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    Lymphatic vessels are key routes for the recir-
culation of fl uid and cells that enter tissues from 
blood vessels. This function of lymphatics is 
important for maintenance of normal tissue 
homeostasis and in infl ammatory diseases and 
other conditions with extensive fluid and 
cell effl  ux ( 1 ). Lymphatics are also routes for 
spreading cancer cells ( 1-3 ) and for antigen-
presenting cells traffi  cking from tissues to 
lymph nodes in immune surveillance ( 4, 5 ). 
Imbalances in effl  ux and recirculation of fl uid 
or cells can result in lymphedema or disturbed 
immune responses. 

 Fluid entry into lymphatics is driven largely 
by hydrostatic and colloidal osmotic pressure 

gradients ( 6, 7 ). A prevailing view is that much 
of the endothelium of initial lymphatics has in-
complete or no intercellular junctions ( 8-10 ). 
The loosely apposed but overlapping borders 
of endothelial cells are thought to function as 
 “ primary valves ”  that provide unidirectional 
fl uid fl ux into lymphatics ( 11, 12 ). When lym-
phatic endothelial cells are pulled apart by an-
choring fi laments tensioned by interstitial forces, 
lymph fl ows along its pressure gradient into 
lymphatics ( 8, 10, 11 ). 

 The properties of leukocyte entry into lym-
phatics diff er from those for fl uid, as leukocyte 
infl ux is a selective process. Dendritic cells, 
macrophages, and lymphocytes enter lymphat-
ics, but neutrophils and erythrocytes generally 
do not. Leukocytes are attracted by chemokines 
from lymphatic endothelial cells and interact 
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 Recirculation of fl uid and cells through lymphatic vessels plays a key role in normal tissue 

homeostasis, infl ammatory diseases, and cancer. Despite recent advances in understanding 

lymphatic function (Alitalo, K., T. Tammela, and T.V. Petrova. 2005.  Nature . 438:946–953), 

the cellular features responsible for entry of fl uid and cells into lymphatics are incom-

pletely understood. We report the presence of novel junctions between endothelial cells of 

initial lymphatics at likely sites of fl uid entry. Overlapping fl aps at borders of oak leaf – shaped 

endothelial cells of initial lymphatics lacked junctions at the tip but were anchored on the 

sides by discontinuous button-like junctions (buttons) that differed from conventional, 

continuous, zipper-like junctions (zippers) in collecting lymphatics and blood vessels. How-

ever, both buttons and zippers were composed of vascular endothelial cadherin (VE-cadherin) 

and tight junction – associated proteins, including occludin, claudin-5, zonula occludens – 1, 

junctional adhesion molecule – A, and endothelial cell – selective adhesion molecule. 

In C57BL/6 mice, VE-cadherin was required for maintenance of junctional integrity, 

but platelet/endothelial cell adhesion molecule – 1 was not. Growing tips of lymphatic 

sprouts had zippers, not buttons, suggesting that buttons are specialized junctions rather 

than immature ones. Our fi ndings suggest that fl uid enters throughout initial lymphatics 

via openings between buttons, which open and close without disrupting junctional integrity, 

but most leukocytes enter the proximal half of initial lymphatics. 
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plexus of blood vessels ( Fig. 1 B ) and were two or three times 
the size of mucosal venules ( Table I ).  All lymphatic vessels in 
the trachea expressed lymphatic vascular endothelial hyaluro-
nan receptor – 1 (LYVE-1) and Prox1, making positive identi-
fi cation straightforward despite the abundance of blood vessels 
nearby ( Fig. 1, A – C ). Smooth muscle and luminal valves were 
restricted to collecting lymphatics on the adventitial surface. 

 Buttons between endothelial cells of initial lymphatics 

 Immunohistochemical staining for VE-cadherin revealed 
conspicuous diff erences between initial lymphatics and col-
lecting lymphatics in the trachea. Endothelial cells of initial 
lymphatics were joined by discontinuous buttons ( Fig. 1 C ), 
whereas endothelial cells of collecting lymphatics were joined 
by continuous zippers ( Fig. 1 D ), similar to those in adjacent 
blood vessels. Endothelial cells of lymphatics were apprecia-
bly larger than those in blood vessels ( Table I ). 

 Buttons consisted of roughly parallel linear segments of 
VE-cadherin, 3.2  �  0.1  � m in length and spaced 2.9  �  0.3  � m 
apart. Buttons were most abundant in the fi rst 500  � m of 
tracheal lymphatics and were rare beyond 1,500  � m from the 
tip ( Fig. 1 E ). The length of button-rich regions varied from 
vessel to vessel, and scattered endothelial cells of some lym-
phatics had zippers, but the transition from buttons to zippers 
was typically abrupt in individual vessels. Lymphatics in other 
organs, including the diaphragm, urinary bladder, and skin 
of ear and tail, had similar buttons in initial lymphatics and 
zippers in collecting lymphatics (Fig. S1, available at http://
www.jem.org/cgi/content/full/jem.20062596/DC1). 

 The unique association of buttons with initial lymphatics 
was confi rmed by examining the distribution of VE-cadherin 
in the context of LYVE-1. Double staining revealed that 
buttons were at the perimeter of LYVE-1 – positive endothe-
lial cells with a distinctive oak leaf shape ( Fig. 1 F ). Cells of 
this shape are typical of initial lymphatics and conspicuously 
diff erent from spindle-shaped endothelial cells of collecting 
lymphatics and blood vessels ( 9, 20 ). In initial lymphatics, 
LYVE-1 was concentrated at the tip of scalloped edges (fl aps) 
of the oak leaf – shaped cells, and segments of VE-cadherin 
were located along the sides of fl aps ( Fig. 1 F ). The presence 

with complementary adhesion molecules that govern ad-
hesion and migration ( 4, 13, 14 ). Yet, the specifi c routes cells 
use to cross the lymphatic endothelium are at an early stage 
of understanding. 

