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Abstract: Cancer is one of the deadliest diseases in human history with extremely poor prognosis.

Although many traditional therapeutic modalities—such as surgery, chemotherapy, and radiation

therapy—have proved to be successful in inhibiting the growth of tumor cells, their side effects

may vastly limited the actual benefits and patient acceptance. In this context, a nanomedicine

approach for cancer therapy using functionalized nanomaterial has been gaining ground recently.

Considering the ability to carry various anticancer drugs and to act as a photothermal agent, the use

of carbon-based nanomaterials for cancer therapy has advanced rapidly. Within those nanomaterials,

reduced graphene oxide (rGO), a graphene family 2D carbon nanomaterial, emerged as a good

candidate for cancer photothermal therapy due to its excellent photothermal conversion in the

near infrared range, large specific surface area for drug loading, as well as functional groups for

functionalization with molecules such as photosensitizers, siRNA, ligands, etc. By unique design,

multifunctional nanosystems could be designed based on rGO, which are endowed with promising

temperature/pH-dependent drug/gene delivery abilities for multimodal cancer therapy. This

could be further augmented by additional advantages offered by functionalized rGO, such as high

biocompatibility, targeted delivery, and enhanced photothermal effects. Herewith, we first provide

an overview of the most effective reducing agents for rGO synthesis via chemical reduction. This

was followed by in-depth review of application of functionalized rGO in different cancer treatment

modalities such as chemotherapy, photothermal therapy and/or photodynamic therapy, gene therapy,

chemotherapy/phototherapy, and photothermal/immunotherapy.

Keywords: reduced graphene oxide; chemotherapy; photothermal therapy; photodynamic therapy;

gene therapy; immunotherapy

1. Introduction

Cancer, unrestrained cell growth in the human body, has severely threatened human
health worldwide due to its incurability and high death rate [1]. Although reasons for this
fatal disease are uncountable, the mechanism of cancer development is associated with the
failure of a body’s normal control mechanism, which results in the abnormal proliferation
of new cells [2]. Owing to the severity of this disease, researchers and medical profession-
als have made huge contributions in advancing various treatment modalities—including
surgery, chemotherapy, and radiation therapy—for saving human life [3,4]. Although con-
ventional drug delivery systems and treatment approaches have provided some treatment
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efficacy, its effectiveness is limited by various factors, including multi-drug resistance,
rapid metabolism and elimination of drugs, non-specific cytotoxicity, etc. [5–7].

Considering the drawbacks of conventional therapies, introduction of nanomateri-
als in biomedical research has provided a revolutionary application of biomaterials in
cancer therapy [8]. Indeed, due to their unique properties, nanomaterials have gained
increasing attention for new and innovative use in biomedical research, particularly as
nanocarriers for delivery of therapeutic drugs in cancer therapy [9]. To date, a wide variety
of nanocarriers—including liposomes, micelles, peptides, and inorganic particles—are
being explored as nanovehicles for delivery of cancer therapeutics [10–18]. Among these,
carbon-based nanomaterials in the graphene family have gained particular attention due to
their effectiveness and versatility for cancer treatment [19–22]. The carbon-based nanoma-
terials have essential structural and surface features for loading and pH-sensitive release
of aromatic anticancer drugs [23]. Considering certain limitations associated with other
materials, these nanomaterials attracted tremendous attention for delivery of cancer thera-
peutics not only due to their unique physico-chemical properties such as high surface area
for drug loading [24], but also due to preferred biological properties such as endosomal
escape after intracellular uptake for gene delivery and gene therapy [25,26].

The lateral dimensions and thickness of graphene family nanomaterials, such as
graphene oxide (GO), reduced graphene oxide (rGO), graphene quantum dots, and
graphene nanoribbons can be fine-tuned from original two-dimensional (2D) structure into
zero-, one-, or three-dimensional assemblies [27], which provide improved accumulation
as drug vehicles and contrast agents at specific target sites [28]. Such unique and tunable
features have promised their new applications in drug delivery [29]. Nonetheless, the
promise that these nanomaterials have shown in nanomedicine is not only limited to drug
delivery, but also in highly sensitive biosensors and high throughput bioassays, as well as
scaffolds for tissue engineering [30].

Similar to GO, rGO is a 2D nanomaterial in graphene family with a single-atom-thick
layer of sp2 hybridized carbon atoms arranged in a honeycomb lattice structure, which is
obtained by reducing GO through chemical, thermal, or electrical methods to eliminate the
oxygen-containing functional groups on the surface. Owing to the unique surface property
and presence of functional groups, functionalized rGO can accommodate high loading of
genes to increase the delivery efficacy of nucleic acid therapeutics in gene therapy. The
high surface area also enables the loading of abundant hydrophobic aromatic anticancer
drugs for chemotherapy or photosensitizers for photodynamic therapy (PDT) via π–π in-
teraction [31]. Besides being excellent photo-absorbers with high light absorption ability in
the near infrared (NIR) range, rGO is associated with pronounced photothermal effect com-
pared with GO, rendering potential applications in cancer photothermal therapy (PTT) [32].
Indeed, with its facile synthesis, high water dispersibility, easy surface functionalization,
and good biocompatibility, rGO has emerged as an excellent multifunctional nanomaterial
for PTT [33]. After combining this unique characteristic with the high loading capacity of
anticancer drugs, rGO reveals itself as a promising nanomaterial for chemo-photothermal
therapy [34]. Surface functionalization with multiple therapeutic moieties or conjugation
with targeting ligands on rGO surface further permit its use in targeted synergistic cancer
therapy such as chemo-phototherapy and photothermal/immunotherapy.

2. Preparation of Reduced Graphene Oxide (rGO) by Chemical Reduction

The typical methods for preparation of rGO involve reducing GO by thermal, chemical
or electrical methods. Among them, the chemical reduction method that deoxygenates GO
with a reducing agent prevails over other non-chemical routes for rGO synthesis, which
can produce stable dispersions of rGO with improved quality. Herein, we review the most
effective chemical reagents that can act as a direct or indirect reducing agent to convert
oxygenated graphene (GO) into rGO (Figure 1). The characteristics of as-produced rGO
and its applications are summarized in Table 1.
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Figure 1. Schematic diagram illustrating the preparation of rGO from GO using different chemical reducing agents. BSA,
bovine serum albumin; PEI, polyethyleneimine.

It should be noted that although different synthesis routes were reported for rGO
synthesis, chemical reduction is widely accepted as the most promising method for large-
scale production of rGO. However, considering the toxicity of many chemical reducing
agents, biomedical application of rGO prefers non-toxic green chemicals for the reduction
process, which could provide stability, non-toxicity, and functionality to resulting rGO
products. However, as various kinds of rGO synthesized via different routes have been used
successfully for cancer therapy, there is still no definite answer regarding which synthesis
route could produce the most effective rGO product for application in cancer therapy.

