
Functions as Data Objects in a Data Flow Based Visual Language

Alex Fukunaga†, Wolfgang Pree††, Takayuki Dan Kimura††

†Harvard University
Cambridge, Massachussetts 02138

††Department of Computer Science
Washington University

St. Louis, Missouri 63130

Abstract

Data flow based visual programming languages are an
active area of research in visual programming languages.
Some recent data flow visual programming languages have
implemented higher order functions, allowing functions to be
passed to/from functions.  This paper describes a data flow
visual programming language in which the first class
citizenship of programs have been taken a step further,  and
programs can be manipulated as data with the same kind of
flexibility that LISP offers in manipulating programs as data.

1. Introduction

It is widely accepted that higher order functions provide a
substantial amount of power and flexibility to programming
languages which support them. The ability to pass functions
to and from functions allow for the creation of general
functions which can easily be adapted to a variety of
situations. Thus,  programming languages like ML[Miln84]
and Miranda[Turn90] are fully higher order - functions can be
passed into and returned out of functions.

Although the implementation of higher order functions -
the treatment of functions as first class citizens -  is important
in itself, it is also significant in that it is indicative of
another concept in programming languages: the integration
of programs and data. The ability of LISP and its dialects to
represent and treat programs and data in the same way has
been very significant in artificial intelligence and in program
development environments.

The implementation of higher order functions is a recent
development in the field of visual programming languages.
Higher order functions have been implemented to varying
degrees in several data flow visual programming languages.
However, there have been no implementations of  data flow
languages in which programs could be treated as data with the
same generality in which LISP treats its programs and data.
This paper describes such a language.

2.  Previous Work

Some earlier data flow visual programming languages
have provided for higher order functions, including
CUBE[Najo91], DataVis[Hils91], VPL[Lau91], Enhanced
Show and Tell (ESTL) [Najo90], and Show and Tell [Kimu86].

Higher order functions have been represented in two ways
in data flow visual programming languages. The first
approach uses function slots inside icons for higher order
functions, into which lower order functions are "slotted in.”
DataVis, CUBE, and ESTL use this approach. For example,
Figure 1 shows an example of a higher order function using
this approach (based on DataVis). The higher order function
Iterate  contains F, a first order function in its function slot.
Iterate applies F to each member of the list a, b, c, d, and
returns the list F(a), F(b), F(c), F(d).

Figure 1: Higher Order Functions Using Function Boxes

Iterate
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In the alternate approach, functions are "quoted", and
flow over links. That is, functions are treated as data objects,
and an "unquote" or "apply" node is used to apply the function
to its inputs. Show And Tell and VPL use this method, as does
PHF, the language we designed and implemented for this work

However, although  higher order functions have been
repeatedly implemented in visual programming languages,
there has been little effort to  further eliminate the distinction
between code and data. The language described below provides
a sufficent set of primitives to treat functions as data objects
with the same kind of generality that LISP allows.

3. ProtoHyperflow

Hyperflow is a dataflow visual programming language
based on Show and Tell, and is designed for use with a pen-
based multimedia system. Hyperflow is described in
[Kimu92].

ProtoHyperflow (PHF),  is a visual programminlg
language which is a derivative subset of HF, and originated as
a prototype implementation of HF. The current
inplementation was done on a traditional mouse/CRT based
system using C++ and the ET++ GUI applications framework
[Wein88], and is a integrated editor and data driven interpreter
system. The following is an informal description of the PHF
language.

3.1 PHF Syntax

The syntax of PHF consists of boxes and arrows, a box
representing a process and an arrow representing a data flow
between processes. Boxes are called v ips  (visually
interactive processes) in PHF, and  arrows are called
connectors.



Computation in PHF is carried out by a homogenous
community of vips communicating with each other.  Vips  can
be recursively nested.

