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Macrophages play a paramount role in immunity and inflammation-associated diseases,

including infections, cardiovascular diseases, obesity-associated metabolic imbalances,

and cancer. Compelling evidence from studies of recent years demonstrates that

macrophages are heterogeneous and undergo heterogeneous phenotypic changes in

response to microenvironmental stimuli. The M1 killer type response and the M2 repair

type response are best known, and are two extreme examples. Among other markers,

inducible nitric oxide synthase and type-I arginase (Arg-I), the enzymes that are involved

in L-arginine/nitric oxide (NO) metabolism, are associated with the M1 and M2 pheno-

type, respectively, and therefore widely used as the markers for characterization of the

two macrophage phenotypes. There is also a type-II arginase (Arg-II), which is expressed

in macrophages and prevalently viewed as having the same function as Arg-I in the cells.

In contrast to Arg-I, little information on the role of Arg-II in macrophage inflammatory

responses is available. Emerging evidence, however, suggests that differential roles of Arg-I

and Arg-II in regulating macrophage functions. In this article, we will review recent devel-

opments on the functional roles of the two arginase isoforms in regulation of macrophage

inflammatory responses by focusing on their impact on the pathogenesis of cardiovascular

diseases and metabolic disorders.

Keywords: arginase, arginine, macrophages, nitric oxide synthase, cardiovascular diseases

INTRODUCTION
Macrophages are important sentinel cells in our body and

are involved in maintenance of tissue homeostasis, immune

responses, and inflammation-associated diseases. Recent findings

have revised our traditional view on the origin and biological func-

tions of macrophages. We now know that tissue macrophages are

not only recruited from bone marrow-derived monocytes but also

differentiated from yolk sac-derived embryonic stem cells (1–3).

Moreover, tissue macrophages are not terminally differentiated

and are maintained throughout life by local proliferative self-

renewal (4,5). Importantly,macrophages are highly heterogeneous

and undergo phenotypic changes, i.e., macrophage plasticity, in

response to specific signals as a consequence of adaptation to

local tissue environmental cues (6, 7). The original and the best

known types of macrophage responses are the pro-inflammatory

M1 type (killer cells) and the anti-inflammatory M2 type (repair

type cells) (3, 7). There are convincing evidences from research

of recent years showing that different phenotypic macrophages

are indeed importantly participating in the process of immune

and inflammatory responses, which have been reviewed by many

comprehensive articles (7, 8).

MACROPHAGE POLARIZATION
Macrophage polarization describes acquirement of distinctive

phenotypic and functional characteristics of fully differentiated

macrophages in response to microenvironmental stimuli.

Functional polarization of macrophages and the underlying

mechanisms that control the cell phenotypes are complex and

have been extensively investigated in recent years. As mentioned,

the M1 and M2 classifications of macrophages described the two

major and opposing activities committed to killing and repairing

functions of the cells. It is emerging that macrophage polar-

ization is regulated by a broad spectrum of recognition recep-

tors, cytokines, specific signaling pathways, and genetic programs.

Some of them are used as markers or functional repertoire of the

macrophage phenotypes. There are, however, no standard guide-

lines for classification of macrophage phenotypes. Most impor-

tantly, information about functions of these markers in regulation

of macrophage inflammatory responses or phenotypes is either

lacking or controversial. The conclusions are usually based on

association studies. It is generally the view that M1 macrophages

express enhanced genes, which are pro-inflammatory and cyto-

toxic, typically inducible nitric oxide synthase (iNOS)/NO, IL-12,

class II MHC, and the chemokines IL-8 and CCL2, participat-

ing in killing intracellular parasites and tumor development.

In contrast, M2 macrophages produce more anti-inflammatory

cytokines and substances involved in repairing function, typi-

cally, arginase/ornithine, EGF, VEGF, and TGF-β, and mannose

receptor (9). This phenotypic cell is mainly participating in reso-

lution of inflammation, tissue repairing, angiogenesis, allergy, and

tumor progression (10). It is, however, to notice that M1 and M2

activation programs display differences, but they may not form

clear-cut activation subsets and reveal overlapping effects. A dis-

cussion about the complexity of macrophage phenotype markers,
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differentiation mechanisms, and the roles in human diseases is

beyond the scope of this review article. For these aspects, readers

are kindly asked to refer to several comprehensive review articles

(11, 12). In the following section of this article, we will focus on dis-

cussing the role of the enzymes arginase and nitric oxide synthase

(NOS) that are involved in l-arginine metabolism in various cell

types including vascular endothelial cells and macrophages and

widely used as markers to distinguish M1 and M2 macrophage

phenotypes.

