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1. Introduction and statement of results. If f(z) is an entire function of ex-
ponential type t and |/(x)| í¡ 1 for real x, then according to a well-known theorem of
S. N. Bernstein [2, p. 206]

(1.1) \f'(x)\ ^ t,        -co < x < co.

Besides, it is a simple consequence of the Phragmen-Lindelöf principle that
[2, 6.2.4, p. 82]
(1.2) |/(*+00| = eZ]y\        — °o < x < co, -co < y < oo.

It has been proved by Boas [3] that if h,(Tr/2)=0

i log \f(reiB)\ \I hf(6) = lim sup       w —- is the indicator function of f(z)
\ r-oo r j

and/(x+(y#0) for y>0, then (1.1) can be replaced by

(1.3) |/'(x)| S r/2,        -co < x < œ,
and (1.2) by
(1.4) \f(x + iy)\<:(etM + l)/2,        -co < x < oo, -oo < y ^ 0.

An entire function f(z) of exponential type which is bounded on the real axis,
does not vanish in the upper half-plane, and for which hf(Tr/2)=0 is called asym-
metric.

The class of asymmetric entire functions of exponential type t includes all
functions p(eiz) where p(z) is a polynomial of degree «S [r] and p(z)^=0 in |z| < 1.
Thus the above results of Boas are generalizations of the following theorems about
polynomials.

Theorem A [5]. If p(z) is a polynomial of degree « such that \p(z)\ ^ 1 for \z\ ̂  1
andp(z) does not vanish in \z\ < 1, then

(1.5) \p'(z)\ fi n/2
for |z|ál.

Theorem B [1], Under the conditions of Theorem A

(1.6) \p(z)\i(R"+l)/2
for |z| = F>l.
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502 N. K. GOVIL AND Q. I. RAHMAN [March

About ten years ago the following problem was proposed by Professor R. P.
Boas, Jr.

Iff(z) is an entire function of exponential type r such that |/(x)| S 1 for real x,
h,(-rr/2) = 0 and /(x + /y)/0 for y>k, what are the bounds for |/'(x)| and
|/(x+z»|? For k = 0 these should reduce to (1.3) and (1.4) respectively.

While seeking the desired extension of (1.4) we have only been able to prove the
following

Theorem 1. Letf(z) be an entire function of exponential type t such that \f(x)\ S 1
for real x, hf(Tr/2) = 0 andf(x + iy)^0for y>k where kSO. If, in addition, f(z) is
periodic on the real axis with period 2tt, then for 2kSy<0

(1.7) |/(x + /»| S ((e^+eM)/(l+eM))M-

In the problem proposed by Professor Boas the hypothesis "f(x + iy)^0 for
y>k" is stronger than the hypothesis "/(x + z»^0 for y>0" if A;<0 but sur-
prisingly enough we cannot improve upon (1.3) as the following example shows.

Let t be rational, i.e. it is the quotient of two positive integers A^, N2. Let
a= 1/N3N2 where N3 is a positive integer. Then

fa(z) = {(eiaz-e-a,i)l(l+e-ak)ya

is an entire function of exponential type t such that h,a(ir/2) = 0,

max    |/0(x)| = 1
— oo <x< oo

and |/aCx+yO| has all its zeros on y=k. But e>0 being given we can make

-ak\ i/o - 1 I
max    |/0'(x)| =    max

— CO<^<00 —oo<x<co

(giax_g-ak\%

l+e~ak j 1+e-

= r/(l+e~ak)

>  t/2-b

by making a sufficiently small. Thus the bound in (1.3) cannot in general be im-
proved by assuming that/(z)#0 in a larger half-plane. However, we prove the
following

Theorem 2. Let f(z) be an entire function of exponential type t having all its
zeros on lmz = kS0. //«/(W2)=0, hr(n/2)S-cx<0, and |/(x)|^l for real x,
then

(1.8) |/'(x)| S t/(1+expidió)),        -oo < x < oo.

If t/ci is a positive integer, then the function

/exp (/c!z)-exp (-CiA:)\T'ci
/n« = (^ + exp (-cxk)
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satisfies the hypotheses of Theorem 2 and

max    \f^(x)\ = r/(l+exp(cx\k\)).
— oo <x< oo

Hence the bound in (1.8) is sharp.
We also prove

Theorem 3. Let f(z) be an entire function of exponential type r having all its
zeros in Imz^BO. If h¡(rr/2) = 0, hr(n/2)^-cx<0, and also hg,(rr/2)ú-cx<0
where g(z) = eUz con {/(z)}, then |/(x)| ^ 1 for real x implies (1.8). The result is sharp
andfCi(z) is extremal.

Theorem 3 includes as a special case the following result recently proved by
M. A. Malik [7].

