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Functionally graded materials (FGMs) are novel materials whose properties change gradually with respect to their dimensions. It
is the advanced development of formerly used composite materials and consists of two or more materials in order to achieve the
desired properties according to the application where an FGM is used. FGMs have obtained a great attention of researchers in the
past decade due to their graded properties at every single point in various dimensions. -e properties of an FGM are not identical
to the materials that constitute it. -is paper aims to present an overview of the existing literature on stability, buckling, and free
vibration analysis of FGM carried out by numerous authors in the past decade. Moreover, the analyses of mathematical models
adopted for the aforementioned analyses are not the core purpose of this paper. At the end, future work is also suggested in this
review paper.

1. Introduction

Materials have been playing an important role in the life of
human beings since the first man on Earth. In different eras,
man has used different materials or made composites for the
sake of their ease in numerous applications. Initially, bronze
was frequently used which is actually an alloy of tin and
copper. Bronze was first invented in 3700 BC, the era known
as the Bronze Age [1]. In 1200 BC, iron was also discovered
and remained of interest for the people to yield different
objects in the era known as the Iron Age. After that, a
number of different alloys of metals and nonmetals were
engineered for multiple purposes. Composite materials then
attained great attention from researchers due to their wide
range of application. Composite materials are lighter and
stronger and can also provide design flexibility.-ey provide
resistance to corrosion as well as wear. -e disadvantage of
composite materials is a sharp transition of properties at the

junction of materials which leads to component failure by
the process of delamination. To overcome the drawback of
conventional composite materials, a new breed of composite
materials named functionally graded materials (FGMs) was
first invented in 1984 by Japanese researchers for the core
purpose of their aerospace project [2] that required thermal
barrier with the outside temperature of 2000 k and inside
1000 k within 10mm thickness. A decade before, Shen and
Bever [3] also worked on graded structure composite ma-
terials, but it was delayed due to unsophisticated fabrication
equipment [4]. So far, it has been used almost in every field,
for example, biomedical, chemical, nuclear, mining, and
power plant. FGMs occur in nature as bones, teeth, bamboo
trees, human skin, and so on to meet the specified re-
quirement of human beings and environment.
-e number of research publications has increased

significantly in past two decades [5]. FGMs replace the sharp
transition of properties with smooth and continuous varying
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properties of the material such as physical, chemical, and
mechanical like Young’s Modulus, Poisson’s ratio, Shear
Modulus, density, and coefficient of thermal expansion in a
desired spatial direction [6–9] (Figure 1). -e gradual
changes in volume fraction of constituent and nonidentical
structure at preferred direction give continuous graded
properties like thermal conductivity, corrosion resistivity,
specific heat, hardness, and stiffness ratio [11]. All these
advantages made FGMs far better than homogenous com-
posite material to use in multiple applications. Due to
prominent characteristics of FGMs, several efforts have been
put from time to time by researchers to enhance the
properties of FGMs. Several types of FGMs have been in-
troduced up till now based on size and structure. Moreover,
a number of fabrication processes can be adopted to
manufacture FGMs like gas based method, liquid process
method, and solid process method.

2. Evolution of FGM

-e term functionally graded material was introduced by a
scientist of Japan in 1984 while working on a material being
capable of withstanding high temperature. Soon, the im-
portance of FGMs was realized, and to promote research in
this area, a five year research based national project with a
cost of $11 Million was started as “Research on the basic
Technology for the development of FGM for relaxation of
thermal stress” (FGM PART 1) [12]. At the end of this
project, researchers were able to develop 300mm square
shell and 50mm hemispherical bowl for SiC-C FGM nose
cones [13]. Another 5-year-project that was a consequence
of FGM PART1 was started in 1992 with a cost of $9 Million
called “Research on Energy Conversion Materials with
Functionally Graded Structures” (FGM part 2). -is project
was focused to enhance energy conversion efficiency using
functionally graded structure technology [14]. Furthermore,
in April 1996, the New Energy and Industrial Technology
Department Organization (NEDO) funded a project with a
budget of $2.5 million known as “Precompetitive Processing
and characterization of Functionally Graded Materials.” -e
project was continued until March 2000. -e purpose of the
project was to develop metal-ceramic FGM on an industrial
level using spark plasma sintering (SPS) technique.
Polyamide/Cu was one of the FGMs successfully manu-
factured by SPS technique [13]. Most of the research was
conducted on the grading of mechanical and thermal
properties. However, it was needed to work on basic
properties like physical and chemical. In order to fill this gap,
the Ministries of Education, Science, Sports and Culture
granted a research program in April 1996 entitled, “Physics
and Chemistry of FGMs” that was continued for the next
three years until 1999. Physics, Chemistry, Biology, and
Agriculture, etc., were the fields investigated in this project
[15]. Figure 2 represents the hierarchy of modern material.

3. Fabrication Process of FGM

-e fabrication process is one of the most crucial fields in
FGM research. A number of research papers have been

published till to date on the process techniques of FGM
yielding new methods of FGM manufacturing. Based on
constructive processing and mass transport processing
techniques, FGM can be divided into two major categories
[17]. In constructive processing, the FGM is made layer by
layer starting with an appropriate distribution in which the
gradients are literally fabricated in space, while in mass
transport, the gradients within a component are dependent
on natural transport phenomena, such as heat conduction,
diffusion of atomic species, and flow of fluid [10]. However,
advancement in automation technology in the past two
decades has made constitutive gradation process both
technically and economically more feasible. Table 1 shows
fabrication methods while Table 2 shows comparison of
processing processes of FGM. -e most updated techniques
of FGM processing are explained below.

3.1. Vapor Deposition Technique. A number of vapor de-
position techniques are now adopted by manufacturers
including sputter deposition, chemical vapor deposition,
physical vapor deposition, plasma-enhanced chemical vapor
deposition, and so on. Using the vapor deposition method,
the material is used to condense in a vapor phase through
chemical reaction, condensation, or conversion to form a
solid material [17]. -e aforementioned techniques are
fruitful to change the material properties like electrical,
mechanical, optical, and thermal. Using these methods, the
functionally graded surface coatings are deposited which in
turn can supply marvelous microstructure for thin surface
coatings. Using vapor deposition techniques, poisonous
gases are yielded as a by-product [21].

3.2. Powder Metallurgy. Four steps are involved in powder
metallurgy for the production of functionally graded ma-
terials [22–24].-ese are powder preparation, weighting and
mixing of powder, stacking and ramming of premixed
powders, and finally sintering [25]. A number of methods
are used for preparation of powder like chemical reaction,
electrolytic deposition, atomization, solid state reduction,
centrifugal disintegration, grinding, pulverization, etc. -e
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Figure 1: Variation of properties in conventional composites and
FGM [10].
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forming process includes compacting of powder into geo-
metric form, and pressing is usually completed in a room
temperature [21]. Compatibility insured the strength of
pressed and unsintered part [25]. -e sintered part is usually
made without a particular structure. During the process,
some pores may occur which can be removed from sec-
ondary process [10].