2.1. Vitamin C

Vitamin C (L-hexuronic acid or L-ascorbic acid) is a mild reducing chemical widely
used as a reducing agent for GO due to its non-toxicity. It is consider as one of the suitable
choices for reducing GOs, not only because it produces highly reduced GO nanosheet
suspended in water or in hydrogels at room temperature or mild temperatures, but also
because it produces an environmentally friendly by-product, dehydroascorbic acid, after
the reaction [35,36]. The chemical reduction of GO by vitamin C has been described in
many reports and most of them describing simple mixing of GO with vitamin C using a
magnetic stirrer at 60–70 ◦C and react for 30 min to 2 h. The reduction of GO to rGO is
confirmed by color change from brown to black [37–39]. A stable suspension of highly
reduced GO could be produced using vitamin C in aqueous solution as well as in organic
solvent such as dimethylformamide and N-methyl-2-pyrrolidone. Moreover, as vitamin C
is composed of carbon, oxygen, and hydrogen, the possibility of introducing heteroatoms
to rGO could be avoided.
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2.2. Hydrazine Hydrate

Hydrazine (N2H4) or hydrazine hydrate (N2H4·H2O) is one of the most widely used
reductants for rGO synthesis in large scale. Nonetheless, considering the explosive and
toxic nature of hydrazine hydrate, the reduction of GO using this reducing agent should be
performed with care [40]. Literature describes the reduction process by mixing dispersion
of GO with hydrazine hydrate and ammonia solution with a weight ratio of hydrazine to
GO at 7:10. After being vigorously shaken or stirred for a few minutes, the reaction was
carried out in a water bath at 96 ◦C for 1 h. Once the reduction is complete, excess hydrazine
must be removed by dialysis against 0.5% ammonia solution [41]. In another study, GO
was reduced by hydrazine hydrate in the presence of poly(sodium 4-styrenesulfonate)
(PSS) to produce stable PSS-coated rGO nanosheet in aqueous dispersion [42]. Treatment
of GO (5 mL, 0.5 mg/mL) with hydrazine (0.50 mL, 32.1 mM) at 100 ◦C for 24 h is another
way of reducing GO [43]. There are some other studies that used 80 ◦C for reaction,
where aqueous solution of GO was stirred and sonicated for at least 1 h before reacting
with hydrazine hydrate (weight ratio of hydrazine hydrate to GO = 1:1) with continuous
stirring and sonication [44]. All studies confirm that hydrazine is a good reducing agent
for producing rGO.

2.3. Resveratrol

Resveratrol is polyphenol compound used both as a reducing agent and a stabilizer.
Resveratrol-guided reduction of GO could provide better biocompatibility, solubility, and
selectivity compared to many other reducing agents. The reduction process involves addi-
tion of 50 µM resveratrol into GO (1 mg/mL), which was sonicated for 15 min beforehand,
and reacted at 40 ◦C for 1 h. This was continued by cooling and sonication for 15 min,
followed by continuous stirring for 1 h at 90 ◦C. After centrifugation and washing in
distilled water, prepared rGO could be recovered from the solution [45].

2.4. Chitosan

Chitosan, a biocompatible and biodegradable polysaccharide derived from incom-
plete deacetylation of chitin, serves as a reducing agent in the synthesis of many nanopar-
ticles [46,47]. Suspension of rGO in aqueous solution has been prepared by chemical
reduction of GO at room temperature in the presence of chitosan. To perform the synthesis,
a 1:1(w/w) mixture of GO and chitosan were heated at 37 ◦C for 72 h under constant
stirring. Followed by this, excess chitosan in the solution was removed by centrifugation
at 8000 rpm for 1 h and subsequently washed with 2% acetic acid solution. The rGO
was dispersed in distilled water by sonication [48,49]. Due to the higher biocompatibility,
chitosan-based reduction can enhance the potential biological and medicinal applications
of rGO.

2.5. Polyethyleneimine (PEI)

Polyethyleneimine (PEI) is a widely used reducing agent and surface modifier in the
fabrication of rGO [50], which is a water soluble cationic polymer containing primary,
secondary, and tertiary amino groups. To reduce GO, 60 mL of GO (0.1 mg/mL) dispersion
and PEI solution was mixed under vigorous stirring at 80 ◦C for 2 h. The transformation of
yellowish-brown to black dispersion indicates the successful transformation of GO to rGO.
The mixture was then centrifuged and washed with water for recovery of PEI-rGO [50–52].
The incorporation of PEI molecule into GO can act as a source of carbon and produce rGO
in a one-step hydrothermal process.

2.6. Sodium Borohydride

Sodium borohydride (NaBH4) is consider as one of the efficient, nontoxic, noncorro-
sive, inexpensive reducing agents available for reduction of GO. NaBH4 has been frequently
used as a reducing agent for aldehydes and ketones to produce alcohols. For synthesizing
rGO from GO, a GO suspension (0.5 mg/mL) was mixed with NaBH4 as well as CaCl2 and
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stirred for 12 h at room temperature [53]. In another study, the reduction of GO by NaBH4
was carried out at different temperatures, showing the highest extent of reduction when
the reaction was conducted at 80 ◦C [54].

2.7. Bovine Serum Albumin (BSA)

Bovine serum albumin (BSA) is an affordable protein with high biocompatibility,
which can act as a reductant and a stabilizer of GO due to the presence of the amino acid
tyrosine (Tyr) within it [55,56]. The reduction of GO was carried out by reacting 1 mg/mL
GO solution with 50 mg/mL BSA at 70 ◦C. After the solution pH was brought up to 12 with
1 M NaOH, the mixture was stirred at 50 ◦C for 24 h to observe a transition of solution color
from light brown (GO) to dark black (rGO) [57]. Excess BSA was removed by centrifugal
filtration with a 150 kD molecular-weight-cut-off (MWCO) membrane to obtain purified
rGO/BSA hybrids suspended in water and stored at 4 ◦C [57,58].

Table 1. Reducing agents for producing reduced graphene oxide (rGO) from graphene oxide (GO).

Reducing Agent Characterisitics Applications Reference

Vitamin C

Natural compound; non-toxic; mild
reaction temperature; environment

friendly byproducts; avoid
introducing heteroatoms; reaction

in aqueous or organic solution

Embedded in chitosan hydrogel for
bone tissue engineering;

functionalized with antimicrobial
peptide for antibacterial activity

[37–39]

Hydrazine hydrate
Explosive; toxic; large scale

production; low cost

Improve electrical conductivity;
embedded in polyacrylic acid
nanofiber mats for controlled

release of antibiotics

[41–44]

Resveratrol

Natural phenolic compound;
anti-oxidant; stabilizer;

biocompatibility; solubility; green
synthesis

Produce marked changes in cellular
morphology and reduce cell

viability of cancer cells for cancer
therapy

[45]

Chitosan

Biocompatible; biodegradable;
reduction at body temperature;

biological and medicinal
applications

Reversible change of
dispersion/aggregation state with
pH; pH-sensitive release of drug;

loading with drug and
photosensitizer for cancer

chemotherapy/phototherapy

[48,49]

Polyethylenimine
Surface modifier; one-step

hydrothermal reduction; high cargo
loading; prevent agglomeration

Improved gas barrier property in
composite films; in hemin-bovine

serum albumin composite as
peroxidase mimetics; gene delivery;

increase strength of nylon
composites

[50–52]

Sodium borohydride
Efficient; ambient conditions;
reaction in aqueous solution

Decrease electrical resistance;
enhance electrical conductivity

[53,54]

Bovine serum albumin

Biocompatible; stabilizer; binding
by adhesion to surface; metal
particle-binding platform; cell

adhesive

For cancer chemo-photothermal
therapy; adsorption and assembly

of metal particles; create
protein–metal nanocluster for

detecting trypsin

[57,58]

