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Abstract

Over the last few years, many classifications have been proposed for functionally graded materials (FGMs). In this Paper, 
critical review of different available classifications for FGM based on their physical, structural and manufacturing char-
acteristics are presented. Advantages and limitations of each fabrication method for use in a given application is cor-
respondingly considered. In addition, new classifications based on gradation control and accuracy, residual stresses, 
specific energy consumption, environmental impact evaluated throughout the complete life cycle and manufacturing 
costs are proposed. These classifications mainly reflect the needs of both FGM designers and industrial manufacturers. 
Based upon the presented classifications and the recent advances in analysis and production techniques, new major 
directions for FGMs research are proposed.

Keywords Functionally graded materials (FGMs) · Processing techniques · Classification · Advantages · Limitations · New 
trends · Industrial application

1 Introduction

Many applications such as aerospace, automotive, power 
generation, microelectronics, structural and bioengineering 
demand properties that are unobtainable in conventional 
engineering materials [1, 2]. These applications require 
mutually exclusive properties to have resistance against 
thermo-mechanical stresses as well as chemical stability. 
The need for property distributions are found in a variety of 
common products that must have multiple functions, such 
as gears, which must be tough enough inside to withstand 
the fracture but must also be hard on the outside to pre-
vent wear [3]. Similarly, a turbine blade should also possess 
a property distribution. The blade must be tough to with-
stand the loading, but it must also have a high melting point 
to withstand high temperatures on the outer surface [4].

Conventionally, surface treatment or hardening tech-
niques were used to reach the required properties. How-
ever, there were always concerns about the properties 

at the interface or the adhesion of the surface layer to 
the substrate materials [5]. In addition, the treated sur-
face layer may not be sufficient to achieve the required 
product life [6]. Although alloying can be used to partially 
improve the performance in such cases, there is a lot of 
limitations related to material solubility due to thermo-
dynamic equilibrium. Likewise, alloying of two materials 
with wide apart melting temperatures is difficult or even 
impossible. Powder metallurgy represents an excellent 
method of producing parts with conflicting properties 
than conventional alloying [7]. Another method to achieve 
tailored material properties is the use of composite materi-
als. Both matrix and reinforcing materials possess distinct 
physical and chemical properties. Composite materials 
offer excellent combinations of conflicting properties. 
Unless the material is laminated, the properties of com-
posites are equally distributed over the entire material 
giving a homogeneous behaviour on the product level. 
This cannot be used to achieve the required gradient in 
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the applications mentioned above [8]. Although laminated 
composites can produce very narrow but discrete change 
of properties across the thickness, they suffer from inter-
laminar shear stresses and discontinuity at the interface.

In 1972 the general idea of structural gradients Func-
tionally Graded Materials (FGM) was initially proposed 
for composites and polymeric materials [9] to imitate the 
structure and behavior of natural materials like bones, 
teeth [10] and Bamboo trees [11] etc. The concept of FGM 
was first applied in Japan in 1984 during the design of a 
space shuttle [12]. The objective was to manufacture the 
body from a material with an improved thermal resistance 
and mechanical properties by gradually changing com-
positions to withstand severe temperature difference of 
1000 °C. Figure 1 illustrates the historical progress from 
pure metal to functionally graded metals.

FGMs exhibit many advantages compared to conven-
tional alloys and composite materials. FGMs introduce 
means for controlling material response to deformation, 
dynamic loading as well as to corrosion and wear [13], 
etc. Furthermore, they give the opportunity to take the 
benefits of different material systems e.g. ceramics and 
metals [14]. In addition, biocompatibility of some FGMs 
increase their suitability as bone replacement. FGMs can 
also provide a thermal barrier and can be used as high 
scratch resistance and reduced residual stress coating 
[15]. Similarly, FGMs can be used as a high strength bond-
ing interface to connect two incompatible materials [16]. 
Figure 2 illustrates the possible variation of properties in 

conventional composites compared to FGMs. A single FGM 
can be obtained by a single dispersed constituent/phase 
that is not uniformly distributed within the matrix com-
pared to conventional composites, while more than one 
constituent/phase in the case of double FGM. The continu-
ous gradient is obtained in all cases, depending on the 
change distribution density among the used constituents/
phases and the matrix.

