of
extensions must be included to deal with function-call based
transactions at the higher level. An example of this exten-
sion is shown in Figure 4. To each function call we associate
a three-valued variable. The variable takes value B (for be-
gin) when the function begins to execute, value E (for end)
when the execution ends, and value N (for neither) at all
other times. In addition, if a function has arguments, we as-
sociate them to the B value of the variable, e.g. inCell in
B(SendCell, inCell). Similarly, if the function re-
turns some value, we associate it to the E value of the vari-
able, e.g. outCell in E(getcell, outCell).

3. Software architecture

Our transactor generation methodology is supported by
a prototype synthesis software that accepts the declara-
tive description of the RTL and transaction-level protocols,
and generates appropriate code to support different proto-
col roles. As discussed in the introduction, only the front-
end layer is language dependent. We support a simplified
PSL parser that has been extended with the required lan-
guage features discussed in the previous section.

The input specification is divided in three sections. The
first section is used to declare the variables and the func-
tions that are used or exported by the transactor(s). This
section extends the PSL language, since PSL simply inher-
its the declarations from the host language. The middle sec-
tion is the PSL-like description of the translation protocol,
as described in Section 2. This section is independent of
the particular role played by a transactor implementing the
protocol. This is necessary, as we require that one proto-
col specification be used to construct several different trans-
actors. The third and final section of the input is used to
add transactor-specific information. Here, for each transac-
tor implementing the protocol, specific directions are as-
signed to the variables and functions. More customization
options can be made available in this section. For instance,
a transactor may declare certain quantities to be constant, or
implement only a subset of the available functionality. This
could allow our synthesis technique to greatly simplify the
transactors on a as-needed basis, thus reducing simulation
time while maintaining compliance with the protocol.

The front-end builds an abstract syntax tree that repre-
sents the regular expression that describes the protocols.
The abstract syntax tree is further translated into a finite
state machine representation that we use as the basis to gen-
erate the executable code. Section 4 below provides details
of how this is accomplished and discusses the complex-
ity of the translation in terms of both time and space. In
addition, our parser interprets the special transactor direc-
tives and creates the necessary transactor-specific informa-
tion. This, together with the state machine representation of
the protocol, is passed to the code generation back-end.

4. Code generation

The starting point of code generation is the finite state
machine (FSM) derived from the protocol specification by
the procedure described in [8]. The states of the machine
correspond to nodes in the abstract syntax tree generated
by the parser. Therefore, the number of states grows only
linearly with the size of the input specification. The states
are labeled with expressions in sum-of-product form, where
each literal is either a boolean literal, i.e. a boolean vari-
able or its negation, a data literal, i.e. an expression of the

form ���	�
���� , where ��� and �� are expressions over data
variables, or an action literal, i.e. an expression of the form�������

, �
�����

, or �
�����

, where
�

is a transaction-level func-
tion, indicating that the execution of

�
is beginning, ending,

or neither, respectively.
For a given transactor, actions are designated as served

or used. The former designation indicates that the function
is implemented by the transactor and called by other trans-
action level models, and the latter indicates that the func-
tion is called, but not implemented by the transactor. In ad-
dition, boolean and data variables are designated as input,
output, or state variables. This leads to the following classi-
fication of data literals of the form �����
���� . A data literal
in which only input and state variables appear (but no out-
put variables) is called an input constraint. A data literal in
which either ��� is just an output variable and ��� contains no
output variables, or vice versa, is called an output assign-
ment. All other data literals are called output constraints.

To account for possible non-determinism in the specifi-
cation, we maintain a set of possible current states for the
FSM, rather than a single current state. This corresponds
to performing the subsets construction [8] on-the-fly. How-
ever, in our case, the procedure is performed only partially
for the specific input sequence, thus avoiding the associated
exponential explosion.

No matter what the target language is, the generated
code must implement the served functions, and execute the
transactor correctly. Overall, the transactor execution en-
gine must perform the following tasks in each execution
step:

1. for the current inputs, find enabled transitions for all of
the current states,

2. choose values of boolean and data output variables,
served functions to return from, and used functions to
call, consistent with at least some of the enabled tran-
sitions,

3. disable transitions inconsistent with choices in step 2,

4. update the set of current states by executing enabled
transition, or report a failure if no transitions are en-
abled.

4.1. C++ code generation

In our approach to C++ code generation, the code for the
transactor execution engine is not transactor specific, and
thus it can be stored in a run-time library. The user can cus-
tomize the module implementing step 2 to implement alter-
native non-determinism resolution approaches.

The code generated for each transactor contains only im-
plementations of served functions, code constructing a data
structure representing the FSM which is then traversed by
the execution engine, and code to evaluate input constraints,

and execute assignments to output and state variables. The
size of the generated code is proportional to the size of the
FSM, which in turn is proportional to the size of the origi-
nal specification. The run-time memory is also proportional
to the size of the FSM, because the set of states are repre-
sented as binary bit-vectors whose size is equal to the num-
ber of states.