 Evidence that lymphatic endothelial cells make junctional 
proteins comes from gene profi ling data, which document 
the expression of platelet/endothelial cell adhesion molecule – 1 
(PECAM-1; also known as CD31), junctional adhesion 
molecule – A (JAM-A), and occludin in cultured cells ( 14-18 ). 
Multiple adhesion molecules have also been reported at inter-
cellular junctions in specialized  “ retothelial ”  cells of lymph 
node sinuses ( 19 ). 

 Among the unresolved questions about the entry of fl uid 
and cells into lymphatics are the following: (a) how can the 
integrity of initial lymphatics be maintained if junctions are 
not present between endothelial cells; (b) if junctions are pre-
sent, how does fl uid enter without repetitive disruption of the 
junctions; (c) do leukocytes and fl uid enter at the same sites; 
and (d) what is the relation of the distinctive oak leaf shape of 
endothelial cells of initial lymphatics ( 9, 20 ) to sites of fl uid 
and cell entry? 

 Based on this background, we sought to learn whether the 
properties of fl uid and cell entry into initial lymphatics could 
be explained by the specialization of junctions between endo-
thelial cells instead of the absence of junctions. We compared 
the distribution and composition of junctional proteins in 
initial lymphatics to those of conventional intercellular junc-
tions in collecting lymphatics and blood vessels. Of particular 
interest were vascular endothelial cadherin (VE-cadherin) of 
adherens junctions, tight junction proteins, and the endothe-
lial adhesion molecule PECAM-1. After learning that initial 
lymphatics had unusual, discontinuous endothelial junctions, 
we tested junctional integrity and plasticity after inhibition of 
VE-cadherin, deletion of PECAM-1, or increased fl uid and 
cell fl ux in infl ammation. 

 The studies exploited the attributes of the mouse tracheal 
mucosa, where both lymphatics and blood vessels are abun-
dant, easily visualized, and readily compared under baseline 
conditions or after infl ammatory stimuli in wild-type or ge-
netically altered mice ( 21 ). High resolution confocal micro-
scopic imaging of three-dimensional whole mounts revealed 
discontinuous, button-like junctions (buttons) in the endo-
thelium of initial lymphatics that contained proteins typical of 
both adherens junctions and tight junctions but were struc-
turally unlike the zipper-like junctions (zippers) elsewhere. 
These fi ndings suggest that regions between buttons in initial 
lymphatics are openings where fl uid can enter without repet-
itive formation and dissolution of intercellular junctions. 

  RESULTS  

 Initial lymphatics of mouse trachea 

 In the mouse trachea, lymphatics, with rounded blind tips and 
simple branching, were located in the mucosa between car-
tilage rings ( Fig. 1 A ).  On average, 10.8  �  0.4 blind ends of 
lymphatics were present in each mucosal segment between car-
tilages. Lymphatic vessels were located beneath the subepithelial 

  Table I.    Dimensions of endothelial cells of mouse lymphatics 

and blood vessels 

Initial lymphatics

Collecting  

 lymphatics Venules

Vessel diameter ( � m) 56  �  1.5 (baseline) 

  68  �  1.3 (LPS)

64  �  7 22  �  1**

Cell length ( � m) 49  �  1 66  �  3* 40  �  3**

Cell width ( � m) 18  �  0.8 14  �  0.6* 11  �  0.6**

Cell area ( � m 2 ) 616  �  40 630  �  40 312  �  19**

Measured in mouse tracheal whole mounts stained immunohistochemically for 

CD31 and LYVE-1 or VE-cadherin. All measurements were made under baseline 

conditions except for diameter of initial lymphatics, which were prepared under 

baseline conditions or 24 h after LPS. *, P  �  0.05 compared with initial lymphatics; 

**, P  �  0.05 compared with initial lymphatics and collecting lymphatics.
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 Figure 1.   Buttons in endothelium of initial lymphatics. (A) Confocal images showing lymphatic vessels (green, LYVE-1) and blood vessels 

(red, PECAM-1) in whole mount of mouse trachea. Region of mucosa over horizontal cartilage (*) is mostly free of lymphatics. (B) Longitudinal section 

of trachea shows epithelium (green), subepithelial blood vessels (red, arrowheads), more deeply positioned initial lymphatics (diagonal arrows), collecting 

lymphatic (horizontal arrow), and adjacent cartilages. (C and D) Confocal images of VE-cadherin immunoreactivity (red) at discontinuous buttons in initial 

lymphatic (arrows; C) and continuous zippers in collecting lymphatic (D). Zippers are also present in blood capillary (arrowheads; C). Lymphatics are iden-

tifi ed by Prox1 (green) in nuclei. (E) Distribution of 3,110 buttons along the length of 25 lymphatics in fi ve tracheas, expressed as a function of distance 

from the tip. Values are presented as means  �  SEM. *, P  �  0.05 compared with the number at the tip (0  � m). (F and G) Confocal images showing VE-

cadherin at buttons (arrows) and LYVE-1 between buttons (arrowhead) at the border of oak leaf – shaped endothelial cells of initial lymphatic. (G) Enlarged 

isosurface rendering of confocal image stack of boxed region in F. (H) Scanning electron microscopic image showing external surface of overlapping fl aps 

at the junction of three endothelial cells of initial lymphatic. (I) Drawing of boxed region in H showing contributions of three endothelial cells. Bars: 