L-ARGININE METABOLISM, iNOS, AND ARGINASE IN
MACROPHAGE FUNCTIONAL POLARIZATION
The suggestion that l-arginine metabolism could be involved in

regulation of macrophage phenotypes was from early studies with

macrophages isolated from the Th1 strain mouse C57B1/6 and

Th2 strain BALB/c mouse (13, 14). These studies demonstrate that

isolated macrophages from Th1 strain C57Bl/6 mouse are more

readily activated to produce nitric oxide (NO) upon stimulation

with IFN-γ or lipopolysaccharide (LPS) than the macrophages

from Th2 strain BALB/c mouse. Later on, it was characterized

that M1 macrophages are more easily activated by LPS to produce

cytotoxic NO via iNOS, whereas M2 macrophages generate lit-

tle NO but more ornithine from the same substrate l-arginine via

arginase (15). The iNOS and arginase are thought to affect inflam-

matory responses in the opposite way. NO production from iNOS

in M1 macrophages inhibits cell proliferation and kills pathogens,

a M1 killing type response (16, 17), while ornithine production

promotes cell proliferation and repairs tissue damage through

generation of polyamines and collagen in M2 macrophages, a M2

repairing type response (11, 18). Both NO and ornithine are gen-

erated from the same substrate l-arginine via iNOS and arginase,

respectively (11, 18) (Figure 1). From these studies, one can con-

sider dominant NO production as M1 activity, whereas dominant

ornithine production as M2 activity of macrophages.

ARGINASE ISOENZYMES AND L-ARGININE METABOLIZING
FUNCTIONS
In human beings and mammals, there are two isoforms of arginases,

arginase-1 (Arg-I) and arginase-II (Arg-II). Both isoenzymes are

FIGURE 1 | L-arginine metabolism by iNOS and arginase and the

functional consequences in macrophages. ODC, ornithine

decarboxylase; OAT, ornithine aminotransferase.

encoded by two separate genes. In human beings, Arg-I gene

maps to chromosome 6q23 and encodes a 322 amino acid pro-

tein (19–21), while Arg-II gene maps to chromosome 14q24.1

and encodes a 354 amino acid protein (22–24). At the subcel-

lular level, Arg-I is mainly localized in cytoplasm and Arg-II in

mitochondrion (25). The physiological role of the different sub-

cellular compartmentation of the two isoenzymes is not known.

The two isoenzymes, however, share similar structure, reveal more

than 50% of homology of their amino acid residues with 100%

homology in the areas, which are critical for their l-arginine

metabolizing function (22, 23, 26). Although both Arg-I and Arg-

II are to hydrolyze l-arginine to produce urea and l-ornithine

(25), the functional impact of the two isoenzymes is either sim-

ilar or different depending on specific organs/cells. For example,

increased activity and/or expression of either Arg-I or Arg-II in

endothelial cells impair the vasoprotective endothelial NO produc-

tion via eNOS (27). However, in macrophages, Arg-I and Arg-II

seem to play an opposite function, which we will discuss later in

this article. The primary function of Arg-I is to remove exces-

sive nitrogen produced from amino acid metabolism through

hepatic urea cycle, which is otherwise toxic for our body (28,

29), because Arg-I is constitutively and abundantly expressed as

a cytosolic enzyme in the liver (30). No Arg-II could be detected

in hepatocytes. The vital effect of hepatic Arg-I is evidenced by the

studies showing that Arg-I knockout mice reveal severe symp-

toms of hyperammonemia and die between postnatal days 10

and 14 (31). Patients with Arg-I deficiency due to gene mutation

reveal urea cycle disorder, hyperargininemia, and exhibit progres-

sive neurologic impairment, development retardation, and hepatic

dysfunction associated with cirrhosis and carcinoma in early child-

hood (28, 29). Arg-I has been reported to be expressed also in

many extrahepatic tissues such as stomach, pancreas, and lung

(32). The functions of Arg-I in these organs are far from clear.

