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ABSTRACT. We study functionally private approximations. An approximation function g is func-
tionally private with respect to f if, for any input x, g(x) reveals no more information about x than
f (x). Our main result states that a function f admits an efficiently-computable functionally private
approximation g if there exists an efficiently-computable and negligibly-biased estimator for f . Con-
trary to previous generic results, our theorem is more general and has a wider application reach.
We provide two distinct applications of the above result to demonstrate its flexibility. In the data
stream model, we provide a functionally private approximation to the Lp-norm estimation problem,
a quintessential application in streaming, using only polylogarithmic space in the input size. The pri-
vacy guarantees rely on the use of pseudo-random functions (PRF) (a stronger cryptographic notion
than pseudo-random generators) of which can be based on common cryptographic assumptions.
The application of PRFs in this context appears to be novel and we expect other results to follow
suit. Moreover, this is the first known functionally private streaming result for any problem.
Our second application result states that every problem in some subclasses of ]P of hard counting
problems admit efficient and functionally private approximation protocols. This result is based on
a functionally private approximation for the ]DNF problem (or estimating the number of satisfiable
truth assignments to a Boolean formula in disjunctive normal form), which is an application of our
main theorem and previously known results.

1 Introduction
Consider a two-party functionality f (x1, x2) = (y1, y2), where (xi, yi) is the private in-
put/output pair of party i ∈ {1, 2}. Informally, a private computation of f is one that com-
putes f correctly and guarantees that each party i learns only yi and nothing else.

Interestingly, Feigenbaum et al. [1] observed that the private computation of an ap-
proximation function g(x1, x2) = (ỹ1, ỹ2) of f can potentially leak more information than
the computation of f itself. Indeed, consider function f (x1, x2) computing the Hamming
distance between binary vectors x1 and x2. Let g be an approximation of f where the least
significant bit of g(x1, x2) corresponds to some arbitrary bit of x1 and all the remaining bits
of g equals those of f . Although g is indeed a good approximation, it leaks more informa-
tion about x1 than f does. In view of this problem, the authors argued that it is natural to
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require that g be also functionally private with respect to f ; i.e. roughly speaking, there should
be no (or it is computationally infeasible to find an) i such that ỹi “leaks” more information
than yi does (we make it precise in Section 2). As approximations are often used in place of
exact computations to reduce computing resources, the definition also captures the notion
that efficiency and privacy should not be conflicting goals.

We observe that although a series of seminal results [5, 19] claim that any efficiently-
computable (read polynomial-time) distributed protocol for a functionality f can be “com-
piled” into a private protocol, one cannot claim the same for approximations. Indeed, the
functional privacy property is inherent to the description of g and not of any protocol com-
puting g. Hence, there is no hope for a “compiler-like” solution for approximations. Conse-
quently, the focus on functional privacy has been on designing protocols for a particular set
of functions of interest (or classes thereof). Unfortunately, since the definition of functional
privacy first appeared in [1] few results have surfaced. Most are either tailored protocols
for specific functions of interest [1, 2, 8, 10] or impossibility results [6]. An exception are the
more general feasibility results of [1] that claims functionally private approximations for a
specific set of conforming Monte-Carlo simulations. Unfortunately, the results are limited
in scope and rigid in their requirements as we outline and discuss in Section 3.

Our main result, on the other hand, roughly states that a function f admits an efficient
functionally private approximation g if there exists an efficient negligibly biased estimator for
f . The result is flexible enough under many circumstances. We demonstrate this point by
providing two distinct applications of it. The first relates to a quintessential problem in the
data stream model of computation [12]: the estimation of the Lp norm of vectors, which
in the non-private streaming setting spurred several new results. The second is concerned
with feasibility results for ]P problems. Before presenting our contributions, we start with
some relevant context.

Private Streaming Computations. Consider two parties Alice and Bob. Alice sees an n-
dimensional vector a given as a series of coordinate updates. The jth update is (j, ji, ju)
where ji ∈ [n] refers to the dimension of the vector, and ju the change to that dimension, i.e.,
a[ji]→ a[ji] + ju. We visualize a as the stream. Each update has to be processed quickly and
there is only limited memory to store a. Formally, we are allowed space polylogarithmic in n
and various parameters of interest, as well as similar update and processing time. Similarly,
Bob is given input vector b given as a stream. When a function f needs to be computed at
time t, Alice and Bob communicate with each other to evaluate f (at, bt) where at (bt) denotes
Alice’s (resp. Bob’s) vector at time t (hereafter, we drop the subscript t whenever the context
allows). Total communication is in bits polylogarithmic in n and other parameters. This is
the distributed data stream model [12].

