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Abstract. We investigate the relative computational strength of com-
binations of four higher order functionals, the jump and hyperjump seen
as functionals of type 2 and realisers for the compactness of Cantor space
and the Lindelöf property of Baire space seen as functionals of type 3.
We compare them with the closure operator for non-monotone inductive
definitions of sets of integers, also seen as a functional of type 3.

1 Background

The current note is a spin-off from a joint project with Sam Sanders, based on his
original initiative. In [15], Sanders used the Kohlenbach-inspired axiomatisation
of nonstandard analysis from [1] to obtain results in computability theory from
nonstandard analysis. His proof-theoretical analysis of the nonstandard proofs of
Weak König’s Lemma and the less known Weak Weak König’s Lemma, combined
with methods of term extraction, led to the discovery of two classes of type three
functionals, the Θ-functionals (that will be discussed further in this note), and
the Λ-functionals. For the latter, see also [11–13].

Sanders got the author of this note interested in the computational strength
of these objects, and a fruitful cooperation started. As a preliminary result, it
was established that these objects are genuinely of type 3, no Θ- or Λ-functional
is computable, in the sense of Kleene, in any object of type 2. Moreover, it be-
came clear that there will be Θ- and Λ-functionals that are countably based. A
functional Ψ of type 3 is countably based if the value of Ψ(F ) will be determined
from the restriction of F to a countable set. The initial investigations of count-
ably based functionals were described by John P. Hartley [6–8]. At the time,
there were few natural examples beyond the Superjump. The fan functional and
the Gandy-Hyland functional are important objects of type three, but they are
nowadays mainly considered as functionals that are restricted to the class of
continuous objects of type 2. Our project now has shown that many natural
functionals of type 3 belong to the class of countably based functionals.

Next, it became clear that there are Θ- and Λ-functionals that are sequential
in the sense that the value can be “computed” via a transfinite recursive proce-
dure. It also became clear that these functionals are intimately related to some
classical theorems in mathematics, such as the Heine-Borel theorem and the Vi-
tali covering theorem. In particular, we observed that the sequential transfinite



procedure used to construct one particular Θ-functional turned out to be an al-
most line-to-line transition of a construction due to Borel, [2]. These connections
are to some extent explored in [14], are brought further in [16] and will also be
investigated in the continuation of our project.

We now see Θ as a realiser for the compactness of the Cantor space, and
we have introduced another class of functionals, the Ξ-functionals, that can be
seen as realisers of the Lindelöf property of the Baire space NN. The technical
aim of this note is to show how the computational strength of these objects
are related, and also to link this to the complexity of (non-monotone) inductive
definitions of subsets of N. As a part of this, we will use the Borel-method to
produce a realiser for the Lindelöf property, and indirectly, give a kind of Reverse
Mathematics characterisation of the strength of the Borel method from 1895.

2 The Five Functionals

2.1 Two Functionals of Type 2

We will consider the functional µ, known as Feferman’s µ, and the Suslin func-
tional S as follows:

µ(f) :=

{
0 if f is constant zero

the least a such that f(a) > 0 otherwise.

S(f) :=

{
0 if ∀g∃n(f(ḡ(n)) = 0)
1 if ∃g∀n(f(ḡ(n)) > 0)

where f and g are functions on N, and ḡ(n) is the number 〈g(0), . . . , g(n− 1)〉,
which we identify with the corresponding sequence.

We use µ instead of ∃2, also known as 2E: modulo full Kleene computability,
they are equivalent, while in fragments like e.g. Gödel’s T, µ is more expressive
that ∃2. Arithmetical definitions can be transformed to terms using µ, and our
use of S will mainly be to isolate the well-founded segment of a relation.

2.2 Specifications for Realisers of Type 3

Without digging too deep into the theory of realisers, we can say that a realiser
of a theorem of the form ∀x∃y(A(x) → B(x, y)) is a function φ that maps (a
realiser for) an x satisfying A to some y such that B(x, y) (and a realiser for this).
We analyse the complexity of realisers of this kind for two classical theorems:

1. Compactness of the Cantor space
For each x ∈ C, let Ox ⊆ C be an open set containing x. Then there is a
finite set {x1, . . . , xn} ⊆ C such that C ⊆ Ox1 ∪ · · · ∪Oxn .