Unlike Arg-I, Arg-II is confined mainly to kidney, brain, prostate,

intestine, and also pancreas (22, 23, 32). The functions of Arg-

II in these organs are not known. The best characterization of

Arg-II function is done in vascular endothelial cells in which the

isoenzyme, similar to Arg-I, metabolizes l-arginine to urea and l-

ornithine, which limits l-arginine bioavailability for generation of

the vasoprotective NO via eNOS, resulting in vascular endothelial

dysfunction (33, 34). This effect of arginases on endothelial cells is

attributable to eNOS-uncoupling, a situation that eNOS enzyme

produces increased superoxide anion, but decreased NO (34–39),

which is thought to be attributed to l-arginine deficiency, leading

to oxidative stress, and enhanced expression of endothelial inflam-

matory adhesion molecules such as VCAM-1 and ICAM-1 (39),

since endothelial NO reveals important anti-oxidative and anti-

inflammatory functions and suppresses expression of the adhesion

molecules (40). These effects of Arg-II are dependent on the enzy-

matic activity, since loss-of-function point mutation of histidine

to phenylalanine at position 160 in Arg-II abolishes its l-arginine–

urea hydrolase activity and is unable to cause eNOS-uncoupling

and the inflammatory responses in endothelial cells (39). We have

recently reviewed the aspect of arginase in eNOS-uncoupling (41).

Arginase also exerts pleiotropic effects, i.e., l-arginine–urea hydro-

lase activity-independent effect, which we will discuss later in this

article.
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ARGINASE ISOENZYMES AND MACROPHAGE FUNCTIONS
As mentioned above, macrophages are heterogeneous and undergo

phenotypic changes, depending on microenvironmental stimuli.

The expression of Arg-I and Arg-II is inducible in macrophages

depending on external stimuli (42, 43). As discussed, NO from

iNOS in macrophages is linked to M1, whereas ornithine generated

from arginase is associated with M2 phenotype (11). Substan-

tial number of studies demonstrates that Arg-I is dominantly

expressed in M2 cells and reduces NO production from iNOS

through limiting bioavailability of intracellular l-arginine, result-

ing in dampening of inflammatory tissue damage and suppression

of clearance of intracellular pathogens (44–48). In contrast to Arg-

I, only very little and even contradictory information is available

about the expression and role of Arg-II in macrophage phenotype

regulation and inflammatory responses. Until we have systemati-

cally investigated this specific aspect in macrophage inflammatory

responses (43), the function of Arg-II in macrophages is believed

to be anti-inflammatory, which is extrapolated from its similar

function as Arg-I on l-arginine/NO metabolism. An early study

showed that Arg-II gene is a direct target of liver X receptor that

has been shown to exert inhibitory effects on expression of inflam-

matory genes in macrophages (49). Based on this association, the

authors suggest that Arg-II is anti-inflammatory. The functional

analysis is, however, not done. It is of particular importance to note

that LPS stimulation exclusively enhances iNOS in macrophages

associated with M1 phenotype (43, 50). We could demonstrate

that iNOS induction in macrophages is paralleled with enhanced

expression of Arg-II, but not Arg-I (43), which suggests that

Arg-I and Arg-II shall have different functions in macrophage

inflammatory responses or phenotype regulation. In line with this

observation, accumulation of Arg-II-expressing macrophages is

associated with advanced atherosclerotic lesions in which pro-

inflammatory cells are dominant (42), suggesting that Arg-II is

associated with pro-inflammatory responses. Because of this con-

tradictory concept about the role of Arg-II and lack of functional

analysis of Arg-II in macrophage inflammatory responses, we

recently systematically characterized the role of Arg-II in regula-

tion of macrophage inflammations at the cellular and whole body

levels in mouse models of chronic inflammatory diseases such

as obesity-linked insulin resistance, type-II diabetes mellitus, and

atherosclerosis (43).

In this study, we demonstrate that M1 activation of

macrophages by LPS exclusively up-regulates iNOS and Arg-II,

but not Arg-I expression in murine and human macrophages

(43). Silencing Arg-II gene in human monocyte/macrophage cell

lines decreases the cell adhesion to endothelial cells with reduced

production of pro-inflammatory cytokines in response to LPS or

ox-LDL at both the mRNA and protein levels. Moreover, LPS-

induced up-regulation of numerous pro-inflammatory media-

tors, including MCP-1, TNF-α, IL-6, MMP14, and iNOS, is sig-

nificantly suppressed in macrophages isolated from Arg-II−/−

mice as compared with those from wild-type control animals.