Our focus is on achieving functionally private protocols in the streaming model. In this
setting, as in general private computation, Alice and Bob do not wish to reveal the contents
of their streaming data. This stringent requirement is a result of either binding legal reasons
or sheer competitiveness. However, in the spirit of cooperation or as required by law, they
might be willing to perform a specific data analysis task in a secure way. This is the con-
text for the problems we study. For the purposes of this paper, we will address a common
streaming analysis that is already well-studied in the literature [7, 11, 14] (but in a secure
way) and not delve deeper into its many applications (which can be found in [12]). Specif-
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ically, we consider the following problem: compute the Lp norm of vector a − b, denoted
Lp(a − b) = ||a − b||p, for p ∈ [0, 2]. Recall that Lp(x) = (∑i |xi|p)1/p. Nearly all non-
trivial streaming analyses — including the problem above — are in fact approximate (exact
computations are impossible without linear space [12]) and hence we focus on functionally
private approximations.

Private Computation of ]P-complete Problems. In this setting, Alice and Bob hold finite
inputs a and b respectively. Similar in spirit as before, they wish to compute a ]P-complete
function f of their private inputs such that no information other than f (a, b) (and whatever
can be inferred from it) “leaks”. However, as f (a, b) is an intractable problem, they must
settle on computing an efficiently-computable functionally private approximation instead.

Results. Our contributions are as follows:
1. We show that if there exists a negligibly biased estimator (NBE) A(x, ε′, δ′) of f (x)†,

which 〈ε′, δ′〉-approximates‡ f for ε′ = 1/2 and δ′ = µ(κ) in time poly(κ, log |x|)§,
and a public upper bound τ on f (x), then there exists a functionally private 〈ε, δ〉-
approximation g of f computable in time poly(κ, log |x|, log τ, 1/ε, log(1/δ)) for a se-
curity parameter κ. Thus, if τ = poly(|x|) as below, g is polylog(|x|)-computable.
The proof consists of taking enough samples from Bernoulli random variable (r.v.)
with success probability p = O(A(·)/τ) and ensuring p = Θ(1/c) ≤ 1 for a tight
approximation using Õ(c) samples.¶ The output then depends solely on E[A(·)/τ].
Since this is negligibly far from f (x)/τ we argue that functional privacy is implied.
This is a general result for any function f and is not limited to any format as opposed
to the feasibility results in [1]. We believe that it is of general interest and will prove
useful to other functionally private protocols such as the following results.

2. We design a functionally private 〈ε, δ〉-approximation g for the Lp norm, p ∈ (0, 2], of

an n-dimensional vector using Õ
(

κ2 log2 n
)

bits of space on a security parameter κ.
Our result is based on a slight adaptation of the recent non-private unbiased estimator
for Lp [11] applied to our first result. To ensure functional privacy, we use a Pseudo-
Random Functions (PRF), a stronger cryptographic notion than a Pseudo-Random
Generator (PRG) that suffices for standard non-private streaming computations. Sam-
pling from sketches and the use of PRFs in this context appear to be novel.
From above, private streaming protocols for the Lp distance of two vectors follows.
These are the first known private streaming protocols for any problem.

3. We design a functionally private 〈ε, δ〉-approximation g for the ]DNF problem, or esti-
mating the number of satisfiable assignments of a formula in disjunctive normal form,
a ]P-complete problem. In a nutshell, we rely on the result of Karp and Luby [9] to
construct an unbiased estimator suitable for application of our first result.
The result yields functionally private 〈ε, δ〉-approximations to all problems within
some logic-based subclasses of ]P. Specifically, we show that ]DNF is complete un-
der a private and approximation-preserving reduction for the ]Σ1 and ]RΣ2 classes,

†informally, X is a NGE if E[X] is negligibly far from f (x) and has finite variance. See Section 2 for details.
‡a function g 〈ε, δ〉-approximates f if Pr [|g(x)− f (x)| > ε f (x)] ≤ δ for all inputs x.
§poly(n) (polylog) means any polynomial in n (in log n respectively).
¶the notation Õ(n) should be read as O

(
n log(1/δ)/ε2) throughout the paper.
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yielding functionally private approximations to all problems therein.
Although our goal is on achieving private protocols, we omit the details about con-

structing a secure two-party protocol. As Feigenbaum et al. [1] indicated, the challenge typ-
ically boils down to proving functional privacy when designing a private approximation
protocol. Additionally, most of the construction details of a secure protocol are orthogonal
to our main contributions in this paper. We refer the reader to [1, 3] for such details.