2. The Lindelöf Property of the Baire space
For each x ∈ NN, let Ox ⊆ NN be an open set containing x. Then there is a
sequence {xi}i∈N in NN such that NN ⊆

⋃
i∈NOxi .



In [14] we discuss how these statements relate to the classical theorems known
as the Heine-Borel theorem and the Lindelöf property for subsets of R. Here
we will consider equivalent, styled versions suitable for interpretations over the
standard typed structure of functionals with base type N.

For the sake of simplicity, we will identify a finite sequence s of non-negative
integers with its sequence number 〈s〉. If s is a finite binary sequence of length
n, we let Cs be the set of binary functions f with s = f̄(n), while if s is a
finite sequence of non-negative numbers, still of length n, we let Bs be the set of
f : N→ N such that f̄(n) = s. Any F : NN → N will define open coverings of C
resp. NN. They are {Cf̄(F (f)) | f ∈ C} resp. {Bf̄(F (f)) | f ∈ NN}. Moreover, any
general cover allocating an open set Ox containing x to each x in the spaces C
or NN can, with an arithmetical construction, be replaced by one obtained from
a functional as above, without simplifying the task of verifying compactness or
the Lindelöf property.

We can then define what we mean with a realiser Θ for the compactness of C
or a realiser Ξ for the Lindelöf property of NN by

Definition 1.

Θ An instance of Θ will be a functional, that we also denote Θ, of type 3 such
that if F : C → N, then Θ(F ) is a finite sequence f1, . . . , fn in C such that
the Cf̄i(F (fi))’s cover C.

Ξ An instance of Ξ will be a functional, that we also denote Ξ, of type 3 such
that if F : NN → N, then Ξ(F ) is an infinite sequence {fi}i∈N from NN such
that {Bf̄i(F (fi))}i∈N covers NN.

It is routine to rewrite these definitions to fit pure type 3, but for the sake of
readability, we prefer not to do this routine.

The definitions of Θ and Ξ may look similar, but there is an important difference:
while checking if a finite set s1, . . . , sn of binary sequences induce a finite covering
of C is computable at a low level, the set of countable sequences {si}i∈N inducing
a countable covering of NN will be complete Π1

1 . This is reflected in Thm. 1 b)
and can be seen as the cause of the increased computational strength of Ξ,
compared to that of Θ. Even Θ will have some computational strength, though,
as any instance of Θ will compute, in conjunction with µ, a realiser of transfinite
recursion, see [11, 13], and will in particular compute functions that are not
hyperarithmetical. However, any function uniformly computable in all instances
of Θ will be hyperarithmetical, see [13] for a proof.

Remark 1. Our interpretation of the Lindelöf property of the Baire space may
seem a bit odd, since we actually start with a countable cover {Bf̄(F (f)) | f ∈
NN} . The original assumption in Lindelöf [9] was essentially as follows:

For x ∈ E ⊆ Rn, let Dx be a disc with centre in x and a positive radius.

Then, selecting a countable set of such discs is equivalent to select a countable
set of centres, so our formulation captures the original formulation of the Lin-
delöf property correctly.



The easy proof of the Lindelöf property will use Σ1
1 [F ]-comprehension and count-

able choice, and for proving that Rn is hereditarily Lindelöf, there does not seem
to be any good alternatives. Our choice-free proof for NN can be seen as a special
proof for the set of irrational numbers. It is well known that NN and the set of
irrationals between 0 and 1 are homeomorphic via continued fractions.

2.3 Non-monotone Inductive Definitions

Let F : 2N → 2N, where 2N denotes the powerset of N, identified with the set of
characteristic functions. We may view F as a functional of type 2, ignoring the
necessary coding. We may also consider F as an inductive definition:

Definition 2. Let F : 2N → 2N, and let α be an ordinal number. By recursion
on α we define

Γα(F ) =
⋃
β<α

F (Γβ(F )) .

The sequence Γα(F ) indexed by ordinals is an increasing sequence of subsets
of N, with Γ0(F ) = ∅. For cardinality reasons, there is a countable ordinal α0,
depending on F , such that Γα0

(F ) = Γα0+1(F ), i.e. F (Γα0
(F )) ⊆ Γα0

(F ).

Definition 3. We let Γ be the functional of type 3 defined by Γ (F ) = Γα0
(F )

where α0, depending on F , is as above.