3.3. Centrifugal Casting. In the centrifugal casting method,
the functionally graded material is produced by spinning the
mold using gravitational force. Metal in molten state is used
to put into spinning mold, and it continues to spin until the
metal becomes solidified [10]. Cylindrical parts are usually
made through this method. Using this method, the density
of metal increased and the mechanical properties of the
casting may increase by 10 to 15% [19]. Difference in the
centrifugal force which is produced by the density difference
in molten and solid particles creates compositional gradient
in FGM [4, 26]. From the literature review, it was found that
there is limitation on gradient due to its production of
natural process (i.e., centrifugal force and density
difference).

3.4. Solid Freeform Fabrication Method. -e solid freeform
fabrication method is one of the most adapted methods for

the production of physical shapes with the help of computer-
generated information about the object [10]. -is method
has an ability to vary the internal composition of materials
[27, 28]. -is method has many advantages over the other
methods such as less energy consumption, higher
manufacturing speed, efficient utilization of material, and
being capable of producing complex shapes and design [27].
In the solid freeform fabrication method, the laser-based
process is widely used for the fabrication of FGM [21].

4. Stability Analysis of FGM

4.1. FGM Shells. Natural frequencies, buckling stress, dis-
tribution of displacement, and stress components of FG
circular cylindrical shells can be anticipated exactly using 2D
higher order deformation theory [29]. -e buckling pres-
sure, fundamental cyclic frequencies, and relevant wave
number of FG conical shells were obtained using Galerkin
Method [30]. -e effect of FG composite coatings on critical
axial load depends on volume fraction or geometric pa-
rameters of FG shells (Deniz et al. [31]). Instability region of
FG microshells is inversely proportional to dimensionless
length scale parameter and directly proportional to static
load factor (Sahmani et al. [32]). Dung et al. [33] worked on
the stability of FG truncated conical shells. Results exhibit
that critical buckling load and stability both increase when a
quantity of stiffeners increases on a conical shell, and it is
much affected by foundation parameters. -e dynamic
stability of a periodic FGM shell conveying fluid for different
scope of dimensionless fluid density can be enhanced by
increasing the length of a shell, and the main shell structure
should adopt periodicity, whereas the dynamic stability
varies inversely with the density of a shell (Shen et al. [34]).
Anh et al. [35] did stability analysis of FGM shells mounting
on elastic foundation. External pressure and elastic foun-
dation play an important role in bifurcation buckling load,
temperature resistance ability, and mechanical loading of
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Figure 2: Representation of modern material hierarchy [16].

Table 1: Fabrication methods of FGM [18].

Liquid-state process Solid-state process Deposition process

Settling Diffusion bonding Electro deposition

Centrifugal casting

Powder metallurgy

Laser deposition
Infiltration Vapor deposition
Directional

Spray deposition
Filling
Solidification
Controlled method
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FGM shells. Huang and Han [36] studied the elastoplastic
buckling analysis of FGM cylindrical shells experiencing
external pressure. Based on J2 deformation theory, it was
pointed out that the elastic, elastoplastic, and plastic
buckling zones of FGM cylindrical shells can be differen-
tiated. Loading capacity, buckling, and postbuckling of ES-
FGM elliptical cylindrical shells are enormously affected by
geometric parameters, volume fraction, stiffeners, and elastic
foundation (Duc et al. [37]). Sofiyev and Kuruoğlu [38]
analyzed the stability of FGM-truncated conical shells. -e
effect of shear deformation and FG profile on axial load and
critical and combined hydrostatic pressure was discussed
using classical shell theory, shear deformation theory, and
geometric parameters. Sofiyev [30] did stability analysis of
FGM conical shells. Various results were obtained showing
the behavior of both dimensional and nondimensional
critical axial load under the impact of numerous parameters
like shear stress, volume fraction index, FGM layer, thick-
ness of core, and semivertex angle.

4.2. FGM Plates. -e investigation has been made to study
elastic buckling of FG rectangular plates, and it is found that
the stability boosts as the geometric parameters increase
under uniform and linear loading. Moreover, critical
buckling temperature difference of FG thick plates is ap-
preciably affected by transverse shear deformation (Bouazza
et al. [39]). Jalali at el [40] investigated laminated, func-
tionally graded circular plates having different thicknesses
and constant temperatures using FSDT. It was found that
thermal buckling factor increases with increasing volume
fraction index and decreases in sheet thickness ratio. Jerysiak
andMichalak [41] proposed the model for stability problems
in thin plates FG structures. Naderi and Saidi [42] came up
with the exact solution of stability analysis of FG sector
plates mounted on an elastic foundation. Critical buckling
load can be decreased by increasing the Winkler parameter
and power law index.-e elastic foundation and thickness of

plate can greatly affect the critical buckling load and stability
of FG plates having free circular edges. Bateni et al. [43] did a
comprehensive study on the stability of FG plates and came
to know the significance of in-plane boundary conditions for
buckling analysis. Nabian et al. [44] suggested the acceptable
pull-in voltage and hydrostatic pressure for FG microplates
to be in the stable region. Results were claimed to be useful in
the designing of MEMS. Zhang et al. [45] analyzed stability
and bifurcation of FG plates and found the numerical so-
lution that meets with the analytical prediction using the
fourth-order Runge–Kutta method. Kiani and Eslami [46]
worked on the nonlinear thermoinertial stability of FG
plates. It was concluded that the rotation of FG plates can
stabilize it from an unstable region under thermal loading.
During rotation, a snap-through phenomenon can take
place. Swaminathan and Naveenkumar [47] proposed the
computational model for the stability analysis of FGM
plates. Different computational models with varying degree
of freedom that acknowledge the consequences of transverse
and shear deformation were examined and concluded that
the critical buckling load of FGM plates can be achieved by
higher-order deformation theory. Dynamic stability analysis
of S-FGM using four-variable refined plate theory was
studied by Han et al. [48]. Results show that under dynamic
load, nondimensional frequency remains constant regard-
less of variation in stiffness of S-FGM. However, under static
load, nondimensional excitation frequencies may get re-
duced proportionally by thickness ratio. Furthermore, the
instability region of S-FGM plates is directly proportional to
static load factor and elastic medium parameters. Critical
buckling load and temperature of FGM microplates under
mechanical and thermal loading were analyzed by Mirsalehi
et al. [49]. It was noticed that both critical load and tem-
perature vary with length-scale parameter except the case in
which plate thickness is high enough as compared to length.
However, critical load and temperature vary inversely with
plate length, and volume fraction provided that volume is
constant for a specified length. Rezaee and Jahangiri [50]

Table 2: Comparison of different processing processes of FGM [19, 20].