2 Preliminaries
Let [m] denote the integer range 1, . . . , m. We denote a negligible function in a positive integer
parameter κ by µ(κ) ∈ κ−w(1). A function f is said to be overwhelming if 1− f is negligible.
Polynomial time means time polynomial in n, 1/ε, and security parameter κ and is denoted
by poly. Similarly, by polylog, we mean time polylogarithmic in n, but poly in 1/ε and κ.
Finally, we say a function is efficient if it is poly-time computable.

DEFINITION 1.[〈ε, δ〉-approximation] A function g is an 〈ε, δ〉-approximation of f if, ∀x,
Pr[|g(x)− f (x)| > ε f (x)] ≤ δ holds for arbitrary ε, δ ∈ (0, 1). The function g depends on
both ε and δ and the probabilistic guarantees are over the randomness of g.

Below is the general notion of indistinguishability of distributions in Cryptography.

DEFINITION 2.[indistinguishability of distributions] Two distributions D1 and D2 are said
to be computationally indistinguishable, denoted D1

c≡ D2, if for every pair of random
variables X1 ∼ D1 and X2 ∼ D2 and for any family of polynomial-size circuits {Cκ} we
have |Pr(Cκ(X1) = 1)− Pr(Cκ(X2) = 1)| ≤ µ(κ)) for a security parameter κ. Distributions
D1 and D2 are statistically indistinguishable, denoted D1

s≡ D2, if for any X1 ∼ D1 and
X2 ∼ D2 the statistical distance SD(X1, X2) = 1

2 ∑a |Pr [X1 = a]− Pr [X2 = a] | ≤ µ(κ). Note

that D1
s≡ D2 implies D1

c≡ D2 but not necessarily vice-versa.

Consider the functional privacy definition for general approximations from [1].

DEFINITION 3.[functional privacy [1]] A function g is functionally private with respect to
a function f if there exists a probabilistic poly-time algorithm (a.k.a. simulator) S such that,
for any input x, {S( f (x))} τ≡ {g(x)} where

τ≡ denotes either ≡,
c≡, or

s≡.

This definition captures the notion that the approximation output g(x) does not reveal
extra information about x besides what can be inferred from f (x). Moreover, the functional
privacy definition is independent of how g is computed or whether f is efficiently com-
putable or not. Indeed, f could be a hard problem and thus S is modeled as having only
access to f (x) and not an oracle access to f .

3 Functional Privacy: current techniques and limitations
The seminal work of [1] presented a feasibility result for the following set of functions.
Consider a two-party computation where Alice and Bob hold private inputs a and b of size
n respectively and let x represent the input pair (a, b). Let f (x) = ψ(Pr [ξ]), where ξ is
an event or Bernoulli trial parameterized by a and b and ψ is an approximation-preserving
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function that is efficient to compute and invert. It was shown that f admits an efficient
functionally private approximation g as long as Pr [ξ] ≥ 1/poly. Essentially, g is constructed
by applying ψ to the outcome of a sampling algorithm estimating Pr [ξ] directly from a
and b via poly independent samples. Correctness follows from Chernoff bounds. On the
other hand, the functional privacy simulator works as follows: given f (x), apply ψ to poly
independent samples of a Bernoulli random variable with success probability equal to an
Ω(κ)-bit approximation of Pr [ξ] = ψ−1( f (x)). Functional privacy follows from the fact that
the simulated distribution is statistically indistinguishable (in a security parameter κ) from
the one induced by g —and thus also computationally indistinguishable. Additionally, [1]
extended the results to functions of the form f (x) = ψ(φ(ξ1, ξ2, . . . , ξt)) for a polynomial-
size, constant-depth arithmetic formula φ(·) of “coin manipulation” gates.‖

We outline some problems with the above feasibility results. The main drawback is the
stringent structure on f (x) = ψ(φ(·)). It restricts f to be the result of some Monte-Carlo
experiment, where coin manipulations suffices in making φ(·) simulatable from f (x) alone
using ψ−1(·). Unfortunately, this structure might not always be easily attainable. Indeed,
for the problem we consider in Section 5, an efficient (and known) solution is to construct
a coin φ(·) = f (x)/h(x) for a function h(x) not inferred from f (x) alone. It turns out that
h(x) depends on the structure of x and thus of private inputs a and b. In that case, ψ−1( f (x))
cannot yield f (x)/h(x) properly as required without the knowledge of h(x).