Convincingly, introducing Arg-II gene back to the Arg-II−/−

macrophages restores or enhances the LPS-stimulated expression

of the pro-inflammatory genes to much higher levels compared to

the Arg-II+/+ cells from wild-type mice. Importantly, Arg-II−/−

mice are protected from systemic pro-inflammatory macrophage

infiltration in various organs and expression of pro-inflammatory

mediators in high-fat diet (HFD)-induced obesity. Arg-II−/− mice,

when fed a HFD, although have similar body weight as WT con-

trols, reveal lower fasting plasma glucose concentration, are more

glucose tolerant and insulin sensitive (43) as compared to WT

mice on HFD. Interestingly, Arg-II levels in macrophages are sig-

nificantly increased in WT mice fed HFD, which is associated

with pro-inflammatory responses. The pro-inflammatory func-

tion of Arg-II in macrophages is further demonstrated in another

chronic inflammatory disease model, i.e., atherosclerosis mouse

model (43). Knocking-out Arg-II gene in the atherosclerosis-

prone ApoE−/− mice (ApoE−/−/Arg-II−/−) decreases inflam-

matory cytokine levels and macrophage content in the aortas,

reduces atherosclerotic plaque formation, and reveals more sta-

ble plaque features as compared to ApoE−/−Arg-II+/+ control

mice. Since M1 pro-inflammatory macrophages play crucial role

in development of insulin resistance and type-II diabetes and

atherogenesis (51–55), our results demonstrate that Arg-II pro-

motes pro-inflammatory or M1 phenotype of macrophages and

favors chronic inflammatory disease development such as obesity-

associated insulin resistance, type-II diabetes, and atherosclerosis.

It is to mention that the pro-inflammatory effect of Arg-II in

macrophages does not seem to be relying on iNOS, since inhibition

of iNOS does not significantly affect expression of several pro-

inflammatory genes in macrophages. The dissociation of arginase

activity from iNOS has been reported by several studies, showing

that alteration of arginase activity in macrophages is not neces-

sarily associated with functional changes in iNOS (56–59). These

iNOS-independent pro-inflammatory responses mediated by Arg-

II in macrophages are due to enhanced mitochondrial ROS, since

reintroduction of the Arg-II gene into Arg-II−/− macrophages

enhances mitochondrial O�−

2 and H2O2 generation and inhibi-

tion of mitochondrial ROS significantly reduces Arg-II-mediated

inflammatory responses. The function of Arg-II in comparison

with Arg-I in macrophage inflammatory responses and chronic

inflammatory diseases, i.e., atherosclerosis and insulin resistance

is summarized in Figure 2. It is not very surprising, since Arg-II is

a mitochondrial enzyme (60). The question remains elusive how

Arg-II affects mitochondrial function leading to mitochondrial

ROS production in macrophages.

Although we have characterized the function of Arg-II in

macrophages, many important questions remain unanswered. In

the following section, we will briefly discuss several important

remaining questions regarding the role of arginase isoenzymes in

macrophage functions.

FUTURE RESEARCH QUESTIONS AND PERSPECTIVES
DOES Arg-I PLAY A CAUSAL ROLE IN M2 MACROPHAGE PHENOTYPE?

As discussed, Arg-I is constitutively expressed in hepatocytes and

is inducible in macrophages, e.g., by Th2 cytokines IL-4 and

IL-13 (44, 61, 62). It is highly upregulated in M2 macrophages

and widely used as a M2 macrophage marker (11). It has been

suggested that Arg-I in macrophages promotes Th2 cytokine pro-

duction, contributing to resolution of inflammation and tissue

repairing (63). A study in human smooth muscle cells showing

that overexpression of Arg-I gene is able to decrease LPS-induced

pro-inflammatory cytokine production (64), seems to support the

www.frontiersin.org October 2014 | Volume 5 | Article 533 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yang and Ming Arginase and macrophage functions

FIGURE 2 |The distinct role of Arg-I and Arg-II in macrophage

inflammatory responses. Dashed line indicates that the causal role of

Arg-I in M2 phenotype requires determination.

anti-inflammatory function of Arg-I. However, mice with spe-

cific Arg-I gene deficiency in macrophages show exacerbated Th2

response and fibrosis in the liver of Schistosoma mansoni infected

mice (65), which does not seem to support previous suggestions

in promotion of Th2 responses (63). Most studies demonstrate

only the positive correlation of Arg-I with M2 macrophage pheno-

type, the causal relationship of Arg-I with macrophage phenotype

is, however, not fully clear. Importantly, a recent study demon-

strates that Arg-I deficient mouse macrophages has even higher

polyamine production and does not impair gene expression in

response to IL-4 (66), which raises the question about the role

of Arg-I in M2 macrophage regulation. Future research shall

elucidate the causal role of Arg-I in regulation of macrophage

functional polarization.

