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A combinatorial genetic perturbation strategy was applied to interrogate the yeast kinome on a genome-wide scale. We
assessed the global effects of gene overexpression or gene deletion to map an integrated genetic interaction network of
synthetic dosage lethal (SDL) and loss-of-function genetic interactions (GIs) for 92 kinases, producing a meta-network of
8700 GIs enriched for pathways known to be regulated by cognate kinases. Kinases most sensitive to dosage perturbations
had constitutive cell cycle or cell polarity functions under standard growth conditions. Condition-specific screens con-
firmed that the spectrum of kinase dosage interactions can be expanded substantially in activating conditions. An in-
tegrated network composed of systematic SDL, negative and positive loss-of-function GIs, and literature-curated kinase–
substrate interactions revealed kinase-dependent regulatory motifs predictive of novel gene-specific phenotypes. Our
study provides a valuable resource to unravel novel functional relationships and pathways regulated by kinases and
outlines a general strategy for deciphering mutant phenotypes from large-scale GI networks.

[Supplemental material is available for this article.]

The budding yeast Saccharomyces cerevisiae represents a powerful

model system for exploring the roles of eukaryotic gene families.

The yeast kinome, consisting of ;130 protein kinases, has been

interrogated globally by large-scale mass spectrometry studies

(Breitkreutz et al. 2010), consensus phosphorylation site analysis

(Mok et al. 2010), and phosphoprotein identification (Ficarro et al.

2002; Chi et al. 2007; Smolka et al. 2007; Albuquerque et al. 2008).

Nevertheless, our understanding of the functional roles of kinases

and the biological significance of phosphorylation events remains

incomplete and invites further systematic exploration.

Our limited understanding of phosphorylation networks re-

flects the complexity of the biological problem and is illustrated by

several key observations: (1) Most eukaryotic proteins are likely

phosphorylated (Gnad et al. 2009; Bodenmiller et al. 2010); (2) there

are large rosters of kinases in eukaryotic cells—approximately 500 in

human cells and 127 in yeast—corresponding to 2% of all genes in

each genome (Pawson 2007); (3) kinases typically have many sub-

strates (Sharifpoor et al. 2011), hampering detection of relevant tar-

gets; for example, ;550 distinct phosphorylation sites have been

identified on 308 proteins whose abundance was influenced by the

activity of a single cell cycle kinase (Cdk1) (Holt et al. 2009); (4) Re-

cent mass spectrometric analyses of yeast kinases and phosphatases

(Bodenmiller et al. 2010; Breitkreutz et al. 2010), as well as tran-

scriptional profiling of kinase mutants (van Wageningen et al. 2010),

have emphasized the complex cross-talk between kinase pathways.

Large biochemical surveys of phosphopeptide profiles pro-

vide essential information about the phosphoproteome. Yet, co-

gent interpretation of these data sets and other information about

the kinome demands a complementary genetic approach that

provides functional information about kinase regulatory path-

ways. Synthetic genetic array (SGA) analysis automates the anal-

ysis of genetic interactions (GIs), enabling the systematic explo-

ration of gene function (Tong et al. 2001, 2004; Dixon et al. 2008).

In particular, SGA has been used extensively to map digenic in-

teractions among deletion alleles of the ;5000 nonessential yeast

genes (Tong et al. 2004; Costanzo et al. 2010). Double mutants with

a more severe fitness defect than expected (based on a model for

the combined fitness of the individual single mutants) represent

a negative GI, with synthetic lethality (SL) as the most extreme case.

Conversely, double mutants that display a less severe growth defect

than expected identify a positive GI (Baryshnikova et al. 2010b;

Costanzo et al. 2010). Most negative and positive GIs connect genes

belonging to different pathways, while a relatively small subset

overlaps with protein–protein interactions and connects genes in

the same pathway or protein complex (Dixon et al. 2009; Costanzo

et al. 2010). The global genetic network reveals large mega-clusters

of genes within the same general bioprocess and groups specific

genes into coherent pathways (Costanzo et al. 2010).

A complementary approach to exploring GIs using loss-of-

function alleles is analysis of interactions associated with gain-of-

function alleles, including those causing overexpression or mis-

regulation (Sopko et al. 2006a; Dixon et al. 2009). Synthetic dosage

lethality (SDL) is based on the concept that increased gene expres-

sion levels may not affect growth of a wild-type strain, but may cause

a clear phenotype in strains disrupted for specific pathway compo-

nents or interacting proteins with a related function (Measday et al.
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2005; Sopko et al. 2006a). Indeed, we have shown that SDL screening

of a cyclin dependent kinase, Pho85, can enrich for substrates as well

as components of opposing pathways due to inappropriate gene

regulation in sensitized genetic backgrounds (Sopko et al. 2006a,b,

2007; Huang et al. 2009; Zou et al. 2009).

In this study, we explored yeast kinase function using different

systematic genetic approaches to identify precise genetic conditions

in which specific kinases are required for cellular fitness. With ki-

nase query genes, we performed 92 global SDL screens and 75 sys-

tematic SGA GI screens. We used each data set to interrogate kinase

pathways and then integrated the two networks to identify re-

curring motifs that enabled functional predictions focused on ki-

nase regulatory pathways. Our study provides a general framework

for predicting phenotypic outcomes from different combinations of

genetic mutations, and delineates the functional wiring of complex

kinase signaling pathways by identifying highly enriched genetic

motifs.