No. Process
Variability of transition

function
Versatility in phase

content
Type of
FGM

Versatility in components
geometry

1 Powder stacking Very good Very good Bulk Moderate
2 Sheet lamination Very good Very good Bulk Moderate
3 Wet powder Very good Very good Bulk Moderate
4 Slurry dipping Very good Very good Coating Good
5 Jet solidification Very good Very good Bulk Very good
6 PVD, CVD Very good Very good Bulk Moderate
7 GMFC process Very good Moderate Bulk Good
8 Filtration/slip Very good Very good Bulk Good

9 Laser cladding Very good Very good
Bulk,
coating

Very good

10 -ermal spraying Very good Very good
Bulk,
coating

Good

11 Sedimentation Good Very good Bulk Poor
12 Diffusion Moderate Very good Join bulk Good
13 Directed solidification Moderate Moderate Bulk Poor

14
Electrochemical
gradation

Moderate Good Bulk Good

15 Foaming of polymer Moderate Good Bulk Good
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worked on chaotic vibration and stability of aeroelastic
piezoelectric FG plates. Useful results were obtained for
resonance amplitude, bifurcation point, and width of res-
onance region under different excitation (forcing, para-
metric, dynamic pressure, supersonic aerodynamic, and
piezoelectric). In addition, the amplitude of system response
is directly proportional to hysteric behavior. Stability and
snap-through analysis of FGM plates considering thermal
load is done by Ashoori and Sadough Vanini [51]. Results
exhibit that thermal preloading causes snap-through be-
havior in microstructure-dependent and size-dependent
FGM plates. -ermal preloading causes bifurcation in-
stability in FGM plates provided that temperature rises
uniformly.

4.3.FGMBeams. Ke andWang [52] showed that the effect of
the size of materials on dynamic stability of FG microbeams
can only be considered when the length scale parameter has
the same value as that of beam thickness. Piovan and
Machado [53] suggested that dynamically unstable regions
of thin wall FG beams vary inversely with elastic stiffness.
Buckling and postbuckling of FG beams resting on nonlinear
elastic foundation depend on a temperature of its constit-
uent. Furthermore, critical buckling temperature is affected
by coefficients of elastic foundation, when the thermal load is
subjected to either uniform temperature rise or heat con-
duction (Esfahani et al. [54]). Linear and nonlinear pa-
rameters of a foundation are responsible for the
postbuckling resistance of FG beams (Komijani et al. [55]).
Azizi et al. [56] did stability analysis on FG piezoelectric
MEMS (micro electromechanical system) and came to the
conclusion that for FG piezoelectric microbeams to be in the
stable region, an appropriate excitation frequency and
amount of AC voltage is needed. For the static analysis, the
stability of capacitive FGmicrobeams does not change as the
source temperature changes provided that applied voltage
remains constant. On the other hand, in case of dynamic
analysis, temperature does affect the stability. It was also
suggested that for mechanical behavior analysis, material
length scale must be taken into consideration (Zamanzadeh
et al. [57]). Kolakowski [58] did inspection about the dy-
namic stability of trapezoidal FGM beams. -e relation
between static and dynamic bucklings of structure and
primary and secondary local bucklings was given. Nguyen
et al. [59] worked on the flexural-torsional stability of FG
beams. It was observed that long beam is not favorable for
flexural mode, and in case of torsional mode, short beam is
not ideal. Fazzolari [60] examined vibration and stability of
FG beams. Using different mathematical theories, various
material parameters were taken into account to study fre-
quency and buckling load of FG beams.

4.4.FGMPanels. Duc and Tung [61, 62] studied the buckling
and postbuckling behaviors of FG cylindrical panels and
concluded that materials and geometric parameters both can
affect the postbuckling behavior of FG cylindrical panels.
Stability analysis of supersonic FGM panels with porous was
studied by Barati and Shahverdi [63]. It was found that the

stability of FGM panels depends on the nature of porosity
and rate of moisture in FG panels.
Few studies found on stability analysis of FGM shallow

arch, pipes, ring, etc., are presented as follows.
FG shallow arches can follow equilibrium track and

become unstable depending on the critical load limit of
internal forces (Batani and Eslami [64]). Sedighi et al. [65]
investigated dynamic stability analysis of asymmetric FGM-
NEMS (nano electromechanical structure). Results reveal
that pull-in voltage of nanobridges varies proportionally
with surface stress and varies inversely with nonlocal pa-
rameters. Pull-in voltage and amplitude of nanobridges
cannot be examined without finite conductivity of FGM.
Deng et al. [66] evaluated the stability of multispan FGM
pipes. -e stability of FGM pipes varies proportionally with
the volume fraction exponent, whereas natural frequencies
and velocities vary proportionally with volume fraction
exponent and vary inversely with nonlocal parameter.
Volume fraction and radius to thickness play an important
role in critical buckling hydrostatic pressure and the elas-
toplastic buckling of FGM circular rings (Huang et al. [67]).
-e literature is abundant on stability analysis of FG

shells, panel, and beams. Numerous mathematical theories
including FSDT, HODT, J2DT, CST, four variable RPT, etc.,
were used by a number of authors to investigate static,
dynamic, and flexural-torsional stability of FGM. It is
concluded from the literature that among various other
factors, geometric parameters, elastic foundation, and
temperature play a crucial role in the stability of FGM. Few
investigations were made on the stability of FGM-MEMS
and FGM-NEMS as well yielding useful results.