DOES L-ARGININE DEFICIENCY EXPLAIN THE FUNCTIONS OF ARGINASE

ISOENZYMES IN MACROPHAGES?

There is continuing debate about the role of l-arginine defi-

ciency in arginase-induced alterations of cellular functions. It

is generally believed that arginase including Arg-I and Arg-II

causes l-arginine deficiency, resulting in decreased NO produc-

tion from eNOS in endothelial cells (endothelial dysfunction) and

from iNOS in macrophages (M2 type function) (41). It has been

demonstrated that the concentration of l-arginine in adult human

and mouse plasma (0.1 mmol/L), as well as intracellular arginine

concentration (0.05–0.2 mmol/L) far exceed the Km of eNOS (2–

20 µmol/L) (67). Even though, acute l-arginine supplementation

in cells, isolated blood vessels, or in animals or in patients is able

to enhance NO production and improve endothelium-dependent

relaxations, a situation called “arginine paradox” (68, 69). This

phenomenon led to doubt whether l-arginine deficiency caused by

arginase is true. Several hypotheses have been proposed to explain

the “arginine paradox.” First, a “relative” intracellular l-arginine

deficiency, resulting from an increased level of endogenous com-

petitors for eNOS substrate l-arginine such as ADMA that binds

to eNOS but could not be metabolized by the enzyme on top of

increased arginase activity either Arg-I or Arg-II in endothelial

cells has been suggested (70). Experiments showed that inhibition

of arginase improves eNOS function and overexpression of Arg-I

or Arg-II causes eNOS-uncoupling, leading to oxidative stress, and

decreased bioavailability of endothelial NO production, which is

associated with only 11–25% reduction in intracellular l-arginine

concentration in the presence of high-extracellular concentration

of l-arginine (0.4 mmol/L) (71). These results seem to support the

“relative l-arginine deficiency” hypothesis. It is worthy of noting

that NO production, particularly, iNOS/NO can be inhibited by

TGF-β, which is a strong Arg-I up-regulator and present in very

high amount during wound healing (72). It is presumable that NO

production is inhibited even under the condition of high-plasma

l-arginine concentration because of high concentration of TGF-β.

Whether this could explain the “arginine paradox” is not known.

Another alternative hypothesis is that a specific intracellular pool

of l-arginine for NO production may exist in endothelial cells

and could be depleted by enhanced arginase (73), yet, it is highly

speculative. It is not known whether enhanced arginase activity,

particularly Arg-II, could also cause iNOS-uncoupling, affecting

macrophage functions. Another puzzling is that why Arg-I and

Arg-II share the same l-arginine metabolizing function but seem

to exert distinct effects on macrophages.

If there is no real l-arginine deficiency caused by arginase either

Arg-I or Arg-II, l-arginine supplementation therapy aiming to

enhance endothelial NO production and to treat vascular disease

shall not work. In accordance, clinical studies in patients with acute

myocardial infarction or with peripheral arterial disease demon-

strate that 6-month oral l-arginine supplementation (3 g three

times a day on top of standard medications) increase mortality

and shorten walking distance accompanied with decreased NO

production as compared to the placebo group (74). The underlying

mechanisms are not known and may be related to the induc-

tion of arginase, particularly Arg-II in vascular endothelial cells

by chronic l-arginine exposure as demonstrated by recent stud-

ies including our own (37, 69). These studies show that acute

supplementation of l-arginine to endothelial cells increases NO

bioavailability, while chronic l-arginine supplementation causes

eNOS-uncoupling mediated by up-regulation of Arg-II levels,

leading to endothelial senescence (69). Similar to this finding,

l-arginine has also been reported to cause iNOS-uncoupling in
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macrophages (75). These studies do not support a role of absolute

l-arginine deficiency caused by arginase, but strongly implicate

that too much l-arginine is even harmful, which is probably due

to production of other undesired metabolites from l-arginine as

speculated (76). Alternatively, a pleiotropic effect may also provide

explanation for the detrimental effects of arginase at least for Arg-

II under the condition of sufficient l-arginine supply. This point

will be discussed below.