The vip is the only unit of system decomposition in
PHF, paralleling the design of LISP, in which lists are the
only structure. This allows  PHF's ability to treat programs as
data objects, as described in section 4. A vip consists of a
mailbox, a body, and an optional name. A mailbox holds a
discrete data object, such as an integer or string.  The body is
the semantic content  (the implementation of the semantics)
of a vip. The body of a vip can be a system defined PHF
primitive, a reference to another vip, a nested ensemble of
vips, or it may be empty. A vip may also have a name, which
appears on the top left corner of the vip. Names are necessary
when defining functions (see section 3.5.1). A connector
establishes dataflow between the two vips that it connects. A
connector may also have a label. A vip ensemble is a directed
acyclic graph, where the nodes are vips and the edges are
connectors. A PHF program is a vip containing an vip
ensemble.

It is necessary to introduce some shorthand terminology
here, in order to facilitate a more detailed discussion of the
constructs used in PHF. We shall define 'vip X' to mean 'the
vip with the name X, and 'connector X' to mean 'the connector
with the label X'. Also, an empty vip shall be called a variable
vip.

3.2 Data Objects in PHF

The following data objects are currently implemented in
PHF: 1)integers, 2)strings, 3)signals, 4)vips. Strings in PHF
are prefixed with a quote (') in order to distinguish them from
references to other vips. Signals are an enumerated data type
which is either valid or invalid , and are used to denote the
result of a predicate (such as = ,<>). The use of vips as data
objects is detailed in section 4. All data objects can be
transmitted via mail (see below), and can be displayed in a
variable (empty) vip.

3.3 Communication Between Vips

There are two modes of communication in PHF:  1)
mailing, and 2) broadcasting.

Mailing is communication of discrete data objects by
dataflow across connectors. In mailing, the contents of the
mailbox of the source vip is copied to the mailbox of the
destination vip. This is the standard mode of communication
between vips.

Broadcasting is a special mode of communication which
involves no connectors. A broadcasting vip, which is denoted
as a vip with a dotted border,(see Figure 6) transmits the
contents of its mailbox to all of the children of its parent (its
sibling vips).

3.4 PHF Execution Protocol

A PHF program is executed from its outermost vip. The
execution mode implemented by PHF is, as with most current
data flow visual languages, data driven.

A vip is executable exactly once, and will execute when it
has the minimum number of valid inputs (input connectors on
which the source’s mailbox is ready to be transferred). The
number of minimum inputs is a semantic property of a vip.
For example, a variable vip (an empty vip) will execute as
soon as it has one valid input (all other inputs will be
ignored), while a + primitive (summation) will not execute
until all of its inputs are valid. Thus, if a variable vip X has
two input connectors with sources at vip Y and Z, then this

results in a nondeterministic behavior, where the value
transfered to X is the value of the source which is ready first (If
Y is ready to transmit first, then X receives the value of Y, but
if Z is ready to transmit first, then X receives the value of Z).

3.5 PHF Programming Constructs

The following sections describe key programming
constructs in PHF.

3.5.1 Primitive and User Defined  Functions,
Binding Rules

A vip may invoke a system defined primitive, or a user
defined function.

Figure 2 shows a PHF program which calculates the sum
of 4 and 3. The + vip is a system defined primitive which
returns the sum of all of its inputs.

Another type of function is one in which involves
parameter binding. For example, for a binary division
operation (a division with two inputs), it is necessary to
distinguish which of the operands is subtracted from the
other. Thus, binding rules are necessary.

The binding rules in PHF are name based. In the case of
system defined primitives, the parameters which need to be
bound to input values are defined by the system as #1, #2, ...
# n , where #1 is the first argument, #2 is the second
argument, and so on. Input values are bound to these
parameters by labeling the connectors which connect the
input values and the primitive. Thus, in a binary division, the
dividend must be bound with  system parameter #1, and the
divisor must be bound with system paramter #2, and the '/'
primitive will return the value of #1/#2. Figure 3 shows a
PHF program which calculates 10/2.
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+

Figure 2: Addition
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/

Figure 3: Division

#1 #2

User defined functions are implemented by naming a vip,
and then referencing that vip from another vip.   Figure 4
shows the definition of Increment, a vip which takes one
input parameter in vip X, and returns X+1. The @ vip is a
system defined primitive which transfers the contents of its
mailbox to its parent. Figure 5 shows CalcInc , a PHF
program which calls the Increment function with input
value 5. When CalcInc is executed, the 5 is mailed to the vip
calling Increment. A copy of the function Increment is
created on the execution stack, with 5 bound to the vip X, and
is executed. The result of the addition, 6, is sent out of the
Increment function to its parent, which is the vip which
calls Increment in CalcInc, and the result then flows to
the variable vip at the bottom of the CalcInc vip.