FGMs were initially classified by researchers under con-
ventional composite materials depending upon the used 
combinations of constituents [17]. There exist many pos-
sible material combinations that can be used to produce 
FGMs. Metal–metal, metal–ceramic, ceramic–ceramic or 
ceramic–polymer [18] are the most common as shown in 
Fig. 3 [17, 19]. Over time, and because of the development 
of more applications and technologies to produce FGMs 
at different scales, different classifications appeared. In the 
third section of this paper, six conventional classification cri-
teria were presented to classify the FGMs based upon: state 
during processing, FGM structure, FGM type, nature of FGM 
gradient, main dimensions, and field of FGM application [20, 
21]. With the help of these aspects or classifications, the 
fabricated FGM can be always described. However, these 
classifications are of little help to FGM industrial producer 
in the selecting the appropriate fabrication technique that 
fulfills both the technical requirements of the designer (e.g. 
shape complexity, accuracy, minimum residual stress), and 
the economic requirements of the industry (e.g. productiv-
ity, minimum energy, minimum cost, lower environmental 
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Fig. 1  Material development towards FGM [5]

Fig. 2  Variation of properties 
in conventional composites 
and FGMs [22]
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impact). The classifications that will be introduced in this 
paper aims at providing some guidelines for the industrial 
manufacturer to find the proper fabrication technique that 
meets both the technical and economic aspects.

2  FGM production methods

Quite a large number of well-known techniques and fabri-
cation routes are widely used for the production of FGMs 
as summarized in Fig. 4. These ranges from old and simple 
to advanced and complex techniques and covers various 
physical and chemical principles. FGM production tech-
niques include centrifugal casting, powder metallurgy, 
plasma spraying, chemical and physical vapor deposi-
tion (CVD/PVD), lamination and infiltration methods, in 
addition to the family of solid freeform fabrication (SFF) 
or additive manufacturing (AM) with its subcategories. 
Nowadays, various kinds of materials can be used in AM 
processes, including metallic material in LENS and DMD, 
polymer material in FDM and SLA, and biological material 
in inkjet printing and micro extrusion [23]. Many publica-
tions which focus on the description of the details of the 
different production methods and discuss their techni-
calities, advantages, limitations, applications and research 
trends are found in literature [3, 24–32]. It is clear that most 
research work focused on experimental mechanical char-
acterization (esp. tensile and hardness) [33], wear rate pre-
diction [34] or thermal properties evaluation [35]. Very few 
research groups are considering numerical simulation of 
FGMs. This may be due to the high degree of complexity 
related to the modelling of the different constituents and 
their properties, modeling of interfaces and the gradual 
change of structure. Description of FGMs production tech-
niques is not within the scope of the current work. How-
ever, the main characteristics, advantages and limitations 
of available manufacturing families and processes are of 
great interest for the purpose of process classifications.

Table 1 summarizes these aspects and lists a number 
of recent publications which were mostly concerned 
with the optimization of FGM production parameters 
or aimed at the achievement of specific properties. The 
number of publications reflects the trends of scientific 
concern and the market importance of some manufac-
turing techniques. These cover a wide range of product 
sizes, complexity, durability, productivity and cost. Cen-
trifugal casting technique that suits more bulky and simple 
products is still in competition with high quality powder 
metallurgy processes used for manufacturing of special 
moderate complexity parts, and with advanced additive 
manufacturing techniques (AM|) which proved to excel in 
producing relatively small complex prototypes. The infor-
mation extracted from the listed sources is used to intro-
duce the main technical features of each of the available 
manufacturing process to the reader. This gives a different 
perspective that helps in understanding the reason behind 
the need for new classifications that differs from the con-
ventional classifications presented in the next section.

3  Conventional classifications of FGMs

3.1  According to the state during FGM processing

Based on the state of FGM processing, methods can be 
broadly classified into solid state processes, liquid state 
processes and deposition processes. Figure 5 lists the dif-
ferent processing methods falling under these categories 
[36]. There exists a large number of research work covering 
all processing states within different FGM production tech-
niques. Deposition methods represent highly advanced 
technologies that are used for high accuracy and small 
products. Liquid-state processes are usually used for 
large products of relatively lower property control, while 
solid-state-based FGMS are utilized for highly stressed 
thermo-mechanical components [37]. The production of 
FGM by different routes and in different states affects the 

Material Combinations for 

the Production of FGMs

Metal - Metal

1) Al - Cu    
2) Al - Ni
3) Ni - Ti , etc.

Metal - Ceramic

1) Al - SiC     
2) Al - Al2O3
3) Ni - ZrO2, etc.

Ceramic - Ceramic

1) SiC - Carbon
2) SiC - SiC
3) Carbon - Carbon, etc.

Ceramic - Polymer

1) Glass - Epoxy
2) Carbon - Epoxy, etc.

Fig. 3  Examples of possible material combinations used in FGMs (after [19] with modification)
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characteristics of the final product according to the ther-
mal influences, mechanical loading, pressure and inertia 
forces taking place during manufacturing.