Results

Synthetic dosage lethality screens of the kinome

We performed whole-genome SDL screens for 92 nonessential ki-

nase deletion mutants (Supplemental Tables S1, S2), to examine

the phenotypes of over 500,000 gene pairs (Supplemental Fig. S1;

Sopko et al. 2006a). Dosage lethal interactions were quantified

from colony size measurements, using the SGA score (Baryshnikova

et al. 2010b). We applied a stringent score threshold (|e| $ 0.2 and

a P-value <0.05), which resulted in a high-confidence data set con-

sisting of 934 dosage lethal interactions involving 69 different ki-

nases (Fig. 1A; Supplemental Fig. S2A; Supplemental Table S3). To

estimate false positive and false negative rates associated with our

kinase SDL screens, a random subset of kinase–gene pairs (3000

pairs) that fell both below and above this cutoff were confirmed

using an independent assay (re-transformation and serial spot as-

says; see Methods; Supplemental Table S4). Spot assays were also

quantified and assigned confidence scores according to the calcu-

lated standard deviation (Supplemental Table S4). Also, interactions

were only considered where the quantified growth difference was

observed in the kinase deletion strains by eye. In total, we estimated

a false discovery rate of ;46% and a false negative rate of ;50%

(Supplemental Table S4). This analysis confirmed that the quality of

our data set was comparable to other large-scale genetic (Baryshnikova

et al. 2010b; Costanzo et al. 2010) and physical interaction data

sets (Breitkreutz et al. 2010) and uncovered 410 additional SDL

pairs that were not identified in our high throughput assay

(Supplemental Table S4). In total, our SDL network represents >1300

interactions, of which ;700 are confirmed by serial spot dilutions as

a secondary confirmation assay (See Methods; Supplemental Table

S4). Our data set represents the first systematic and quantitative

assessment of dosage-sensitive interactions, expanding the roster of

dosage-sensitive GIs for yeast kinases by ;10-fold (Stark et al. 2006;

Breitkreutz et al. 2008; Sharifpoor et al. 2011).

We recently developed a literature-curated database for ki-

nases (Sharifpoor et al. 2011), termed the Kinase Information

Database (KID), which we used to produce a gold standard of

517 kinase–substrate (K–S) pairs (Supplemental Table S5; http://

www.moseslab.csb.utoronto.ca/KID/). Since SDL has been used to

identify targets of Pho85 (Sopko et al. 2006a), we assessed the

number of known K–S pairs in the SDL interaction network. We

were able to use 248 of the 517 gold standard pairs in our analysis

since (1) many well-characterized substrates in the gold standard

are targets of essential kinases that could not be screened using

our standard SDL screening pipeline (e.g., >90 targets for Cdc28)

(Sharifpoor et al. 2011) and (2) some known substrates were highly

toxic when overexpressed or were absent from the array, prevent-

ing detection of an SDL phenotype. Of the 248 known K–S pairs

that were tested in our SDL screens, 18 shared an SDL interaction

(Supplemental Fig. S3A), which represents a highly significant

15-fold enrichment (P < 10�53) compared to other nonsubstrate

interacting partners of these kinases in the KID database (KID

score <0) where no pairs were SDL. We repeated the analysis us-

ing another stringent negative control to avoid any bias. In this

test, 248 K–S pairs were randomly shuffled to generate a list of

nonsubstrate interacting partners (while preserving the degree

distribution of the actual K–S network) and we still observed

an enrichment of known substrates among SDL pairs (2.6-fold,

P < 10�4). For example, Cla4 phosphorylates septins (Cdc10,

Cdc12, and Shs1) during the G1/S transition of the cell cycle

(Dobbelaere et al. 2003; Schmidt et al. 2003; Versele and Thorner

2004) and we identified two of the five septins (CDC10 and SHS1)

in our SDL screen with a cla4D query strain. Also, the SDL screen

for DUN1, a DNA damage checkpoint regulator, identified an SDL

interaction with the ribonucleotide reductase inhibitor, SML1,

which is targeted for degradation by Dun1-mediated phosphor-

ylation during DNA damage (Supplemental Fig. S2A; Zhao and

Rothstein 2002). Our analysis indicates that SDL interactions can

be indicative of direct K–S relationships, emphasizing the use of

this resource in identifying future targets of kinases. However,

only a small portion of the kinase SDL network can be explained

by known direct substrate relationships (1.3%), emphasizing

that an SDL phenotype may also reflect other functional kinase–

protein relationships in vivo.

We next assessed the biological relevance of the SDL network

through comparison with other complementary large-scale data

sets. Genes in the kinome SDL data set were significantly enriched

for in vivo phosphoproteins (1.5-fold, P < 10�13; compiled in the

PhosphoGRID database; Stark et al. 2010), regulated phospho-

proteins in vivo (Bodenmiller et al. 2010) (1.2-fold, P < 0.05), and

in vitro phosphorylated proteins identified by protein chip ex-

periments (Ptacek et al. 2005) (1.5-fold, P < 10�5) (Supplemental

Fig. S3B,C). While the SDL data set did not show significant

overlap with physical interactions identified by traditional affinity

purification and mass spectrometry approaches (Gavin et al. 2002,

2006; Krogan et al. 2006), we observed an enrichment for protein–

protein interaction (PPIs) identified using two-hybrid (16-fold,

P < 10�25) (Ito et al. 2000, 2001; Yu et al. 2008) and protein over-

expression–mass spectrometry experiments (fivefold, P < 10�6)

(Supplemental Fig. S3D; Breitkreutz et al. 2010), which have re-

cently been shown to detect binary and/or transient interactions

(Yu et al. 2008; Breitkreutz et al. 2010), consistent with the

transient nature of kinase signaling pathways. Overall, our results

show that the SDL data set is not only enriched for direct sub-

strates and phosphorylated proteins, but also for physically inter-

acting partners of kinases and phosphatases, suggesting that the

SDL network is functionally informative.

We found that the number of SDL interactions varied signifi-

cantly for different kinases and for some kinases no SDL interaction

was detected. We sorted the 69 kinases exhibiting at least one SDL

interaction into two main groups, the ‘‘hub’’ SDL profile subclass,

which is composed of nine kinases with >25 interactions, and

a larger set of 60 kinases with a limited SDL profile, exhibiting

between one and 24 SDL interactions (Fig. 1A; Supplemental Fig.