Binding of input values to unbound variable vip in the
function is established by associating the labels of the
connectors entering the function call vip with the  names of
the parameter vips of the function. Thus, in the example
above, the empty variable vip X in Figure 4 is associated with
the connector labeled X in Figure 5.
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PHF functions have only one return value, which is
mailed out via the @ vip. Note that it is not possible to have
side effects in PHF, because of its data flow based nature.

3.5.2 Conditionals

Conditionals are implemented in PHF using the
broadcasting mechanism (section 3.3) and the signal data
type (section 3.2).  If a vip receives an invalid  signal, it is
inactivated so that it does not execute. A broadcasting vip can
prevent all of its sibling vips from executing by broadcasting
an invalid  signal. Thus, conditionals can be implemented
by having multiple vips, among which only one is selected
by invalidating all of the others.

Figure 6 shows a PHF program which takes one input, X.
The =  and <> are PHF primitives which return valid  or
invalid  depending on whether the ‘equal’ and ‘not equal’
predicate holds true for their inputs. If X=0, then the =
predicate returns a valid  signal, while the <> predicate
returns an invalid  signal. Thus, the  string "Zero" flows to
the vip labeled result. However, if X <> 0, then the string
"Other" flows to the vip labeled result.

x

result

= <>

@ @

'zero 'other

0 0

Figure 6: Conditional Example

Note that  PHF uses an asynchronous, parallel execution
model, so a vip executes as soon as its inputs are ready. Thus,
when making conditional statements, the conditionals must
be mutually exclusive, or the results will be unpredictable (the
program will be syntactically correct, but  will behave
nondeterministically  (Section 3.4).

3.5.3 Recursion

Recursive function calls are possible. Figure 6 shows a
PHF program which calculates the factorial function (!). This
function takes one integer input, X, and processes it as

follows: if X=0 then return 1 else return X * fact(x-1). (X is
assumed to be positive).
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Figure 7: Factorial Function
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4. The PHF implementation of Higher
Order Functions

PHF implements higher order functions by treating vips
as data objects which can flow over connectors.

A vip (which can be an ensemble of vips, since vips can
be recursively nested) can be quoted by enclosing it within a
parent vip with a thickened border, making it a data object.
The quoted vip can then be executed later by the system
defined Apply  primitive vip. The Apply  vip takes one
quoted vip as an input, with the connector 'func', and can take
any number of input parameters  which are bound to input
parameters of the quoted vip function. The Apply  returns the
result of the evaluation of the quoted vip. Note that the result
of an Apply  could  be a quoted vip.

In addition to the quote/A p p l y  operations, PHF
implements primitives allowing the full manipulation of vips
as data.

A sufficient set of visual language primitives to
manipulate functions as data requires 1) a set of constructive
primitives, and 2) a set of destructive primitives.  In PHF, the
constructive primitives are Insert  and Connect, and the
destructive primitives are E x t r a c t , R e m o v e, and
Disconnect. Furthermore, in PHF, there must be primitives
which  manipulate the other attributes of vips. Unquote$,
G e t N a m e, S e t N a m e, G e t B o r d e r , S e t B o r d e r,
GetConnLabe l, and SetConnLabe l manipulate vip
names, border attributes, and connector labels.

These primitives, defined below, allow the full
manipulation of vips as data objects. Note, however, that
these primitives deal with the logical structure of vips, but
not the visual layout of the results of these operations. Thus,
it is possible to create any logical PHF program using these
primitives, but it is not possible to specify the topology of
the program in two dimensional space.