5. Buckling Analysis of FGM

5.1. FGM Shells. Sofiyev et al. [68] did buckling analysis of
FGM shells under hydrostatic pressure and came to the
conclusion that material gradation over a volume has an
enormous effect on buckling pressure. Buckling analysis of
two-layered FG cylindrical shells was done by Sepiani et al.
[69]. It was concluded that fundamental frequency of FG
cylindrical shells under static and periodic forces is greatly
affected by transverse shear, rotary inertia, material com-
position, and deformation mode. Sofiyev [70] discussed the
effect of critical combined load and compositional profiles
on FGM circular shells with and without Winkler and
Pasternak foundation with respect to semivertex angle and
length to radius ratio of FGM circular shells. Compositional
profiles, semivertex angle, length to radius and radius to
height ratios, and an elastic foundation has a considerable
effect on critical axial and combined loads of FGM truncated
conical shells (Sofiyev [71, 72]). Huang et al. [73] did
buckling analysis of FGM cylindrical shells under bending
load. Results indicate that buckling critical moment of a shell
has a direct relation with shell thickness, whereas it has an
inverse relation with uniform temperature. Satouri et al. [74]
applied third-order shear deformation theory to analyze
buckling of two-dimensional FG cylindrical shells. Results
revealed that critical buckling load varies directly with
thickness to radius ratio. Stiffness at the outer side of the
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shell makes it capable to withstand high buckling as com-
pared to stiffness inside of the shell. Furthermore, the
thickness of cylinder also has considerable effect on a shell to
bear the buckling load. Sofeyev [75] accomplished a closed
form solution for a freely supported FG truncated conical
shell under both pressures (i.e., hydrostatic and critical
lateral), using shear deformation theory. Sofeyev and Kur-
uoglu [38] evaluated effect of an FG truncated conical shell
on critical lateral and hydrostatic pressure under various
boundary conditions. Sun et al. [76] investigated the in-
fluence of transverse shear deformation and imperfect
sensitivity on buckling of FGM cylindrical shells for different
boundary conditions. Zhang et al. [77] analyzed the buckling
of elastoplastic FG shells subjected to compression and
pressure. Results show that lateral pressure and critical axial
compression load both encounter their effects if one of them
is present. Buckling analysis of FG microshells subjected to
axial and radial load was done by Lou et al. [78]. Results
present that the existence of radial external pressure causes
critical buckling load to decrease. Furthermore, critical
buckling load is higher without considering prebuckling
deformation. Consequences of internal pressure on buckling
of FG cylinder were studied by Seifi and Avatefi [79]. It is
concluded that buckling moment is directly proportional
with an internal pressure and thickness of FG perfect shells.
In addition, defect in shells causes critical buckling moment
to decrease. Buckling of FG shells reinforced with graphene
platelets was analyzed byWang et al. [80]. Findings illustrate
that buckling load has a direct relation with weight function
and length to thickness ratio of graphene platelets. In case
cutout is needed in FG shell, geometry of cutout at the edges
of shell is supposed to be square or rectangular for better
performance of buckling.

5.2. FGM Plates. Boghadi and Saidi [81] studied buckling
analysis of FG rectangular plates. Results show that critical
buckling load has an inverse relation to aspect ratio,
whereas buckling load increases as the thickness of FGM
plate increases. El Meiche et al. [82] investigated the
buckling load of FG Sandwich plate using hyperbolic shear
deformation theory having four known. -e results are in
good agreement with other higher deformation theories
having five unknowns. Ghannadpour et al. [83] carried out
experiments on critical buckling temperature of FG plates.
It is reported that the critical buckling temperature is
directly proportional to the aspect ratio and inversely
proportional to width to the thickness ratio. -ai and Choi
[84] proposed a simple refined theory for buckling analysis
of FG plates. Results reveal that nondimensional critical
buckling load decreases with the increase of power index
[78, 85–90]. In addition, nondimensional critical buckling
load increases with the increase of modulus ratio, aspect
ratio [86, 87], and thickness ratio [88, 91–93] of FG plates.
Under shear loads, buckling load decreases by increasing
the area of rectangular plate (Asemi et al. [94]). -e
buckling load factor of FG plates on elastic foundation is
directly proportional to power law index and foundation
parameter. On the other hand, it is inversely proportional

to the aspect ratio of FG plates. Asemi et al. [95] analyzed
the buckling of FGM annular plate with, without, and
partially mounted on an elastic foundation. Results present
that the buckling of FGM annular plate delay by elastic
foundation. In addition, elastic buckling creates buckling
wave, and it is dependent on the way the plate partially
mounted on elastic foundation. Buckling analysis of FG
circular porous plate subjected to transverse magnetic field
was carried out by Jabari et al. [96]. Conclusion of the
analysis reveals that the critical magnetic field varies in-
versely with porosity in the plate and fluid compression in
the pores of materials. However, critical buckling load has
direct relation with thickness of plat [97]. Effects of cracks
and cutouts on the buckling behavior of FGM plates under
thermal and mechanical load are examined by Natarajan
et al. [98]. It is concluded that critical buckling load has an
inverse relation with number of cracks, the length of a
crack, and the gradient index of a plate. Buckling analysis
of cracked FG plates was done by Panahandeh-Shahraki
and Amiri [99]. Results show that increase in crack to
width ratio decreases critical buckling load. However,
increase in stiffness of elastic foundation and crack angle
causes critical buckling load to increase provided that crack
to width ratio is not large enough for uniaxial loading.
Kulkarni et al. [87] proposed a new solution for buckling
analysis of FG plates with the help of inverse trigonometric
deformation theory (ITSDT). Results obtained from
ITSDT were matched with the results of other theories.
Ceramic isotropic plates are more useful as compared to
FGM plates to achieve critical buckling load. Furthermore,
the critical buckling load in clamped FGM is greater than
that in simply supported FGM plates provided that volume
fraction index is same Lal and Ahlawat [100]. In-plan
material inhomogeneity plays a vital role to avoid buck-
ling in FG thin plates (Lanc et al. [101]). Mantari and
Monge [88] suggested buckling optimization to examine
buckling of FG Sandwich plates. -e critical buckling load
using shear deformation theory is lesser than the values
obtained by first-order shear deformation theory. Critical
buckling load is more dominant in FG rectangular thin
plates as compared to thick plates with respect to aspect
ratio (Dong and Li [97]). Existence of crack in FGM
microplates decreases critical buckling temperature.
Moreover, thermal buckling load has a direct relation with
the thickness of cracked FG microplates (Joshi et al. [102]).

5.3. FGM Beams. Buckling analysis of FG microbeams using
modified couple stress theory was carried out by Nateghi
et al. [103]. It was found that deviation in buckling load may
be obtained by modified couple stress theory and other
classical theories. Moreover, Poisson’s ratio plays a signifi-
cant role in the buckling of FG microbeams. Sahmani and
Ansari [104] did buckling analysis of FG microbeams
subjected to thermal effect. It was revealed that critical
buckling load of FG microbeams in elastic medium de-
creases with an increase of temperature provided that
slenderness ratio is high. -e buckling of FG microbeams
with the help of modified couple stress theory was analyzed
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by Şimşek and Reddy [105]. Results declared that critical
buckling load can be increased by including elastic medium
constant. Moreover, critical buckling load varies directly with
the slenderness ratio and varies inversely with gradient index
[106]. Lanc et al. [101] attempted buckling analysis of FG
Sandwich box beams considering different boundary condi-
tions. It was inferred that deceleration in critical buckling in all
boundary conditions has a direct relation with skin-core-skin
ratio of the box beam. Moreover, material distribution over a
volume of box beam plays an important role in critical buckling
load. Nguyen et al. [107] introduced a new shear deformation
theory that distributes transverse shear stress in FG Sandwich
beams in a hyperbolic manner. -e results gained from this
new theory accounts for critical buckling load considering
parameters like power law index, length to depth ratio, and
skin-core-skin thickness and match with other existing theo-
ries. Huang et al. [108] examined the buckling of axial FG
beams using Timoshenko theory. It was concluded that gra-
dient and geometric parameter plays significant role in finding
critical buckling load. Nguyen et al. [109] used quasishear
deformation theory to analyze the buckling of FG Sandwich
beams. Various parameters like power law index, skin-core-
skin thickness ratio, and span to depth ratio were studied for
critical buckling load. Results seem to be coinciding with the
previous results reported in the literature. By adjusting gradient
index, the buckling of two-dimensional FGM Timoshenko
beams can be controlled (Simsek et al. and Deng et al.
[106, 110]). Taati [111] analyzed the buckling of FG micro-
beams. Findings reveal that length scale parameter has themost
significant effect on critical buckling of FG microbeams. -e
effect of power index of FG porous beam is more prominent if
it is varying in axis direction in contrast to thickness direction.
Furthermore, nondimensional buckling load decreases as
volume fraction increases (Hydri et al. and Shafiei and Kazemi
[89, 112]). Critical buckling load has a direct relation with
length scale parameter and an inverse relation with nonlocal
parameter. In addition, on the basis of size-dependent pa-
rameter, stiffness softening and hardening effect may be
produced by axial FG beams on the critical buckling force (Li
et al. [113]). Nguyen et al. [114] analyzed the buckling of FG
open sections beams. Findings reveal that buckling parameters
rely on the variation of volume fraction index. Also, it was
explained that the angle of beam, end moment ratio, and
ceramic core have considerable effect on buckling capacity.
Chen et al. [115] used shear deformation theory to evaluate free
vibration of FGM shells having a stretching effect. Results
reveal that dimensionless fundamental frequency is directly
proportional to the thickness of a core, aspect ratio, and length
to thickness ratio. Furthermore, stretching has a significant
effect on free vibration of FGM shells. Symmetric porosity
distributed in FGM shells has less pronounced effect on natural
frequency as compared to nonsymmetric porosity distribution
(Wang et al. [80]).

