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FUNCTIONALS WITH EXTREMA AT REPRODUCING
KERNELS

Aleksei Kulikov

Abstract. We show that certain monotone functionals on the Hardy spaces and
convex functionals on the Bergman spaces are maximized at the normalized re-
producing kernels among the functions of norm 1, thus proving the contractivity
conjecture of Pavlović and of Brevig, Ortega-Cerdà, Seip and Zhao and the Wehrl-
type entropy conjecture for the SU(1, 1) group of Lieb and Solovej, respectively.

1 Introduction

In this paper we will be working with several analytic function spaces in the unit disk
D = {z ∈ C : |z| < 1}. We begin by defining the appropriate Hardy and Bergman
spaces.

Definition 1. For 0 < p < ∞ we say that a function f analytic in D belongs to
the Hardy space Hp if

||f ||pHp = sup
0<r<1

1
2π

2π∫

0

|f(reiθ)|pdθ < ∞.

To define the Bergman space we first introduce the Möbius invariant hyperbolic
measure on the unit disk, which corresponds to the metric of constant negative
curvature −4π. For z = x + iy ∈ D we define it as

dm(z) =
1

(1 − |z|2)2
dxdy

π
.

We will also sometimes denote hyperbolic measure of the set A by |A|H = m(A).

Definition 2. For 0 < p < ∞ and α > 1 we say that a function f analytic in D

belongs to the Bergman space Ap
α if

||f ||pAp
α

=
∫

D

(α − 1)|f(z)|p(1 − |z|2)αdm(z) < ∞.
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Note that for the function f(z) ≡ 1 we have ||f ||Hp = ||f ||Aq
α

= 1 for all admis-
sible values of p, q and α.

An important property of these spaces is that point evaluations are continuous
in them. Specifically, for all analytic functions f we have

|f(z)|p(1 − |z|2)α ≤ ||f ||pAp
α

(1.1)

and
|f(z)|r(1 − |z|2) ≤ ||f ||rHr . (1.2)

Moreover, since polynomials are dense in all of these spaces, for each fixed function
f the quantities on the left-hand sides of (1.1) and (1.2) tend uniformly to 0 as
|z| → 1.

One of the first questions about such spaces that one could ask is when one of
them is contained in another one. It turns out that the most interesting case to
consider is when p

α is held constant, in which case we have

Ap
α ⊂ Aq

β ,
p

α
=

q

β
= r, p < q

and Hr is contained in all these spaces. Moreover, the Hr norm can be evaluated as
the limit of these Bergman norms in the sense that for f ∈ Hr we have

||f ||Hr = lim
α→1

||f ||Arα
α

.

Thus it is sometimes reasonable to denote Hr by Ar
1.

Recently, however, it was asked whether these embeddings are actually contrac-
tions, that is whether the norm ||f ||Arα

α
is decreasing in α. In the case of Bergman

spaces this question was asked by Lieb and Solovej [9]. They showed that such con-
tractivity implies their Wehrl-type entropy conjecture for the SU(1, 1) group. In the
case of contractions from the Hardy space to the Bergman spaces it was asked by
Pavlović [13] and by Brevig, Ortega-Cerdà, Seip and Zhao [3] in relation to coef-
ficient estimates for analytic functions. In this paper we confirm these conjectures
and moreover we prove more general results where we replace the function tr with
a general convex or monotone function, respectively.

Theorem 1.1. Let G : [0, ∞) → R be an increasing function. Then the maximum
value of ∫

D

G(|f(z)|p(1 − |z|2))dm(z) (1.3)

is attained for f(z) ≡ 1, subject to the condition that f ∈ Hp and ||f ||Hp = 1.

Theorem 1.2. Let G : [0, ∞) → R be a convex function. Then the maximum value
of ∫

D

G(|f(z)|p(1 − |z|2)α)dm(z) (1.4)

is attained for f(z) ≡ 1, subject to the condition that f ∈ Ap
α and ||f ||Ap

α
= 1.
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Applying these theorems to the convex and increasing function G(t) = ts, s > 1 we
get that all the embeddings above between Hardy and Bergman spaces are contrac-
tions, that is we get the following corollary

Corollary 1.3. For all 0 < p < q < ∞ and 1 < α < β < ∞ with p
α = q

β = r for
all functions f analytic in D we have

||f ||Aq
β

≤ ||f ||Ap
α

≤ ||f ||Hr

with equality for f(z) ≡ c for c ∈ C.