We observe that if we let G(X) = F (X) \X for X ∈ 2N, then Γα(F ) = Γα(G)
for all α, and in particular, Γ (F ) = Γ (G).

Remark 2. The functional F is monotone if A ⊆ B ⇒ F (A) ⊆ F (B) . Our in-
ductive definitions are not necessarily monotone, so we call them non-monotone
in general. Non-monotone inductive definitions were in particular studied in the
late 60’s and early 70’s, see e.g. Sect. III of [4] with papers by St̊al Aanderaa,
Douglas Cenzer, Robin O. Gandy and Wayne Richter/Peter Aczel.

3 The Main Theorem

Theorem 1. The five functionals are related as follows:

a) For any instance of Ξ, there is an instance of Θ uniformly computable in Ξ
and µ.

b) S is uniformly computable in µ and any instance of Ξ.
c) Γ is uniformly computable in S and any instance of Θ.
d) There is an instance of Ξ computable in Γ .

Proof. a) is easy. Computing a finite covering from a countable covering of C is
computable even in the Turing sense. Given a covering of C we extend this to a
covering of NN such that each f 6∈ C is covered by an open set disjoint from C,
and then Ξ provides a countable sub-covering of the original covering of C.
b) is proved in [14], and can also be considered as an easy exercise. The proof



of c), which is the main technical achievement of this note, will be given in a
separate section, see below, so let us prove d).
We need the Kleene-Brouwer ordering : If s and t are finite sequences of integers,
then s ≺KB t if s is an extension of t or if s is below t in the lexicographical order-
ing. If F : NN → N and A is a set of finite sequences s, we let G(A) = {f̄(F (fA))},
where fA is the least function that properly bounds

⋃
s∈ABs, provided that this

set is bounded in the lexicographical ordering of NN. If not, we let G(A) = ∅.

Each set Γα(G) will be a set of finite sequences well-ordered by the Kleene-
Brouwer ordering, and if α < β, then Γβ(G) will be an end extension of Γα(G)
with respect to this ordering. Moreover, the union

⋃
s∈Γα(G)Bs will be an initial

segment Oα of NN under the lexicographical ordering of NN. Finally, the function
fα = fΓα(G) is definable from Γ (G) uniformly in the finite sequence sα added
at stage α. Thus we may arithmetically extract an enumeration of the set {fα |
sα ∈ Γ (G)}, and this will be the output of our Ξ(F ). ut

Remark 3. Borel’s proof in [2] essentially starts with an open covering of [0, 1],
builds up a larger and larger half-open interval [0, xα) by, at each stage adding an
open set containing xα. Borel assumes that the original covering is countable, but
this is not needed in order to show that the process must stop at some countable
ordinal. Finally, through backtracking the process, Borel uses that there are no
infinite descending sequences of ordinals in order to extract the finite covering.
The point is that Borel’s construction is deterministic and choice free, the finite
sub-covering is fully determined by the map x 7→ Ox through his proof.

Remark 4. We see that modulo computability relative to µ there is a minimal
instance of Ξ, and this one is equivalent to Γ . On the other hand, the analysis
of computability in Θ in [11, 13] shows that there is no minimal instance of Θ.
However, if one takes the instance Θ0 that is naturally obtained using Borel’s
proof, then S will be computable in Θ0 and µ (see [11]), and consequently, Θ0

is also equivalent to Γ modulo µ. A closer inspection of the proofs will show
that we only need a tiny fragment of Kleene-computability to establish these
equivalences, we do not need the scheme for primitive recursion and the scheme
of enumeration.

3.1 The proof of Thm. 1 c)

We will see how we may compute the inductive closure Γ (F ) from F , Θ and S.
So, let F be given. For the sake of notational simplicity, we assume that F (A)
is disjoint from A for all A.

Associated with the sequence Γα(F ), we have the relation ∆(F ) on Γ (F )
defined by ∆(F )(a, b) if the least β such that a ∈ Γβ(F ) is less than or equal to
the least γ such that b ∈ Γγ(F ). The relation ∆(F ) is inductively definable as
well, with approximations ∆α(F ) defined on Γα(F ).
To be more precise, we may use the operator F̃ to define ∆(F ) as follows:
If R is a binary relation, we let DR be the domain of R, here defined as the
set of a such that for some b, either (a, b) ∈ R or (b, a) ∈ R. Then F̃ (R) will,



by definition, consist of all pairs (a, b) where a ∈ DR and b ∈ F (DR) together
with all pairs (a, b) where both a and b are in F (DR). Instead of defining Γ (F )
directly with the help of Θ, we extract ∆(F ) = Γ (F̃ ) from F , S, µ and Θ.