(A and B) 100  � m; (C, D, and F) 10  � m; (G) 5  � m; (H) 1  � m.   
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proteins infl uenced the organization of buttons. To address this 
issue, we asked whether loss or inactivation of either protein af-
fected the distribution of the other protein or the organization 
of buttons. The eff ect of PECAM-1 deletion was examined in 
PECAM-1 – null mice, which have no apparent vascular defects 
under baseline conditions ( 27 ). In tracheas of PECAM-1 – null 
mice, PECAM-1 immunoreactivity was absent in blood ves-
sels and lymphatics as expected, but VE-cadherin had a normal 
button-like pattern in initial lymphatics and a normal zipper-
like pattern in blood vessels ( Fig. 4, A – C ).  The pattern of VE-
cadherin at buttons in PECAM-1 – null mice ( Fig. 4 D ) was not 
noticeably diff erent from wild-type mice ( Fig. 4 E ). 

 Alternatively, a function-blocking antibody (BV13) was 
used to inactivate VE-cadherin ( 28 ). Genetic deletion of 
VE-cadherin leads to embryonic lethality because adherens 
junctions are essential for early steps of assembly of endothe-
lial cells into blood vessels ( 29, 30 ). VE-cadherin is similarly 
important in the adult. The BV13 antibody causes disper-
sion of VE-cadherin away from junctions between endothe-
lial cells of blood vessels accompanied by fatal leakage and 
hemorrhage within hours of intravascular injection ( 28 ). In 
our experiments, injection of BV13 antibody, unlike normal 
IgG of the same isotype ( Fig. 4 F ), led to dispersion of VE-
cadherin in endothelial cells of initial lymphatics and blood 
vessels ( Fig. 4 G ). Surprisingly, BV13 also caused dispersion 
of PECAM-1 in lymphatics and blood vessels ( Fig. 4 G ) but 
did not alter the distribution of ZO-1 at buttons in initial 
lymphatics ( Fig. 4, H and I ). 

 Zippers at the tips of lymphatic sprouts 

 We next addressed the question of whether initial lymphatics 
are less diff erentiated regions of the lymphatic vasculature, and 
whether buttons represent immature versions of zippers. In this 
instance, we used a model of lymphatic sprouting, triggered 
by inoculation of  Mycoplasma pulmonis  into the airways of mice 
( 21 ), to determine whether buttons predominate at the tip of 
lymphatic sprouts, as would be expected if the junctional 
immaturity hypothesis is valid. At 14 d after infection, new 
lymphatics were abundant in regions of mucosa over cartilage 
rings where lymphatics were normally absent ( Fig. 5, A and B ).  
The growing tips of the new lymphatics had zippers ( Fig. 5, 
A and B , arrows) similar in appearance to those in collecting 
lymphatics under baseline conditions ( Fig. 1 D ). Most regions 
of lymphatics distal to the tip had oak leaf – shaped endothelial 
cells with buttons at the perimeter ( Fig. 5 B , arrowheads). At 
7 wk after infection, sprouts were less numerous, and most 
lymphatics had buttons ( Fig. 5, C and D ) resembling those in 
initial lymphatics under baseline conditions ( Fig. 1 C ). 

 Sites of leukocyte entry into lymphatics 

 The issue of whether button-rich regions of lymphatics are 
preferential sites for leukocyte entry was explored by deter-
mining whether sites of cell migration coincided with but-
tons in a model of airway infl ammation. The relationship 
of MHC class II (MHC II) – positive cells (mainly dendritic 
cells and macrophages) to lymphatics was examined 24 h after 

of VE-cadherin at the sides of fl aps explained the illusion that 
buttons were oriented perpendicular to the cell border ( Fig. 
1 C ). The complementary distribution of VE-cadherin and 
LYVE-1 was particularly conspicuous after three-dimensional 
isosurface rendering of confocal image stacks ( Fig. 1 G ). 

 Scanning electron microscopic examination of the exter-
nal surface of the endothelium of initial lymphatics, after ex-
posure of the plasma membrane by alkaline hydrolysis of 
extracellular matrix ( 22, 23 ), revealed detailed features of the 
interdigitating borders of adjacent oak leaf – shaped endothe-
lial cells ( Fig. 1 H ). Flaps at the scalloped borders of adjacent 
endothelial cells interdigitated with one another and over-
lapped loosely ( Fig. 1, H and I ). These features were not pre-
sent at the continuous seams of adjacent endothelial cells of 
collecting lymphatics (Fig. S1) or in blood vessels. 

 Junctional proteins at buttons 

 The composition of buttons in initial lymphatics was deter-
mined by comparing the extent of colocalization of VE-
cadherin and tight junction proteins. For the purposes of this 
study, colocalization of two junction-associated proteins was 
defi ned as pixels with fl uorescence signals in two separate 
channels, rather than precise molecular colocalization within 
the junction ( 24 ). VE-cadherin at buttons colocalized with 
the tight junction protein occludin ( Fig. 2 A ).  VE-cadherin at 
buttons also largely matched the distributions of the classical 
tight junction protein claudin-5 ( Fig. 2 B ), intracellular tight 
junction protein zonula occludens – 1 (ZO-1;  Fig. 2 C ), and 
the recently identifi ed tight junction – associated Ig-like trans-
membrane proteins endothelial cell – selective adhesion mole-
cule (ESAM;  Fig. 2 D ) ( 25 ) and JAM-A ( Fig. 2 E ) ( 26 ). 
Despite striking structural diff erences in buttons and zippers, 
the two types of junctions contained the same proteins. Oc-
cludin ( Fig. 2 F ) and claudin-5 (Fig. S1) were continuously 
distributed at zippers in collecting lymphatics, where they 
partially colocalized with VE-cadherin. 