DOES ARGINASE EXERT PLEIOTROPIC EFFECTS: L-ARGININE–UREA

HYDROLASE ACTIVITY-INDEPENDENT EFFECTS?

Any proteins or enzymes may have pleiotropic or off-target effects

that are not necessarily related to their canonical functions. We

have recently discovered that Arg-II exhibits its biological func-

tions in vascular cells through both mechanisms, which are either

dependent or independent on l-arginine metabolizing function

(l-arginine–urea hydrolase activity) (77). We show that the cat-

alytically inactive mouse Arg-II mutant with a point mutation of

histidine to phenylalanine at position 160 (referred to as H160F),

which lost its l-arginine–urea hydrolase activity, although does

not cause eNOS-dysfunction in endothelial cells, promotes cell

apoptosis and senescence to the same extent as the WT Arg-II

in vascular smooth muscle cells (VSMC). In contrast, only the

WT Arg-II (not the H160F inactive mutant) exerts function to

promote VSMC proliferation (Figure 3), which can be attributed

to the production of polyamine from l-arginine/ornithine path-

way. This intriguing result provides evidence that Arg-II on one

hand promotes VSMC proliferation and on the other hand causes

VSMC apoptosis and senescence. While the cell proliferation–

stimulating effect of Arg-II is dependent on its l-arginine–urea

hydrolase activity via synthesis of ornithine and polyamines (71,

78), the cell apoptosis/senescence-promoting effect is independent

of its enzymatic activity (Figure 3). Further experiments show that

this l-arginine–urea hydrolase activity-independent effect is medi-

ated through signaling pathways including mTORC1/S6K1, JNK,

and ERK1/2, converging on p66Shc leading to H2O2 production

and mitochondrial dysfunction leading to cellular apoptosis and

senescence (77) (Figure 3). In parallel to these signaling pathways,

p53 is also activated by Arg-II independently of its l-arginine–

urea hydrolase activity, contributing to the cell senescence of the

FIGURE 3 | Canonical and pleiotropic effects of Arg-II in vascular endothelial and smooth muscle cells and underlying signaling mechanisms in

development of vascular aging and age-associated vascular diseases.
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apoptosis process. Importantly, expression of Arg-II and activities

of S6K1, ERK1/2, p66Shc, and p53 are all augmented in senes-

cent VSMC, and genetic inhibition or ablation of Arg-II not only

reduces these signaling pathways and VSMC senescence/apoptosis

in vitro but also in atherosclerosis-prone ApoE−/− mice in vivo,

which at least in part accounts for the reduced plaque lesion for-

mation and a more stable plaque characteristics in aortic roots in

Arg-II-deficient ApoE−/− mice (43, 77) (Figure 3). Moreover, we

also show that Arg-II negatively regulates autophagy function –

a cell protective mechanism of lysosomal proteolysis aiming to

remove harmful proteins (79) – in endothelial cells, which is also

independent on its l-arginine–urea hydrolase activity [Ref. (69),

Figure 3]. Decreased autophagy function in vascular cells and

macrophages are implicated in vascular aging and atherosclerotic

vascular disease. Indeed, recent studies provide evidence suggest-

ing that adequate induction of autophagy protects against cellular

injury in endothelial and smooth muscle cells and formation of

foam cells, resulting in anti-atherosclerotic effects (80–82). In line

with this finding, genetic ablation of Arg-II in atherosclerotic

ApoE−/− mice preserves endothelial autophagy in aortas, which

associates with reduced atherosclerosis lesion formation (69). In

this study, we also demonstrate that Arg-II impairs endothelial

autophagy independently of the l-arginine–urea hydrolase activ-

ity through activation of mTORC1/S6K1 and p53, resulting in

inhibition of AMPK in endothelial cells, which contributes to

development of atherosclerosis (Figure 3). How Arg-II, indepen-

dently of its l-arginine–urea hydrolase activity, impacts vascular

cell functions, remains to be investigated. Further, whether these

enzymatic dependent and independent effects also exist for Arg-

I and whether the pleiotropic effects of arginase account for

functional regulations in macrophages are unknown.