In general, a transactor needs to interface both to trans-
action level modules through served and used functions,
and to RTL modules through ports. The former is natural
for C++ code, but the latter can be done in different ways,
supported by different verification environments. Our ap-
proach is to generate code based on a generic notion of a
port, and to use run-time wrappers to specialize ports for
the particular verification environment used. For example,
several simulators support connecting SystemC [7] ports di-
rectly to RTL ports. So, we have developed a run-time wrap-
per which creates SystemC ports out of generic ports. We
have also developed alternative run-time wrappers that can
be used with the TestBuilder environment [20].

4.2. Verilog code generation

Our generated Verilog code implements the four steps of
the transactor execution engine as a sequence of four com-
binational blocks. In other words, an FSM transition is ex-
ecuted in a single cycle. Step 2 of the algorithm is isolated
in a separate module for possible customization by the user.
As for C++ code, the size of the generated Verilog code is
proportional to the size of the FSM.

As mentioned earlier, transactors need to offer both func-
tion calling interfaces to transaction level models, and port
interfaces to RTL models. For Verilog code, the latter is nat-
ural, while there is no clear best way to do the former. Our
generated code uses a simple handshaking protocol to indi-
cate the beginning and the end of a function call. Alterna-
tively, we could use Verilog tasks for the same purpose.

4.3. SCE-MI compliant transactor

Standard Co-emulation Modeling Interface (SCE-MI)
is a protocol supporting transaction-based accelera-
tion (TBA), where transactors consist of a SW part
and a HW part communicating through SCE-MI de-
fined ports [18]. The HW part (responsible for most of the
computation) can then transparently be simulated by a sim-
ulator, or emulated by an accelerator supporting SCE-MI.
This clear advantage of SCE-MI is traded-off with the ad-
ditional burden on the designer of creating SCE-MI com-
pliant transactors. We have alleviated this burden by
implementing a generator of SCE-MI compliant transac-
tors from formal protocol specifications.

hand spec. C++ Verilog SCE-MI SCE-MI
design C++ Verilog
ATM 1012 60 634 299 72 313

UART 55 53 450 181 126 169
SoC 64 94 564 206 164 248

Table 1. Transactor generation case studies.

The generated code consists of two parts. The SW part,
written in C++, implements functions served by the transac-
tor. The implementation of the served function does no pro-
cessing, but it simply forwards function arguments to the
HW part through SCE-MI defined ports, and then waits for
the HW part to indicate that the function must return (possi-
bly with a return value also communicated through SCE-MI
defined ports). The HW part is written in Verilog and it is
similar to Verilog-only code, except that it uses SCE-MI de-
fined ports to communicate function arguments and return
values to the SW part.

In this scheme, only the transaction level arguments and
return values cross the HW-SW boundary, and all the de-
tailed and usually much higher bandwidth RTL signal ma-
nipulation takes place on the HW side. This is important be-
cause the HW-SW bandwidth may limit the gains obtained
by emulating the HW part.

5. Case studies

We have applied our transactor generation techniques to
three case studies. In each of the three cases we started from
an existing design coupled with a transaction level model of
at least test-benches, if not the whole design. Every case in-
cluded several hand written transactors based on standard
protocols. In every case, we formally specified the proto-
col, and used our system to generate transactors. We then
replaced hand written transactors with the ones we gener-
ated, and verified that the overall behavior did not change.
Also, there was no observable change in simulation speed
in any of the cases.

The first test case is an ATM switch design, which at
its interfaces follows the Utopia protocol to transfer ATM
cells. The second test case is a UART design that commu-
nicates to the outside world through the On-Chip Periph-
eral Bus (OPB) protocol [9]. Finally, the third test case is a
complex SoC design, for which there exists a partial trans-
action level model in SystemC. This model communicates
with the rest of the system (written in RTL Verilog) through
the AMBA bus [2].

In Table 1 we show the number of lines of code of
the hand written transactors (in column 1), formal proto-
col specifications (column 2), and the size of generated
C++, Verilog and SCE-MI compliant code (columns 2-7, re-

spectively). The ATM switch and the UART design did not
use general purpose transactors, but rather some code spe-
cific to this test-bench which acted as a transactor. Thus, in
these cases the transactors were rather small, and very sim-
ilar in sizes to formal protocol specification. It is impor-
tant to notice that our protocol specification did not cover
complete protocols, but only the features exercised by the
test-benches. The size of the generated transactors is con-
siderably larger than that of hand written ones, but still rel-
atively small, and, as we explained earlier, growing only
linearly with the size of the formal specification. Even in
this case, our approach has the advantage that the formal
specification can be shared between transactors for differ-
ent protocol roles and in different languages. In the case of
ATM switch, a full fledged UTOPIA transactor was used.
It is much larger not only than the protocol specification,
but also than the generated code. However, it also has much
larger functionality than the transactor generated from our
protocol specification which is limited to features exercised
by this particular test-bench.