4.1 Primitive Definitions

For simplicity of syntactical description, in the
primitive definitions below, we shall name variable vips
which contain quoted vips, but it is not necessary to actually
name these vips in all cases with the names that we have
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given them, and  in many cases, names are not necessary at
all.

Unquote$ (unquote string) takes a string as input and
removes its quote, thereby making it a possible function or
primitive reference (Figure 8). Note that while some earlier
visual languages use the term 'unquote' to mean evaluating a
higher order function, the term 'unquote' in PHF strictly means
to remove the quote from a string.

'a Unquote$ a

Figure 8: Unquote$ 

GetBorder takes a quoted vip as input and returns the
type of its border (normal, quote, or broadcast) as a string (i.e.
'normal, 'quote, 'broadcast). See Figure 9.

SetBorder takes a quoted vip X with connector 'func',
and a string S with connector label #1 as input, which can be
'normal, 'quote, or 'broadcast. SetBorder assigns the border
type specified by S1 to X (Figure 9).

b

GetBorder

SetBorder

'broadcast
a

b

Figure 9: GetBorder, SetBorder

func

#1

GetName takes a quoted vip as input and returns the
name of the vip as a string (Figure 10).

SetName takes a quoted vip X with connector ‘func’ and
a string S  with connector label #1 as input. S is unquoted, and
is assigned to the name of X (Figure 10).

a

b

GetName

SetName
a

Figure 10: GetName, SetName
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Insert  takes two quoted vips, X and Y,  as input, with
their corresponding input connectors labeled #1 and #2, and
returns a new vip in which the vip X has been inserted into the
vip Y (Figure 11). Note that  vip Y  must be an ensemble.

Connect takes a quoted vip X with connector  'func', and
three string inputs S1, S2, and S3, with connectors labeled
#1, #2, and #3, respectively. Connect returns a new quoted

vip, identical to X, except with a new connection between the
vips S1 and S2, where the vip at the source of #1 is the source
(Figure 11). The label of the new connector is S3, unquoted.

S3 is an optional parameter. If no label name is specified, the
connector will have no label.

Extract   takes two inputs: 1) a  quoted vip ensemble X
with connector 'func', and 2) a string S, with a connector
labeled #1. The result is the vip named S found in X (Figure
12).

Remove takes two inputs: 1) a quoted vip ensemble X,
and 2) a string S, with a connector labeled #1. The result is X,
with the vip named S removed. All input and output
connectors to/from vip S1 are removed (Figure 12).

Disconnect takes a quoted vip ensemble X with
connector 'func', and three string inputs S1, S2, and S3, with
connectors labeled #1, #2, and #3, respectively, where S3 is
optional. The result is X without the connector S3 between S1
and S2, where vip S1 was the source. Note that the direction of
the connector to be removed is significant, because it is
possible that there is a bidirectional connection between vips
named S1 and S2, where S3 is a common label such as '#1'. If
S3 is not specified, all connections from S1 to S3 are removed
(Figure 12).

GetConnLabel takes a quoted vip X with connector
'func', and two strings S1 and S2 as input with connectors #1
and #2, respectively. The label of the connectors from vips
S1 to S2 in vip X is returned. 

SetConnLabel takes a quoted vip X with connector
'func', and three strings S1, S2, and S3 as input with
connectors #1,#2, and #3, respectively. The Connector in X
from vip S1 to vip S2 is assigned the label S3, unquoted. The
usages of G e t C o n n L a b e l and S e t C o n n L a b e l are
illustrated in Figure 14 in the next section. The
GetConnLabe l and SetConnLabe l operations were
defined to be used when only one connection exists between
two vips. These operations need to be refined to take into
consideration cases when vips are multiply connected.