WHAT ARE THE MECHANISMS THAT REGULATE Arg-I AND Arg-II IN

MACROPHAGES

Arginase-I gene expression is inducible in macrophages by a vari-

ety of stimuli, for example, by elevated cAMP, IL-4, and TGF-β

(50). The regulation of Arg-I gene expression is mainly investi-

gated at the transcriptional levels in murine macrophages, while

it remains to be investigated whether the findings are also true

in human cells. A number of transcription factors and nuclear

receptors such as RXR, PPARγ, PPAR δ, STAT6, C/EBPβ, KLF4,

PU.1, IRF8, and AP-1 have been shown to bind directly to spe-

cific sites in the promotor region of Arg-1 gene and in turn to

enhance Arg-1 expression. The complexity of Arg-I gene regula-

tion mechanisms are further complicated by the fact that these

transcription factors can be regulated by post-translational mod-

ification mechanisms such as SUMOylation and ubiquitination

that are participating in the regulation of Arg-1 gene [for detailed

description of these mechanisms please refer to the review articles

(83, 84)]. There is, however, little information available regarding

the upstream regulatory mechanisms involved in gene expression

and enzymatic activity of Arg-I in macrophages. Also, very limited

information is provided on regulation of Arg-II in macrophages.

The stress sensor p38mapk has been demonstrated to partici-

pate in up-regulation of activity and expression of Arg-I and

Arg-II in macrophages (85, 86). This seems to be also the case

in bovine and rat aortic endothelial cells for Arg-I expression

(87) and in human endothelial cells and mouse penile tissues

for Arg-II (88, 89). In accordance, in vivo treatment of hyperten-

sive mouse induced by angiotensin-II infusion with a p38mapk

inhibitor prevents elevation of Arg-II expression and activity and

enhances endothelium-dependent relaxation (88). These studies

demonstrate that p38mapk is the upstream regulator of Arg-

II in endothelial cells and macrophages. Our most recent study

provides evidence showing that p38mapk also functions as down-

stream effector of Arg-II in endothelial cells, causing oxidative

stress through eNOS-uncoupling, since overexpression of Arg-II in

human endothelial cells causes eNOS-uncoupling and augments

p38mapk activation (90), and inhibition of p38mapk either phar-

macologically by SB203580 or genetically by silencing the major

isoform p38mapkα in endothelial cells prevents eNOS-uncoupling

effect by Arg-II gene overexpression (90). Furthermore, mice fed

HFD, an obesity mouse model, exhibit enhanced Arg-II expres-

sion/activity and p38mapk activity and eNOS-uncoupling in the

aortas and inhibition of p38mapk recouples eNOS activity in the

obese mice. Moreover, mice deficient in Arg-II (Arg-II−/−) on

the same obesogenic diet reveal decreased p38mapk activity and

eNOS function is fully preserved. These results demonstrate that

Arg-II causes eNOS-uncoupling through activation of p38mapk

in HFD-induced obesity (90). Together with the experiments dis-

cussed above, there might be a positive regulatory circuit between

p38mapk and Arg-II at least in vascular endothelial cells. Whether

this mechanism is also involved in Arg-I and/or Arg-II gene expres-

sion in macrophages is not known. A similar positive regulatory

circuit between S6K1 and Arg-II has also been demonstrated by

our recent studies in vascular endothelial cells (39).

In this study, we show that a persistent hyperactive S6K1 activity

is found to play a causal role in eNOS-uncoupling, leading to vas-

cular endothelial aging and senescence (39, 91). Overexpression

of a constitutively active S6K1 mutant up-regulates Arg-II (not

Arg-I) gene expression and arginase activity in non-senescent cells

by stabilizing Arg-II mRNA (39). Conversely, silencing S6K1 in

senescent cells reduces Arg-II gene expression and activity and

genetic or pharmacological inhibition of S6K1 in senescent cells

or in old rat aortas decreases Arg-II gene expression and activity,

demonstrating a critical role of hyperactive S6K1 in up-regulating

Arg-II gene expression, resulting in enhanced arginase activity in

endothelial aging. Interestingly, silencing Arg-II gene in senes-

cent endothelial cells or deficiency in Arg-II gene in mice reduces

S6K1 activity, recouples eNOS function in aging, and inhibits

endothelial expression of adhesion molecules such as ICAM-1

and VCAM-1, resulting in inhibition of monocyte-endothelial

cell interaction, demonstrating a positive vicious cycle between

S6K1 and Arg-II in vascular endothelial aging. These studies pro-

vide evidence showing that a mutual positive regulation between

S6K1 and Arg-II gene expression accelerates endothelial aging

through eNOS-uncoupling, leading to oxidative stress and inflam-

mation (39). Further studies will analyze whether S6K1 is also

involved in regulation of Arg-I and/or Arg-II in macrophages,

participating in macrophages phenotype determination. Also, the

relationship between p38mapk, S6K1, and arginase remain to be

analyzed.