Theorem C. Let p(z) be a polynomial of degree n which does not vanish in \z\ <K
where Fäl. Then \p(z)\á 1 for |z|^l implies \p'(z)\^n/(l+K) for \z\£ï. The
bound is attained for p(z) = ((z + K)/(l + K))n.

In fact, p(eu) satisfies the hypotheses of Theorem 3 with r=n and cx = 1.
It is clearly of interest to determine a bound for the sth derivative. Here we

restrict ourselves to polynomials and prove the following

Theorem 4. Let p(z) be a polynomial of degree n which does not vanish in \z\ <K
where F^ 1. Then \p(z)\ á 1 for \z\ ̂  1 implies

n n\                     i ¡s-,/ m ^ n(n-T)- ■ (n-s+l)   f   . .   . .(1-9) |/><s)00l Ú —-j^ys-'-  for |z| g 1.

We also consider the analogous problem for rational functions, i.e. quotient of
two polynomials.

Let/(z)=/71(z)//?2(z) be a rational function of degree « in the sense that/(z)=w
has « roots for general w. Suppose that/(z) has neither zeros nor poles in |z| <K
where K>\. If |/(z)|á 1 for |z|¿ 1 what is the bound for |/'(z)|?

The function 77(z)=/(Fz) has all its zeros and poles in |z|2l. Let |z0| < 1 and
consider the function t;(z) = 77((z + z0)/(z0z+1)) which is also a rational function of
degree n and its zeros zv, poles £v lie in |z|S: 1. Hence

|o'(0)M0)| = |2(-l/zv)-2(-l/U| = 2n.

Since v'(0)/v(0) = (l - \z0\2)u'(z0)/u(z0) we conclude that \u'(z0)/u(z0)\ Ú2n/(l - |z0|2).
Thus |/'(Fz0)//(Fz0)| = (l/F)|M'(z0)Mzo)| Ú (2n/K)/(l - |z0|2). Taking z0 =
(1/F) exp (7Ö0) we get |/'(exp (i60))/f(exp (ie0))\ g 2nK/(K2-l). Hence

(1.10) max |/'(z)| S 2nF/(F2-l).

Next we consider the following more general problem.
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Let/(z) be a rational function of degree «. Assume that/(z) does not have poles
in the annulus 1 — d< \z\ < 1 + d. If |/(z)|^l for |z| = l, what is the bound for
l/'(z)|?

We prove

Theorem 5. Let f(z)=px(z)/p2(z) where px(z), p2(z) are polynomials of degree nx
and «2 respectively, |/(z)|^l for |z| = l, and let f(z) have no poles in 1— d<\z\
<l+d. Then

(1.11) max |/'(z)| S n2(3 + 4/d)   ifnx S «2,
|2| = 1

whereas

(1.12) max |/'(z)| S 4nx(l + l/d)-n2   ifnx ^ n2.
|2| = 1

One might wish to determine a bound for the sth derivative of the/(z) of Theorem
5. To this effect we prove the following

Theorem 6. Let f(z)=px(z)/p2(z) where px(z),p2(z) are polynomials of degree
nx,n2 respectively with nxSn2. If |/(z)|5=l for |z| = l and p2(z) has no zeros in
\—d< \z\ < 1+d, then

(1.13) max |/<s)(z)| < e3sl&Y

ifn2^3.

We also prove

Theorem 7. Let f(z)=fix(z)/f2(z) where fix(z),fi2(z) are entire functions of ex-
ponential type tx, t2 respectively. If the zeros zn off2(z) do not lie in |Im z\<d and
2™=i l/|Imzn|^^<oo, then \f(x)\Sl for —co<x<co implies

,***\ i/-(S)/m     si r"ÍTX + T2 + l\s       f , .   . ,        2Adsin6      \  ,.(1.14) sup     /()(x)<—     I——r—   expVsinö + 7-;-:—^>dd.
K        '     -oo<i<«'-/     Wl        7rJ0\ d )       V\ (rx + T2+l-Smd)j

Lp inequalities. The following theorem which is analogous to (1.3) is proved
in [8].