5.4. Other Structures. Other than the abovementioned
stuctures (i.e., FGM shells, plates, and beams), buckling
analysis was also carried out on FGM structures.

Oyeka et al. [116] suggested the optimized design criteria
for FG composite structure to enhance critical buckling load.
Singh and Li [117] proposed a low-dimensional mathe-
matical model comprising of Newton’s eigenvalue iteration
method (NEIM) to calculate the buckling load of FG column
in an adequate way. Huang and Li [118] introduced a new
model considering shear deformation to analyze the
buckling load of FG circular columns. -e method was
found to be simple and results were matched with other
existing theories like Timoshenko, Reddy–Bickford, and
Euler–Bernoulli. Bich et al. [119] examined the buckling of
FGM conical panel subjected to a mechanical load. Results
present that geometric parameter and gradation of material
significantly affect the buckling behavior of FGM conical
panel. Semivertex and subtended angles have no consider-
able effect on critical buckling load. -ai and Wu [84, 120]
went through buckling analysis of FG circular cylinder.
Useful results were obtained showing changes in lowest
critical load under different parameters like aspect ratio,
gradient index, and load intensity. -e buckling stress of
P-FGM has an inverse relation with the power law. In ad-
dition, increase in radius to thickness ratio leads buckling
stress to decrease (Hajlaoui et al. [86]).
Buckling analysis of FGM has been reviewed thoroughly

in this section. Various interesting investigations were found
to be the benchmark for further research in the field of FGM.
Moreover, few researchers proposed a new mathematical
model or theory for buckling analysis of FGM
[71, 72, 74, 75, 85, 107, 109]. Numerous investigations were
made for buckling analysis of FGM subjected to different
loads, (mechanical, thermal, shear, axial, and radial) pres-
sures (uniaxial, biaxial, and hydrostatic), thermal effect,
transverse magnetic field, etc., with the help of extensive
mathematical theories, i.e., HOSDT, SDT, MCST, ITSDT,
QSDT, hyperbolic SDT, and Timoshenko beam theory. It is
derived from the literature that among various other factors,
material gradation over a volume, compositional profile, and
geometric parameters of FGM play a vital role in buckling.
Furthermore, relation between various indexes, ratios
(power law index, gradient index, slenderness ratio, modulus
ratio, and aspect ratio), and buckling loads were examined
by most of the researchers. Few studies were also found
investigating buckling analysis with respect to cracks in
FGM [104, 105, 119].

6. Free Vibration Analysis

6.1. FGM Shells. Cinefera et al. [121] proposed variable
kinematics model which is a further extension of Carrera’s
unified solution, to study free vibration of multilayered FGM
shells. It was reported that the presented model can be used
to analyze multilayered shells due to its high accuracy.
Fadaee et al. [122] used Donnell’s and Sander’s shell theories
to obtain the closed form solution of Levy type FGM
spherical shells under different boundary conditions. Results
indicate that the frequency parameter has a direct relation
with curvature ratio. Neves et al. [123] analyzed free vi-
bration of FG shells using the Carrera unified formula
merged with the radial basis function collocation method.
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Results show that the fundamental frequency decreases with
an increase of radii of curvature and power law exponent.
Furthermore, FGM simply supported shell has a lower value
than clamped one. To obtain the desired result, the natural
frequency of FG cylindrical shells plays an important role by
considering the volume fraction of the constituent Ebrahemi
and Najafizadeh [124]. Tornabene et al. [125] used different
mathematical models to analyze the free vibration of FGM
doubly curved shells. Among various other conclusions, it
was reported that accurate results for natural frequencies do
not necessarily be obtained by increasing number of higher-
order theories. Xie et al. [126] used the HaarWavelet method
to examine free vibration of FGM shells and plates. It was
reported that frequencies of FGM shells and plates have an
inverse relation with material exponent, length to radius
ratio, and semivertex angle, whereas the frequencies have a
direct relation to the thickness of FGM shells and plates
[127, 128]. Furthermore, circumferential wave number also
plays an important role in natural frequencies of FGM shells
[129]. Bahadori and Najafizadeh [130] evaluated free vi-
bration of 2D cylindrical shells mounted on Winkler–
Pasternak elastic foundation with the help of FSDT and
DQM. It was concluded that natural frequencies of the 2D
cylindrical shells increase with the increase of power law
index and shear modulus of foundation. In addition, a
greater value of height to radius ratio increases natural
frequencies, while a greater value of length to radius ratio
decreases natural frequency of FGM cylindrical shells [129].
-e Fourier Ritz method was adopted by Jin et al. [131] to
study free vibration of laminated FG shells. It was reported
that thickness and material of shell [132] greatly affect the
fundamental frequency of FGM shells. Kim [133] evaluated
free vibration of FGM shells mounted on elastic foundation
having an oblique edge with the help of FSDT. It was found
that the frequency of FGM shells decreases with an increase
of oblique angle. Furthermore, natural frequency can be
adjusted by changing material profile. Greater value of
stiffness leads to increase frequency of FGM shells and
microplates (Lou and He [134]). Greater value of length scale
parameter increases the natural frequency of FG shells (Tadi
Beni et al. [127]). -e Haar Wavelet discretization method
was adopted by Xie et al. [126] to evaluate FGM spherical
and parabolic shells. Natural frequencies of FGM shells
increase with elastic restraint and decrease with volume
fraction. Punera and Kant [135] applied different higher
theories to evaluate the effect of geometrical and material
parameters on the frequency of FGM open cylindrical shells.