3.2  According to FGM structure

FGMs can be generally classified into two main groups: 
continuous and discontinuous graded material as shown 

Fig. 4  Commonly used processing techniques for production of FGMs
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Fig. 4  (continued)



Vol:.(1234567890)

Review Paper SN Applied Sciences (2019) 1:1378 | https://doi.org/10.1007/s42452-019-1413-4

in Fig. 6 [121]. In the first group, no clear zones or separa-
tion cut lines can be observed inside the material to distin-
guish the properties of each zone. In the second group, the 
material ingredients change in a discontinuous stepwise 
gradation which is known as layered or discrete FGM. Con-
tinuous and discrete can further be classified into three 
types: composition gradient (Fig. 6c, f ), orientation gradi-
ent (Fig. 6d, g), fraction gradient (Fig. 6e, h). A further sub-
group can be obtained by considering size change in any 
of the cases (e.g. grain size coarsening or different particle 
sizes) [45].

Fraction gradient type can be obtained by utilizing 
centrifugal force through the use of centrifugal casting 

process [63]. Centrifugal and repulsive forces act on the 
particles [27], which are dispersed into the melt. There is 
also the gravitational force, but in almost all cases, grav-
ity is very small with respect to the centrifugal force and 
can be neglected [32]. Theoretically, shape gradient can 
introduce a well-tailored property distribution. However, 
the process of fabricating the reinforcing/dispersed 
phase with the necessary accuracy and the placement 
of the shaped constituent is very sophisticated and cost 
intensive from manufacturing point of view. Powder 
metallurgy represents one of the important method of 
producing FGMs containing shape gradient [121].

Table 1  FGM production techniques with advantages and limitations

Processing technology Advantages Limitations Publications

Powder metallurgy (PM) Different layers/constituents possible
Produced layers can be of different thick-

ness (nano to mm range)
Low stresses during sintering
High productivity

Non-continuous structure
Wall thickness > 2 mm, height/diam. < 7
Undercuts and threads should be machined 

in following process
Economic feasibility > 100,000 products

[47–55]

Centrifugal casting method Continuous Grading can be achieved using 
centrifugal casting method

Suitable for bulky/large products

Only cylindrical shapes possible
Graded structure difficult to control due to 

melting problems

[56–97]

Centrifugal slurry method Continuous grading
More rapid densification kinetics than the 

solid phase sintering
Very high fraction of refractory phase can 

be used

Only cylindrical shapes possible
Solvent is needed to obtain good distribu-

tion
Cannot form Nanoparticles

[39, 98, 99]

Centrifugal mixed-powder Similar to centrifugal slurry method, but
can form nano-particles

Only cylindrical shapes can be formed [38, 100–102]

Gravity settling Continuous Grading can be achieved using 
this method

A range of particle sizes can be used

Tendency to produce separate zones of 
relatively constant volume fraction.

Not suitable for all materials

[36]

Additive manufacturing (AM) 
and solid freeform fabrication 
(SFF)

Complex shapes are possible
Low cost for prototyping
From art to part directly (min. tooling)
High accuracy
High repeatability

Secondary finishing operation is required
Mainly produce discrete structure
Very high specific energy consumption
Huge equipment costs in case of metal 

products
Lower productivity rates

[37, 103–105]

Plasma spray forming Simultaneous melting of metallic and highly 
refractory phases, blending the two in 
ratios that can be present by control of the 
feeding rates of the powders of the two 
materials

Optimization of processing parameters 
(such as distance between gun and sub-
strate, feed-rate, carrier gas composition) 
can differ between the two components 
of the FGM structure

[41, 106–108]

Laser deposition High accuracy due to laser control
Selectively deposited material reduce the 

post-process machining/finishing

Uneconomical for bulk FGM
Only produce discrete structures
Relatively high residual stresses requires 

post heat treatment

[109–114]

Vapour deposition processes Layers can be in nano/micro range
Graded structure easy to control simply by 

varying the composition of the gas phase

Attention must be paid to subsequent 
heat treatments to avoid inter diffusion 
between the substrate and the graded 
film

[115, 116]

Infiltration Layers produced can be very thin
Structure has a good mechanical strength
Suitable method for FGMs containing 

phases of very different melting points

Difficult to control process
Graded preform should have sufficient 

porosity for the liquid metal to penetrate 
and get solidified

[117–120]
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The properties of FGMs containing orientation gradi-
ent change as a result of a change in particles orienta-
tion, not due to a phase ratio or size change. There are 
different methods that can be used to achieve orienta-
tion gradient in FGMs. Subjecting the molten metal to 
strong electromagnetic fields can help in reorientation 
of the reinforcing particles in the molten metal slurry. 
The electromagnetic forces have different roles depend-
ing on the type of the produced functionally graded 
(FG) composite. In the production of reinforced ceram-
ics by liquid routines [122], they may be used to drive 
the ferromagnetic particles to the required position and 
with required orientation. On the other hand, electro-
magnetic forces are used to affect the solidification of 

the liquid matrix in MMC [32]. An appropriate thermal 
control of die cooling with the aid of electromagnetic 
fields governs the magnitude and direction of the solidi-
fication velocity [123] and help in obtaining the graded 
structures in MMCs [124].