 Relation of PECAM-1 to VE-cadherin at buttons 

 Endothelial cells of initial lymphatics and collecting lymphatics, 
like those in blood vessels, had PECAM-1 immunoreactivity, 
but overall staining of lymphatics was weaker than blood vessels 
( Fig. 3 A ).  The distributions of PECAM-1 and VE-cadherin 
partially colocalized at buttons at the borders of oak leaf – shaped 
endothelial cells of initial lymphatics ( Fig. 3 B ) and at zippers 
of collecting lymphatics ( Fig. 3 C ). At buttons, VE-cadherin 
was located at the sides of fl aps, and PECAM-1 tended to have 
a complementary distribution at the tip of fl aps ( Fig. 3, D – F ). 
Arcs of PECAM-1 staining ~3  � m in length varied from 0.5 to 
2  � m in width, depending on the amount of cell overlap. By 
comparison, discontinuous segments of VE-cadherin staining 
were ~3  � m in length and ~0.5  � m in width. 

 Contrasting properties of PECAM-1 and VE-cadherin 

at buttons 

 The complementary distributions of PECAM-1 and VE-
cadherin in initial lymphatics raised the possibility that the two 
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association with lymphatics, but after LPS, MHC II – positive 
cells were more rounded and concentrated near lymphatics 
( Fig. 6, A and B ). After LPS, 55% of initial lymphatics had clus-
ters of four or more MHC II – positive cells inside or within 
10  � m of their wall (411 lymphatics examined in fi ve tracheas). 

 Further measurements made after LPS exposure showed that 
cell clusters were not uniformly distributed along button-rich 

intranasal instillation of LPS. At this time, MHC II – positive 
cells were abundant near lymphatics ( Fig. 6, A and B ) and 
lymphatics were enlarged, with the mean diameter increased 
21%, from 56  ±  1.5  � m in pathogen-free mice to 68  �  1.3 
 � m after LPS (P  �  0.05).  

 Under baseline condition, most MHC II – positive cells had 
a dendritic phenotype ( Fig. 6 B , inset) and little or no apparent 

 Figure 2.   Colocalization of VE-cadherin and tight junction proteins at buttons and zippers. (A – E) Confocal images showing button-like pattern 

of VE-cadherin (left) paired with fi ve different tight junction – associated proteins (middle) at endothelial junctions of initial lymphatics. Corresponding 

merged images (right) show that VE-cadherin colocalizes with all fi ve tight junction proteins in buttons (A – E). (F) Continuous, zipper-like distribution of 

VE-cadherin (left) and occludin (middle) at endothelial junctions of collecting lymphatic; merged image (right) shows colocalization of the junctional 

proteins in zippers. In each case, lymphatic vessel identity was determined by vascular endothelial growth factor receptor 3 immunoreactivity. LYVE-1 or 

Prox1 were not used in these particular studies due to antibody species incompatibility issues. Bars: 10  � m.   
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(430  � m;  Fig. 1 F ), and both were signifi cantly less than 
the median overall length of mucosal lymphatics in tracheas 
(980  � m;  Fig. 6 C ). 

 Leukocyte migration through the lymphatic endothe-
lium was visualized by confocal microscopy ( Fig. 6 B ), and 
the transendothelial or intraluminal location of cells was con-
fi rmed by isosurface rendering of confocal image stacks and 
image rotation ( Fig. 6, D and E ; and Video 1, available at 

regions of lymphatics but were preferentially found near 
the tips. Comparison of the position of cell clusters inside 
or near infl amed lymphatics with the length of each vessel, 
using the vessel tip as a reference point, revealed that  � 50% of 
cell clusters were located within the fi rst 16% of the vessel 
length. The median distance for the location of cell clus-
ters (160  � m;  Fig. 6 C ) was signifi cantly less (P  �  0.05) than 
the median length of the button-rich region of lymphatics 

 Figure 3.   Different distributions of VE-cadherin and PECAM-1 in lymphatics. (A) Overview of PECAM-1 immunoreactivity of blood vessels 

(arrows) and lymphatics (arrowheads) in whole mount of mouse trachea. (B and C) Although VE-cadherin (red) and PECAM-1 (green) are both present in 

lymphatic endothelial cells, they do not have identical distributions in initial lymphatics (B) or collecting lymphatics (C) and colocalize only in scattered 

regions (yellow). (D – F) VE-cadherin (red, arrowheads) and PECAM-1 (green, arrows) have largely complementary distributions at buttons in initial lym-

phatics. The amount of colocalization is limited (yellow; F). Bars: (A) 100  � m; (B and C)10  � m; (D – F) 5  � m.   
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 Figure 4.   Contrasting effects of loss of PECAM-1 or VE-cadherin in lymphatics. (A – E) Normal-appearing endothelial junctions in initial lym-

phatic (arrow) and blood vessel (arrowhead) in PECAM-1 – null mice. (A – C) Normal distribution of VE-cadherin immunoreactivity at buttons in initial 

lymphatic and at zippers in blood vessel in PECAM-1 – null mouse. Lymphatic is marked by LYVE-1 immunoreactivity (green). (D and E) Normal distribu-

tion of VE-cadherin at buttons despite absence of PECAM-1 immunoreactivity in a PECAM-1 – null mouse (D) compared with complementary distribu-

tions of VE-cadherin and PECAM-1 in a wild-type mouse (E). (F – I) Disorganization of endothelial junctions in lymphatics and blood vessels 7 h after 

inhibition of VE-cadherin by function-blocking BV13 antibody. (F and G) Normal distribution of VE-cadherin at buttons in initial lymphatic (arrow) and 

at zippers in blood vessels (arrowheads) in a mouse injected with control IgG compared with disorganization of VE-cadherin and PECAM-1 immuno-

reactivities in initial lymphatic (arrow) and blood vessel (arrowhead) 7 h after injection of BV13 antibody (G). (H and I) Colocalization of VE-cadherin and 

ZO-1 at normal buttons after control IgG (H) compared with dispersion of VE-cadherin, but not ZO-1, at buttons 7 h after BV13 antibody (I). 