Gree tea polyphenols

Biocompatible, biodegradable;
green synthesis; good dispersion in
both aqueous and organic solutions;

non-toxic

Enhance thermal conductivity in
chitosan polymer composites;

deposite onto electrode for
detection of sunset yellow in foods;

reduce cytotoxicity of GO

[59–61]
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2.8. Green Tea Polyphenols

Considering the harmful and hazardous natures of many commercial chemical re-
ducing agents, researchers have focused on green methods for the production of rGO by
chemical reduction. As a result, green tea extract is considered as a good option consider-
ing its easy availability, eco-friendly characteristics, and cheap price. Green tea is rich in
polyphenolic compounds, with epigallocatechin gallate (EGCG) making up about 50−60%
of total tea polyphenols. To reduce GO, green tea powder (2 g) was added to 100 mL of
deionized water and boiled at 100 ◦C for 20 min, and then filtered. The GO (50 mg) was
added to the green tea solution and sonicated for 30 min, followed by reflux at 90 ◦C under
nitrogen atmosphere. After that, the solution was washed with water to remove excess
green tea powder [59]. Alternatively, 10 mL green tea extract was added dropwise to 20 mL
of GO aqueous suspension (0.5 mg/mL) within 45 min and the mixture was refluxed at
60 ◦C for 6 h before precipitation of rGO out of the solution [60,61].

3. Application of Reduced Graphene Oxide (rGO) in Cancer Therapy

rGO-based nanocomposite has emerged as a promising nanomaterial in nanomedicine.
Most recent cytotoxicity studies indicate that surface functionalization of rGO could lead to
enhanced biocompatibility as well as increased stability in physiological buffers. Therefore,
the use of rGO-based nanomaterials for targeted pH-responsive drug delivery may over-
come current challenges and provide new treatment modality in cancer therapy. Nonethe-
less, other than cytotoxicity study, the distribution and excretion of rGO-based nanomateri-
als is of paramount importance before clinical translation. The first hurdle that rGO-based
cancer therapeutics faces will be the reticuloendothelial system (RES) after intravenous de-
livery. Overall, nanoparticles with a particle size of ~100 nm are expected to have prolonged
circulating half-lives, which should be the preferred size of rGO-based nanocomposites.
After escaping the RES, circulating rGO can exit tumor blood vessels and accumulate in
cancerous interstitium due to the leaky tumor blood vessels by the enhanced permeation
and retention (EPR) effect. For rGO-based nanomaterials to extravasate the vasculature,
they should preferably possess neutral or negative charge and be within 10–100 nm in
size. Indeed, nanomaterials coated with biocompatible moieties with size smaller than
100 nm are believed to be cleared from the body without noticeable toxicity after systemic
administration. Even though the EPR effect may increase accumulation at the tumor site,
improving the active targeting ability of rGO-based nanocomposites or using administra-
tion route other than intravenous injection should be studied. A systematic study of the
biological behavior of injected rGO in vivo—such as stability, biodistribution, secretion,
etc.—should be attempted for better clinical use. Furthermore, the functionalization of rGO
may be difficult in large scale, which might limit the application of functionalized rGO in
cancer therapy from bench to bedside.

rGO is widely accepted for application in single mode cancer therapy such as
chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene ther-
apy as well as in dual mode cancer therapy including chemotherapy/phototherapy and
photothermal therapy/immunotherapy. A schematic diagram illustrating the mechanisms
involved is depicted in Figure 2. In this section, we categorize most up-to-date studies
using functionalized rGO-based nanocarriers in cancer therapy into several sections based
on the treatment modality involved. A summary of rGO-based nanocarriers, the agents
used for functionalizing rGO, cancer cell lines used in the study and the type of study is
provided in Table 2.
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Figure 2. Applications of reduced graphene oxide (rGO) in cancer therapy.

3.1. Chemotherapy

The chemotherapy that cures malignancy by means of chemical drugs has gained
worldwide acceptance due to its capability to block cell proliferation and to cause cell
apoptosis [62]. The chemotherapeutic drugs like doxorubicin (DOX), cisplatin, pacli-
taxel (PTX), mitoxantrone (MTX), and 5-fluorouracil (5-FU) have been proved to inhibit
growth rates of different cancer cells and to limit their metabolic functions. However, the
associated unwanted complications with these drugs due to their cytotoxicity towards
normal/healthy cells have limited the application of chemotherapy in cancer therapy.
Hence, nanocarrier-based drug delivery system was introduced as an effective approach to
alleviate this limitation, with the aim to deliver chemotherapeutic drugs with minimum
side effects. Indeed, many nanomaterials—such as polymeric nanoparticles, liposomes,
micelles, and metal nanoparticles—have been employed for this purpose to deliver differ-
ent chemotherapeutic drugs due to their unique characteristics unattainable through free
drug administration. Recently, researchers are turning to development of rGO-based drug
delivery platforms for carrying large amount of chemotherapeutic drugs with large surface
area, as well as the pH-responsive drug release behavior offered by rGO.

Ma and co-workers used a green approach to convert GO to rGO using riboflavin as a
reducing agent and the resulting riboflavin-rGO nanocarrier was used for DOX loading
through π–π interaction [63]. The results suggested that rGO exhibits high DOX loading,
good stability, and pH-sensitive sustained drug release, which is evident from the effective
cytotoxicity against MCF-7 and A549 cancer cells in vitro [64]. In another study, Wei et al.
used rGO-C6H4-COOH for DOX loading, followed by modifying with PEI to enhance
water solubility and conjugating with folic acid (FA) for targeted drug delivery. Due to
specific targeting of FA to CBRH7919 cancer cells as well as pH-responsive drug release
after endocytosis, the conjugation of DOX with rGO-PEI-FA could arrest cancer cells in
the G2 phase and lead to cell apoptosis. There are plenty of other examples for rGO-
based targeted delivery of DOX. Daysi et al. also used FA-functionalized nanocomposite
consisting of chemically-reduced rGO and manganese-doped zinc sulfide quantum dots
(FA-rGO/ZnS:Mn) for targeted delivery of DOX [65]. The dispersion stability, DOX loading
and release efficiency, internalization, and biocompatibility of FA-rGO/ZnS:Mn resulted in
excellent anti-cancer efficiency against breast cancer cells. Moreover, FA functionalization
improved the selectivity of this drug delivery platform for specific targeting of folate recep-
tor molecules overexpressed on cancer cell surface. Taken together, the FA-rGO/ZnS:Mn
was suggested to be an excellent theranostic nanocomposite for breast cancer treatment.
Similarly, Miao et al. explained the application of DOX-loaded cholesteryl hyaluronic
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acid (CHA)-coated rGO nanosheets (CHA-rGO) for the treatment of CD44-overexpressing
tumors [66]. As a primary ligand of CD44, HA increases the stability and safety of rGO by
enhancing the tumor-targeted distribution of DOX to CD44-overexpressing cancer cells,
thereby providing better drug accumulation and substantial reduction of tumor volume
from in vivo study in nude mice. He and co-workers used rGO capped by alkyl-grafted
mesoporous silica (MSN-C18) as a carrier of DOX for chemotherapy [67]. The in vitro
cell viability assay performed using SMMC-7721 cancer cells showed enhanced DOX re-
lease upon near NIR light exposure, which led to higher cytotoxicity toward cancer cells,
indicating its potential use as a nanocarrier for controlled drug release.