6. Conclusions

The value of transaction level models is fully realized
only if they can be connected to RTL models. The devel-
opment of transactors connecting the two levels is complex,
costly and error-prone. We have proposed a methodology
where interface protocols are specified formally only once
in a way that is very similar to assertions used in verifi-
cation. Transactors are then automatically generated from
such a specification. Many transactors may be generated
from a single interface specification, depending on which
part of the design is being verified, what modes of the inter-
face are being exercised, and which verification technology
is being used (e.g. simulation vs. acceleration). In addition,
formal interface specifications can be used as assertions and
verified either statically or dynamically. We believe that for-
mal interface specification and automatic transactor genera-
tion reduce development effort, foster transaction based ac-
celeration, enable more reuse, and allow designers to ex-
plore more design options.

References

[1] J. Akella and K. McMillan. Synthesizing converters be-
tween finite state protocols. In Proceedings of the Inter-
national Conference on Conputer Design, pages 410–413,
Cambridge, MA, October 14 - 15 1991.

[2] AMBA Home Page. http://www.arm.com/products/-
solutions/AMBAHomePage.html.

[3] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska,
L. Lavagno, A. Sangiovanni-Vincentelli, E. M. Sentovich,
and K. Suzuki. Synthesis of software programs for embed-
ded control applications. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 18(6):834–
49, June 1999.

[4] G. Borriello and R. H. Katz. Synthesis and optimization
of interface transducer logic. In Proceedings of the Inter-
national Conference on Conputer Aided Design, November
1987.

[5] Cohesive. http://www.spiratech.com.
[6] R. W. Floyd and J. D. Ullman. The compilation of regular

expressions into integrated circuits. J. ACM, 29(3):603–622,
1982.

[7] T. Grotker, S. Liao, G. Martin, and S. Swan. System design
with SystemC. Kluwer Academic Publishers, 2002.

[8] J. Hopcroft and J. Ullman. Introduction to Automata Theory,
languages and Computation. Addison Wesley, 1979.

[9] IBM. On-chip peripheral bus. available at
http://www-306.ibm.com/chips/techlib/techlib.nsf/-
productfamilies/CoreConnect Bus Architecture.

[10] T. Michiels. Generating TLM bus models from formal proto-
col specifications, Feb. 2004. presented at ����� European Sys-
temC Users Group Meeting, slides available at http://www-
ti.informatik.uni-tuebingen.de/ systemc/ninth escugm.html.

[11] S. Narayan and D. D. Gajski. Interfacing incompatible pro-
tocols using interface process generation. In Proceedings
of the � "!�# Design Automation Conference, pages 468–473,
San Francisco, CA, June 12 - 16 1995.

[12] M. T. Oliveira and A. J. Hu. High-level specification and
automatic generation of IP interface monitors. In Proceed-
ings of the 39th ACM/IEEE Design Automation Conference,
pages 129–134, June 2002.

[13] R. Passerone, L. de Alfaro, T. A. Henzinger, and A. L.
Sangiovanni-Vincentelli. Convertibility verification and con-
verter synthesis: Two faces of the same coin. In Proceedings
of ICCAD’02, November 2002.

[14] R. Passerone, J. A. Rowson, and A. L. Sangiovanni-
Vincentelli. Automatic synthesis of interfaces between in-
compatible protocols. In DAC, San Francisco, CA, June
1998.

[15] A. Pnueli. The temporal logic of programs. In 18th IEEE
Symposium on Foundations of Computer Science, pages 46–
57, Oct. 1977.

[16] Property Specification Language: Reference Manual. avail-
able at http://www.accellera.org/pslv101.pdf.

[17] A. Seawright and F. Brewer. Clairvoyant: a synthesis sys-
tem for production-based specification. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 2(2):172 –
185, June 1994.

[18] Standard Co-Emulation Modelling Interface (SCE-MI):
Reference Manual (DRAFT), May 2003. available at
http://www.eda.org/itc/scemi.pdf.

[19] System Verilog 3.1: Accellera’s Extensions to Verilog.
http://www.eda.org/sv/SystemVerilog 3.1 final.pdf.

[20] TestBuilder. http://www.testbuilder.net.
[21] The ATM Forum Techncal Committee. Utopia

Level 2, Version 1.0, June 1995. available at
http://www.atmforum.com/standards/approved.html.

[22] TransactorWizard. http://www.sdvinc.com.