Bars: (A – C, F, G) 20  � m; (D, E, H, I) 5  � m.   
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through buttons. We attempted to address this issue by confocal 
microscopic examination of lymphatics 24 h after  M. pulmonis  
infection, when leukocyte migration was especially abundant. 
Although leukocytes clearly migrated through the endothelium 
of button-rich regions of lymphatics ( Fig. 6, H and I ), they 
obscured or distorted the junction at the site of transmigration, 
and the precise relationship between migrating leukocytes and 
buttons was ambiguous. 

  DISCUSSION  

 This study sought to defi ne the structural organization and 
composition of endothelial junctions at sites in lymphatics 

http://www.jem.org/cgi/content/full/jem.20062596/DC1). In 
PECAM-1 – null mice exposed to LPS, leukocytes had the usual 
association with the proximal part of initial lymphatics ( Fig. 
6 F ), indicating that PECAM-1 was not essential for leuko-
cyte attraction to or migration into lymphatics. These fi nd-
ings suggest that migrating leukocytes preferentially entered the 
proximal half of the segment of lymphatics with buttons at the 
border of oak leaf – shaped endothelial cells. 

 Migration of leukocytes through endothelial junctions of 
lymphatics was confi rmed by transmission electron micro-
scopic examination ( Fig. 6 G ), but imaging of thin (two-
dimensional) sections did not resolve whether cells migrated 

 Figure 5.   Zippers at growing tips of lymphatic sprouts. (A – D) Confocal images of tracheal mucosa after  M. pulmonis  infection showing lym-

phatic sprouts in regions that do not contain lymphatics in pathogen-free mice. (A and B) Continuous VE-cadherin – positive zippers (arrows) at grow-

ing tips of lymphatic sprouts at 14 d after  M. pulmonis  infection compared with discontinuous buttons in the remainder of initial lymphatics 

(arrowheads). Tips of lymphatic sprouts have little or no LYVE-1 immunoreactivity. (C and D) Most lymphatics identifi ed by Prox1 immunoreactivity 

(arrows; C) have buttons (arrows; D) at 7 wk after infection. Some leukocytes have PECAM-1 immunoreactivity (arrowheads; D). Blood vessels have 

strong VE-cadherin and PECAM-1 immunoreactivities (yellow; D). Boxed regions in A and C are enlarged in B and D, respectively. Bars: (A and C) 

100  � m; (B and D) 50  � m.   
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 Figure 6.   Sites of leukocyte entry into initial lymphatics in airway infl ammation. (A) Whole mount of mouse trachea 24 h after intratracheal LPS. 

MHC II – positive cell clusters (arrows, red) in or near initial lymphatics (green). (B) Enlargement of boxed region in A. Cells inside lymphatic (arrows) are 

more rounded than dendritic cells in trachea of pathogen-free mouse (inset). (C) Distribution of MHC II – positive cell clusters along the length of tracheal 

lymphatics, with the tip used as a reference. Half of the cell clusters were within 160  � m of the tip. Values are presented as means  �  SEM. (D and E) 

Isosurface renderings of confocal images of MHC II cells (arrows) entering an initial lymphatic with buttons. (E) Enlargement of boxed region in (D). 

(F) MHC II – positive cells near and inside initial lymphatic of a PECAM-1 – null mouse 24 h after LPS. (G) Transmission electron microscopic image of a leuko-

cyte (pink) migrating through an intercellular junction in endothelium (green) of tracheal lymphatic with prominent junctional fl ap (arrow;  M. pulmonis  

infection, 6 wk). (H and I) Confocal image (H) and isosurface rendering (I) of CD45-positive leukocytes (red, arrows) inside initial lymphatic 24 h after 

infection by  M. pulmonis . Endothelial cell junctions are marked by VE-cadherin (red). PECAM-1, green; LYVE-1, blue. See also Video 1, available at 

http://www.jem.org/cgi/content/full/jem.20062596/DC1. Bars: (A) 200  � m; (B) 50  � m; (D) 10  � m; (E) 5  � m; (F) 50  � m; (G) 2  � m; (H and I) 20  � m.   
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the endothelium is maintained. The results of our studies off er 
a possible explanation ( Fig. 7 ).  Openings between buttons are 
ready candidates for the valves, and buttons at the sides of fl aps 
would serve as anchors. Such specialized junctions that secure 
the sides of interdigitating fl aps would permit fl uid entry 
through openings at the tips of fl aps without repetitive dis-
assembly and reformation of endothelial junctions. 

 To our knowledge, intercellular junctions with the orga-
nization of buttons have not been previously described. The 
button-rich nature of initial lymphatics and abrupt transition 
to exclusively zippers in collecting lymphatics is consistent 
with functional diff erences between regions specialized for 
fl uid uptake and regions specialized for lymph transport. 

 The location and mechanism of plasma extravasation from 
blood vessels has been extensively examined ( 33-37 ). Under 
baseline conditions, tight junctions between endothelial cells 
are crucial to normal barrier function ( 24, 38 ). In infl am-
mation, formation of focal intercellular gaps leads to plasma 
leakage from venules ( 33, 39, 40 ). These gaps are structurally 
dissimilar to buttons in lymphatics. 