6.2. FGM Plates. Free vibration of thick FG plates was
analyzed using three-dimensional elastic theory by Mal-
ekzadeh [136]. It was concluded that natural frequency
parameters are greatly affected by shearing layer elastic
coefficient provided that Winkler elastic coefficient has
moderate value. Furthermore, higher value of length to
thickness ratio [33, 34, 46, 47, 55], power law index
[35–38, 48–51, 58,65], and material property graded indexes
lead natural frequency parameters to be reduced
[46, 63, 137]. Zhao et al. [138] used the element-free Kp-Ritz

method to analyze free vibration of FGM plates. Results
present that volume fraction exponent [131, 133] and length
to thickness ratio have considerable effect on the frequency
of FGM plates [139] with letter one influencing frequency
free from the effect of former one. Moreover, the frequency
of FG skew plates also increases with the increase of skew
angle above 30°. Hashemi-Hashemi et al. [140] used FSDT to
analyze the free vibration of FGM rectangular plates. It was
revealed that the frequency parameter increases with the
increase of Winkler and Pasternak foundation
[122, 136, 138, 141, 142], stiffness parameter, and aspect
ratio. However, it decreases with the thickness of a plate.
Moreover, normalized eigen frequency parameter has a
direct relation with foundation stiffness parameter up to the
value of critical gradient index. With the increasing value of
aspect ratio [37] and thickness to length ratio, normalized
eigen frequency decreases. Liu et al. [143] explained the
consequences of in-plane material inhomogeneity on the
fundamental frequency of FGM plates [144]. Frequencies of
a homogenous plate under different boundary conditions,
i.e., clamped-free, clamped-simply supported, and free
simply supported, were found to be the same. Benachour
et al. [145] used the four-variable plate theory to analyze the
free vibration of FGM plates. Effects of various parameters
like aspect ratio, length to thickness ratio, and gradient index
on free vibration with the help of examples were given.
Results show good agreement with other existing theories.
Hashemi-Hashemi et al. [146] studied free vibration of FGM
rectangular plates using Reddy’s third-order shear de-
formation plate theory. -e presented approach can be used
to forecast both in-plane and out-plane modes of FGM
plates. Moreover, frequency parameter decreases by in-
creasing aspect ratio of FG plates [147]. Jodaei et al. [147]
used the artificial neural network (ANN) method and the
state-space-based differential quadrature method (SSDQM)
to study free vibration of FGM annular plate, and the results
were compared with the existing literature. Findings reveal
that ANN is a useful method to predict natural frequency
while SSDQM has fast convergence speed. It was also
revealed that natural frequency is directly proportional to
circumferential wave number [148, 149]. Nondimensional
frequency of FGM plates on Winkler foundation is reduced
by increasing power law index [150], and it has no effect on
FGM plates mounted on the Pasternak foundation (-ai and
Choi [151]). Dozio [152] on the basis of results of conducted
experiment suggested the use of higher-order theories for
FGM plates. It was reported that higher-order theories are
favorable to use when length to thickness ratio is less than 10
and one or two clamped edges are included in FGM plates.
Furthermore, the exact frequency of many FGM plates with
different boundary conditions was also presented. Jedrysiak
[153] used asymptotic tolerance, asymptotic, and tolerance
model to analyze the frequency of microstructure FGM
plates. It was suggested that all presented models can be
applied to analyze lower free vibration frequencies. More-
over, both lower and higher free-vibration frequencies have
an inverse relation to Young’s modulus ratio. Quasi 2D and
3D SDT were used by Akavci and Tanrikulu [154] for the
analysis of free vibration of FG plates. It is reported that
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transverse normal strain plays a significant role in a free
vibration of FGM plates as that of transverse shear strain.
Chen et al. [115] applied the meshless local natural neighbor
interpolation method to study free vibration of FG plates. It
was suggested that the method is not useful for the analysis
of very thin plates. Pandey and Pradyumna [155] applied
Love’s and Donnell’s shell theories to obtain natural fre-
quencies of FG Sandwich plates. Results were found to be the
same for both Love’s and Donnell’s theories. By increasing
sector angle, natural frequencies of FGM sector plates tend
to decrease (Su et al. [156]). Li and Zhang [157] examined
free vibration of rotary FGM plates by means of dynamic
model considering the dynamic stiffening effect. It was re-
ported that frequency crossing phenomenon does not ex-
hibit in both rotating cantilever plate and FGM plate. -is
phenomenon is due to sudden change in the mode of a plate.
Fundamental frequency of S-FG plates increases by in-
creasing the number of transverse and longitudinal stiffeners
(-ang and Lee [128]). Zur [158] analyzed free vibration of
FGM circular plates with elastically supported using Quasi-
Green’s function. Dimensionless frequencies of FGM plates
were found to be less than ceramic plates. Moreover, FGM
plates are considerably affected by stiffness and position of
ring support.

6.3. FGM Beams. Rahmani et al. [159] carried out an ex-
periment on the free vibration of a Sandwich structure
having FG syntactic core with the help of high-order
Sandwich panel theory. Findings reveal that the in-
homogeneity of the material plays an important role in the
eigen modes of a beam. Moreover, eigen frequencies have an
inverse relation with span to thickness ratio. Simsek and
Kocatürk [160] investigated the free vibration of FG beams
subjected to concentrated moving harmonic load. It was
concluded that power law exponent plays a key role in
analyzing free vibration taking in to account Euler–Bernoulli
beam theory. Dimensionless frequencies increase by in-
creasing Young’s modulus ratio [161] of upper to lower
surfaces (Eratio) of the beam until the value of the power law
index is small. In addition, dimensionless frequency has a
direct relation with power law exponent (when Eratio is less
than one) [162] and normalized dynamic deflections. Sina
et al. [163] applied a new beam theory to study free vibration
of FG beams. A comprehensive analysis was presented re-
garding mode shapes of FG beams using first-order shear
deformation beam theory (FSDBT1 and FSDBT2) and
classical beam theory. It was illustrated that power law
exponent [131, 133, 135], power law distribution, mode of
vibration, geometry of structure, and thickness greatly affect
the free vibration of FG beams (Tornabene and Viola
[141, 164]). Huang and Li [165] proposed a new method
based on Fredholm integral equations and evaluated the
natural frequency of FGM beams having nonuniform cross
section taking into account flexural rigidity, mass density,
and axial gradient parameter. Results were claimed to be
useful for designing inhomogeneous beam structure.
Alshorbagy et al. [162] used the finite element method to
elaborate free vibration of FGMbeams. It was shown that the