In fact, we are able to prove more general results than Theorems 1.1 and 1.2.
Specifically, in the case of Hardy spaces we are able to prove a sharp bound for
the hyperbolic measure of the superlevel sets of the function |f(z)|p(1 − |z|2), thus
verifying also Conjecture 2 from [3], while in the case of Bergman spaces our proof
allows us to consider some not necessarily convex functions, see Theorem 3.1 and
Remark 4.2 respectively.

It is important to mention that the Möbius group acts not only on the measure
m but on the spaces Ap

α as well. Specifically, given a function f ∈ Ap
α and w ∈ D,

the function

g(z) = f

(
z − w̄

1 − zw

)
(1 − |w|2)α/p

(1 − zw)2α/p

also belongs to the space Ap
α and moreover it has the same norm as f and the same

distribution of the function |f(z)|p(1 − |z|2)α with respect to the measure m. In
particular, when f(z) ≡ 1 in this way we get g(z) = (1−|w|2)α/p

(1−zw)2α/p and these functions
also necessarily give us the maximal value in (1.3) and (1.4). Note that when p = 2,
the spaces Ap

α are Hilbert spaces and these functions turn out to be (normalized)
reproducing kernels at the point w̄. By analogy, we will call them reproducing kernels
even if p �= 2 (they are in fact reproducing kernels for the dual space).

Lastly, let us also mention that all our results also hold true for the Hardy and
Bergman spaces in the upper half-plane, either by using a conformal mapping from
the unit disk or by directly translating our methods. We chose to work in the unit
disk, however, since it allows us to simplify some calculations in the proof.

The structure of the paper is as follows. In Sect. 2 we prove a general monotonicity
theorem for the hyperbolic measure of the superlevel sets of analytic functions, which
is an adaptation of the ingenious method from [11] to the hyperbolic setting. This
will also be the only Section where we use analyticity and hyperbolic geometry in
an essential way. Then, in Sects. 3 and 4 we deduce from it Theorems 1.1 and 1.2,
respectively. Finally, in Sect. 5 we briefly discuss an application of Theorem 1.1 to
coefficient estimates for analytic functions.
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2 Monotonicity for the Superlevel Sets

Let f be a function analytic in D such that u(z) = |f(z)|a(1 − |z|2)b is bounded
and goes to 0 uniformly as |z| → 1. Then the superlevel sets At = {z : u(z) > t}
for t > 0 are compactly embedded into D and thus have finite hyperbolic measure
μ(t) = m(At). The goal of this section is to prove the following theorem which says
that a certain quantity related to this measure is decreasing.

Theorem 2.1. Let f : D → C be an analytic function such that the function
u(z) = |f(z)|a(1 − |z|2)b is bounded and u(z) tends to 0 uniformly as |z| → 1.
Then the function g(t) = t1/b(μ(t) + 1) is decreasing on the interval (0, t0), where
t0 = maxz∈D u(z).

The reason we consider this specific function g is that for f(z) ≡ 1 the function
g turns out to be constant.

The proof of this theorem is mostly based on the methods developed in [11],
translated from the euclidean to the hyperbolic setting. To this end, we introduce
the hyperbolic length, associated with the measure m.

Definition 3. For a curve γ ⊂ D we define its hyperbolic length |γ|h as

|γ|h =
∫

γ

|dz|
(1 − |z|2)√π

.