Size gradient FGMs are easily achievable based on the 
fundamental phenomena of flotation and sedimenta-
tion. Gravity and squeeze casting processes make use of 
these phenomena along with gravitational forces for the 
production of particle reinforced composites. Through 
manipulation of particles’ sizes/masses and surface prop-
erties, particles can be distributed in the molten metal/
alloy according to the magnitude and the direction of the 
resultant force [3]. Centrifugal and repulsive forces acting 

Fig. 5  Classification of FGMs 
according to state during 
manufacturing (after [36] with 
modification)

States of FGM Processing

Solid State 
Processes

Powder Metallurgy

Diffusion Bonding 

Additive 
Manufacturing

Liquid State 
Processes

noitartlifnI

Centrifugal Casting

Gravity Settling

Deposition 
Processes

Vapour Deposition

Spray Deposition

Laser Deposition

Fig. 6  Functionally graded 
materials with different forms 
of gradient [45]. a Discrete/
discontinuous FGMs with 
interface. b Continuous FGMs 
with no interface. c, f Composi-
tion gradient. d, g Orientation 
gradient. e, h Fraction gradient
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on the dispersed constituent also have an effect on the 
resulting FGM structure.

3.3  According to the type of FGM gradient

FGMs can be generally classified into three different 
groups of gradient: composition, microstructure, and 
porosity as shown in Fig. 7 [125]. The composition type of 
FGM gradient depends on the composition of the material, 
which varies from one substance to another, leading to 
different phases with different chemical structures. These 
different phases of production depend on the synthetic 
quantity and the conditions under which the reinforced 
materials are produced [41]. During the solidification 
process, the microstructure type of the FGM gradient can 
be achieved so that the surface of the material is extin-
guished. In this type, the core of the same material can 
cool slowly, helping generate different microstructures 
from the surface to the inside of the material [126, 127]. 
With the changes in the spatial location in the bulk mate-
rial, the porosity type of FGM gradient in the material 
changes [128]. Powder particle sizes can be measured by 
varying the pore particle sizes used during gradation at 
different positions in the bulk material [129].

3.4  According to the FGM scale and dimensions

“Thin FGMs” are manufactured by different methods like 
physical vapor deposition (PVD) [109], chemical vapor dep-
osition (CVD) [130, 131], thermal spray deposition [132] 
and self-propagating high temperature synthesis (SHS) 
techniques like laser cladding (Fig. 8) [133–135], while 
“Bulk FGMs” are manufactured by powder metallurgy [136, 
137], centrifugal casting [138, 139], solid freeform tech-
niques [140], gravity settling. Thin FGMs ranges between 
5 nm and 500 nm [141, 142] and may be extended to the 
micro-meter range (e.g. 1–120 μm thick deposited layers 

[130, 143]. In thick FGMs, gradients can cover 5–350 mm 
[26, 56, 144]. Also, the gradient of FGM can developed 
along one, two or even three different directions.

3.5  According to the nature of FGM gradation 
process

Another classification of the gradation process divide the 
FGM production to constructive and transport process-
ing [145]. The first category assumes a layer by-layer con-
struction starting with an opposite distribution in which 
the consecutive gradients are exactly constructed [146]. 
While in the second category, gradients within the struc-
tures are dependent on the physics of transport method 
(e.g. fluid flow, diffusion or heat conduction) [69, 147]. 
The advantage of constructive methods is the ability to 
fabricate unrestricted number of gradients. Advances 
in additive manufacturing during the last two decades 
have proved that constructive gradation processes are 
technologically and economically feasible, especially 

Fig. 7  Typical example of three 
different types of FGM gradient 
[125]

Type of FGM Gradient

Composition
Gradient

Microstructure 
Gradient

Porosity
Gradient

Main FGM Dimension

Thin FGMs 
(sub-mm Range)

PVD

CVD

Thermal Spary 

Laser Cladding 

Thick/Bulk FGMs 
(mm Range)

Powder Metallurgy

Centrifugal 
Techniques

SFF Techniques 

Gravity Settling

Fig. 8  FGMs classification based on the main FGM dimension (after 
[32] with modification)
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for prototypes and small batch production (Fig. 9), even 
with constituents that are not entirely compatible or 
homogeneous in nature [36]. Additive manufacturing 
(AM) techniques, offer additional advantages in form of 
accuracy and repeatability to reproduce the designed 
gradients and properties [148].