S2A). Hub kinases often coordinate cell cycle progression and
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Figure 1. Properties of the kinome SDL interaction network. (A) Distribution of SDL (blue), negative (red), and positive (green) GIs across the kinome
using the stringent cutoff. The number of interactions for SDL-positive queries is plotted. (*) Kinases that were not screened for GIs. (B) Conditional
screening of hog1D and cmk1D mutants expands the SDL interaction network. SDL screening of a hog1D strain was performed on 0.2 M NaCl (osmotic
stress) and on 200 mM CaCl2 for a cmk1D strain. (C ) Representative serial spot dilution assays illustrating the SDL phenotype caused by overexpression of
RPB2 in a hog1D strain specifically in activating conditions. (D) Bar graph showing the prevalence of positive (green bar) and negative (red bar) GIs at the
intermediate SGA cutoff among kinase–gene (all), kinase–substrate, kinase–kinase, and kinase–kinase pairs that share the same target according to the KID
gold standard, as a fraction of gene pairs screened. Prevalence of SDL interactions for each subtype is shown in parallel (blue bar).
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cell polarity (Cla4, Elm1, Gin4, Hsl1, Pho85, Bud32, Kin4) or regu-

late cell wall integrity (Bck1 and Slt2) (11-fold, P < 10�4) and their

mutants tend to have phenotypic defects that are detectable in

standard growth conditions (e.g., elongated buds, flocculated colo-

nies, aberrant cell wall involving morphologies and fitness defects)

(Martin et al. 1996; Edgington et al. 1999; Asano et al. 2006; Breslow

et al. 2008; Watanabe et al. 2009), reflecting their requirement for

normal cell cycle progression. Consistent with these observations,

the hub kinases were also significantly enriched for interactions

with genes involved in cell cycle progression (11-fold, P < 10�4)

(Supplemental Fig. S2B), which suggests that high connectivity

in the SDL network may reflect a requirement for active kinases

throughout the cell cycle (Bodenmiller et al. 2010).

Condition-specific SDL screens reveal expanded
kinase SDL profiles

The SDL interactions derived from the hub kinase screens alone

overlapped with gene pairs co-annotated to the same biological

functions as frequently as the complete set of SDL interactions

identified from screening 92 kinase mutants (Supplemental

Fig. S2C). This observation suggests that almost all of the func-

tional connections associated with the SDL interactions identified

are derived from the hub kinase genes and that most kinases may

only be activated under specific genetic or environmental con-

ditions. To address this hypothesis, we performed SDL screens

for a subset of kinases under gene-specific biological conditions.

We first screened a hog1D kinase mutant strain for SDL in-

teractions in the presence of salt stress. Hog1 is required for the

high osmolarity glycerol response and translocates to the nucleus

to activate gene expression in response to osmotic stress (Reiser

et al. 1999). HOG1 failed to show any SDL interactions under

standard growth conditions (Fig. 1B). In contrast, a hog1D screen in

the presence of 0.2 M NaCl identified 78 SDL interactions (Fig. 1B;

Supplemental Table S6). The salt-specific hog1D SDL profile was

enriched for genes involved in transcription and chromatin

remodeling (P = 1.2 3 10�4), consistent with known features of

Hog1, which include binding to the RNA polymerase subunit Rpb2

at gene promoters (Supplemental Fig. S4A; Alepuz et al. 2003; Mas

et al. 2009). Spot dilution assays were used to confirm all SDL in-

teractions, including Rpb2 (Fig. 1C).

A second condition-specific SDL screen with a calmodulin-

dependent protein kinase, CMK1, also uncovered relatively few

interactions in standard growth conditions. CMK1 has reported

roles in stress response and is sensitive to calcium levels (Pausch

et al. 1991). We identified 11 new SDL interactions when the CMK1

SDL screen was conducted in the presence of calcium (Fig. 1B;

Supplemental Table S6) and the confirmed SDL interactions were

enriched for factors including vesicle-mediated transport genes

required for calcium signaling (P = 5 3 10�3) and calcium-

responsive proteins (Supplemental Table S6; Supplemental Fig.

S4B). Thus, our results suggest that the apparent resistance of many

kinase mutants to gene overexpression reflects the requirement for

kinases only in certain activating conditions and that conducting

screens in a variety of biologically relevant conditions will sub-

stantially increase our view of kinase biology, particularly re-

garding kinase dosage sensitivities.

Loss-of-function SGA genetic interaction screens of the kinome

In addition to environmental cues, SDL interaction degree is likely

dependent on the extent of functional redundancy shared between

different kinases. Thus, we also assembled genome-wide surveys of

the kinase genes that displayed SDL profiles for loss-of-function SGA

GIs. We included GI data for 45 kinases from Costanzo et al. (2010)

(37 of which provided SDL interactions) and performed genome-

wide SGA screens for an additional 30 kinase queries (Supplemental

Table S7; Supplemental Fig. S5). In total, we identified 2789 unique

negative and 203 positive high-confidence interactions (SGA score:

e <�0.12, e > 0.16, P < 0.05) (Supplemental Table S7). Many different

kinase mutants displayed a relatively large GI profile, revealing

the genetic conditions under which these kinases are required for

cellular fitness. For example, while HOG1 failed to show any SDL

interactions under standard growth conditions, it showed a sub-

stantial number of negative SGA GIs (Supplemental Figs. S2, S5).

In a previous study, Fiedler et al. (2009) assessed GIs among

a selected subset of ;400 genes encoding kinases, phosphatases,

and potential pathway components. They report a bias toward the

occurrence of positive GIs between kinases and their substrates. We

observed a similar trend using our genome-wide approach and

a new gold standard list of K–S pairs (Fig. 1D). Our results also in-

dicate that both positive and negative GIs are enriched amongst

kinase–kinase (K–K) pairs, including those that share the same

target (Fig. 1D).

To address whether K–K redundancy was contributing to the

lack of an SDL phenotype, we assessed the number of positive and

negative GIs amongst K–K pairs, including those that share the

same substrate. We found that the ratio of positive to negative GIs

remains unchanged for K–K pairs (P = 0.45, Fig 1D) when being

compared with kinase-any pairs. In fact, negative interactions be-

tween K–K pairs and between random gene pairs occurred at the

same frequency when assessed across the genome (;2%) (90

negative interactions among 4359 unique tested pairs). Also, of the

99 K–K pairs in the SGA data set that share at least one substrate in

our K–S gold standard (Supplemental Table S5; Sharifpoor et al.

2011), 10 kinase pairs showed a negative (P < 10�12) GI with each

other, while four pairs displayed a positive interaction (P < 10�4),

corresponding to a seven- and sixfold enrichment, respectively.