Proof of Theorem 2.1. We start from the formula

− μ′(t) =
∫

u=t
|∇u|−1 |dz|

π(1 − |z|2)2 (2.1)

along with the claim that {u = t} = ∂At and that this set is a smooth curve for
almost all t ∈ (0, t0). These assertions are by no means trivial, but the proof almost
literally follows the proof of Lemma 3.2 from [11] and the discussion before it so
we present here only the informal geometric reasoning for formula (2.1). Since for
z ∈ ∂At we have u(z) = t, ∇u is orthogonal to ∂At and moreover it is pointing into
At since for z ∈ At we have u(z) > t. Thus, when we decrease t by a small number
ε at each point of ∂At the set At−ε is expanded in the direction orthogonal to ∂At

by the value about ε
|∇u| . The factor 1

π(1−|z|2)2 appears in (2.1) because we want to
differentiate the hyperbolic measure of At and not the euclidean one.

Following the approach from [11], our next step is to apply the Cauchy–Schwarz
inequality to the hyperbolic length of ∂At:

|∂At|2h =
(∫

∂At

|dz|√
π(1 − |z|2)

)2

≤
(∫

∂At

|∇u|−1 |dz|
π(1 − |z|2)2

)(∫
∂At

|∇u||dz|
)

.

(2.2)
The first integral on the right-hand side is −μ′(t) so to proceed we have to analyze
the second one.
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Let ν be the outward normal to ∂At. As explained above, ∇u is parallel to it but
directed in the opposite direction. Thus we have |∇u| = −∇u · ν. Also, we note that
since for z ∈ ∂At we have u(z) = t, we have for z ∈ ∂At

|∇u|
t

=
|∇u|

u
= −∇u · ν

u
= −(∇ log u) · ν.

Now the second integral on the right-hand side of (2.2) can be evaluated by
Green’s theorem:∫

∂At

|∇u||dz| = −t

∫
∂At

(∇ log u) · ν = −t

∫
At

Δ log u(z)dxdy. (2.3)

Note that here it is important that u(z) �= 0 for z ∈ At so the function log u is
well-defined on At and ∂At. We have Δ log u(z) = aΔ log |f(z)| + bΔ log(1 − |z|2).
Since f(z) �= 0 for z ∈ At, the first term is just 0 while the second one is −4b 1

(1−|z|2)2
which is proportional to the hyperbolic metric m. Thus, the right-hand side of (2.3)
is equal to 4πbt|At|H .

Combining everything, we get

−μ′(t) ≥ |∂At|2h
4πbt|At|H .

Our next step is to use the isoperimetric inequality for the hyperbolic plane [14]
(see also [7, 12]). In the case of curvature −4π it says that for any set A we have

|∂A|2h ≥ 4π|A|H + 4π|A|2H .

Using it with A = At and recalling that |A|H = μ(t) we get

− μ′(t) ≥ 1 + μ(t)
bt

. (2.4)

Note that here we used that |A|H > 0 (that is, t < t0) to avoid division by 0.
Rewriting (2.4) for g(t) = t1/b(μ(t) + 1) we get g′(t) = t1/b(μ(t)+1

bt + μ′(t)) ≤ 0,
thus g is decreasing as required. �
We believe that the key reason why the above argument works is the proportionality
Δ log ||Kz|| ∼ m(z), where Kz are the reproducing kernels for our spaces. Note that
the same kind of proportionality, in the Euclidean setting, played a crucial role in
[11].

Note that for the function f(z) ≡ 1 everywhere in the proof above we have
equalities for all values of a and b. Indeed, in the Cauchy–Schwarz inequality the
functions are constant by radial symmetry, thus it is an equality, and the hyperbolic
isoperimetric inequality is an equality exactly when the set is a hyperbolic disk.
In fact, it is also an equality for all reproducing kernels, but verifying this for the
Cauchy–Schwarz part is a rather long computation. This is also true in the upper
half-plane. The reason we chose to work in the unit disk is that for f(z) ≡ 1 these
equalities are easy to verify.
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3 Weak-Type Estimate for the Hardy Spaces

In this section we are going to prove the following bound for the measure of the
superlevel sets of functions from the Hardy spaces. Theorem 1.1 follows from it by a
simple integration. In what follows we retain the notation from the previous section.