3.6  According to the field of application

As described in the introduction section, FGMs were 
found and used in either severe operating conditions 
or very sensitive application. Examples include heat 
exchangers, heat resisting elements in space crafts 
or fusion reactors as well as for biomedical implants. 
[28, 149, 150]. Various combinations of the ordinarily 
incompatible functions can be implemented to create 
new materials for aerospace, chemical plants, nuclear 
energy reactors, etc. [22, 151, 152]. According to area 
of application, FGMs can be classified into biomaterial 
[125, 153–155], aerospace [156–158], automotive [159, 
160], defense [161, 162], cutting tools [163], nuclear reac-
tor [164], smart structure [165], turbine blades [166] and 
sports equipment [167]. Figure 10 represent an over-
view of the classification according to the major fields 
of applications.

4  Proposed classifications for FGM 
processing methods

The classifications which have been introduced in previ-
ous sections are mainly based on the nature of the con-
stituents and their physical characteristics (size, relative 
positioning and density) to suit a specific application. 
However, in most fabrication processes, there is no con-
crete design methods that can be followed to realize 
a specific property gradient. In the following subsec-
tions, widely used FGM production techniques will be 
classified from designer or manufacturer point of view. 
The classifications will consider some technical aspects 
such as the realizable the complexity of product form 
and wall thickness, the degree of control on gradient, 
the developed residual stresses due to the FGM pro-
duction method, the specific energy consumption and 
the related environmental impact, in addition to the 
economic aspects which will be represented in form of 
evaluation of the equipment and total production costs. 
These classifications aim at providing guidelines for the 
manufacturer to help them selecting the FGM manu-
facturing process which almost meets their technical 
requirements and provide answers to their economic-
related questions.

4.1  Classification according to the achievable 
complexity of shape

Complexity of shape plays a vital role in the selection 
of the FGM manufacturing process [168, 169]. The com-
plexity of shape may be quantified or classified by the 
ability of the manufacturing method to create a com-
plicated geometries in distinct directions or by the pos-
sible achievable directions of gradients in the space 
[169–172]. A perspective for classification according to 
complexity of product shape is represented in Fig. 11.

FGMs Gradation Process

Constructive-based 
processes 

Powder Sintering 
Processes 

Vapour Deposition 
Processes

Additive Manufacturing

Transport-based 
Processes

Mass Transport Process

Settling and Centrifugal 
Process  

Thermal Process

Fig. 9  Classification of FGMs according to gradation method [36]

Areas of FGM 
Application

Aerospace

Space 
Shuttle

Automotive

Flywheels

Biomaterial

Prosthetic 
devices

Defense

Armored 
vehicles

Nuclear 
Reactors

Steam 
generator

Smart 
Structures

Piezoelectric 
shaft

Sports 
Equipment

Tennis 
rackets

Fig. 10  Functionally graded materials: fields of application and examples
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4.2  Classification according to the degree 
of gradient control

FGMs can be classified according to the degree of con-
trol on gradient or the accuracy of reinforcing phase 
distribution into three main categories: high degree of 
process control, moderate degree of process control and 
low degree of process control, as shown in Fig. 12 [100]. 
Gradient control is defined as the degree by which the 
predesigned property change governed by the particle 
or reinforcement concentration along the direction of 
gradient is achievable. High control methods can real-
ize the predesigned property gradient with an accuracy 
of more than 90%, as shown in Fig. 13 [173]. The high 
grade of control is mainly achieved by the capability of 
the process to place the reinforcing constituents. This 
is more realizable in solid state processes than in liquid 
state ones. Although low control techniques provide 
smoother variation of properties compared to moderate 

control methods, the control of production parameters 
in the first group is much more complex due to the con-
siderable number of involved parameters as well as their 
interactions. For example, the range of particle size in 
powder to be used for powder metallurgy should vary 
from 4 microns to 200 μm [174]. In addition, there is a 
wide range for the variability of each parameter such 
as grain size of particles or the viscosity of matrix mate-
rial at different points inside the FGM during solidifica-
tion [175]. Moderate and low control methods are not 
normally predesigned to achieve a specific property gra-
dient and depends mainly on experience of the manu-
facturer or trial and error. The variation in the resulting 
gradient range between 50 and 60% in the low accuracy 
group and increase to 80% in the moderate accuracy 
group. Some examples of realizable gradients which 
can be achieved using both groups are represented in 
Figs. 13 and 14.  