The application of rGO in chemotherapy is not only limited to targeted delivery of
DOX, as other drugs or natural compounds with anti-cancer activity were reported to be
delivered through rGO. Chen et al. used methoxypolyethylene glycol amine (mPEG-NH2)
for one-step green reduction and PEGylation of GO to synthesize rGO/PEG [68]. The
rGO/PEG showed excellent water stability and two-fold increase of resveratrol loading
over GO/PEG via hydrophobic interactions and π–π stacking. From in vitro experiments,
NIR laser irradiation (808 nm) could enhance resveratrol release from rGO/PEG to increase
the cytotoxicity against 4T1 murine breast cancer cells by lowering cell viability and
inducing cell apoptosis. In animal models with subcutaneously implanted cancer cells,
resveratrol-loaded rGO/PEG injected intratumorally to tumor-bearing nude mice also
significantly suppress tumor growth under photothermally controlled drug delivery. In
another study, rGO synthesized through reduction by Euphorbia milii plant extract was
used as a carrier of the chemotherapeutic drug paclitaxel for cancer treatment [69]. The
drug-loaded rGO showed high cytotoxicity toward human lung cancer cell line (A549) for
potential chemotherapy of lung carcinoma.

The chemotherapy using dual drugs may be a better approach to kill cancer cells in
the metastatic stage as the synergistic effect offered by dual drugs may introduce more anti-
proliferative effect to cause cancer cell death. Muthoosamy et al. developed amphiphilic
polymer PF-127 functionalized rGO for co-loading of anti-cancer drugs paclitaxel and
curcumin on the surface through π–π interactions [70]. The drug-loaded composite showed
synergistic anti-tumor efficacy towards both A549 lung cancer cells and MDA-MB-231
breast cancer cells. However, loading of an aromatic hydrophobic drug like paclitaxel on the
surface of a hydrophobic carrier like rGO by π–π stacking and hydrophobic–hydrophobic
interactions is challenging as hydrophobic carriers are not stable in physiological solutions.
To address this problem, Hashemi et al. introduced a rGO-based nanocarrier with high
paclitaxel loading capacity through functionalization and stabilization with R9 peptides,
where pristine rGO sheets were found to be unstable in aqueous solutions and aggregated
to decrease the surface area available for drug loading [71]. In a different study, Dhanavel
et al. developed dual drug-encapsulated chitosan/rGO nanocomposite by entrapping 5-
fluorouracil (5-FU) and curcumin in chitosan/sodium tripolyphosphate gel in the presence
of rGO nanosheet for dual drug delivery to HT-29 colon cancer cells [72]. The synergistic
cytotoxicity was observed for dual drug-loaded nanocomposite to inhibit the growth of
HT-29 colon cancer cells compared with single drug therapy.

Considering the biological aspects, researchers have developed composites of rGO
with nanoparticles or polymers for cancer treatment. Among these, combination of rGO
with gold (Au) nanoparticle has gained considerable attention. In one study, Sanad et al.
prepared rGO–gold nanocomposites (rGO-Au) by incorporating Au nanoparticles inside
the rGO matrix through in situ reduction with sodium borohydride, followed by loading
5-FU by pore capping [73]. The results obtained from cytotoxicity assay determined by
the reduced half maximal inhibitory concentration (IC50) using MTT assay in addition
to enhanced cell apoptosis from flow cytometry analysis suggested the nanocomposite
can enhance targeted delivery of 5-FU as well as cytotoxicity to MCF-7 breast cancer cells.
In a similar study, Jafarizad et al. prepared Au nanoparticle-loaded rGO as a covalent
drug delivery system for pH-dependent release of mitoxantrone (MTX) [74]. For polymer
coating, Ryu and co-workers prepared PEI-rGO nanocarrier for pH-responsive delivery of
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DOX to Hela and A549 cancer cell lines [75]. The drug-loaded nanocomposite was further
coated with pH-responsive charge-conversional polymer polyethyleneimine-poly-L-lysine-
poly-L-glutamic acid (PKE) to endow charge-conversional property and serum stability to
PEI-rGO-based drug delivery system. They found that DOX-loaded PEI-rGO after PKE
coating released more DOX under low pH lysosomal condition and showed enhanced
anticancer activity in HeLa and A549 cancer cells. Considering the side effects associated
with chemotherapy, SreeHarsha et al. prepared hybrid nanoparticle by coating rGO with
chitosan and stabilized with tripolyphosphate to produce stabilized nanocomposite for
delivery of DOX to PC-3 cancer cells [76]. The sustained DOX release observed under
photothermal conditions endowed this nanocarrier with improved efficacy in treating
prostate cancer.

3.2. Photothermal Therapy (PTT) and/or Photodynamic Therapy (PDT)

Photothermal therapy (PTT) involves local temperature rise after exposing a photother-
mal agent to electromagnetic radiation such as visible or NIR light, which up converting
light energy into heat, can induce death of cancer cells [77]. Many nanomaterials are
effective photothermal agents in causing cancer cell apoptosis/necrosis with local hyper-
thermia from NIR laser exposure [78]. Graphene-based materials are good photothermal
agents used for PTT considering its multifunctionality [79]. Moreover, the combination of
graphene-based materials with inorganic particles, like iron oxide and gold nanoparticles,
can further enhance the photothermal effect and lead to higher cancer cell death rate
during PTT [80–83]. On the other hand, photodynamic therapy (PDT) is another form
of phototherapy involving light and a photosensitizer (PS), which when used together
with oxygen, can produce molecular oxygen or reactive oxygen species to elicit cancer cell
death [84,85]. In one study, GO was fond to act both as a photothermal agent for PTT and a
photosensitizer for PDT, making it an excellent candidate for synergistic phototherapy [86].

Robison et al. pioneered the use of rGO for PTT, who showed nano-sized rGO
produced by chemical reduction of GO has six-fold higher NIR absorption rate than GO,
endorsing its preferred use over GO as a photothermal agent [87]. The modification with tar-
geting peptide bearing the Arg-Gly-Asp (RGD) motif further provided rGO with selective
cellular uptake ability by U87MG glioma cancer cells, indicating rGO is a multi-functional
photothermal agent. Their results also provided strong evidence that nano-sized rGO
is highly effective as a photothermal agent when compared to other carbon-based nano-
materials as well as inorganic nanoparticles like gold or iron oxide. Similarly, Shim et al.
modified rGO with clostridium perfringens enterotoxin peptide-linked chlorin e6 (Ce6) as
a dual photodynamic and photothermal cancer therapeutic platform [88]. The intracellu-
lar uptake studies performed on U87 glioblastoma cells confirmed the ligand-mediated
cellular uptake. The combined therapy using 660 nm light source for the PDT agent (Ce6)
and 808 nm for rGO showed enhanced targeted dual phototherapy. In another study, He
and co-workers synthesised palladium nanoflowers-decorated rGO (rGO/PdNFs) and
explored its versatile applications in catalysts, sensor, and PTT [89]. The modification of
rGO with PdNFs increased its photothermal conversion due to enhanced absorption in
the NIR window. Both in vitro study using HeLa cells and in vivo animal experiments
performed in tumor-bearing mice model indicates rGO/PdNFs could result in effective
photothermal antitumor efficacy. The study using alanine-grafted rGO as a photothermal
platform for cancer therapy confirmed that PTT using 808 nm laser irradiation produced
89% and 33% higher photothermal effect compared to GO and rGO, respectively. The
conjugation of alanine to GO via π–π interactions reduced GO to rGO, not only increased
the 808 nm absorbance but also acted as a targeting ligand to kill U87MG cancer cells
selectively [90].