 Proof that buttons anchor the borders of openings for 
fl uid entry into initial lymphatics is lacking, in part because 

where fl uid and cells enter. Endothelial cells of initial lym-
phatics were found to be interconnected by discontinuous 
buttons. By comparison, collecting lymphatics downstream 
had continuous zippers at cell borders without openings. 

 Buttons in the endothelium of initial lymphatics 

 Identifi cation of molecules involved in lymphatic specifi ca-
tion, development, and pathology, through the use of mo-
lecular tools and novel animal models, has greatly advanced 
the understanding of the mechanism of lymphedema, im-
mune cell traffi  cking, and tumor metastasis via lymphatics 
(Tammela, T., personal communication) ( 1-4, 31, 32 ). Mul-
tiple features of lymph and cell transport from tissues to lym-
phatics to lymph nodes have also been elucidated ( 1, 4, 7, 9 ), 
but understanding of the cellular mechanisms of fl uid and cell 
entry into lymphatics has not advanced as far. 

 The distinctive oak leaf – shaped endothelial cells of initial 
lymphatics has been assumed to be related to fl uid entry ( 9, 20 ). 
Flaps at loosely connected borders of these cells have been 
interpreted as primary valves that permit unidirectional fl ow of 
fl uid into lymphatics ( 9, 10 ). Loose connection of endothelial 
cells would raise the question of how the structural integrity of 

 Figure 7.   Buttons in initial lymphatics border sites of fl uid entry. (A) Schematic diagram showing distinctive, discontinuous buttons in endo-

thelium of initial lymphatics and continuous zippers in collecting lymphatics. Both types of junction consist of proteins typical of adherens junctions 

and tight junctions. (B) More detailed view showing the oak leaf shape of endothelial cells (dashed lines) of initial lymphatics. Buttons (red) appear to be 

oriented perpendicular to the cell border but are in fact parallel to the sides of fl aps. In contrast, most PECAM-1 expression is at the tips of fl aps. (C and D) 

Enlarged views of buttons show that fl aps of adjacent oak leaf – shaped endothelial cells have complementary shapes with overlapping edges. Adherens 

junctions and tight junctions at the sides of fl aps direct fl uid entry (arrows) to the junction-free region at the tip without repetitive disruption and refor-

mation of junctions.   
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junctions between vascular endothelial cells in vitro ( 50, 51 ). 
These fi ndings fi t with the importance of VE-cadherin in the 
organization of buttons in initial lymphatics, but the rele-
vance of PECAM-1 is still unclear. 

 Maturity of buttons in lymphatics 

 To address the question of whether the presence of buttons 
is a feature of lymphatic immaturity instead of lymphatic spe-
cialization, we examined the junctions of newly formed lym-
phatics where sprouting was active and junctions may be 
immature. In an established model of sustained infl ammation 
accompanied by robust lymphangiogenesis ( 21 ), we found 
that the growing tips of lymphatic sprouts had zippers, not 
buttons. The presence of zippers at the tip of lymphatic 
sprouts indicates that continuous junctions can form rapidly 
and that buttons are not a feature of the most dynamic, im-
mature region of lymphatic sprouts. However, over time all 
but the tips of new lymphatics had buttons largely like those 
present at baseline, despite elaborate expansion of the overall 
network of lymphatics in parallel with the increased fl ux of 
fl uid and immune cells. 

 Sites of leukocyte entry in initial lymphatics 

 The presence of openings between junctions at the border 
of oak leaf – shaped endothelial cells raises the question of 
whether buttons are sites of cell entry. At fi rst glance, open-
ings between buttons would seem attractive routes for cell 
entry. The dimensions of the openings (�3  � m) fi ts with the 
size of gaps where leukocytes migrate through the endothe-
lium of infl amed venules ( 52 ) and with the size of pores 
(3  � m) that leukocytes migrate through in chemotaxis experi-
ments in vitro ( 14 ). Although the presence of PECAM-1 at 
the tip of fl aps is consistent with involvement in leukocyte 
traffi  cking ( 45 ), the apparently normal leukocyte migration 
in PECAM-1 – null mice weighs against an essential role in 
the C57BL/6 strain. As loss of PECAM-1 results in impaired 
leukocyte effl  ux from blood vessels in mouse strains other 
than C57BL/6 after exposure to infl ammatory stimuli ( 45 ), a 
role for PECAM-1 in the rate or effi  ciency of migration into 
lymphatics cannot be excluded without studies of other 
mouse strains. 

 The preferential association of leukocyte clusters with the 
proximal half of the region of lymphatics with buttons was an 
unexpected fi nding. The mismatch between regions of cell 
clusters and the overall extent of buttons indicates that precise 
sites of leukocyte entry are regulated by additional factors 
such as chemokines or adhesion molecules ( 4, 14, 53 ). 

 Did leukocytes enter through openings between buttons 
in the proximal half of the button-rich region of initial lym-
phatics? Our lack of success in answering this question may 
be caused partly by the infrequency of catching leukocytes in 
the act of migration and partly by the temporary deformation 
of junctions as migrating cells pass through them. Similarly, 
we cannot exclude that some cells follow a transcellular route 
( 54 ). Certainly, the understanding of leukocyte migration 
into lymphatic vessels is in its infancy compared with what is 

sites of fl uid entry into lymphatics have not been visualized 
directly. The rapid movement of tracers from the interstitium 
into initial lymphatics and then to collecting lymphatics blurs 
the spatial resolution needed for defi nitive localization of en-
try sites at the cellular level ( 7, 41, 42 ). Our preliminary ex-
periments using fl uorescent 25-nm microspheres to identify 
these sites confi rmed this rapid movement (unpublished data). 
Similar factors may complicate the interpretation of results 
favoring the contribution of transcytotic transport to fl uid 
entry in initial lymphatics ( 43 ). 