modal shape and frequency of FGM beams both have an
effect of material gradation varying along the axial direction
rather than spatial direction. Due to limitations of Euler’s
beam theory used in the analysis, effect of slenderness ratio
cannot be determined. Moreover, it was suggested to use
Timoshenko or Reddy theories to study the effect of slen-
derness ratio. Based on the Timoshenko beam theory, FGM
microbeams were analyzed by Ansari et al. [166]. Di-
mensionless natural frequency was examined against various
parameters like gradient index, slenderness ratio, beam
mode, and beam thickness using classical theory, modified
couple stress theory (MCST), and strain gradient theory
(SGT). It was concluded that FGMmicrobeams have a larger
value of dimensionless natural frequency as compared to
other microbeams and less than SiC microbeams. Moreover,
FGM microbeams have frequencies intermediate in metal
and ceramic microbeams. Giunta et al. [167] proposed the
one-dimensional beam model to analyze free vibration of
FGM beams. Frequencies like flexural, torsional, and axial
were determined and verified with those of three-
dimensional finite modal solutions. Hein and Feklistova
[149] used Haar wavelet approach to find frequencies of
FGM beams using different geometries, mass density, and
boundary coefficient. Results show that the approach re-
quires less computation time with accurate results. -e
method can be easily implemented on any system. Shahba
et al. [168] analyzed the free vibration of FGM tapered
Timoshenko beam. Results show that natural frequency
decreases with taper ratio [161] and attached mass to beams
[161, 169, 170]. Using the Ritz method, free vibration of
FGM spatial beam was examined by Yousefi and Rastgoo
[171]. It was reported that by increasing number of turns and
angle of helix, frequency parameter gets increased. Shahba
and Rajasekaran [172] used the differential transform ele-
ment method (DTEM) and differential quadrature element
method (DQEM) of lower order to find out the longitudinal
transverse frequencies of FGM beams. Results illustrate that
DTEM is fast over DTM, and obtained results are more
accurate. Shear deformation effects reduce the natural fre-
quencies of FG beams (-ai and Vo [173]). Based on im-
proved third-order shear deformation theory, it was
concluded that the position of the mass added to the beam
has a substantial effect on frequencies (Wattanasakulpong
et al. [169]). Wei et al. [174] used transform matrix method
to study the effect of number and location of cracks, rotary
inertia, and shear deformation on the frequencies of
Euler–Bernoulli and Timoshenko beams. Finding illustrates
that the existence of cracks in FGM beams decreases the
frequencies [175] and alter the vibration mode. In addition,
rotary inertia has negligible effect, and shear deformation
has a significant effect on the free vibration of FGM beams.
Aydin [175] proposed the rotational spring method having a
third-order determinant to solve the frequency of FGM
beams with different number of cracks. -e proposed
method can easily be employed in short time. Results show
that frequency gets decreased when cracks develop at a point
where bending moment is concentrated. Huang et al. [176]
examined free vibration of FG Timoshenko beam having a
nonuniform cross section and proposed an approach to
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obtain higher- and lower-order natural frequencies in an
efficient way. Free vibration analysis of axially loaded FG
beams was done by Nguyen et al. [177]. It was concluded that
changing the mode of axial force from tension to com-
pression, natural frequencies get vanished. In addition,
natural frequency increases by the impact of poison’s ratio.
-e Rayleigh–Ritz method was used by Paradhan and
Chakraverty [178] to examine free vibration of Euler and
Timoshenko FG beams. Results were obtained for the effect
of volume, length to thickness ratio [179], and various
boundary conditions against natural frequency. Ziane et al.
[180] used FSDT to calculate the natural frequencies of
thick- and thin-walled FGM box beams. It was reported that
torsional natural frequencies are directly proportional to
thickness to side ratio. Aghazadeh et al. [181] used three
beam theories, i.e., Euler-Bernoulli theory, Timoshenko
beam theory, and TSDT to investigate the free vibration of
FGM beams having variable length scale parameter. Results
show that by increasing length scale parameter, transverse
deformation mode frequency increases. It was also declared
that the presented method can be beneficial to analyze and
design small-scale FGM beams. Li et al. [182] investigated
rotating hub FGM beams using rigid flexible coupled dy-
namics theory. A two-mode model was also developed to
study the frequency-varying behavior of critical veering
angular velocities. It was also examined that natural fre-
quencies of FGM beams decrease with increasing gradient
index [106], whereas it has an increasing trend with the hub
angular velocity. Liu and Shu [183] studied the impact of
delamination on exponentially FGB beam’s frequencies
using Euler–Bernoulli hypothesis, the “free mode,” and
“constrained mode” assumptions. It was concluded that the
constrained-mode and free-mode frequencies increase by
increasing Young’s Modulus ratio up to a unity provided
that delamination effect does not exist. Delamination causes
natural frequencies of FGM to increase and this effect be-
comes more prominent by increasing Young’s Modulus
ratio and decreasing material properties [184]. Mashat et al.
[185] used Carrera Unified Formulation along with other
theories to analyze free vibration of FGM-layered beams. It
is reported that in order to determine the flexural and
torsional frequencies of thick- and thin-walled FGM beams
accurately, higher-order theories must be used. In addition,
CUF is useful to obtain various one-dimensional models.
Yang et al. [186] examined the free vibration of 2D-FGM
structure and FGM Sandwich beams [187] with the help of
mesh-free boundary domain integral equation method. -e
material gradient was found to be an important parameter
which plays a vital role in natural and fundamental fre-
quencies of FGM structure [188]. Increasing the stiffness of
the layer of FGM beams, the thickness stretching phe-
nomenon gets enhanced. It was also concluded that the
method is efficient and fast, and the results obtained are
accurate. Jin and wang [189] evaluated the frequencies of
FGM beams using weak the form quadrature element
method. Results were found to be in good agreement with
those in the existing literature. Şimşek [170] studied free
vibration of bi-directional FGM Timoshenko beam using
Timoshenko beam theory. It was reported that in order to