The photothermal applications rGO were further explored in combination with other
nanoparticles and photosensitizers in synergistic cancer therapy. Otari et al. performed
one-step reduction of GO to rGO and decoration of rGO with Au nanoparticles and ther-
mostable antimicrobial nisin peptides to synthesize NAu-rGO [91]. After treating MCF-7
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breast cancer cells with the nanocomposite followed by 800-nm diode laser (0.5 W/cm2)
treatment for 5 min, 80% cell growth inhibition was found. Similarly, Zhang et al. at-
tached polyethylene glycol (PEG) modified Ru (II) complex (Ru-PEG) to rGO surface by
hydrophobic π–π interaction, and applied the nanocomposite as a photothermal agent
and a photosensitizer for PTT/PDT [92]. The A549 lung cancer cells treated with rGO-Ru-
PEG and sequentially exposed to of 808 nm (for PTT) and 450 nm (for PDT) wavelength
light source resulted in enhanced cytotoxicity due to combined phototherapeutic effects.
The rapid reduction in relative tumor volume observed from animal experiments also
confirmed the synergistic effect of dual phototherapy.

For localized combination cancer therapy, Chang and co-workers developed rGO/AE/
AuNPs hydrogel containing rGO and Au nanoparticles, by using amaranth extract (AE)
both as a reducing agent and a precursor, which crosslinked upon 660 nm laser exposure
to form a composite hydrogel [93]. Both Au nanoparticles and rGO acted as photothermal
agents while the chlorophyll derivatives in AE acted as a photosensitizer to accelerate the
generation of cytotoxic singlet oxygen. Upon hydrogel formation on the surface of HeLa
cancer cells in situ, the composite hydrogel was used as a combined PTT/PDT platform by
repeated irradiation with 808 nm laser in multiple antitumor therapies. In another study, a
PTT/PDT reagent was synthesized by conjugating tetrakis(4-carboxyphenyl) porphyrin
(TCPP) to rGO–PEI, which was formed based on carboxylic acid functionalized rGO for
combination PTT/PDT therapy [94]. The rGO–PEI–TCPP composite showed excellent
stability in different biological solutions. The results obtained from studies with CBRH7919
cancer cells indicates induced cell apoptosis upon laser irradiation, due to the combined
photothermal and photodynamic effects with the production of heat and singlet oxygen.
The increase in temperature upon exposing a photothermal agent to laser light may cause
side effects, and hence determining the optimum concentration of PTT agent or perform-
ing experiment at lower laser power is important in phototherapy. Jafarirad and team
developed a non-invasive strategy for low-level laser induced cancer therapy. The hybrid
nanocomposites (ZnO/rGO, Ag-ZnO/rGO, and Nd-ZnO/rGO) synthesized by green syn-
thesis methods were further optimized for concentration in anti-tumor study in vitro using
MCF-7 cancer cells [95]. The results confirmed a low concentration (12.5 µg/mL) of hybrid
together with low irradiation doses (8–32 J/cm2) could lead to higher cell death.

In conventional PDT, the unfavourable bioavailability, low absorption band and lim-
itations in tissue oxygenation are considered as possible limitations. To overcome these
limitations, Kapri et al. fabricated a ∼5 nm thick MoS2 nanoplatelet and integrated them
with n-type nitrogen doped rGO for PDT [96]. The p-MoS2/n-rGO-MnO2-PEG composite
was prepared by modifying the nanosheet with poly(ethylene glycol) (PEG) to improve
biocompatibility and colloidal stability in physiological solution, which was further surface
decorated with MnO2 to overcome the hypoxic conditions prevalent in tumor microen-
vironment, by increasing intracellular O2 after reaction of MnO2 with endogenous H2O2
in cancer cells. The nanosheet reveals increased apoptosis under NIR light irradiation by
alleviating hypoxia and enhances the efficacy of PDT on HeLa cells in vitro. It is difficult
to selectively kill cancer cells during PTT as normal cells are also simultaneously affected
by the photothermal effect, which is the most common disadvantage associated with pho-
totherapy. To solve this problem, an interesting design based on rGO was demonstrated by
synthesizing water dispersible Cu2O nanocrystal-rGO nanocomposites. In contrast to the
highly efficient killing of both normal and cancer cells initiated by the photothermal effect
under NIR irradiation, the photocatalytic effect of this nanomaterial results in selective
killing of cancer cells in contrast to unselective cell-killing under NIR light [97]. This was
demonstrated from the cytotoxicity assay performed on A549, HK-2 and MDA-MB-231
cancer cell lines in vitro.

The efficacy of rGO-based PDT/PTT could be upregulated by conjugating rGO with
a ligand molecule to actively targeting cancer cells. Jiang et al. used hyaluronic acid
(HA) as a targeting ligand to specifically deliver a photosensitizer Ce6 to CD44 over-
expressing cancer cells for PDT with NIR irradiation [98]. The nanoplatform was prepared
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by dopamine-reduced rGO sheet and coated with mesoporous silica to load Ce6 as well
as HA. The combination of photothermal conversion and controllable Ce6 release after
NIR irradiation confers the nanoplatform with enhanced singlet oxygen generation that
could lead to more significant destruction of targeted cancer cells. Lima-Sousa and co-
workers also functionalized rGO with HA-grafted poly-maleic anhydride-alt-1-octadecene
(HA-g-PMAO) for targeted PTT [99]. In vitro studies confirmed internalization by CD44
overexpressing MCF-7 cells as an on-demand PTT platform to elicit cancer cell ablation
for potential targeted cancer therapy. Taking advantage of the fact that polyphenol com-
pounds in green tea (GT)-reduced rGO can act as targeting ligand, targeted delivery of the
nanocomposite resulted in 20% higher photothermal destruction of the high metastatic
SW48 cancer cells than that of the low metastatic HT29 cells [100]. Although the exact mech-
anism is still under investigation, the attachment of polyphenol-modified rGO to cancer
cell surface could be confirmed from flow cytometry studies for photothermal destruction
of colon cancer cell line at 0.3 mg/mL rGO and 0.25 W/cm2 NIR laser power density. To
use heparin sulphate proteoglypican-3 (GPC3) as a targeting ligand for hepatocellular
carcinoma, Liu et al. conjugated biotinylated GPC3 antibody to rGO (rGO-GPC3) and bind
avidinylated nanobubbles to rGO-GPC3 using the biotin-avidin bioaffinity system for PTT.
Using ultrasound-targeted nanobubble destruction, the local concentration of rGO around
HepG2 cell line could be increased for photothermal ablation and PTT of hepatocellular
carcinoma under 808 nm NIR irradiation [101].