A second drawback is the requirement that Pr [ξ] ≥ 1/poly. Essentially, it requires tak-
ing poly samples for a tight approximation. This might be prohibitive for very large inputs.
In many cases, the only acceptable goal is to take polylog samples, as the sampling complex-
ity is closely related to the communication complexity of a private distributed protocol [1].
Specifically, when a tighter range for Pr [ξ] is known, it is reasonable to expect a much bet-
ter sampling complexity. Indeed, that is the case of the stand-alone private protocol of [8],
which reduces the sampling complexity to poly(κ, log n) by ensuring that Pr [ξ] ∈ Θ(1/κ).

We address both concerns simultaneously. Roughly speaking, we show that it suf-
fices to design a negligibly biased estimator (NBE) that 〈ε, δ〉-approximates f for f to admit
a functionally private approximation g. Contrary to above, the NBE carries no restriction. For
example, the NBE can be constructed out of a Monte-Carlo experiment or in any other way.
In other words, it is applicable to any function f as long as a suitable NBE is available.
Therefore, our result widens and also encompasses the previous feasibility results of [1].

3.1 Randomness in Private Streaming

Although there are a few deterministic streaming results (c.f. [12]), most streaming protocols
employ the use of randomization. The amount of randomness required varies and typically
ranges between pairwise and full independence. In particular, the streaming problem we
consider in this paper requires O(n) fully independent random variables, where n is the
stream size. Unfortunately, truly independence requires Ω(n) random bits, a prohibitive
storage requirement for data streaming applications. In such cases, a common approach is

‖The gates result from the observation that given two independent coins with unknown probabilities p, q ≥
1/poly, one can construct (in poly time) coins with probabilities p · q, 1− p, or any convex combination of p, q.
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to use a Pseudo-Random Generator (PRG) suitable for space-bounded computations. In-
dyk [7] pioneered this approach by using Nisan’s PRG [15] construction, which fools space-
bounded algorithms. An interesting property of the PRG is that it provides easy access to
any bits of the pseudo-random pad. The property is used to ensure that any bit can be
accessed efficiently every time it is requested; a critical part for streaming applications.

Unfortunately, space-fooling PRGs are not sufficient for functional privacy. In short, the
security convention in Cryptography is to bound the adversary to poly(κ)-time as opposed
toO(κ)-space for a security parameter κ. A typical adversary in the former model can break
the randomness security in the latter (c.f. [3]).

In this paper, we consider a different approach. In a nutshell, we employ the use of a
Pseudo-Random Function (PRF) [4] as follows. A brief review of PRF is informative. Let Iκ

denote the set of all κ-bit strings. Consider Hκ the set of all functions from Iκ into Iκ (note
that |Hκ| = 2κ·2κ

). Let F = {Fκ} be a function ensemble where Fκ assumes values from
Hκ. Then, F is a PRF if it has the following properties: (a) indexing: each function in Fκ

has a unique κ-bit index associated with it Fκ = { fs|s ∈ Iκ}; (b) poly-time evaluation: fs(x)
can be computed in poly(κ)-time given s ∈ Iκ and x ∈ Iκ; and (c) pseudo-randomness: no
poly(κ)-time probabilistic algorithm can distinguish the functions in Fκ from the ones in Hκ.
Intuitively, given a κ-bit truly-random seed string s, a function fs chosen from Fκ is as good
as a random function to any poly(κ) adversary.

Many PRF constructions exist and suffice for our results. Our result in Section 5, how-
ever, uses the PRF construction of [13] because, to the best of our knowledge, it is currently
the most efficient construction regarding the evaluation of fs(x).

4 Functional Privacy of Negligibly Biased Estimators
Consider a positive single-output deterministic function f with input size n. Our result is
inspired in a technique implicit in the private protocol of [8]. We begin with a new definition.

DEFINITION 4.[negligibly biased estimator (NBE)] A random variable X is a negligibly
biased estimator for f (x) in a parameter κ ∈ N if, for any admissible input x, E[X] ∈
(1± µ(κ)) f (x) and Var[X] < ∞.

Observe that securely computing an NBE is not necessarily a functionally private ap-
proximation. Indeed, the higher moments of such computation depend on the input x. The
following theorem attempts in squashing them and remove non-simulatable information.

THEOREM 5. Suppose there exists an algorithm A(x, ε′, δ′) that 〈1/2, µ(κ)〉-approximates a
positive function f (x) with the following conditions. For any input x:

a) A is a negligibly biased estimator for f (x) in a security parameter κ ∈N;
b) ∃ an upper bound τ of f (x), which is considered public knowledge.