Theorem 3.1. Let f ∈ Hp have norm 1 and put u(z) = |f(z)|p(1 − |z|2). Then for
all t ∈ (0, ∞) we have

μ(t) ≤ max
(

1
t

− 1, 0
)

. (3.1)

Equality in (3.1) holds for all 0 < t < ∞ if f(z) ≡ 1.

Note that this theorem verifies Conjecture 2 from [3].

Proof. Put t0 = maxz∈D u(z). By the pointwise bound (1.1) we have t0 ≤ 1. In
particular, for t ≥ t0 the bound holds trivially.

Assume that there exists some 0 < t1 < t0 such that μ(t1) > 1
t1

− 1. Then
μ(t1) = c

t1
− 1 for some c > 1. We claim that in that case for all 0 < t < t1 we have

μ(t) ≥ c
t − 1.

Indeed, applying the pointwise bound once again together with u(z) → 0 as
|z| → 1, we see that Theorem 2.1 can be applied to f with a = p, b = 1, and we get
that g(t) = t(μ(t) + 1) is decreasing. Since g(t1) = c we get g(t) ≥ c, 0 < t < t1,
which corresponds to μ(t) ≥ c

t − 1.
Next we are going to use the fact that ||f ||pr

Apr
r

→ ||f ||pHp = 1 as r → 1. Note that
we can express the Apr

r norms via μ(t):

||f ||pr
Apr

r
= cr

t0∫

0

μ(t)tr−1dt,

where cr = r(r − 1) is so that cr

1∫
0

(1t − 1)tr−1dt = 1. The precise value of cr is not

important for us except that cr → 0 as r → 1 which corresponds to the fact that the
norm in the Hardy space is supported on the circle ∂D and not on the whole disk
D. By the above bound we have

||f ||pr
Apr

r
≥ cr

t1∫

0

(c

t
− 1

)
tr−1dt. (3.2)

We have

1 = cr

1∫

0

(
1
t

− 1
)

tr−1dt

= cr

t1∫

0

(
1
t

− 1
)

tr−1dt + cr

1∫

t1

(
1
t

− 1
)

tr−1dt = A(r) + B(r).
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Since cr → 0 as r → 1, we see that B(r) → 0 as r → 1 as well because the
function we are integrating is bounded. Therefore, A(r) → 1 as r → 1. On the other
hand, we have

c
t − 1
1
t − 1

= c +
c − 1
1
t − 1

≥ c,

thus the right-hand side of (3.2) is at least cA(r). Therefore 1 = limr→1 ||f ||pr
Apr

r
≥

c limr→1 A(r) = c which is a contradiction.

Remark 3.2. By looking more closely at the above proof we can actually get the
following formula for the Hp-norm:

||f ||pHp = sup
t:μ(t)>0

t(μ(t) + 1) = lim
t→0

t(μ(t) + 1) = lim
t→0

tμ(t), (3.3)

which seems to be new.

Proof of Theorem 1.1. If limt→0+ G(t) > 0 then for all f ∈ Hp with ||f || = 1 the
integral in (1.3) is +∞. Similarly if limt→0+ G(t) < 0 then the integral is always −∞.
Thus, we can assume that limt→0+ G(t) = 0. Then this integral can be expressed via
μ(t) as

∞∫

0

μ(t)dG(t). (3.4)

Note that here we used that the function μ(t) is continuous, that is the sets {u(z) =
t} have zero measure.

Since G is increasing, measure dG(t) is positive. Thus, by (3.1) this integral is
at most

∞∫

0

max
(

1
t

− 1, 0
)

dG(t),

which is the value of (1.3) for f(z) ≡ 1.

4 Proof of Theorem 1.2

As in the proof of Theorem 1.1, we begin by observing that if limt→0+ G(t) �= 0,
then the integral in (1.4) is always ±∞. Thus, we restrict ourselves to the case
limt→0+ G(t) = 0. In that case, the integral in (1.4) can be rewritten as

∫ ∞

0
μ(t)G′(t)dt,
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where μ(t) = m({z : u(z) > t}) and u(z) = |f(z)|p(1−|z|2)α. We wrote here G′(t)dt
instead of dG(t) as in (3.4) because G is convex and hence its derivative is an actual
function and not just a measure. We also assume that ||f ||Ap

α
= 1, that is∫ ∞

0
μ(t)dt =

1
α − 1

.