Indocyanine green (ICG), a NIR dye approved by the U.S. Food and Drug Adminis-
tration (FDA), can combine with rGO to promote the NIR absorption ability of rGO and
enhance the PTT efficacy. A novel nanoagent using ICG-loaded polydopamine (PDA)-
reduced graphene oxide nanocomposites (PDA-rGO) was found to be loaded with a large
amount of ICG molecules for exhibiting stronger photothermal effect and amplify the PTT
efficacy for cancer theranostics [102]. After photoacoustic imaging-guided PTT treatments
using 808 nm NIR laser at 0.6 W/cm2 for 5 min, the tumors in orthotopic 4T1 breast can-
cer mice model were completely eradicated with no observable treatment toxicity. Also
using ICG, Sharker et al. designed a pH-responsive, NIR-sensitive rGO-based nanocom-
posite (ICG-CPPDN/rGO), by ionic complexation of ICG with CPPDN/rGO, for local
destruction of cancer cells with minimal invasiveness to surrounding normal cells [103].
The nanocomposites showed pH-dependent photothermal effect from pH 5.0 to 7.4 due
to the pH response relief and quenching effects of ICG on rGO sheet, which leads to
photo-thermolysis as the pH was changed from 5.0 to 7.4 in vitro. Due to acidic tumor
microenvironment, the nanocomposite showed improved photothermal destruction of
MDA-MB-231 cancer cells both in vitro and in vivo compared to free ICG upon local NIR
laser treatment.

3.3. Gene Therapy

Inhibiting gene expression by promoting site specific cleavage of target messenger
RNA, small interfering RNA (siRNA) regulates the expression of genes by RNA interfer-
ence (RNAi) and represents one of the promising developments in cancer therapy [104].
Considering the limitations of delivery of naked siRNA, which include endosomal escape,
rapid excretion, low stability in blood serum, non-specific accumulation in tissues, siR-
NAs were usually delivered by loading to nanoparticles [105]. The use nanoparticles as
nano-vehicles for siRNA delivery also offers the possibility of targeted gene therapy for
more effective cancer treatment outcomes [106]. Various nano-sized particulate systems,
including silica and silicon-based nanoparticles, metal and metal oxide nanoparticles, car-
bon nanotube, graphene, dendrimer, polymers, cyclodextrin, liposome, and semiconductor
nanocrystals have been developed for systematic delivery of siRNA [107]. The cationic
PEI-rGO nanoparticles after reducing and modifying GO with PEI have gained particular
attention in rGO-based cancer gene therapy, since PEI is widely used for non-viral transfec-
tion and offers advantages over other polycations with high endosomolytic activity and
strong DNA compaction ability [108,109].
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As low molecular weight PEI was proved to exhibit less cytotoxicity, Chau et al.
studied the covalent functionalization of GO with triethyleneglycoldiamine or 800 Da
molecular weight PEI via the epoxy ring opening reaction. The data obtained using gel
electrophoresis confirmed that PEI-rGO was more efficient in complexing with siRNA
to offer higher complexing capacity, making it an excellent candidate for gene silencing
applications [110]. In a separate study, rGO was modified with low molecular weight
branched polyethyleneimine (BPEI) via polyethylene glycol (PEG) spacer (PEG-BPEI-rGO)
as a nano-vehicle for photothermally controlled gene delivery [111,112]. The nanocompos-
ite formed stable nano-sized complex with plasmid DNA to offer high gene transfection
efficiency for experiments performed with PC-3 and NIH/3T3 cell lines without significant
cytotoxicity. Most importantly, PEG-BPEI-rGO demonstrated enhanced gene transfection
efficiency upon NIR irradiation. After investigating with a proton sponge effect inhibitor
Bafilomycin A1, the enhancement of gene transfer was found to be associated with acceler-
ated endosomal escape of the nanocomposite, with the photothermal effect of rGO.

3.4. Chemotherapy/Phototherapy

As chemotherapy and phototherapy have produced promising outcomes in cancer
therapy, researchers started combining these therapeutic modalities for synergistic cancer
treatment [113]. Specifically, considering the high loading efficiency of chemotherapeutic
drugs and the unique NIR laser-responsive characteristics for PTT/PDT, graphene-based
nanomaterials have received attention for chemo-phototherapy [114]. By intravenous de-
livery of rGO-based nanocomposites, the combination of chemotherapy with phototherapy
(PTT and/or PDT) also demonstrated promising anti-cancer efficacy with subcutaneously
implanted cancer cells in vivo, as depicted schematically in Figure 3 [115,116].
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Figure 3. A schematic diagram showing the treatment of subcutaneously implanted cancer cells by
combined chemotherapy/phototherapy using reduced graphene oxide (rGO).

Oz and co-workers functionalized rGO by surface anchoring maleimide-containing
catechol (dopa-MAL) through noncovalent interaction. Using thiol–maleimide chemistry,
they modify rGO with cyclic peptide c(RGDfC) as a targeting ligand for targeted delivery of
DOX to cancer cells. The in vitro studies performed with MDA-MB-231 cell line indicated
that DOX loaded rGO/dopa-MAL-c(RGDFC) was more effective than free DOX in killing
the cancer cells after exposure to 980 nm laser irradiation (2 W/cm2) for 10 min [117].
This was attributed to the enhancement of chemotherapy with PTT from the endocytosed
nanocomposite upon NIR laser exposure for targeted synergistic cancer cell killing. Surface
functionalization of rGO for enhancing the hydrophilicity is a strategy for effective drug
delivery. Hu et al. used folic acid modified dextran-g-octadecanoic acid to decorate rGO
surface with hydrophilic dextran moiety through octadecanoic acid hydrophobic anchoring
and with folic acid for enhanced intracellular uptake by cancer cells. The nanocomposite
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was loaded with anticancer drug DOX for chemotherapy/phototherapy where in vitro
analysis performed with HeLa cells at endosomal acidic environment (pH 5.3) confirms
increased DOX release upon weakening of noncovalent binding between DOX and rGO.
Compared with single mode chemotherapy, the combination of local chemotherapy with
external NIR-induced PTT demonstrated dual therapy and offered higher therapeutic
efficacy [118]. The study confirmed that by eliciting higher cytotoxicity toward cancer cells
through the photothermal response of rGO under NIR irradiation, the concentration of
DOX needed for chemotherapy could be significantly reduced to minimize the potential
side effect of chemo drugs. Similarly, Hu and co-workers also delivered DOX using dextran-
reduced rGO through direct conjugation of dextran on rGO surface by hydrogen bonds.
This was followed by self-assembly to form rGO/Dex nanoparticles. After conjugating
with RGD peptide for recognition by αvβ3 integrin on cancer cell surface to enhance
intracellular uptake, the in vitro chemo-phototherapy performed with external NIR laser
on B16F10 cell line resulted in higher anti-cancer efficacy [119].