meet the desired requirement of designing BDFGM, ma-
terial gradient index and properties need to be considered.
Variation in material gradient index affects the vibration
period and displacement of FGM Timoshenko beam (Calim
[188]). On the basis of Timoshenko beam theory, Chen et al.
[179] evaluated free vibration of FGM beams having po-
rosity. It was reported that increasing the porosity of FGM
leads to increase in the fundamental frequency of beam
having 10 porosity layers but decreases for the beams with 20
porosity layers. Jing et al. [190] used Timoshenko beam
theory together with the finite element method to study
FGM beams. It was reported that natural frequencies de-
crease with the increase of volume fraction exponent and
increase with the increase of span to depth ratio. Natural
frequencies of FGM beams can be controlled by grading the
material through thickness and power law index (Li et al.
[191]). Shear deformation has more considerable impact on
higher-order frequencies than lower order ones. In addition,
FGM beams may exert stiffness hardening and softening
impact depending on the comparative value of material
characteristics parameter and nonlocal parameter. Useful
results of flexural, torsional, and flexural-torsional vibration
of FG beams were obtained by Nguyen et al. [192]. Rezaiee-
Pajand and Hozhabrossadati [193] studied the effect of
spring’s stiffness, suspended mass, and gradient parameter
on double-axial FGM beams. Frequency of FGM Sandwich
beams is directly proportional to the spring constant factor
and inversely proportional to the thickness of a beam
Tossapanon and Wattanasakulpong [194]. Increasing value
of power law index ultimately increases the natural fre-
quency of FG cantilever beam, whereas it decreases the
natural frequency of a simple beam. Moreover, above critical
frequency, sudden change in natural frequency of two di-
rectional FGM was found (Wang et al. [195]). Timoshenko
beam theory causes large number of natural frequencies in
beams due to shear effect as compared to Euler–Bernoulli
beam theory. Shear deformation makes the beam more
flexible (Simsek and Al-shujairi [196]). Axial dominated
frequencies of FG beams have an inverse relation with length
to thickness ratio Lee and Lee [197]. In addition, length to
height ratio causes exchange of mode within axial and
bending dominated frequencies. Zhao et al. [198] applied the
chebysher polynomial method to obtain the natural fre-
quencies and mode shapes of axial FGM beams.-e adopted
method was found to be convenient, and results obtained are
matched with other methods. Length scale parameter and
variation in material gradient play a vital role in the de-
formation of size-dependent rotating FGM microbeams
(Fang et al. [199]).

6.4. FGM Panels. Sobhani Aragh and Yas [200] have ob-
tained useful results for normalized natural frequency of
FGM fiber orientation and volume fraction cylindrical panel
using the differential quadrature method (DQM). Zahedi-
nejad et al. [148] proposed three-dimensional free vibration
analysis of FGM curved panels using DQM. It was proposed
that frequency parameter has an inverse relation with ma-
terial property exponent, panel length, and angle. Zhao and
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Liew [201] used a meshless method to analyze free vibration
of FGM conical panels. Volume fraction exponent and
semivertex angle both have significant effect on frequency
parameter if one of them is kept constant. Circumferential
mode number of fundamental frequency parameter has a
direct relation with flexure of support and the opening of
FGM lavy conical panel (Akbari et al. [202]). Fantuzzi et al.
[203] proposed 2D and 3D shell models to investigate the
free vibration of FGM cylindrical and spherical panel. It was
concluded that use of dimensional generalized differential
quadrature (2D-GDQ) is an utmost need for the evaluation
of free vibration of FGM cylindrical and spherical panel in
an efficient way. Moreover, 3D exact frequencies can be
obtained by 2D-GDQ.
In the current section, vast literature has been discussed

for vibration of FGM. Investigation mainly focused on
natural, axial, fundamental, and flexural-torsional fre-
quencies of FGM using various mathematical theories. Some
of them include TDET, HOSPT, FSDPT, DQM, FEM,
MCST, SGT, FVPT, SDQM, DTEM, DQEM, and so on. -e
main bulletin from the present review of vibration analysis
of FGM can be presented as follows:

(1) Variable kinematic model was proved to be highly
accurate to study multilayered FGM shell

(2) Timoshenko and Reddy theories were found to be
more effective than Euler’s beam theory to study the
effect of slenderness ratio on free vibration of FGM
beams

(3) Haar Wavelet approach takes less computation time
to find frequencies of FGM with high accuracy

(4) SSDQM has fast convergence speed in predicting
natural frequencies of FGM plates

(5) In order to find the longitudinal transverse frequency
of FGM beams, DTEM was supposed to be preferred
over DTM due to its high accuracy and fast result

(6) Higher-order theories are useful in obtaining flexural
and torsional frequencies of thin- and thick-walled
FGM beams

(7) CUF is useful to obtain various one-dimensional
models

(8) For efficient investigation of free vibration of FGM
shells, 2D-GDQ must be used

7. Concluding Remarks and Future Work

-e present paper shows an overview of stability, buck-
ling, and free vibration analysis of FGM evaluated by
different authors worldwide in the past few decades. -e
research conducted on FGM analysis are either purely
analytical or numerical method based. Admirable work
has been done on various aspects of FGMs and several
mathematical models adopted for the various analysis of
FGM proved to be very efficient and of fast convergence.
However, there are still some gaps that need to be filled to
take more in depth advantages of FGM.

(1) To save computation time and cost, few researchers
preferred 2D theories with some modification.
However, to give a more precise and accurate
analysis on FGM (stability, buckling, free vibration,
etc.), it is necessary to develop some more 3D the-
oretical or numerical methods. Moreover, in the
existing studies, 3D analysis of FGM is mainly fo-
cused on linear buckling and free vibration analysis.
-e nonlinear 3D models need to be explored as well
need to broaden the application of the 3D theories.

(2) FSDT has been extensively used in a numerical
solution of FGM. However, HSDT is supposed to be
employed for more accurate results.

(3) Most of the researches have focused on the prop-
erties of FGM without taking into account the en-
vironmental effect (deformation, temperature, etc.).
Moreover, few researchers discussed only the simple
cases, like the transverse shear or the transverse
normal deformation. -e real situation, however, is
usually a complex case. -e more general and
complex cases should be concerned as well.

(4) Specific geometries of FGM beams, i.e., unsymmetric,
antisymmetric, and arbitrary lay ups are not widely
investigated in the literature. However, no remarkable
efforts have been made on buckling of beams in terms
of exact elasticity problems. -e aforementioned is-
sues need to be addressed to validate different refined
theories.

(5) In the literature, higher-order beam theories have
not been applied to the laminated FGM taking in to
account the consequences of transverse normal
deformation on buckling and vibration response.
-us, refined higher-order beam theories are sup-
posed to apply while tackling transverse normal
deformation.

(6) Besides the extensive literature available in-
dependently on analysis of FGM’s performance,
representation methods of FGM’s parts, and its
fabrication techniques, they are hardly investigated
together. -erefore, a comprehensive design system
is needed to be accomplished that makes the re-
searchers able to design models, analyze and fabri-
cate complex geometry of FGM.

(7) Among various other manufacturing techniques of
FGM, powder metallurgy is one of the most fre-
quently used techniques. However, desired dis-
semination of material properties all over the
structure with more perfection still needs some
improvement by means of modification in fabri-
cation techniques.

(8) Although numerous application of FGM exists in
aerospace, defense, nuclear, automobile, and other
industries, FGM has a vital role in medical field as
well. Keeping a wake glance of this noble application
for the betterment of human beings, more in-depth
investigation needs to be done on FGM with respect

Advances in Materials Science and Engineering 11



to health care such as bone implantation, dentistry,
etc.
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