4.2 Scoping Rule

Note that many of the primitives described above must
search for vips within vips. However, since vips can be
indefinitely nested, a question arises over what to do if there
are different vips with the same names, but at different levels
of nesting. When searching for vips, PHF uses a breadth first
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search method which finds the closest vip to the outermost
vip. That is, it finds the least deeply nested vip. In Figure 13,
if PHF searches for vip X in V, it will find the singly nested
vip X, not the X which is nested within Y.

v
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y

Figure 13: Scoping Rule

4.3 Example - ReverseOp

Figure 14 shows ReverseOp, a higher order function
which takes a function F and three vips X, Y, and Z as input,
where X, Y, and Z are all in F, and X and Y are both connected
to Z, with the connections being directed from X to Z and from
Y to Z. This is commonly encountered when Z is an operation,
and X and Y are its operands. ReverseOp exchanges the
connections between X and Z and Y and Z in F and returns the
new function. The function works as follows: The labels  for
the X-Z and Y-Z connections are stored, and the connections
are severed (Disconnected). Then, new connections are
established (using Connect), switching the connector

labels.

A simple instance where this might be used is when Z is
an arithmetic operation where the order of its operands is
important, such as the '-' operation. Then, if a-b is calculated
in F, the result of ReverseOp would calculate b-a (Figure
15a).  A more sophisticated use of the function might be to
reverse two arbitrary connections in a large, self modifying
PHF program (Figure 15b).
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Figure 15a: ReverseO p Used to Reverse O perands for Subtraction

4.4 Future Work: Visualization of the Output
of Vip Manipulation Primitives

Under the current implementation of PHF, there is no way
to see the result of operations which manipulate vips, other

than by Apply ing the quoted vips and
observing the results (the results of vip
manipulations in Figures 9-12 were
drawn by hand). The ability to directly
observe the resul t  of  such
manipulations would be a crucial
facility in a practical system.

However, the question of how the
spatial relationships of the underlying
logical structure of a visual language
should be manipulated poses a
formidable future research problem in
itself. Destructive operations are trivial
to visualize, since they only involve
the removal of visual elements.
However, constructive operations such
as the I n s e r t  operation pose a
problem.  For instance, in Figure 16,  if



vip X is Inserted into vip Y, exactly where in vip Y should
vip X appear? We propose that there should be a simple
default visual concatenation rule, such as simply inserting  X
at the leftmost extent of Y, and expanding Y to include X. A
more flexible system would allow an exact specification of
the spatial relationship between results of operations on vip
data structures.

y

x

Figure 16: Layout Problem- where should vip x be inserted?

5. Discussion

This paper presented a data flow visual language in which
programs could be fully manipulated as data objects.

LISP's powerful ability to manipulate programs as data
stems from the fact that s-expressions are the only unit of
system decomposition in LISP. Likewise, PHF's ability to
manipulate PHF programs as data is due to the fact that vips
are the only unit of system decomposition. If one thinks of
vips as nodes and connectors as edges, then a PHF program is
simply a directed acyclic graph.   In essence, PHF can be
thought of as a "graph processing language", in the same
sense that LISP is a "list processing language".

There is one significant difference: while there is a
strong isomorphism between LISP’s one dimensional list data
structure and its symbolic representation,  the isomorphism
between a PHF program’s logical structure (a graph)  and its
visual representation (the layout of the graph in two
dimensional space) is not clear. As we noted in Section 4.4,
this poses the a new problem in that now, with visual
languages, we must also specify the spatial as well as the
logical relationships between vips. PHF can completely
manipulate vips at a logical level, but further research is
required before we have a visual language which can easily
manipulate functions as both logical and visual entities.

There are clear advantages in using the list, a one
dimensional data structure, as the fundamental structure in a
one dimensional textual language. It is a clear, simple,
paradigm, and higher dimensional structures can be
constructed by the nesting of one dimensional  structures. On
the other hand, graphs are a more general structure, but are
more difficult  to visualize in a textual context.

However, with the two dimensional visualization that
visual languages offer, it is not difficult to envision using the
graph as a fundamental structure, since the  medium makes it
easy to visualize and manipulate the structure. Future research
will reveal what impact this may have on data structure and
algorithm design.
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