This analysis suggests that K–K pairs in general can have both

positive and negative GIs (Fig. 1D), including those that share the

same target. Consistent with a complex model of GIs between K–S

and K–K pairs, we found that genes encoding proteins that phys-

ically associate with kinases may positively (threefold enrichment,

P < 0.005) or negatively interact with the kinase (threefold en-

richment, P < 10�4) (Breitkreutz et al. 2010). Together, our analysis

shows that redundancy among kinases at a digenic level is not

a major contributor to the buffering effect of kinase pathways

and that K–K pairs regulating the same target can have either

positive or negative GIs with each other. Interestingly, when we

assessed the patterns of K–S and K–K enrichments for SDL in-

teractions, we found that not only are K–S pairs more likely to

show an SDL interaction than random, but also SDL interactions

are highly enriched amongst K–K pairs including those that share

the same substrate (Fig. 1D). Our combined analysis suggests

a highly complex model of regulation in kinase pathways that

requires more detailed network analysis for understanding ki-

nase interactions.

Integration of the SDL and SL data sets produces a functionally
informative meta-network

Consistent with other work (Kelley and Ideker 2005; Lee et al.

2008), we reasoned that integration of our kinase data sets should

enable identification of regulatory motifs that provide insight into

Sharifpoor et al.
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the complexity of kinase pathways and

kinase function. This is particularly in-

teresting in the context of SDL, since

many SDL interactions could not be

explained by literature-curated K–S re-

lationships. Therefore, we first lever-

aged the SDL interaction network with

the complementary SGA data set to

produce a GI meta-network. Next, we

super-imposed our literature-curated K–S

data set onto our meta-network to search

for triplet sub-networks involving all

possible combinations of SDL and dou-

ble deletion mutant interactions (See

Methods). In total, the meta-network

was based on 69 SDL and 75 SGA kinase

screens and includes 1344 dosage inter-

actions, 7427 double mutant interac-

tions, and 517 literature-curated K–S

pairs (Sharifpoor et al. 2011). We also

included 71,886 interactions among

gene pairs if the pair was one-hop away

from a kinase in the global GI network

(Costanzo et al. 2010). We applied an

automated network motif detection al-

gorithm to identify three-gene motifs

that are significantly overrepresented in

our integrated genetic network. Triplet

motifs derived from our integrated net-

work were statistically enriched compared

with motifs derived from randomized

networks (P < 0.05). We identified 2685

motifs consisting of 12 different combi-

nations of SDL, SGA, and literature-

curated interactions (Fig. 2; Supplemental

Fig. S6; Supplemental Table S8). We rea-

soned that each motif in this resource may

be associated with a specific biological in-

terpretation from which mutant pheno-

types and regulatory relationships can be

inferred. Therefore, we tested three of the

five most common motifs for biological

relevance.

First, we examined what we have

dubbed the ‘‘counteracting’’ motif cate-

gory which involves two SDL interactions

connected by a known K–S pair, where

the substrate may also be another kinase,

such as an interacting downstream kinase

within a cascade (Fig. 2A, 5.8-fold). For

example, Bck1, a MAP kinase kinase ki-

nase (MKKK), is connected indirectly to the cell wall integrity MAP

kinase (MAPK) Slt2 through the Mkk1/2 MAP kinase kinases

(MKK). Both Bck1 and Slt2 showed SDL interactions with an

uncharacterized gene YMR074C, encoding a protein with homol-

ogy with human PDCD5, which is expressed in tumor cells during

apoptosis (Fig. 3A; Hong et al. 2009). A simple model for SDL in-

teractions predicts that Slt2 may negatively regulate the function

of Ymr074c, perhaps through direct phosphorylation. Alterna-

tively, Ymr074c may act in opposition to inhibit the cell wall in-

tegrity pathway (Fig. 3B). In tests for a functional connection be-

tween Slt2 signaling and Ymr074c, we found that deletion of

YMR074C partially suppressed the fitness defect of both bck1D and

slt2D deletion alleles in the presence of caffeine, a stress-inducing

reagent (Fig. 3C). Importantly, we tested all 30 genes that showed

a similar pattern of interaction with bck1 and slt2 for sensitivity to

caffeine and a second cell wall stressor, Calcofluor White (CFW),

and found that deletions of six genes (SNF7, COQ1, KRE6, PEP7,

CHO2, SBE22; Supplemental Table S9) suppressed the sensitivity of

bck1D and/or slt2D strains to cell wall damaging agents (twofold

enrichment, P < 0.03). Thus, the motif produced by analysis of our

integrated genetic network was highly predictive of the mutant

phenotypes of kinase regulated genes.

Figure 2. Overrepresented SDL motifs identified through combined analysis of SDL, SL/SSup GI
data sets, and gold standard kinase–substrate pairs. Five types of sub-networks were enriched
against the randomized data set: (A) counteracting; (B) balancing co-regulation; (C ) converging reg-
ulation; (D) diverging regulation; and (E) SDL cascades. The number and fold-enrichment of triplet gene
pairs identified are listed, as well as examples of known and novel motifs for each group. Possible
mechanistic models describing each motif are highlighted. Some motifs fall under more than one
subtype.

Genetic networks of the yeast kinome
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We refer to another significantly enriched motif as ‘‘balancing

co-regulation’’ (Fig. 2B, 16,000-fold, P < 10�10). This motif involves

a gene connected to both a kinase and one of the kinase substrates

by an SDL and a negative GI, respectively. We suspect that this

motif may identify proteins or protein complexes regulated by

the same kinase, but in different ways (positive versus negative

regulation). For example, one ‘‘balancing co-regulation’’ motif in-

volved the Cla4 kinase, which is required for phosphorylation and

proper localization of Lte1, a surface-localized mitotic exit regula-

tor (Hofken and Schiebel 2002; Seshan et al. 2002; Yoshida et al.

2003). CLA4 showed an SDL interaction with BEM1, which in turn

had a negative GI with LTE1 (Supplemental Table S7). Bem1 also

physically interacts with Cla4 (Gulli et al. 2000; Bose et al. 2001)

and this complex is required for phosphorylating Cdc24 (the

guanine nucleotide exchange factor for the master regulator of

cell polarity Cdc42), a modification that ultimately inhibits bud

growth. The CLA4-LTE1-BEM1 balancing co-regulation motif (Fig.