Other signaling pathways such as GTPase RhoA and its down-

stream kinase ROCK have been reported to mediate Arg-I gene

Frontiers in Immunology | Molecular Innate Immunity October 2014 | Volume 5 | Article 533 | 6

http://www.frontiersin.org/Molecular_Innate_Immunity
http://www.frontiersin.org/Molecular_Innate_Immunity/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yang and Ming Arginase and macrophage functions

expression in porcine coronary arterioles in response to hydro-

gen peroxide (H2O2) and peroxynitrite (92) and Arg-II (but not

Arg-I) expression and/or activity in women with preeclampsia

(93) and in human endothelial cells in response to thrombin

(35), oxidized LDL (94), and hyperglycemia (36). In macrophages,

however, ROCK kinase inhibitor enhances Arg-I expression and

shift M1 to M2 phenotype (95), suggesting that ROCK pathway

may inhibit Arg-I expression. No information is available so far

whether Rho/ROCK pathway is involved in Arg-II regulation in

macrophages. For the detailed regulatory signaling mechanisms

of Arg-I and Arg-II expression/activity in vascular cells, please

refer to the review article (41).

CONCLUSION
The two isoforms of arginase, i.e., Arg-I and Arg-II, although

located in different subcellular compartments, share the same

function on l-arginine metabolism. Both isoenzymes hydrolyze

l-arginine to urea and l-ornithine, resulting in eNOS-uncoupling

in endothelial cells. In macrophages,Arg-I and Arg-II can be differ-

entially induced by external stimuli. Evidence has been provided

that Arg-II plays a causal role in M1 functions, whereas Arg-I

is associated with M2 function in macrophages and widely used

as M2 marker for macrophages. However, the causal relationship

between Arg-I and M2 phenotype warrants further investiga-

tion. It remains to be characterized how Arg-I and Arg-II share

the same l-arginine metabolizing effect, but exhibit distinct or

opposite effects in macrophage inflammatory responses. Arg-II

as therapeutic target in chronic inflammatory disorders such as

age-associated vascular dysfunctions, atherosclerosis, and type-II

diabetes and complications has shown promising beneficial effects

in genetic modified mouse models (39, 43, 96). Some studies

implicate that targeting Arg-I is also beneficial for cardiovascular

functions, these studies are solely dependent on the pharmacolog-

ical inhibitors, which inhibit both isoforms of arginases (97–99),

since systemic Arg-I deficient mouse exhibits severe symptoms

of hyperammonemia, and die between postnatal days 10 and 14

(31), one should consider that these inhibitors could inhibit liver

Arg-I, resulting in hyperammonemia. Taking into account that

Arg-I in macrophages may exhibit opposite effects as Arg-II, this

is another important reason to develop specific Arg-II inhibitors.

Moreover, whether Arg-I and Arg-II exert pleiotropic effects on

macrophage functions as demonstrated in vascular cells shall be

investigated. If this proves to be true, development of therapeu-

tic drugs that target l-arginine–urea hydrolase activity may have

limitation on treatment of inflammatory diseases. Additionally,

signaling pathways that are involved in regulation of gene expres-

sion and enzymatic activity of both Arg-I and Arg-II shall be

further elucidated in macrophages. Characterization of these sig-

naling mechanisms will also provide possibilities or rationales to

target arginase isoforms specifically in an indirect way to treat

inflammatory diseases. Finally, we have focused on cardiovascular

and metabolic diseases here. But, functional analysis of arginase

isoenzymes and their roles in macrophage polarization should

also help understanding other diseases, notably cancer. In partic-

ular, monocytes and macrophages are recruited into tumors and

regulate tumor growth by changing their functional phenotypes,

which is originally demonstrated by Mills and colleagues (100).

M1 macrophage has been shown to have antitumor immunity,

whereas the M2 macrophage exerts protumorigenic properties

(101). Regardless of the inflammatory circumstance, it appears

that macrophage arginases are key players in influencing disease

outcomes.
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