We now need to establish some notation and general machinery: The advantage
of ∆(F ) is that it is a prewellordering. A preordering is a binary relation R
that is both transitive and reflexive, and such that for all a, b ∈ DR we have
R(a, b) or R(b, a) (or both). The corresponding strict relation will be Rs(a, b)↔
R(a, b) ∧ ¬R(b, a), and a is in the well founded part WR if a ∈ DR and there is
no Rs-descending sequence starting with a.
If R is a preordering and a ∈ DR, we let DR[a] = {b ∈ DR | Rs(b, a)} and we
let [a]R = {b | R(a, b) ∧ R(b, a)}. These are the initial segments and layers (or
equivalence classes) of DR.

We will now see how we can code all this with functions f : N→ {0, 1}:

Definition 4. a) Let f : N → {0, 1}. Let Rf (a, b) if f(〈a, b〉) = 1. We write
Df for DRf .

b) We say that f is in PREO if Rf is a preordering.
c) If f ∈ PREO and a ∈ Df , we let Df [a] = DRf [a] and [a]f = [a]Rf
d) If f ∈ PREO, we write Wf for WRf , Rf [a] for the restriction of Rf to Df [a]

and Rf [W ] for the restriction of Rf to Wf .

We now link this to the inductive operator F , which we still assume to be fixed:

Lemma 1. Let f ∈ PREO. The following are equivalent:

1. Wf = Γ (F ) and Rf [W ] = ∆(F )
2. i) For all a ∈Wf we have that [a]f = F (Df [a])

ii) F (Wf ) = ∅.

The proof is trivial.

Lemma 2. Let F be as above. There is a type 2 functional G : {0, 1}N → N,
uniformly computable in S and F , such that for any instance of Θ, Θ(G) will
contain an element f such that f ∈ PREO and such that Wf and Rf [W ] either
satisfy i) and ii) in Lemma 1, or has a proper initial segment that does so.

Proof. We define G by cases, and, at the same time, explain what is achieved
in that case. For each case, we assume that the previous cases do not apply.
Whenever we write “let a, b etc. be such and such”, we can make the definition
precise by applying numerical search, i.e. using µ, which is computable in S.

The aim is to define G such that whenever G(f) > 0, then f̄(G(f)) has no
extension g that is in PREO and such that (Γ (F ), ∆(F )) is equal to (Dg, Rg),
while when G(f) = 0, we can define (Γ (F ), ∆(F )) from f , using µ, S and F .
Thus, in order to induce a finite set of neighbourhoods covering the one g coding
(Γ (F ), ∆(F )), Θ(G) must contain an f with G(f) = 0, and from which we can
compute (Γ (F ), ∆(F )) using µ and S.
The first part of the aim is met by, for each f with G(f) > 0, letting G(f) > 〈a, b〉
for some pair (a, b) such that f(〈a, b〉) = 0⇔ ∆(F )(a, b).



1. If f is not in PREO, there will be a number n such that f̄(n) cannot be
extended to any f ′ ∈ PREO. We let G(f) = n for the least such n.

2. If (Γ (F ), ∆(F )) is all of, or an initial segment of (Df , Rf ), then G(f) = 0.
This can be checked using F , S and µ, since if this is the case, it will be
the case also for (Wf , Rf [W ]), and from this relation, all initial segments are
arithmetically defined. This case clearly satisfies our aim.

3. For some a ∈Wf , we have that [a]f 6= F (Df [a]). Select an Rf -minimal such
a. Then (Df [a], Rf [a]) is a proper initial segment of (Γ (F ), ∆(F )), proper
since we are not in Case 2. There will be two subcases:
i) [a]f ⊂ F (Df [a]). Since the sets are not equal, let b be in F (Df [a]), but

not in [a]f . If f(〈b, b〉) = 0, it suffices to let G(f) = 〈b, b〉+ 1 to achieve
our aim. If f(〈b, b〉) = 1, we have that b ∈ Df while b is neither Rf -
equivalent to, nor Rf -less than a, so we must have f(〈a, b〉) = 0. Since
a and b appear at the same stage in the F -recursion, it suffices to let
G(f) = 〈a, b〉+ 1.