2B) suggests that Cla4 inhibits its target, the Bem1–Cdc24 com-

plex, but activates Lte1 in the mitotic exit network, thereby co-

ordinating cell polarized growth with cell division. In this case, our

motif analysis accurately identified known regulatory relation-

ships in a complex pathway controlling mitotic exit, validating the

approach. We further predicted phenotypes for genes belonging to

seven ‘‘balancing co-regulation’’ motifs involving the cell wall in-

tegrity kinases Bck1 and Slt2 and found that deletion of four out of

seven tested genes (SMY1, EDE1, PEX19, CHO2; Supplemental

Table S9) suppressed the sensitivity of bck1D and slt2D mutants

to cell wall damaging agents (5.5-fold enrichment, P < 0.003),

suggesting that these genes are likely involved in cell wall integrity

(Supplemental Table S9).

We called a third highly enriched motif ‘‘converging regula-

tion’’ (Fig. 2C), in which a kinase pair, or a kinase–gene pair, nega-

tively interact and both share an SDL interaction with a third gene.

This motif class may identify kinases or enzymes that act synergis-

tically to control a biological outcome through the same gene. Al-

ternatively, kinases involved in the same motif may regulate each

other to then influence a downstream target. We explored con-

verging regulation motifs by testing regulatory relationships pre-

dicted by another motif involving Cla4. As noted earlier, Cla4 is

required for phosphorylation and proper localization of Lte1 in vivo

during mitotic exit (Hofken and Schiebel 2002; Seshan et al. 2002;

Yoshida et al. 2003). Localization of Lte1 to the cortex also requires

its physical association with the scaffold protein, Kel1 (Seshan et al.

2002). We identified a converging regulation motif in which the

genes encoding Cla4 and Hsl1, another cell polarity kinase,

showed a negative GI with each other and shared an SDL in-

teraction with KEL1 (Fig. 4A). This motif led us to make two

predictions: (1) Cla4 and Hsl1 have a synergistic and direct role in

regulating Kel1; (2) Hsl1 may have a previously unappreciated

role in Kel1 regulation; since the primary role for Kel1 during the

cell cycle is to anchor Lte1 to the cortex (Hofken and Schiebel

2002; Seshan et al. 2002), it follows that Hsl1 may regulate the

association between Kel1 and Lte1. We tested these predictions by

analyzing Kel1 protein and its association with Lte1 in cla4 and

hsl1 mutant strains (Fig. 4B,C). First, we analyzed Kel1 protein by

Western blot and saw reduced Kel1–TAP fusion protein in both

hsl1D and cla4D deletion mutant strains (Fig. 4B), but not in

a strain deleted for gin4D, another budneck kinase that is also SDL

with KEL1 (Supplemental Fig. S7). Slow migrating isoforms of

Kel1 were also reduced in the cla4 mutant, consistent with a ki-

nase–substrate relationship (this could not be assessed in the hsl1

mutant, since protein levels were so low). Second, we used

coimmunoprecipitation to show that the interaction between

Kel1 and Lte1 (Hofken and Schiebel 2002; Seshan et al. 2002) was

substantially reduced in an hsl1D mutant but not a gin4D mutant,

indicating a requirement for Hsl1 in Kel1 function (Fig. 4C).

Taken together, these data confirm the predictions of the con-

verging regulation motif and suggest that Hsl1 and Cla4 may

function together to regulate Kel1 function in mitotic exit.

Discussion
Here, we describe an integrated genetic network combining com-

prehensive SDL interactions with positive and negative GI data

for yeast kinases. Our analysis identified several general properties

of kinase–SDL interactions: (1) kinase–SDL interactions are en-

riched for known K–S pairs, physically interacting partners of ki-

nases, and phosphoproteins; (2) many SDL interactions cannot

be explained by direct kinase–substrate relationships, suggesting

that the SDL interactions also probe other aspects of kinase biology

and complement existing biochemical surveys of kinase targets;

(3) kinases with extensive SDL profiles tend to have constitutive

roles throughout the cell cycle; (4) the majority of yeast kinases are

relatively insensitive to dosage lethal interactions under standard

growth conditions. The results of our SGA loss-of-function GI

analysis and other work (Fiedler et al. 2009; Costanzo et al. 2010;

van Wageningen et al. 2010) suggest that kinase redundancy, at

least at the double mutant level, does not explain the limited SDL

interaction profiles for most kinases. Rather, our findings suggest

that condition-specific requirements may explain the resistance of

many kinases to gene overexpression in standard growth condi-

tions, a result that is consistent with other studies (Harrison et al.

Figure 3. YMR074C is an inhibitor of the Slt2-MAP kinase cell wall in-
tegrity pathway. (A) Overrepresented triplet motif that identified
YMR074C to be SDL with two kinases of the cell wall integrity pathway,
Bck1, and its downstream target Slt2. (B) Model describing the role of
Ymr074c as an inhibitor of cell wall integrity. (C ) Overnight cultures of
bck1D, slt2D, ymr074cD, single or double mutants were serially diluted
and spotted onto YPD medium in the absence (left) and presence (right) of
10 mM caffeine. (*) Phenotypic rescue.
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2007). Thus, in principle, to understand the full scope of kinase bi-

ology, HTP assays will need to be performed in multiple conditions.

Importantly, in addition to condition specificity, kinases ex-

hibit extensive functional redundancy with other cellular path-

ways as demonstrated by our SGA analysis (Fig. 1A,D). On average,

a single kinase exhibits 29 synthetic lethal/sick interactions (SGA

stringent score lower than or equal to �0.12; Supplemental Table

S7) indicating that there are ;29 genetic backgrounds that require

the activity of a given nonessential kinase to maintain a wild-type

level of fitness. Thus, systematic SGA analysis has identified a de-

fined set of genetic conditions to explore and expand the kinase

SDL interaction network.