Considered as one of the most widely used chemotherapeutic drugs, DOX has been
loaded to rGO synthesized with various reducing agents. For this purpose, functionalized
rGO with bovine serum albumin (BSA) as a reduced agent was used as a carrier of DOX [57].
Brain tumor cells (U87MG) treated with BSA-rGO revealed that combination of photo-
chemo treatment enhanced the treatment efficacy as compared to single mode phototherapy
using BSA-rGO or DOX (chemotherapy). Similarly, Zaharie-Butucel and team reduced
GO using chitosan to combine PTT and PDT, followed by using chitosan-rGO as a carrier
for DOX in synergetic therapy of colon cancer [49]. Targeted delivery of DOX using
polydopamine-functionalized rGO (pRGO) is another example in this category [120]. pRGO
modified with CD44 targeting ligand hyaluronic acid (HA) was used in combination with
DOX-loaded mesoporous silica (MS) (pRGO@MS-HA) to generate both pH and NIR-
triggered DOX release from the multifunctional nanosystems, showing excellent combined
effect in multimodal cancer therapy. In another example, Hao et al. used tea polyphenol to
produce rGO as a nanocarrier for delivery of DOX [121]. After exposure to 808 nm NIR
laser irradiation at 3 W/cm2 for 5 min, combined chemo-PTT can enhance cytotoxicity of
DOX toward human tongue squamous cancer cells, CAL27.

To improve photothermal properties, Ma et al. added gold (Au) clusters to rGO surface
by electrostatic interaction. Afterward, rGO was functionalized with 3-(3-phenylureido)
propanoic acid–polyethylene glycol (PPEG) via π–π bond interaction for improving the
biocompatibility. Using DOX for chemotherapy, rGO/Au/PPEG elicited effective pho-
totherapy/chemotherapy effect on HeLa cell line [122]. In a separate study, Yang et al.
introduced Au nanorods as well as hydroxyapatite to rGO surface (RGO/AuNR/HA) for
delivery of the anticancer drug 5-fluorouracil (5-FU). The nanocomposite was designed
for synergistic dual therapy, in which hydroxyapatite was used to enhance 5-FU loading,
while RGO and Au nanorods (AuNR) offer enhanced photothermal effect under NIR laser
irradiation [123]. Due to sequential drug release with the pH-sensitive drug release behav-
ior of hydroxyapatite in the first stage and photothermal conversion from RGO/AuNR
after NIR laser irradiation in the second stage, the designed nanocomposite exhibits greater
antitumor activity from the chemo-photo effect. A hybrid with ultra-small plasmonic
gold nanorods vesicles (rGO-AuNRVe) loaded on the surface of rGO was shown be to be
endowed with amplified photothermal effect. This hybrid could provide a high loading
capacity of DOX, provided by the cavity of the vesicle and the large surface area of rGO.
Furthermore, the release of DOX was sequential with DOX release first from the vesicular
cavity under NIR photothermal heating and followed by release from rGO surface induced
by the intracellular acidic environment [124]. Intravenous injection of rGO-AuNRVe-DOX
followed by low power 808 nm NIR laser irradiation (0.25 W/cm2) leads to effective inhibi-
tion of tumor growth of subcutaneously implanted U87MG human glioblastoma cells in
nude mice from combinatory chemo- and photothermal therapies.

Of course, the application of rGO in chemo-phototherapy is not limited to DOX
as there are reports employing different chemotherapeutic drugs in combination with
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rGO to enhance the cytotoxicity of the chemo drug through combination with PTT. In
one study, a nanocookie prepared by coating amorphous carbon on a mesoporous silica
support (PSS) and self-assembled on rGO nanosheet, was used as a photo-responsive drug
carrier for delivery of a hydrophobic anticancer drug camptothecin (CPT). Other than
providing a large payload of CPT, this nanocomposite provided a burst-like drug release
and intense photothermal effect upon NIR exposure [125]. The tumor volume change
observed from MDA-MB231 tumor-bearing nude mice confirmed chemo-phototherapy
due to synergistic photothermal and chemo therapeutic effects (nanocookie–CPT + NIR)
was more effective than chemotherapy alone (nanocookie-CPT) or photothermal effect
alone (nanocookie + NIR). In a separate study, Vinothini at el. developed magnetic iron
oxide nanoparticles functionalized rGO for loading CPT. Furthermore, a photosensitizer
4-hydroxycoumarin (4-HC) was bound to rGO via allyl amine (AA) linker. The cytotoxicity
study using MCF-7 human breast cancer cells upon 365 nm laser irradiation at 20 mW/cm2

for 3 min indicated CPT-loaded MrGO-AA-g-4-HC could produce reactive oxygen species
(ROS) for killing of MCF-7 cancer cells for PDT. Unfortunately, with the limited penetration
depth of light source in the visible wavelength range (365 nm) for inducing PDT effect
of 4-HC, the in vivo results only demonstrated significant tumor growth suppression for
CPT-loaded MrGO-AA-g-4-HC without laser treatment [126].

3.5. Photothermal Therapy/Immunotherapy

Immunotherapy, which kills cancer cells by improving immunity, is a new approach
for cancer therapy. The success of immunotherapy is determined by two main tools, check-
point inhibitors (CPIs) and chimeric antigen receptor (CAR) T cells [127,128]. Although
immunotherapies have achieved promising results against metastatic cancers, traditional
immunotherapies are often expensive and can have toxic side effects. During the process
of PTT, the heat generated by the photothermal agent not only ablates the tumor but also
produces tumor-associated antigens by causing immunogenic cell death, which can lead
to antitumor immunity in the body. Hence, the combination of PTT and immunotherapy
(photo-immunotherapy) has shown great promise in cancer therapy recently [129,130].
Although many nanoparticles have been used for photo-immunotherapy, rGO stands out
as one of the best choice among them [131]. Wang et al. prepared a nanocomposite con-
sisting of PEGylated rGO hybridized with iron oxide nanoparticles through electrostatic
interaction for photothermal-immunotherapy of metastatic cancer. This nanocomposite
was an excellent photothermal agent for direct killing of cancer cells by PTT, which also
stimulated immune responses by triggering the maturation of dendritic cells as well as the
secretion of cytokines to cause immunogenic cell death of tumor cells [131]. In vivo antitu-
mor studies revealed the nanocomposite to be an excellent photothermal agent for PTT
when exposed to NIR laser to destroy primary tumor effectively. After NIR laser treatment
of 4T1 orthotopic mouse breast tumor, the intratumorally injected nanocomposites could
significantly increase the survival time of tumor-bearing mice by eliciting strong antitumor
immunological response of the treated animal.

Table 2. Summary of functionalized rGO-based nanocomposites used for cancer therapy.

Nanocarrier Functionalization Agent Cancer Cell Line Type of Study Reference

Chemotherapy

Riboflavin-rGO DOX, riboflavin MCF-7, A549 In vitro [63]

rGO-PEI-FA DOX, folic acid (FA) CBRH7919 In vitro [64]

FA-rGO/ZnS:Mn
DOX, folic acid (FA), Mn-doped ZnS

quantum dots
MDA-MB-231 In vitro [65]

CHA-rGO DOX, cholesteryl hyaluronic acid (CHA) KB In vitro, in vivo [66]

PEG-BPEI-rGO
DOX, branched polyethylenimine (BPEI),

polyethylene glycol (PEG)
PC-3 In vitro [112]
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Table 2. Cont.