Then, f admits a functionally private 〈ε, δ〉-approximation function such that:
1. it is computable in timeO

(
(log τ)(κ + log(log τ) + log(1/δ)/ε2) · TA(|x|, 1/2, µ(κ))

)
;

2. uses O
(
(log τ + log κ + log log[(1/2δ)/ε2]) + SA(|x|, 1/2, µ(κ))

)
of space,

where TA(n, ε′, δ′) and SA(n, ε′, δ′) are the running time and space usage of A(x, ε, δ) resp..

PROOF. We prove it constructively; i.e. we show how Function 1 achieves the claims. Let
Bernoulli(q) represents a Bernoulli r.v. with success probability q.
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Inputs: input x and parameters τ ≥ f (x), ε ∈ (0, 1), δ ∈ (0, 1), security parameter κ,
and access to a NBE A(x, ε′, δ′) for ε′ = 1/2 and δ′ = µ(κ).

Output: a functionally private 〈ε, δ〉-approximation of f (x)
1. Let N = Θ(κ + log(log τ) + log(2/δ)/ε2)
2. For each iteration i = 0, . . . , dlog τe:

(a) Compute Zi = ∑N
j Zi,j, where each Zi,j is the outcome of an indepen-

dent trial of

Bernoulli
(
A(x, 1/2, µ(κ))

(3/2)(τ/2i)

)
(1)

until iteration ` where Z` exceeds N/8.
(b) Abort if any call to A(·) > (3/2)(τ/2i) and output failure.

3. Output F = Z` · (3/2)(τ/2`)/N
Function 1: Functionally private approximation function given an NBE.

Correctness. For each iteration i = 0, 1, . . . , dlog τe, let the collection of r.v.s {Xi,j}j∈[N] repre-
sent the N independent outcomes of callingA(x, 1/2, µ(κ)). Each Xi,j is an negligibly biased
〈1/2, µ(κ)〉-approximation of f (x); i.e. with overwhelming probability in κ it holds that a
sample from Xi,j ∈ (1± 1/2) f (x) and E

[
Xi,j
]

= (1± µ(κ)) f (x). As in Function 1, define
Bernoulli r.v.s {Zi,j}j∈[N] where each Zi,j has success probability pi,j = Xi,j/[(3/2)(τ/2i)].

Let Zi = ∑N
j Zi,j. Also, let ` be the smallest index such that Z` > N/8 as stated in

Function 1 and let `′ be the index such that τ/2`′+1 ≤ f (x) < τ/2`′ (note that there is
always such an index by definition of τ and iteration range of `′). First, note that for any
iteration i = 0, 1, . . . , `′, pi,j ≤ 1 because τ/2`′ ≥ f (x) and the confidence guarantees of
A(·) hold overwhelming in κ; i.e. only with µ(κ) probability, the protocol aborts and we can
safely assume this does not happen. Therefore, all sample probabilities are proper in that
range. We then show that ` ≤ `′ always holds; i.e. Z`′ ≥ N/8 holds with overwhelming
probability in κ. Indeed, the expectation of the Bernoulli trials at iteration `′ is

E
[
Z`′,j

]
= E

[
A(x, 1/2, 2−κ)
(3/2)(τ/2`′)

]
≥ E[A(x, 1/2, 2−κ)]

(3/2)(2 f (x))
=

(1± µ(κ)) f (x)
3 f (x)

≥ 1/4.

In turn, E[Z`′ ] ≥ N/4 by linearity of expectations and thus

Pr [Z`′ < N/8] ≤ Pr [Z`′ < (1/2)E[Z`′ ]] ≤
(

e−1/2

(1/2)(1/2)

)E[Z`′ ]

≤ e−N/8 ≤ µ(κ),

which follows from a Chernoff bound and choice of N. Therefore, a suitable index ` ≤ `′

can be found in at most log(τ) + 1 iterations overwhelmingly in κ.
Now, recall that the output is F = Z` · (3/2)(τ/2`)/N. For the possible candidate exit

iterations i ≤ `, we have that

E[Zi] = E

[
N

∑
j

Zi,j

]
=

N

∑
j

E

[
A(x, 1/2, 2−κ)
(3/2)(τ/2i)

]
= N

f (x)
(3/2)(τ/2i)

= Θ(N).



330 FUNCTIONALLY PRIVATE APPROXIMATIONS

Thus, by a Chernoff bound and union bound over the iterations,

Pr [F > (1 + ε) f (x)] = log(τ) · Pr
[

Zi · (3/2)(τ/2i)/N > (1 + ε) f (x)
]

= log(τ) · Pr [Zi > (1 + ε)E[Zi]]

≤ log(τ) · e−Θ(N) ε2
3 ≤ e−(κε2+log(2/δ)) ≤ δ/2.