Our SDL and SGA profiles for yeast kinase mutants are clearly

rich in functional information, since we see many biologically

relevant effects. However, we do expect some allele-specific effects

for individual GIs with overexpression data, since we made use of

Figure 4. Kel1 protein is co-regulated by budneck kinases. (A) Overrepresented motif (gray triangle), supporting a functional connection between
Kel1 and the two budneck kinases Cla4 and Hsl1 in a converging regulation model. (B) Endogenous Kel1 protein levels are reduced in hsl1D and cla4D but
not in gin4D mutant strains. Kel1-TAP protein was immunoprecipitated from the indicated budneck kinase mutant strains and Western blots were probed
with anti-PAP to detect total Kel1 protein. Electrophoretic mobility shift of Kel1 protein is shown (Kel1-P). Swi6 was used as a loading control. (C )
Integrated Kel1-TAP protein was immunoprecipitated in the presence of Lte1-Flag and association of Lte1 with Kel1 was detected using a-flag antibody.
The amounts of Lte1-Flag in the whole cell extract (WCE; top panel) and in the Kel1 immunoprecipitate (bottom panel) are shown. (Middle panel) The
amount of Kel1-TAP in the immunoprecipitate (anti-PAP). Immunoprecipitation assays were performed in wild-type, hsl1D, gin4D background strains.
cla4D strain was not tested, due to severe toxicity upon Kel1-TAP expression. (D) Model for regulation of Kel1 by budneck kinases. Lte1 is phosphorylated
by Cla4, which triggers binding to its anchor, Kel1. Hsl1 regulates the stability of Kel1 protein, which allows the anchor to become available for binding to
Lte1-P. Together, the complex inhibits mitotic exit possibly to delay budding to allow the cell to reach the correct size. Later, Cdc14 phosphatase releases
Lte1 from its anchor in the cortex into the cytoplasm in order to activate mitotic exit in large budded cells.
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the GST-tagged alleles in our systematic SDL screens. For example,

overexpression of either an N-terminally GST-tagged- or C-terminally

HA-tagged allele of KEL1 caused a clear SDL phenotype in cla4, hsl1,

and gin4 deletion mutants, but the degree of toxicity was sometimes

dependent on the KEL1 allele (Supplemental Fig. S7). In a similar

experiment, we assayed overexpression toxicity for kinases carry-

ing either an N-terminal GST or a C-terminal HA tag; of the 23 toxic

kinases, 12 exhibited a clear fitness phenotype with both alleles,

although the degree of growth defect depended on the tag in some

cases (data not shown). Since SDL interactions measure over-

expression phenotypes in different genetic backgrounds, we

would anticipate a comparable degree of overlap between our SDL

data set and screens done using a differentially tagged or untagged

collection. We note that these results are comparable to allele-spe-

cific effects seen in other large-scale studies. For example, GI pro-

filing of essential genes using DAmP versus temperature-sensitive

alleles revealed clear and significant overlap in GI profiles but in-

dividual GIs varied for the alleles (;50% overlap in individual

GIs) (Davierwala et al. 2005). Although allele-specific effects are

expected, our experiments illustrate the value of considering both

individual GIs and GI profiles (as in our motif analysis) to draw

novel biological conclusions.

Previous reports using a relatively small subset of kinase

pathway mutants suggested a bias toward positive GIs between K–S

pairs (Fiedler et al. 2009), which is consistent with simple cascade

models of kinase signaling. Although we confirmed such an en-

richment using our genome-wide approach, our additional sys-

tematic screens suggest that kinases more often participate in

multifaceted networks. Several lines of evidence support this idea:

(1) K–K pairs that share the same target in the gold standard have

both negative and positive GIs; (2) K–S pairs are mostly enriched

for positive GIs, but may show negative GIs; (3) kinase pathways

show a large number of GIs with other enzymes; (4) there is a sur-

prisingly small number of redundant kinase pairs; (5) combinatorial

motif analysis revealed enrichment for both diverging and con-

verging genetic motifs; (6) differential physical associations can

often dictate the multifunctional properties of a kinase (Breitkreutz

et al. 2010). These results emphasize the importance of performing

complementary genome-wide screens and the use of accurate gold

standards to define kinase–substrate pairs, in order to accurately

assess the functional relationships between regulatory proteins and

their targets. Our model agrees with recent phosphoprotoemic

analysis of kinase pathways that does not support simplistic linear

signaling modules among kinases and phosphatases (Bodenmiller

et al. 2010; Breitkreutz et al. 2010).

Motif analysis using the meta-network of kinase GIs in com-

bination with our literature-curated K–S gold standard list was key

in providing an informative view of regulatory relationships be-

tween kinases, their substrates, and other proteins. For example,

one ‘‘balancing co-regulation’’ motif predicted a previously un-

appreciated regulatory relationship between the budneck kinases

Hsl1 and Cla4 and the Kel1 scaffold protein. In this case, compu-

tational analysis of our meta-network prompted experiments that

led us to discover that (1) Kel1 protein stability is regulated by Cla4

and Hsl1; (2) optimal association of Kel1 with Lte1, which it an-

chors to the cell cortex, requires Hsl1 kinase. These and other ex-

periments lead us to propose that Hsl1 regulates Kel1 protein levels

to coordinate Cla4 activation of Lte1, with the presence of the Kel1

anchor required for mitotic exit. In the hsl1 mutant, where binding

of Kel1 to Lte1 is reduced, excess levels of Kel1 may force binding of

unphosphorylated Lte1 to the membrane to induce premature

mitotic exit (Fig. 4D). Our functional motif predictions, combined

with biochemical data, strongly suggest that Hsl1 is a key regulator

of Kel1 and that the cell has adopted mechanisms to co-regulate

the levels of active Lte1 protein and its anchor, Kel1 (Fig. 4D).

In addition to the three motif categories tested—counteract-

ing, balancing co-regulation, and converging regulation—we dis-

covered nine additional predictive motifs that were enriched in the

meta-network (Fig. 2; Supplemental Fig. S6). These included ‘‘di-

verging regulation’’ motifs where SL gene pairs share an SDL in-

teraction with the same kinase (Fig. 2D), possibly predicting gene

pairs co-regulated by the same kinase and ‘‘SDL cascades’’ com-

prised of two ordered SDL interactions between kinase pairs con-

nected to a SL interaction between one of the kinases and another

gene (Fig. 2E). The latter motif predicts a scenario where a kinase–

gene pair may function in parallel to activate a biological response

that is inhibited by another kinase. Other highly enriched motifs

involving only positive and negative GIs and known K–S pairs

(many of which are supported by published data) include those that

identify upstream and downstream regulators of K–S pathways, di-

verging targets of the same kinase, converging kinases regulating

the same target, and triply redundant genes (Supplemental Fig. S6;

Supplemental Table S8). Together, the presented motifs provide a

resource for additional focused small-scale and bioinformatics

analyses that will expand our knowledge of kinase biology.