Applying Theorem 2.1 to f with a = p, b = α we get μ(t) = g(t)
t1/α − 1 where g is

decreasing on (0, t0) with t0 = maxz∈D u(z). By the pointwise bound (1.2) we know
that t0 ≤ 1.

We are going to make a change of variables x = t1−1/α in both of the above
integrals. We get

x0∫

0

(h(x) − x1/(α−1))dx =
1
α

, (4.1)

where x0 = t
1−1/α
0 ≤ 1 and h(x) = g(xα/(α−1)) is a decreasing function. We want to

maximize
x0∫

0

(h(x) − x1/(α−1))s(x)dx, (4.2)

where s(x) = G′(xα/(α−1)) is an increasing function. From now on we will treat
h as a generic decreasing function, forgetting for a while that it came from the
distribution of a holomorphic function, and we also fix x0 for now. To proceed we
need the following lemma.

Lemma 4.1. Let s(x), 0 ≤ x ≤ x0, be a function satisfying
∫ X

0
s(x)dx ≤ Xs(X) (4.3)

for all 0 ≤ X ≤ x0. Then among all decreasing functions h : [0, x0] → R with∫ x0

0 h(x) = c the constant function h(x) = c
x0

maximizes
∫ x0

0 s(x)h(x)dx.

Note that any increasing function s trivially satisfies condition (4.3). However, even
though there is a slightly simpler proof of this lemma in the case of increasing s, the
proof of the general case is still short, and therefore we decided to prove lemma in
full generality.

Proof. For clarity of exposition, we will only prove the lemma in the case when
the function h is in C1([0, x0]). The proof in the general case can be obtained by the
slight modification of the argument below.

Put S(X) =
∫ X
0 s(x)dx and l(x) = −h′(x) ≥ 0 and integrate by parts in both

integrals. We get

x0h(x0) +
∫ x0

0
xl(x)dx = c,
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and we want to maximize

S(x0)h(x0) +
∫ x0

0
S(x)l(x)dx. (4.4)

Note that
(

S(x)
x

)′
= xs(x)−S(x)

x2 ≥ 0, thus S(x)
x is increasing. Therefore we have

∫ x0

0
S(x)l(x)dx ≤

∫ x0

0
x

S(x0)
x0

l(x)dx =
S(x0)

x0

∫ x0

0
xl(x)dx.

Plugging this into (4.4) we get

S(x0)h(x0) +
∫ x0

0
S(x)l(x)dx ≤ S(x0)

x0

(
x0h(x0) +

∫ x0

0
xl(x)dx

)
= c

S(x0)
x0

.

For l(x) = 0 (that is, h(x) being constant) we have equality here. �
Note that, for a fixed x0, we know the value of

∫ x0

0 h(x)dx from (4.1), while in (4.2)
we want to maximize

∫ x0

0 h(x)s(x)dx plus some constant depending on x0. Therefore,
if x0 is fixed, then we may assume that h(x) is constant and equal to

C(x0) =
1
x0

(
1
α

+
α − 1

α
x

α/(α−1)
0

)
,

while (4.2) is equal to

A(x0) = C(x0)S(x0) −
∫ x0

0
x1/(α−1)s(x)dx.

Our next goal is to show that A(x0) is an increasing function of x0. To do so we
first assume that C(x0) is decreasing which we will prove later. Taking the derivative
of A we get

A′(x0) = C ′(x0)S(x0) + C(x0)s(x0) − x
1/(α−1)
0 s(x0).

Since S(x0) ≤ x0s(x0) and C ′(x0) ≤ 0, this quantity is at least

C ′(x0)x0s(x0) + C(x0)s(x0) − x
1/(α−1)
0 s(x0) = s(x0)

(
x0C

′(x0) + C(x0) − x
1/(α−1)
0

)
.