A similar result holds for Pr [F < (1− ε) f (x)] ≤ δ/2. Therefore, we have shown that
Pr [F ∈ (1± ε) f (x)] ≥ 1 − δ as desired. The running time follows from at most log(τ)
iterations of Õ(κ) independent samples of TA(n, 1/2, µ(κ)). Space follows as one log τ-bit
counter and one log N-bit counter suffice for computing the Zi’s.

Privacy. F is functionally private to f (x) as the Bernoulli trials can be simulated by an
algorithm with similar skeleton as Function 1 but with success probabilities

pi,j =
f (x)

(3/2)(τ/2i)

instead in (1) (recall that f (x) is given to the simulator, see Definition 3). Now, note that they
are statistically indistinguishable from the protocol trials because each Xi,j = A(x, ε′, δ′) is
a negligibly biased estimator of f (x); i.e. E[A(x, ε′, δ′)] = (1± µ(κ)) f (x) overwhelmingly
in κ for ε′ = 1/2 and say δ′ = 2−Θ(κ).∗∗ Indeed, the samples gathered until the last iteration
` were generated from proper probabilities (≤ 1) as argued earlier. Finally, recall that the
higher moments of the Bernoulli random variables depend solely on its expectation —thus
effectively squashing any non-simulatable higher moments of A(·). Since τ is considered
public, functional privacy is implied.

Remark. The theorem is most useful when the upper bound τ is at most single-exponential
in f (x); as we shall see in the next section.

5 Functionally Private Streaming Approximation for the Lp Norm
The Lp norm, for p ∈ (0, 2], of a vector a ∈ {−M, M}n is defined as Lp(a) = ||a||p =
(∑n

i |ai|p)1/p. In this section, we prove the following theorem.

THEOREM 6. There exists a functionally private 〈ε, δ〉-approximation of ||a||p, p ∈ (0, 2], in

the streaming setting, requiring only O
(

κ2 log2(nM)(κ + log(1/δ)/ε2)
)

bits of space, and

O
(
κ2 log(nM)(κ + log(1/δ)/ε2)

)
update andO

(
κ log2(nM)(κ + log(1/δ)/ε2)

)
update query

time for arbitrary ε, δ ∈ (0, 1) and security parameter κ.

Before proceeding, it is instructive to recall the estimator of [11].

Geometric Mean Unbiased Estimator for Lp [11]. Let R be the R`×n projection matrix with
i.i.d. entries Ri,j ∼ S(p, 1), where S(p, γ) denotes a discretized symmetric p-stable distribu-
tion over R with scale parameter γ. Let x = Ra be the “sketch” of a as `� n (` is set later).

∗∗let us not confuse ε′ and δ′ with ε and δ. The former parameters are the ones used for invoking the NBE A,
while the latter are the error and confidence parameters of the functionally private approximation function.
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By the properties of the distribution, each xj = ∑i aiRi,j ∼ ||a||pXj, where Xj ∼ S(p, 1).
Equivalently, we can write xj ∼ S(p, ||a||p). Such distributions exists for p ∈ (0, 2]. Thus, to
estimate ||a||p, it boils down to approximating the scale parameter γ from ` i.i.d. samples.
In [7], the author proposed using the estimator median(|x1|, |x2|, . . . , |x`|). However, [11]
has shown that not only it is severely biased but also hard to bias-correct it analytically or
algorithmically. Therefore, for p ∈ (0, 2], [11] proposed using a bias-corrected version of the
geometric mean estimator:

L̂p,gm =
`

∏
j=1
|xj|1/`

/[
2
π

Γ
( p

`

)
Γ

(
1− 1

`

)
sin
(π

2
p
`

)]`

, (2)

where Γ (z) is the Gamma function of a real-valued z. The estimator is strictly unbiased, or
E[L̂p,gm] = ||a||p. Moreover, it has finite variance and exponential tail bounds, crucial for an
〈ε, δ〉-approximation of ||a||p for arbitrary ε, δ ∈ (0, 1).

The correctness of the construction relies on building the projection matrix R from truly
random samples. Unfortunately, that requires Ω(n`) bits of storage. By using the Pseudo-
Random Function construction of [13] instead (see Section 3.1) we only need to store a κ-bit
seed sj per each sample j ∈ [`]. This is correct as long as κ = Ω(log n) because we use the
vector coordinate i ∈ {0, 1}log n as input for the PRF given seed sj.

Proof of Theorem 6. We transform the unbiased geometric estimator L̂p,gm of (2) to an NBE
with Ω(κ)-bit precision. The theorem then follows by applying Theorem 5.