In general, our study outlines a framework for combining

systematic loss- and gain-of-function GI networks to make phe-

notypic predictions that we anticipate will become an increasingly

valuable approach toward understanding the genotype-to-phe-

notype relationship, as we continue to map GIs in yeast and higher

eukaryotes.

Methods

Synthetic dosage lethal screens
The SDL screening protocol was adapted from Sopko et al. (2006a)
and is summarized in Supplemental Figure S1 (Sopko et al. 2006a).
Refer to the online Supplemental Materials and Methods for detailed
SDL screening and confirmation protocol (http://andrewslab.ccbr.
utoronto.ca/data/). In brief, a collection of yeast strains deleted for
query kinases was constructed in a strain background compatible
with SGA analysis (Supplemental Tables S1, S2; Costanzo et al.
2010). Kinase deletion mutants (marked with the NATR cassette)
were crossed to a GST-ORF overexpression array (Supplemental
Table S2; Sopko et al. 2006a; Costanzo et al. 2010) using the SGA
protocol (Tong et al. 2001). Screens were performed in a 1536
colony format, where each colony is represented four times on the
array, producing eight replicates per gene. Gene overexpression
was induced by pinning the final haploid array onto medium
containing 2% galactose and plates were then incubated at 30°C
for 2 d. Colony sizes were quantified using an adapted SGA pro-
tocol (Baryshnikova et al. 2010a). SDL and SDS interactions were
scored using the previously described SGA score method with the
assumption that no kinase queries have significant fitness defects
on the final selection plates. SDL and SDS interactions were de-
fined as gene pairs that satisfy the following SGA score cutoff: |e| $

0.2, P < 0.05 (Supplemental Table S3). To estimate false discovery
rate, we confirmed >3000 interactions by direct transformation
both in wild-type and mutant backgrounds followed by serial spot
assays where a difference in colony size was observed in the kinase
deletion strains by eye. Spot assays were quantified and assigned
confidence scores according to the calculated standard deviation
(Supplemental Table S4). In total, we estimated a false discovery
rate of ;46% and a false negative rate of ;50% (Supplemental Table
S4), which is comparable to rates observed for other large-scale
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genetic (Baryshnikova et al. 2010b; Costanzo et al. 2010) and
physical interaction data sets (Breitkreutz et al. 2010). Conditional
SDL screens were performed as above but final haploid arrays were
pinned onto the medium containing the appropriate inducer at
a concentration reported to be consistent with viability. Kinase
mutants with mating defects (STE7, STE11, STE20) or those oth-
erwise refractory to the SGA protocol (BUB1, IRE1, SSN3, SSK22,
SCH9) were excluded in this study. We were unable to make query
kinase deletion strains for 10 kinases for technical reasons (Sup-
plemental Table S1).

Negative and positive genetic interaction screens

For analysis of growth defects in double deletion mutants, the
kinaseDTNATR (Supplemental Table S2) query strains were crossed
to the viable haploid deletion array (Giaever et al. 2002; Baryshnikova
et al. 2010a) as previously described (Baryshnikova et al. 2010a).
Negative and positive SGA GIs were quantified as described else-
where (Baryshnikova et al. 2010b). An intermediate SGA score cut-
off (|e| $ 0.08, P < 0.05) was applied to SGA data as recommended
elsewhere (Baryshnikova et al. 2010b; Costanzo et al. 2010), unless
otherwise indicated. We confirmed a subset of double mutant in-
teractions between K–K pairs identified in our screens by tetrad
dissection, and automated liquid growth curve assays.

Literature-curated kinase data set (KID)

We compiled a highly detailed literature-curated database of K–S
interactions for all kinases (Kinase Information Database; KID)
(Sharifpoor et al. 2011). Biological interactions involving kinase
interactions were compiled by a group of eight kinase experts and
tagged with their associated PMIDs. KID is a ranked database for
kinase interactions that scores K–S pairs by applying likelihood
ratios using a known gold-standard K–S list and comparing it to
randomized kinase–gene pairs (Sharifpoor et al. 2011). The ranked
score on KID is defined as a likelihood ratio of the prevalence of
each experimental category in the gold standard K–S set compared
with a randomized list of kinase–gene interactions (negative bin).
We considered the gold standard K–S pairs as the 517 pairs reported
on KID corresponding to the stringent cutoff (P # 0.01) (Sharifpoor
et al. 2011). The literature-curated gold standard list of K–S pairs is
described in Supplemental Table S5.

Analysis of triplet motifs using double mutant
and dosage interactions

We used Fanmod (Wernicke and Rasche 2006) to identify over-
represented three-edge sub-networks in the combined meta-net-
work of (1) literature-curated K–S interactions, (2) the combined
confirmed and unconfirmed SDL interactions above our defined
cutoff, (3) negative GIs (bidirectional edges), and (4) positive GIs
identified both as query genes from our study or as array hits from
a previous analysis of fitness defects in double deletion mutants
(Supplemental Table S6; Costanzo et al. 2010). Fanmod is a fast
network motif detection tool to identify connected subgraphs that
occur significantly more often than in random networks. Cru-
cially, Fanmod allows for motif detection in colored networks (i.e.,
those with multiple edge types). We ran Fanmod with a maximum
subgraph size of three (triplet motifs) and four edge types as de-
scribed. In the first step, Fanmod enumerated all subgraphs of
size three and grouped them into isomorphic subgraph classes
(Wernicke and Rasche 2006). Next, Fanmod determined the fre-
quency of subgraph classes in randomized graphs. Two-hundred
random graphs were generated from the original network by
switching edges between vertices (exchanging only edges of the

same type) while preserving the number of bidirectional edges (we
used this randomization scheme because our combined network is
directed). Finally, significance of each subgraph in the network was
calculated and those with P < 0.05 were further considered. Sig-
nificant triplet motifs were extracted using a program implemented
in MATLAB that performs an exhaustive search over all possible
gene combinations for those fitting each motif. Starting with a list
of pairs that fit one line in a triangular motif (e.g., A!B; K–S pair),
the script searches through each given rule generated in Fanmod to
identify a third gene that relates to the first pair according to any of
the stated rules.