Complexity of FGM Product Shape

High Complexity

Solid Free Form 
Technique 

Thermal and Plasma 
Spray Forming

Vapour Deposition 

Moderate Complexity

Infiltration

Sheet Lamination

Laser Deposition

Low Complexity

Centrifugal Casting

Centifugal Slurry

Powder Metallurgy

Fig. 11  Classification of FGMs according to product complexity

Control of FGM Gradient

High Control        

(more than 90 %)

Powder Metallurgy

Infiltration

Solid Free Form 
Technique 

Moderate Control 

(upto 80 %)

Sheet Lamination

Laser Cladding

Diffusion Bonding

Low Control
(50 % to 60 %)

Centrifugal Slurry 
Method

Centrifugal Casting

Vapour Deposition 

Fig. 12  Classification of FGMs according to control of property gradient
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4.3  Classification according to the effect of residual 
stresses

Different FGM production techniques result in various lev-
els of residual stresses that develop during manufacturing. 
Table 2 shows the residual stress value in the different pro-
duction processes for thermal expansion (CTE) coefficients 
and large changes in production temperature. Figure 15 
represents a perspective for classification FGM produc-
tion methods according to the level of residual stresses. 
Although stress relief heat treatment is commonly advised 
to remove or reduce the influence of residual stresses, 
there are no investigations which are concerned with the 
post-treatment of FGM products to optimize the amount 
of residual stresses [176–180]. 

Fig. 13  Low degree of control on property gradient using centrifugal casting technique [36]

Fig. 14  Example of the high degree of control on property gradient using solid freeform technique [173]

Table 2  Residual stress for common FGMs manufacturing pro-
cesses

Process Residual stress (MPa) References

From To

Centrifugal casting − 50 + 35 [181–183]

Powder metallurgy − 40 + 100 [184–186]

Vapour deposition − 150 + 200 [176]

Electrophoretic deposition − 200 + 250 [177]

Laser cladding − 50 + 300 [178, 179]

Thermal and plasma spray 
forming

− 100 + 200 [180]

Infiltration Up to + 80 MPa [150]
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4.4  Classification according to the energy 
consumption and environmental impact

Energy consumption has become a very critical factor 
while selecting a manufacturing technology. Detailed 
analysis of energy consumption distribution over the 
process stages (e.g. heating, feeding, pressing, removal, 
etc.) in addition to the energy needed for preprocessing 
of input materials and post-processing of products have 
been studied by many research groups [23, 187–190]. 
Specific energy consumption (SEC) is widely used for the 
comparison of different processes or process stages with 
respect to the produced mass (or volume in some cases). 
The evaluation of energy consumption has been extended 

in some studies to include the energy consumption esti-
mate during the product life. An example of comparing 
the energy consumption of electron beam melting (EBM) 
technique to conventional machining is given in Table 3. 
This type of life cycle analysis (LCA) is used to evaluate the 
Global Warming Potential (GWP) and hence the environ-
mental impact of the production process. Some investiga-
tions and industrial studies considered the comparison of 
some manufacturing processes that suits FGM production 
with conventional forming and machining processes and 
evaluated SEC and GWP for studied groups and processes.

Due to the difficulty to establish a general evaluation 
formula, models with different variables and weights were 
usually formulated and evaluated with the help of some 
case studies. For example, [191] compared SEC of vari-
ous conventional forming techniques (casting, injection 
molding) and machining processes (milling, turning, drill-
ing, grinding) to six different additive manufacturing tech-
niques. An example of the presented series of SEC charts is 
shown in Fig. 16. The study also presented some beneficial 
pie charts showing the energy consumption distribution 
over the stages of each process.

Based upon the presented results, attention should 
be paid to the use of AM techniques as a powerful FGM 
production technique due to its very high SEC. In a 
recent study, Azevedo et al. [192] stated that “Additive 

Residual Stress due to 
FGM Production Process

Low

Centrifugal 
Casting

Powder 
Metallurgy

Centrifugal 
Slurry

Infiltration 
Processes

High

Vapor 
Deposition

SFF 
Techniques

Laser
Thermal 
Spraying

Fig. 15  Classification of FGMs according to residual stress

Table 3  Energy consumption throughout the life cycle [23]

Process Machining EBM

Final part (kg) 1.09 0.38

Ingot/material consumed (kg) 8.72 0.57

Raw material (MJ) 8003 525

Manufacturing (MJ) 952 115

Transport (MJ) 41 14

During service (MJ) 217,949 76,282

Total energy 226,945 76,937

Fig. 16  SEC for different manufacturing processes and relation to productivity rates [191]
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manufacturing is the only process besides press and sin-
tering whose environmental impact has been studied in 
the literature”. In a recent publication, Liu et al. have evalu-
ated the GWP impact of AM techniques as shown in Fig. 17 
and proved that the optimization of process parameters 
can result in an improved GWP.