Specifically, for p = 1, the denominator in (2) simplifies to [2 sin(π/2`)/ sin(π/`)]` =
1/ cos`(π/2`). It is known that it suffices to use O(log 1/ε) terms to (1± ε)-approximate
cos`(x) (by bounding the Taylor polynomial), or in our case O(κ`) terms to (1 ± µ(κ))-
approximate For p = 2, the same denominator simplifies to [pΓ (1/`)/Γ (1/p`)]` . Approxi-
mating it negligibly in κ implies getting an (1± 2−κ`) approximation to the Gamma function
(note the power `). A result from [17] does so with O(κ`) time with relative error 2−κ`. A
similar argument applies for p ∈ (0, 2]. Finally, observe that for agreed-upon values of κ, ε,
and δ, the correction factor can be pre-computed (the theorem claims assume this fact).

Now, we validate our storage claims. Recall that Theorem 5 makes at mostO(log τ) ·N
invocations to the NBE A, where τ is an upper bound on f (x) and N = Θ(κ + log(log τ) +
log(1/δ)/ε2). Since τ ≤ nM2 (for any p ∈ (0, 2])) we have O

(
log(nM)(κ + log(1/δ)/ε2)

)
invocations of A.†† On the other hand, each invocation of A requires taking ` samples
(or sketches). In [11], it was shown that setting ` = O

(
log(1/δ)/ε2) suffices for an 〈ε, δ〉-

approximation of ||a||p using (2). Since A is called with ε′ = 1/2 and δ′ = µ(κ) = 2−Θ(κ)

in Theorem 5, we have that each invocation requires ` = O
(

log(1/2−Θ(κ))/(1/2)2
)

=
O(κ) sketches. Therefore, multiplying the number of invocations by the number of sam-
ples we get that the total storage requirement is O

(
κ log(nM)(κ + log(1/δ)/ε2)

)
sketches.

Each of these sketches require a counter and a κ-bit seed for the PRF. The former requires
O(log(nM)) bits as the maximum value for f (x) is nM2 for any p ∈ (0, 2]. Thus, the total
storage is O

(
κ2 log2(nM)(κ + log(1/δ)/ε2)

)
bits as desired.

††assuming κ = Ω(log log τ) = Ω(log(log nM)).
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The amount of computation per update per sketch is dominated by κ modulo multipli-
cations and one exponentiation of κ-bit numbers when using the PRF construction of [13].
These can be performed in O(κ) constant-time computations. The update time is thus sim-
ply O

(
κ2 log(nM)(κ + log(1/δ)/ε2)

)
as desired assuming that operations on O(log(nM))-

bit strings are constant. Finally, the query time is O
(
κ2 log(nM)(κ + log(1/δ)/ε2)

)
as the

work of Function 1 is simply linear in the storage size once all sketches are available.

6 Private Approximation of ]P-complete problems
Consider the following abstract problem. Let U be a finite set whose elements are binary
strings of size n. Let the Boolean function h : U → {0, 1} partition U. The goal is to estimate
the cardinality of D = {u|u ∈ U ∧ h(u) = 1}. Most problems in ]P can be formulated as
the problem above. Indeed, ]P can be seen as the class of function problems counting the
number of accepting paths in an NP machine [18]. In this section, we focus on obtaining
efficient (read poly-time) functionally private approximations to the above abstract problem
as exact solutions are typically not feasible.

Monte-Carlo sampling methods are useful in estimating µ = |D|/|U|. From Chernoff
bounds, an 〈ε, δ〉-approximation is possible using Õ(1/µ) independent samples of h(u) for
an u chosen uniformly at random (u.a.r.) from U. An efficient algorithm, however, requires
that µ ≥ 1/poly provided that it is poly-time computable to sample an element u u.a.r.
from U and compute h(u). Unfortunately, µ may be exponentially small in n, requiring
a prohibitive super-polynomial samples. An alternative approach is the method of Karp
and Luby [9]. The crux is on finding a small enough multiset V, containing all elements
of D, such that µ = |D|/|V| is large enough for efficient sampling. The following theorem
summarizes their coverage algorithm, as it is known, for an abstract Union of Sets problem.

THEOREM 7.[Karp and Luby [9]] Let U and D be defined as before. Suppose there are sets
{D1, . . . , Dm} ⊆ D s.t. D =

⋃m
i Di and the following conditions hold, ∀i ∈ [m]:

1. |Di| can be computed in poly(n, m) time;
2. any element s ∈ Di can be sampled u.a.r. from Di in poly(n, m) time;
3. given any s ∈ D, it can be decided if s ∈ Di in poly(n, m) time.

Then, an 〈ε, δ〉-approximation for |D| can be computed in poly (n, m, 1/ε, log(1/δ)) time.