Statistical analyses

Overlap of synthetic dosage lethal interactions with other data sets
was analyzed as follows. For each pairwise interaction data set (e.g.,
known kinase–substrate pairs, protein–protein, or GIs) we first
assembled a list of gene pairs that have been screened for SDL in-
teraction (either showing or not showing SDL) and for which in-
teraction information from the other data set was also available
(e.g., either being a kinase–substrate pair or not displaying kinase–
substrate interaction). For kinase–substrate interactions, we de-
fined noninteracting K–S pairs as those which have a negative
likelihood ratio score in the KID literature-curated database. For
protein–protein interactions, we assumed that nonreported protein
pairs do not interact. Next, we computed the significance of the
overlap between the SDL and the other interaction data set using x2

test of independence. Overlaps between loss-of-function genetic
interactions (negative and positive GI) and kinase–kinase or kinase–
substrate pairs were also investigated in a similar manner. To test the
overlap of SDL hits (i.e., list of overexpressed genes that show at least
one SDL interaction with a kinase deletion strain) with other gene
lists (e.g., list of genes whose protein products are phosphorylated in
vitro) we also performed x2 tests of independence.

Other yeast strains and plasmid construction

Kinase deletion strains carrying a TAP-tagged allele of KEL1
were constructed by crossing a MATa KEL1-TAP-HIS3 strain
(Ghaemmaghami et al. 2003; Costanzo et al. 2010) to the MATa

kinaseDTNATR query strains (Supplemental Table S2). Kinase–gene
double deletion strains were constructed by crossing NATR kinase
deletion mutants (see above and Supplemental Tables S1, S2) to the
kinase deletion strains from the yeast deletion collection (Giaever
et al. 2002) (KANR gene deletion strains) and dissecting tetrads.
MATa haploids of the desired double mutant genotype were selected
for analysis by replica plating segregants onto YEPD media (1% yeast
extract, 2% bactopeptone, 0.004% tryptophan, 0.004% adenine,
2% glucose) containing cloNAT and G418.

A LEU2-based plasmid expressing a C-terminally Flag-tagged
allele of LTE1 was constructed by cloning LTE1-HA from the mORF
collection (Gelperin et al. 2005) into a pRS315 low copy CEN vector
using the Invitrogen Gateway cloning technology (Supplemental
Table S2). First, LTE1-HA from the mORF collection was transfer-
red to pDONR-221 plasmid, which was then used to transfer the
LTE1 cassette into the recipient plasmid pRS315-FLAG-LEU2. The
resulting construct, pRS315-LTE1-FLAG-LEU2, was then trans-
formed into the indicated kinase deletion strains in the presence or
absence of integrated KEL1-TAP for coimmunoprecipitation assays
(see below).

Serial spot dilutions

Standard methods and media were used for yeast growth and trans-
formation. Spot assays were performed by growing yeast cultures in
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appropriate media to saturation and spotting equal volumes of
15-fold serial dilutions (5 mL) onto plates with appropriate sup-
plements to assess growth. All glucose-containing plates were
incubated for 2 d, while galactose-containing plates were grown
for 3 d at 30°C. To assess cold sensitivity, YEPD plates were incubated
for 7 d at 15°C. To test strain sensitivity to cell wall stressors, we
included 10 mM caffeine or 64 mg Calcofluor White in YEPD plates
and grew cells for 4 d.

Western blot and coimmunoprecipitation analysis

To prepare samples for Western blot analysis, 50 mL of cells were
grown in the appropriate media to an optical density (O.D.600) of
1.0 and washed once with phosphate buffered saline (PBS). Sam-
ples were resuspended in 250 mL of solution containing 1%
b-mercaptoethanol in 0.25 N NaOH and incubated on ice for 10
min; 160 mL of 50% TCA were added and samples were incubated
for another 10 min on ice. After a 10-min centrifugation at high
speed, the precipitated protein was isolated and resuspended in
100 mL of 23 SDS sample buffer. Samples were resolved on 6% SDS
polyacrylamide gels and transferred to polyvinylidene difluoride
(PVDF) membranes following standard procedures for Western
blot analysis. Peroxidase anti-peroxidase complex, a-PAP (P3039;
Sigma Aldrich), was used to detect TAP-tagged proteins. Flag-tag-
ged proteins were detected using a-Flag M2 (Sigma Aldrich) and
a-GST primary conjugate (GE Healthcare) was used to assess mi-
gration changes for GST-tagged proteins. Swi6 protein levels were
assessed as a loading control using an affinity purified a-Swi6 anti-
body (Sidorova and Breeden 1993). For analysis of coimmunopre-
cipitation of tagged Lte1 and Kel1, overnight cultures of BY4798
(MATa ura3DTNATR KEL1-TAP-HIS3), BY4800 (MATa hsl1DTNATR

KEL1-TAP-HIS3), and BY4802 (MATa gin4DTNATR KEL1-TAP-HIS3),
carrying either the pRS315-LTE1-FLAG or control plasmids, were
grown overnight in 2% raffinose and expression of LTE1 was in-
duced by addition of 2% galactose for 9 h. Cells were lysed in Lysis
Buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 mM EDTA, 5 mM
NaF, and protease inhibitors) and samples were clarified by centri-
fugation at high speed for 10 min. Total protein was incubated with
IgG sepharose (Amersham Biosciences) overnight at 4°C with gentle
shaking. IgG resin was washed three times in lysis buffer and
resuspended in 23 sample buffer for Western blot analysis.

Data access
Supplemental Tables S1–S9, Figures S1–S7, and Supplemental Ma-
terials and Methods can be downloaded directly from the journal
website or via the Andrews Lab Supplementary website (http://
andrewslab.ccbr.utoronto.ca/data/). Interactive and searchable
tables are also available for Tables S3, S7, and S8 on the Andrews
Lab Supplementary website. In addition, all SDL and SGA GIs are
available on Yeast KID (http://www.moseslab.csb.utoronto.ca/
KID/), allowing users to compare the presented data with previously
published high throughput (HTP) and low throughput (LTP) data.
To access the SDL and SGA data sets via Yeast KID, users must search
by the PMID associated with this manuscript.
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