The expression in the brackets turns out to be exactly 0 – this can be either verified
by a direct computation or, slightly informally, deduced from the fact that for s(x) =
1 (which corresponds to G(x) = x) we should always get the same value and all our
inequalities turn into equalities.

It remains to show that C(x0) is a decreasing function. We first outline an in-
formal argument, which this time is a bit harder to make rigorous, so later we will
explicitly compute C ′(x0) and verify that it is negative. The informal argument is
as follows: if we treat h as coming from the distribution of the analytic function and
if for some x1 < x2 we would have C(x1) < C(x2), then this would mean that all
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the superlevel sets of the function corresponding to x2 have larger hyperbolic mea-
sure so they can not both have the same Ap

α-norm. But since we already abandoned
Bergman spaces by treating h as a generic decreasing function this argument is not
rigorous so we will just compute C ′(x0):

C ′(x0) =
x

a/(a−1)
0 − 1

ax2
0

.

Thus, C ′(x0) is nonpositive for 0 < x0 ≤ 1, therefore A(x0) ≤ A(1) for 0 < x0 ≤ 1.
It remains to note that for the case f(z) ≡ 1 we have x0 = 1 and h(x) is constant,

thus the value of (1.4) is exactly A(1) and the Theorem is proved. �
Remark 4.2. As can be seen from the proof, it is enough to assume that the function
s(x) = G′(xα/(α−1)) satisfies (4.3) for all X > 0 which is strictly weaker than the
assumption that G be convex.

Remark 4.3. Note that we actually proved that the value of (1.4) is at most A(x0)
where x0 = t

1−1/α
0 , t0 = maxz∈D u(z). In particular, if the function G is strictly

convex such as G(t) = ts, 1 < s < ∞ then the function A is strictly increasing and
thus the reproducing kernels are the only maximizers of (1.4).

5 Coefficient Estimates for Hardy Spaces

An important special case of contraction from the Hardy space to a Bergman space
is Hp ⊂ A2

2/p for 0 < p < 2. It turns out that, given f(z) =
∑∞

n=0 anzn ∈ A2
2/p, we

can express its norm as follows

||f ||2A2
2/p

=
∞∑

n=0

|an|2
c2/p(n)

, c2/p(n) =
(

n + 2/p − 1
n

)
.

Thus, for a function f ∈ Hp we have
∞∑

n=0

|an|2
c2/p(n)

≤ ||f ||2Hp . (5.1)

This can be seen as sharpening of the classical Hardy-Littlewood inequality [5].
Before only partial results were obtained in the direction of this inequality, such as
proving it in the case 2

p ∈ N [4] and proving it for the first few coefficients [1, 8]
or with a constant slightly worse than 1 [10]. Note that inequality (5.1) is sharp in
every coefficient since it turns into an equality for all reproducing kernels.

By the inductive argument from [6] inequality 5.1 can be extended to the func-
tions from the Hardy space on the multidimensional disk D

k: for f(z1, . . . , zk) =∑
n1,...,nk≥0

an1,n2,...,nk
zn1
1 . . . znk

k we have

∑
n1,...,nk≥0

|an1,n2,...,nk
|2

c2/p(n1) . . . c2/p(nk)
≤ ||f ||Hp(Dk). (5.2)
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By passing to the limit and noting that c2/p(0) = 1, we can extend this inequality
to the analytic functions on the infinite-dimensional disk D

∞. These spaces in turn
can be realized as spaces of Dirichlet series in the right half-plane. In this setting
(5.2) takes the following form.

Theorem 5.1. For a Dirichlet polynomial f(z) =
∑N

n=1
an

ns and 0 < p < 2 we have

N∑
n=1

|an|2
d2/p(n)

≤ ||f ||2Hp ,

where d2/p(n) are the coefficients in ζ(s)2/p =
∑∞

n=1
d2/p(n)

ns and

||f ||pHp = lim
T→∞

1
2T

∫ T

−T
|f(it)|pdt.

Combining this theorem with the methods from [2] we can slightly improve the
bounds for the pseudomoments of the Riemann zeta function, though the improve-
ment is only in the constant factor and not asymptotic.
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