 Adherens and tight junction proteins at buttons 

 The fi nding that both VE-cadherin and tight junction –
  associated proteins were present in buttons seemed at fi rst to 
confl ict with the traditional view that lymphatic endothelium 
must have loose, poorly developed, or no intercellular junc-
tions to permit entry of fl uid and cells ( 7, 8, 44 ). However, 
the observation that both buttons and zippers have the same 
repertoire of junctional proteins, including occludin, claudin-5, 
ZO-1, ESAM, and JAM-A, indicates that the principal diff er-
ence between these junctions is their organization rather 
than their composition. The presence of discontinuous but 
otherwise conventional tight junctions at buttons is consis-
tent with their function as anchoring points along the sides of 
fl aps and as borders for openings for fl uid passage without jun-
ctional disassembly. 

 Importance of VE-cadherin at buttons 

 The consistent presence of PECAM-1 and VE-cadherin in 
the endothelium of initial lymphatics led us to examine the 
importance of each protein to the organization of buttons. 
PECAM-1 is known to be expressed in lymphatic endothe-
lial cells from immunohistochemical observations in vivo ( 21 ) 
and in culture ( 14 ) and from gene profi ling studies ( 14-17 ). 

 PECAM-1 – null mice are viable and have a normal vas-
culature ( 27 ), but PECAM-1 may contribute to maintenance 
of vascular endothelial integrity in disease. As examples, 
PECAM-1 – null mice have reduced transmigration of leuko-
cytes ( 26, 27, 34, 45 ), increased bleeding times and vascular 
leakage ( 46, 47 ), and greater susceptibility to endotoxic shock 
( 48 ). However, genetic background may contribute to the 
functional signifi cance of PECAM-1, as PECAM-1 blockade 
or deletion predisposes FVB/n mice to chronic pulmonary 
infl ammation and fi brosis but has little or no eff ect on the in-
fl ammatory response of C57BL/6 mice ( 45, 49 ). In our studies 
of C57BL/6 PECAM-1 – null mice, we detected no change in 
the distribution of VE-cadherin at buttons or in the integrity 
of buttons in initial lymphatics. This fi nding is consistent with 
the association of PECAM-1 with openings between intercel-
lular junctions instead of with the junctions themselves. 

 By comparison, inactivation of VE-cadherin at adherens 
junctions, by administration of function-blocking antibody 
BV13, resulted in dispersion of VE-cadherin at buttons and 
zippers in lymphatics, as shown previously for junctions in 
blood vessels ( 28 ). ZO-1 was not similarly aff ected. After 
BV13, PECAM-1 was dispersed at buttons in vivo but not at 
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clonal AB5475; Chemicon), or vascular endothelial growth factor receptor 3 

(goat polyclonal antibody AF743; R & D Systems). Adherens junction was 

VE-cadherin (rat clone BV13 and rabbit polyclonal antibody). Tight junc-

tions were ESAM (rat clone 1G8.2), ZO-1 and occludin (rabbit polyclonal 

anti bodies 40-2200 and 71-1500; Zymed Laboratories), and JAM-A and 

claudin-5 (rat clone BV12 and rabbit polyclonal antibody E2.8, respectively). 

PECAM-1 was CD31 (hamster anti – mouse PECAM-1, clone 2H8; Chemi-

con). Leukocytes were MHC II (rat clone M5/115.14.2; eBioscience) or 

CD45 (rat clone Ly-5; BD Biosciences). Secondary antibodies were labeled 

with FITC, Cy3, or Cy5 (Jackson ImmunoResearch Laboratories). Speci-

mens were viewed with a fl uorescence microscope (Axiophot; Carl Zeiss 

MicroImaging, Inc.) with a 3CCD low light red-green-blue (RGB) video 

camera (CoolCam; SciMeasure) or a confocal microscope (LSM-510; Carl 

Zeiss MicroImaging, Inc.) using AIM confocal software (version 3.2.2). 

 Morphometric measurements.   The vessel diameter and length, width, 

and area of endothelial cells were measured in real-time images of lymphatics 

and venules in tracheas stained for VE-cadherin and PECAM-1 by using a 

digitizing tablet linked to a video camera on the Axiophot microscope with 

40 �  (NA 1.0) or 63 �  (NA 1.4) objectives. Cell perimeter and shape factor 

were measured as previously described ( 52 ). The total length of 411 mucosal 

lymphatics and the distance from the tip of lymphatics to the location of 228 

cell clusters, consisting of four or more MHC II – positive cells inside or 

within 10  � m of the wall of a lymphatic, were measured in fi ve tracheas 24 h 

after intranasal instillation of LPS. Tracheas were stained for MHC II and 

LYVE-1 immunoreactivities and imaged with 5 �  (NA 0.32) or 20 �  (NA 

0.75) objectives. The distribution of 3,110 buttons was assessed along the 

length of fi ve lymphatics in the trachea of each of fi ve pathogen-free mice. 

 Isosurface rendering of confocal images.   Confocal RGB image stacks 

were imported into Imaris software (version 5.0.3; Bitplane). Voxels with 

fl uorescence intensities above a certain threshold were assigned for each 

color channel. Isosurfaces were rendered from these voxels and smoothed 

with a Gaussian fi lter, creating three-dimensional reconstructions in which 

the spatial resolution was conserved. 