Nanocarrier Functionalization Agent Cancer Cell Line Type of Study Reference

NrGO/PEG Resveratrol, PEG 4T1 In vitro, in vivo [68]

MSN-C18-rGO
DOX, mesoporous silica grafted with

alkyl chains (MSN-C18)
SMMC-7721 In vitro [67]

GP PF-127 polymer, curcumin, paclitaxel A549, MDA-MB-231 In vitro [70]

CS/rGO Chitosan (CS), 5-FU, curcumin HT-29 In vitro [72]

R9-rGO R9 peptide, paclitaxel HeLa, MCF-7 In vitro [71]

rGO-Au 5-FU, gold (Au) MCF-7 In vitro [73]

MPA-AuNPs/rGO MTX, SMTX-gold nanoparticles (AuNPs) MCF-7 In vitro [74]

PK5E7(PEI-rGO) DOX, PK5E7 polymer, PEI Hela, A549 In vitro [75]

rGOD-hNP DOX, chitosan PC-3 In vitro [76]

RGO Leaf extract, paclitaxel A549 In vitro [69]

Photothermal and/or Photodynamic Therapy

rGO-RGD RGD peptide U87MG In vitro [87]

CPC/rGO Chlorin (Ce6), claudin 4-binding peptide U87, HeLa In vitro [88]

rGO/PdNFs Palladium nanoflowers (PdNFs) HeLa In vitro, in vivo [89]

Ag(Nd)-ZnO/rGO Ag(Nd)/ZnO MCF-7 In vitro [95]

ARGO Alanine U87MG In vitro [90]

ICG-CPPDN/rGO Catechol, PPDN polymer, ICG MDA-MB-231 In vitro, in vivo [103]

rGO/AE/AuNPs
Amaranth extract (AE), gold

nanoparticles (AuNPs)
HeLa In vitro [93]

rGO-Ru-PEG PEG, Ru(II) A549 In vitro, in vivo [92]

NAu-rGO
Nisin peptides, gold nanoparticles

(AuNPs)
MCF-7, HeLa In vitro [91]

p-MoS2/n-rGO-
MnO2-PEG

p-type molybdenum sulfide (p-MoS2),
MnO2, PEG

HeLa, HEK293 In vitro [96]

Cu2O-rGO Cu2O
HK-2, MDA-MB-231,

A549
In vitro [97]

rGO-PEI-TCPP
Polyethyleneimine (PEI),

tetrakis(4-carboxyphenyl) porphyrin
(TCPP)

CBRH7919 In vitro [94]

rGO-PDA@MS/HA
Mesoporous silica (MS), hyaluronic acid

(HA), polydopamine (PDA), Ce6
HT-29, HCT-116 In vitro [98]

rGO/HA-g-PMAO Hyaluronic acid (HA) grafted PMAO MCF-7, NHDF In vitro [99]

GT-rGO Green tea SW48, HT29 In vitro [100]

NBs-GPC3-rGO GPC3 antibody, nanobubbles HepG2 In vitro [101]

ICG-PDA-rGO ICG, polydopamine 4T1 In vitro, in vivo [102]

Gene Therapy

rGO-PEI PEI, siRNA None None [110]

PEG-BPEI-rGO
Low molecular-weight branched

polyethylenimine (BPEI)
PC-3 In vitro [111]

Chemotherapy/Phototherapy

rGO/dopa-MAL-
c(RGDfC)

Catechol, DOX, c(RGDfC) peptide HeLa, MDA-MB-231 In vitro [117]
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Table 2. Cont.

Nanocarrier Functionalization Agent Cancer Cell Line Type of Study Reference

rGO/C18D
DOX, octadecanic acid conjugated on

dextran (C18D)
HeLa In vitro [118]

rGO@PSS Camptothecin (CPT), mesoporous silica MDA-MB-231 In vitro, in vivo [125]

rGO/Dex DOX, dextran, RGD peptide B16F10 In vitro [119]

BSA-rGO DOX, bovine erum albumin (BSA) U87MG In vitro [57]

rGO/Au/PPEG
DOX, 3-(3-phenylureido) propanoic acid

(PPA)-PEG (PPEG), Au
HeLa In vitro [122]

Chit-rGO-IR-820 DOX, chitosan, IR-820 C26 In vitro [49]

pRGO@MS-HA
DOX, hyaluronic acid (HA), mesoporous

silica, polydopamine
HeLa In vitro, in vivo [120]

TPDL1-rGO DOX, tea polyphenol, anti-PDL1 antibody CAL-27, PDLCs In vitro [121]

MrGO-AA-g-4-HC
CPT, 4-hydroxycoumarin (4-HC),

magnetic nanoparticles, camptothecin
MCF-7 In vitro, in vivo [126]

rGO/AuNR/HAP
5-FU, gold nanorod (AuNR),

hydroxyapatite
HeLa In vitro [123]

rGO-AuNRVe DOX, gold nanorod vesicle U87MG In vitro, in vivo [124]

Photothermal Therapy/Immunotherapy

FNPs/rGO-PEG Fe3O4 nanoparticles, PEG 4T1 In vitro, in vivo [131]

PEG-rGO-FA-IDOi IDO inhibitor (IDOi), folic acid, PEG CT26 In vitro, in vivo [132]

Yan et al. also combined immunotherapy with PTT with folic acid as a targeting
ligand by conjugating indoleamine-2,3-dioxygenase (IDO) inhibitor to rGO to induce IDO
inhibition and programmed cell death-ligand 1 (PD-L1) blockade for synergistic antitumor
immunity. After laser irradiation, the nanocomposite can directly kill tumor cells due to
PTT and trigger antitumor immune response synergistically by IDO inhibition as well
as PD-L1 blockade in CT26 colon cancer cells. By combining PTT, IDO inhibition, and
PD-L1 blockade, the growth of irradiated tumor in distant sites without PTT treatment
can be effectively inhibited by targeting multiple antitumor immune pathways to induce
synergistic antitumor immunity [132].

4. Conclusions and Outlook

Due to improved photothermal response by absorbing light in the NIR range and
the potential for high loading of chemotherapeutic drugs, photosensitizers and siRNA,
rGO synthesized by means of various reducing agents is well suited for applications in
single or multi-mode cancer therapy. Based on the reducing agent used for rGO synthesis,
and the moieties conjugated with it, rGO-based nanocomposite is endowed with triggered
drug release capability after intracellular uptake, by pH change or hyperthermia. This
temperature-dependent and pH-responsive drug release, when combined with PTT and/or
PDT, can lead to pronounced cytotoxicity from in vitro and in vivo studies performed with
various cancer cells. rGO can also act as a good vehicle for gene delivery after modifica-
tion/conjugation with cationic polymers, especially PEI, which can act alone for RNAi
or combined with rGO-induced PTT for combination therapy involving immunotherapy.
Overall, this review concludes that rGO is a promising and versatile tool after function-
alization for cancer therapy, especially in combination cancer therapy such as PTT/PDT,
chemotherapy/phototherapy and photothermal therapy/immunotherapy to elicit synergis-
tic anti-tumor efficacy. Undoubtedly, despite remarkable therapeutic efficacy demonstrated
from combination cancer therapy using rGO, rationally combining the therapeutic modali-
ties into rGO-based platform for ‘smart’ drug delivery will be desirable. In addition, for
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successful cancer therapy, the designed rGO-based nanocomposites should preferably
be endowed with both therapeutic and diagnostic functions for precision nanomedicine.
Additionally, the function of combined cancer therapeutics offered by rGO may be required
to be programmed for realizing the synergistic effects. Moreover, it would be helpful to
develop better PDT/PTT cancer therapeutics using rGO, which can alleviate the limit of
penetration depth of NIR laser for effective eradication of tumors located deep in the body.
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