Ingarao et  al. [193] investigated the environmental 
impact of AM techniques in comparison to conventional 
forming and machining techniques. The in-depth investi-
gation included pre- and post-manufacturing stages in a 
detailed LCA analysis. Ecopoint is selected as single point 
indicator for environmental impact quantification, while 
 CO2-eq was also selected as a single indicator for Global 
Warming Potential (GWP). Results revealed that AM could 
not be identified as an environmentally friendly solution. 
Even with scenarios assuming 50% weight reduction, 
conventional methods are still preferable. The change of 
“breakeven ecopoint” with the geographically-dependent 
variability of aluminum production is always in favor of 
forming processes for quantities more than 137 products. 
A case study of car component with AM optimized geom-
etry showed that AM still does not result in more green 
choice. The breakeven Ecopoint is reached after about 2 
millions of km drive distance! Figure 18 shows the high 
environmental impact of AM compared to conventional 
machining. It should be also noticed that processing cost is 
the decisive factor in AM processes due to the high energy 
demand.

According to the available information, models and dis-
cussion, FGM production methods can be broadly classi-
fied into low SEC, moderate SEC and high SEC processes. 
The different processing methods falling under these three 
categories are listed in Fig. 19. The data used for this clas-
sifications is collected from [190–192, 195]. The power 

ranges for some industrial equipment available on market 
is summarized in Table 4. 

4.5  Classification according to the total process cost

Cost plays a significant factor in the selection of FGM man-
ufacturing process. Cost factors include both fixed costs 
(which depends mainly on the used technique, required 
equipment and tooling as needed automation) and vari-
able costs (which varies with many technical aspects 
including the used materials and processing parameters 
which greatly influence the energy consumption). The 
feasibility of a given production process should be always 
evaluated according to the planned production quantity 
or the breakeven volume. A number of research work and 
industrial reports considered the comparison of cost for 
different techniques which are suitable for FGM manufac-
turing, or compared them to conventional forming and 
machining processes. For example, a comprehensive study 
of costs and cost effectiveness of additive manufacturing 
was published by National Institute of Standards and Tech-
nology [190, 196, 197]. The study showed that the great-
est AM cost driver is the initial investment in equipment. 
Initial machine costs account for 45–74%, while tooling 
account for only 5% of the total production cost, as shown 
in Fig. 20. In comparison, injection molding dies accounts 
for more than 90% of the manufacturing costs. According 
to a 2015 study published by the International Cost Esti-
mating and Analysis Association, the AM materials’ costs 

Fig. 17  GWP impact results of different AM processes [194]

Fig. 18  Ecopoints comparison between AM and conventional 
machining with three geographically-dependent estimates of alu-
minum production [191]
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are nearly 8 folds of those used in conventional forming 
and machining on a per-weight basis. However, the lower 
material consumption in case of AM compensate the 
high material costs so that the materials cost accounts for 
18–30% of the total production cost.

Experience of the manufacturer plays an important role 
at this point, where some rule of thumb exists for differ-
ent processes. For example, PM products are economically 
feasible only for small parts with weights between 20 and 
200 g produced in mass production in order of  104–105 
products. This is due to the high tooling costs and the 

Fig. 19  Classification of FGMs 
according to energy consump-
tion

Specific Energy Consumption 
of FGMs Processes

Low SEC

Centrifugal Casting

Centifugal Slurry

Gravity Settling

Moderate SEC

Powder Metallurgy

Vapour Deposition

Diffusion Bonding

High SEC

Thermal and Plasma 
Spray Forming

Solid Free Form 
Technique 

Laser Cladding

Table 4  Energy consumption for some FGM manufacturing equip-
ment (by UltraFlex Power Technologies)

Machine/process Energy consumption (kW)

Small Part Large Part

Centrifugal casting 2–3 kW 6–10 kW

Powder metallurgy 1–2 kW 4–7 kW

Vapour deposition 1–3 kW 5–8 kW

Laser cladding 50–70 W 200–500 W

Thermal and plasma spray 
forming

26–120 W 200–420 W

Fig. 20  Parameters influencing the distribution of production cost drivers [197]
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maximum achievable pressures [174, 198]. In some highly 
stressed automotive parts which are produced in high vol-
umes, PM can provide cost saving between 20 and 50% 
when compared to conventional forging or die casting 
processes by eliminating preassembly machining steps 
and reducing material losses [199].