 Scanning and transmission electron microscopy (EM).   For scanning 

EM, tissues were fi xed by vascular perfusion of fi xative containing 2% glu-

taraldehyde in 100 mmol/liter of phosphate buff er, treated with 30% potas-

sium hydroxide at 60 ° C for 8 min to dissolve the extracellular matrix, stained 

with 2% tannic acid and 1% OsO 4 , dehydrated with ethanol, critical point 

dried, coated in an osmium plasma coater (OPC60A; Filgen), and examined 

with a scanning electron microscope (S-5000; Hitachi) ( 22, 23 ). Transmis-

sion EM was performed as previously described ( 23, 52 ). 

 Statistical analysis.   Values are presented as means  �  SEM with four to fi ve 

mice per group, unless otherwise indicated. The signifi cance of diff erences 

 between means was assessed by analysis of variance, followed by the Dunn-

Bonferroni test for multiple comparisons. P  �  0.05 was considered signifi cant. 

The signifi cance of diff erences between distributions of buttons, clusters of 

dendritic cells along the length of  lymphatics, and lengths of lymphatics in 

tracheal mucosa was analyzed by the Kolmogorov-Smirnov two-sample test. 

 Online supplemental material.   Fig. S1 depicts confocal and scanning 

electron microscopic images of junctions in initial and collecting lymphatics 

in other organs. Video 1 shows three-dimensional aspects of leukocytes 

interacting with lymphatic endothelial cell junctions. Online supple-

mental material is available at http://www.jem.org/cgi/content/full/jem

.20062596/DC1. 
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known about leukocyte attachment and migration via inter-
cellular and transcellular routes through the endothelium of 
venules ( 34-37, 55 ). 

 In conclusion, the borders of distinctive oak leaf – shaped 
endothelial cells of initial lymphatics are joined by specialized 
buttons ( Fig. 7 A ). The discontinuous feature of buttons dis-
tinguishes them from zippers in collecting lymphatics ( Fig. 
7 A ), but both types of junctions are composed of proteins typ-
ical of adherens junctions and tight junctions found in the 
endothelium of blood vessels. Buttons seal the sides of fl aps at 
the border of oak leaf – shaped endothelial cells ( Fig. 7 B ), 
leaving open the tips of fl aps as routes for fl uid entry without 
disassembly and reformation of intercellular junctions ( Fig. 7, 
C and D ). VE-cadherin is essential for maintaining the integ-
rity of buttons, but PECAM-1, though strategically located at 
the tip of many fl aps, is not essential for button integrity or 
leukocyte entry, at least not in C57BL/6 mice. Most leuko-
cytes enter the proximal half of button-rich regions of initial 
lymphatics, but the exact site of entry in relation to buttons is 
unresolved. Collectively, our fi ndings show that buttons are 
likely sites for fl uid entry into initial lymphatics but are not 
the sole determinants of leukocyte entry. 

 MATERIALS AND METHODS 
 Mice.   Specifi c pathogen-free C57BL/6 mice (Charles River Laboratories) of 

either sex were housed under barrier conditions. PECAM-1 – null mice on a 

C57BL/6 background, as previously described ( 27 ), were originally donated 

by T. Mak (Amgen Institute, Toronto, Canada). Mice were anesthetized by 

intramuscular injection of 100 mg/kg ketamine and 10 mg/kg xylazine. All 

experimental procedures were approved by the Institutional Animal Care 

and Use Committees of the University of California, San Francisco (UCSF) 

and the FIRC Institute of Molecular Oncology Foundation. All reagents 

were purchased from Sigma-Aldrich unless indicated otherwise. 

 Mouse models of infl ammation.   Infl ammation was induced by intranasal 

inoculation of mice with 250  � g LPS (type 055:B5) in 50  � l PBS ( 56 ) or 

50  � l of broth containing 10 6  CFU of  M. pulmonis  organisms (strain CT8), 

as previously described ( 21 ). Mice were anesthetized before inoculation and 

allowed to recover. At 24 h after LPS or 24 h to 40 d after  M. pulmonis  

inoculation, mice were anesthetized again for further studies.  M. pulmonis  

organisms activate an immune response with a time course similar to other 

airway infections ( 57, 58 ). Robust lymphangiogenesis begins about 7 d after 

infection ( 21 ). 

 In vivo blockade of VE-cadherin.   C57BL/6 mice were injected via the 

tail vein with 100  � g BV13, a function-blocking rat monoclonal anti – mouse 

VE-cadherin antibody or with a control rat IgG ( 28 ). Tracheas were exam-

ined 3 or 7 h later. LPS-induced infl ammation was not studied in mice after 

VE-cadherin inhibition by BV13 because of the rapid induction of progressive 

plasma leakage, interstitial edema, hemorrhage, and death within 24 h ( 28 ). 

 Immunohistochemistry.   Mice were perfused for 2 min with fi xative (1% 

paraformaldehyde in PBS, pH 7.4) ( 21 ) from a cannula inserted through the 

left ventricle into the aorta. The trachea, diaphragm, urinary bladder, ear, 

and tail skin were removed and immersed in fi xative for 1 h at 4 ° C. Tis-

sues were washed and stained immunohistochemically by incubating whole 

mounts with one or more primary antibodies diluted in PBS containing 0.3% 

Triton X-100, 0.2% bovine serum albumin, 5% normal goat serum, and 

0.1% sodium azide, as previously described ( 21 ). Lymphatics were LYVE-1 

(rabbit polyclonal 07-538; Upstate Biotechnology), Prox1 (rabbit poly-
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