Private Coverage Algorithm. What prevents the coverage algorithm from being functionally
private to f using current techniques is the fact that |V| depends on x. Indeed, |V| cannot
be inferred from f (x) alone and thus the higher moments of the distribution induced by X
depends on the structure of x and thus breaks functional privacy (c.f. Section 2).

Let Xj be a Bernoulli r.v. representing the jth sample of a coin with success probability
p = |D|/|V| as in the proof of Theorem 7 [9]. Alternatively, one might be tempted to
construct an event “Yj = 1” where Yj is a Bernoulli r.v. with probability q = |V|/τ and

sample from the joint Bernoulli distribution E
[
“Xj = 1′′ and “Yj = 1′′

]
= p · q = |D|

|V| ·
|V|
τ =

|D|
τ for a publicly known value τ (or one that can be inferred from f (x)), where p = E

[
Xj
]
.

That way the output distribution depends solely on |D| (and no-harm τ) and functional
privacy is implied by the feasibility results of [1] using their formula f (x) = ψ(φ(·)) where
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φ = p · q and ψ(n) = n · τ (see Theorem 6.4 in [1]). However, we note that in this case τ must
be larger than |V| so that the coin is proper. Unfortunately, the only known upper bound
on |V| we know of without knowing x is m2n as every element can be part of each set Di.
In such case, q = |V|/(m2n) < 1/poly for small values of |V| and no efficient sampling is
possible.

Our approach instead is to squash the higher moments of X to prevent non-simulatable
information from leaking. To that end, we use the unbiased coverage algorithm of Theo-
rem 7 as the negligibly biased estimator in our main theorem, Theorem 5. The result is below.

THEOREM 8. Let U, D and V and the set forth conditions on them be as in Theorem 7. Fur-
thermore, suppose there exists a publicly known upper bound τ on f (x). Then there exists
a functionally private 〈ε, δ〉-approximation for |D| in poly (κ, n, m, log τ, 1/ε, log(1/δ)) time
for a security parameter κ.

PROOF. Let A(x, ε, δ) be the coverage algorithm of Theorem 7. The theorem follows from
a direct application of Theorem 5 usingAwith parameters ε = 1/2 and δ = µ(κ) and upper
bound τ = 2n.

Private ]DNF. Let F =
∨m

i Ci, be a propositional formula in disjunctive normal form where
each Ci is a conjunction of a subset of literals defined with respect to n Boolean variables
x1, . . . , xn. The goal is to output the number of satisfiable assignments to F, or ]F. The
problems is ]P-complete [18]. In [9], Karp and Luby also showed a connection between the
abstract Union of Sets problem and ]DNF. Our result below uses this connection.

COROLLARY 9. There exists a functionally private 〈ε, δ〉-approximation for ]DNF com-
putable in poly(n, m, 1/ε, log(1/δ)) time.

PROOF. The claims follows directly from Theorem 8. Essentially, we show set D =
⋃m

i Di
can be built as required and the conditions put forth in Theorem 7 (and Theorem 8) hold. Let
each Di be the set of assignments satisfying clause Ci. Then, clearly ]F = |D|. The conditions
are met as follows, ∀i ∈ [m]: 1) |Di| can be computed in O(1) as |Di| = 2n−|Ci |; 2) sampling
an element s ∈ Di u.a.r. from Di requires setting the proper assignments for the literals in Ci
and choosing u.a.r. from {true, false} for the other literals not in Ci; and 3) trivial to evaluate
whether or not s ∈ Di for any s ∈ D in O(n) time. The corollary follows.

Further Applications. In [16], it was shown that ]k logDNF (a special case of ]DNF re-
stricting the formula to at most k log n variables per disjunct.) and ]DNF are complete for
classes ]Σ1 and ]RΣ2 respectively. These are logic-based classes of counting problems. The
problems are complete under a product reduction, which is a reduction from f to g where
∃φ, h ∈ FP, h : N → N such that ∀x, f (x) = g(φ(x)) · h(|x|), with FP being the complexity
class of polynomial-time computable functions problems.

Observe that the reduction is private and approximation-preserving. Note that h(|x|)
not only preserves approximability but also does not leak anything about x. We conclude
that a functionally private 〈ε, δ〉-approximation to g implies one to f . Consequently, we
have that all problems in ]Σ1 and ]RΣ2 can be privately approximated, including prob-
lems such as ]NON-VERTEX-COVERS, ]NON-CLIQUES, ]NON-DOMINATING-SETS, and
]NON-HITTING-SETS to cite a few (c.f. [16]). We defer details to the full version.
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