The total cost of some manufacturing methods can vary 
tremendously according to the product size, material and 
manufacturing temperature. For example, centrifugal 
casting of Ti–ZrO2 of large FGM tubes that requires a high 
temperature resistant ceramic mould can shift the process 
fixed cost from a low cost to a high cost process [27].

Production volume is also decisive factor when consid-
ering economical aspects. For example, studies showed 
that AM can be more economically feasible for very small 
number of products as shown in Figs. 16 and 21. How-
ever, the smaller the product size and the material melt-
ing temperature, the more efficient and economical the 
process will be. For example, using smaller powder size 
and higher density as well as a smaller layer thickness and 
higher energy density in LENS process will cause a higher 

specific energy consumption and hence the total manu-
facturing costs. By controlling the processing condition, 
higher energy efficiency can be reached without affecting 
the product quality. For example, [23] give some recom-
mendations for selecting laser power, scanning speeds, 
powder feed rates which are suitable for different materi-
als (Inconel 718, Triboloy 800 and Stellite-1, AISI 4140) and 
comparing them to other materials available in literature.

For the purpose of classification, we assumed a medium 
sized product (in the mm-cm range) made of high melting 
point metallic material. Figure 22 represents a perspective 
for classification according to manufacturing costs, while 
Table 5 gives a range of capital cost for different FGM man-
ufacturing equipment.

The classifications of available processing methods 
used to produce FG components are summarized in 
Table 6. Those classifications represent two groups of clas-
sifications. The first group is primarily dependent upon the 
physical characteristics of the FGMs and is obtained from 
literary information, while the second proposed group 
of classifications represents the proposed guidelines for 
designers and manufacturers.

Fig. 21  Production cost as a function of production volume for dif-
ferent manufacturing methods [191]

FGM Cost of Manufacturing

High Cost

AM & SFF 
Techniques 

Laser Cladding

Vapour Deposition 

Moderate Cost

Centifugal Slurry

Powder Metallurgy

Diffusion Bonding

Low Cost

Centrifugal Casting

Sheet Lamination

Infiltration

Fig. 22  Classification of FGMs according to process cost

Table 5  Capital cost for some FGMs manufacturing equipment 
(according to direct-industry website)

Machine/process Estimated cost ($)

Small part Large part

Centrifugal casting 400–1000 8000–13,000

Powder metallurgy 5000–6000 20,000–25,000

Vapour deposition 13,000–15,000 53,000–55,000

3D printing machine 350–900 37,000–50,000
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5  FGMs challenges and new frontier

There are some issues that need further investigations and 
research efforts to make use of FGMs on industrial scale. 
The following points summarizes the main research direc-
tions that should be followed [123, 200]:

1. Building adequate material models that describe the 
physical properties of FGMs.

2. Developing a proper database for FGMs (including 
material systems, parameters, material preparation, 
performance evaluation and long-term reliability).

3. Improving the continuum theory, quantum (discrete) 
theory, percolation theory and micro-structure models.

4. Building computer simulation models for FGMs.
5. Investigating the performance of different FGMs in 

wear, fatigue, corrosion, residual stresses, semi-conduc-
tivity, etc. and optimizing the production parameters.

6. Developing a systematic methodology for selection of 
most adequate FGM production technique according 
to the required component’s characteristics.

7. Developing a systematic methodology for designing 
components made of FGMs according to the selected 
production technique.

8. Analyzing the economic aspects of the production 
processes aiming at integration into the mainstream 
of industry.

6  Summary and concluding remarks

Functionally graded materials have proven their position 
among modern advanced materials. They became a hard 
competitor in wide cluster of applications, especially in 
energy, defense, aviation and medicinal areas. The increas-
ing interest of FGMs in research and industrial commu-
nities makes the introduction of several classifications 
with different points of view necessary. These allow more 
insight into the relationship among FGM properties, pro-
cessing techniques, degree of control and cost.

This paper introduced a critical  review of different 
classification methods used in the field of FGMs. These 

Fig. 23  Possible classifications 
of FGMs’ production methods

Energy

Consumption
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Gradation

Process
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compared the advantages and limitations of the classified 
groups from different engineering points of view.

From designer and manufacturer point of view, new 
classifications of FGM production methods were proposed 
according to the complexity of product form and wall 
thickness, the realizable degree of control on properties 
gradient, the developed residual stresses due to the FGM 
production method, the equipment and manufacturing 
costs, the specific energy consumption and the environ-
mental impact evaluated throughout the complete life 
cycle (Fig. 23). Some aspects were highlighted as chal-
lenges for FGMs on the industrial scale such as material 
modelling, numerical simulation, systematic selection and 
design methodologies as well as databank for FGMs. The 
adaptability for mass production, process repeatability, 
reliability and cost effectiveness are among the future 
frontier for FGMs.
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