ii) Otherwise. We may then as well assume that a 6∈ F (Df [a]). Since we
are not in Case 2, there is a b ∈ F (Df [a]). If f(〈b, b〉) = 0, we may let
G(f) = 〈b, b〉 + 1. If f(〈b, b〉) = 1, b ∈ Df , and we will use that Rf is a
preordering. We must have that f(〈a, b〉) = 1, since b 6∈ Df [a]. But we
will not have ∆(F )(a, b) since b ∈ Df [a]∪F (Df [a]), while a is not. Thus
it suffices, in this case, to let Gf) = 〈a, b〉+ 1.

4. In this remaining case, we have that Wf is one of the initial segments of
Γ (F ), but not Γ (F ) itself. Let a ∈ F (Wf ). If f(〈a, a〉) = 0, we let G(f) =
〈a, a, 〉 + 1. This suffices since ∆(F )(a, a). If f(〈a, a〉) = 1, we use that Rf
is a preordering, a ∈ Df , but a is not in the well founded part of of Rf .
In particular, there will be some b not in Wf such that f(〈b, a〉) = 1 while
f(〈a, b〉) = 0. If we let G(f) = max{〈b, a〉, 〈a, b〉} + 1, we have ensured that
we are in conflict with ∆(F ).

We have defined G(f) for all f , and the construction of G is such that if G(f) >
0, then either f 6∈ PREO or for some (a, b) we have that 〈a, b〉 < G(f) and
f(〈a, b〉) = 0 ⇔ ∆(F )(a, b). Thus we cannot cover the Cantor space just by
neighbourhoods given by f̄(G(f)) for f with G(f) > 0. Consequently, Θ(G)
must contain some f with Θ(f) = 0. We can compute Γ (F ) uniformly in any
such f , using µ and S. ut

Thm. 1 c) is an immediate consequence of this lemma.

4 Speculations on Functionals of Type 3

Prior research on the computational strength of functionals of type 3 has, to our
knowledge, been concentrated on the normal functionals (with 3E computable
in them), the Superjump and continuous functionals like the fan functional and
the Gandy-Hyland functional, also denoted Γ . Our project has exposed that the
class of non-normal, countably based functionals of type 3 in which µ or 2E is
computable contains objects that reflect actual mathematical strength in some



sense. For instance, consequences of the uncountable Heine-Borel theorem HBU
will have realisers of type 3 of their own, and the computational strength of these
realisers may reflect, at least in some sense, the strength of these consequences.

The functional Λ, not discussed in this note, is also of this nature. Λ will not
be computable in any type 2 functional, and actually neither in the superjump,
but it is strictly weaker than Θ in the sense that any instance of Θ computes an
instance of Λ while the converse does not hold, even modulo µ.

One obvious challenge will be to classify the 1-section of Γ , i.e. the class
of functions computable in Γ . A reasonable conjecture is that this 1-section
is generated in a gap-free manner, and that it corresponds to a class of func-
tions computable by an Infinite Time Turing Machine, ITTM, within some time
bound. The ITTM’s were introduced by Hamkins and Kidder, but first appeared
in published form in [5]. For a recent survey, see [17]. A more ambitious, but
vague, conjecture is that there is some total, countably based functional Ψ of type
3 such that Kleene-computations relative to Ψ somehow reflects computations
using ITTM’s. For this to make sense, there should at least be a gap-structure
in the 1-section of Ψ resembling that of ITTM’s. We know that there is a gap-
structure for computations relative to 3E, (see [10]), and by a Löwenheim-Skolem
argument there will be countably based functionals with a similar structure, but
beyond this, little is known. More is known about the gap-structure for ITTM’s,
see e.g. the recent [3].
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Appendix - Notes to the reviewers

This note was written because I was invited to give a talk in the special session
on continuous computation at CiE2018. Since what is continuous depends on
the choice of topology, one may consider my contribution to be within the scope
of the section.

Instead of writing an abstract that covers the content of my talk, I decided
to build this note around one technical result that I have obtained as part of a
project that is in cooperation with Sam Sanders. The actual talk will report to
a larger extent on results from this project, hopefully with some further results
obtained between now and late July. I am informed that the organisers of the
session accept my choice of topic for my talk.

Dag Normann