Theorem D. Ifif(z) is an entire, function of exponential type r belonging to V,
lSp<<x>, on the real axis, hf(Tr/2) = 0 and f(z)^0 for y>0, then for p^ 1 we have

aOO \   l/p /   fOO \   UpJf'(x)\pdxj     ác¿"v(J  Jf(x)\pdxJ    ,
where

_2tt _ 2-p7r1/2r(i/z+l)
c„ S? \iw\> da       r(y+V

If we use Lemma 11 below, the argument of Rahman [8] yields the following
extension of Theorem D.
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Theorem 8. If f(z) is an entire function of exponential type r belonging to Lp,
l<i/7<oo, on the real axis, h,(ir¡2) = 0, hr(Tr/2)-¿-cx<0, hg.(ir/2)Ú -cx<0 and

f(z)=i0far Im z>k where k^O, then for p^ 1 we have

a CO \  Up I  fCO \  l/pJ/'(x)|*Ox]       Ú  Di"ry    Jf(x)\>dx)     .

where

D„ =P C2n$2*\exp(cx\k\) + eia\pda

We do not know if inequality (1.16) is sharp.
From Lemma 11 below it follows that if p(z) is a polynomial of degree « having

all its zeros in |z| S F^ 1, q(z)=zn con {p(l/z)}, then

(1.17) K\p'(z)\ Ú \q'(z)\    for |z| = 1.

Hence if/>(z) = 2?=o ct^v then

¡•2k p2k r-2ji

(l+K2)\     \p'(ew)\2 dd =  \     \p'(ete)\2dd+\    K2\p'(ew)\2 dd
Jo Jo Jo

¡•2n p2x
g        \p'(eie)\2d8+\     \q'(eie)\2dd

Jo Jo

= 2Jfv2\av\2+2(n-v)2\aA
Kv = 0 v = 0 J

= 2,r{J>2 + («-v)2)|av|2}

n

Ú n22-n 2 H2
v = 0

p2n
= n2        \p(ei6)\2 dd

Jo
and we getb

f*2n „2 i»2;t
0-18) Jo \p'(ei°)\2deïT^I-2jo \P(ë°)\2de.

We can prove the following more general

Theorem 9. If the polynomial p(z) of degree n has no zeros in \z\ <K where
K±\, then for 8^1

r-2x i>2jl

[p'Wdez Eyi   \pOP)\'de,
Jo Jo

where Eö = 2tt/\% \K+eia\ö da.
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506 N. K. GOVIL AND Q. I. RAHMAN [March

For K=l, Theorem 9 reduces to a theorem of De Bruijn [4]. Our method of
proof is analogous to a proof of De Bruijn's theorem given in [8] and so we shall
omit it.

Theorem 9 is not precise. The sharp inequality does not seem to be easily obtain-
able even for 8 = 2. To substantiate this remark we take the simple case of cubic
polynomials and prove the following

Theorem 10. Let p(z) = a3z3 + a2z2 + axz+a0 be a cubic polynomial having all
its zeros on \z\=K^l. Then

Jo    \P'(ei*)\2 d9 S Y^ê jo    \p(e")\2<ie
or

C \D'(eie)\2 dd <    9(1+4A: +^4)    f * iD(eiB)\2 ¿aJ0   |Me ;|   Ö   = l+9A'2 + 9/s:4 + A'6J0   l/V )l

according as KSK3 or K^K3 where K3 is the (only) root of the equation KB + 4Ke
-%K2-5 = 0 in (l,oo).

We have considerable evidence in favour of the following
Conjecture. Let p(z) be a polynomial of degree n having all its zeros in \z\ ̂  K^ 1.

Then

ST \P'(e»)\2 dd ^ rv2
ST \p(e'e)\2 de     ST \eine+Kn\2 dd

or
ST \p'(eie)\2 d6     n2 }T\eiB + K\2n-2dd
ST \p(P°)\2 dd -      ¡T\P° + K\2«dd

according as KSKn or K^Kn where Kn is the (only) root of the equation

1 _$T\eie + K\2n-2d6
¡T\eine + Kn\2d6 "    ¡T \ew + K\2n dd

in (1, oo).

2. Lemmas.

Lemma 1. Let f(z) be an entire function of exponential type having no zeros for
y>0 and having h(a)^h( — a) for some a, 0<a<-ir. Then |/(z)|^ |/(z)|/or y>0.

Lemma 1 is due to Levin [6]. For a proof see [2, p. 129].
Definition 1. An entire function/(z) of exponential type having no zeros for

y<0 and satisfying one of the conditions (equivalent, by Lemma 1) h( — d)^h(d)
for some a, 0 < a < n, or |/(z)| ^ |/(z)| for y < 0 is said to belong to class F.

Definition 2. An additive homogeneous operator B[fi(z)] which carries entire
functions of exponential type into entire functions of exponential type and leaves
the class F invariant is called a 5-operator.
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Lemma 2. Differentiation is a B-operator.

For a proof of Lemma 2 see [2, pp. 226-227].
Lemma 3 below is due to Levin [6], For proof see [2, p. 226].

Lemma 3. If f(z) is an entire function of exponential type r, B is a B-operator,
(»(z) is an entire function of class P and of order 1, type aä t, then

\f(x)\ è \oj(x)\,        -oo < x < co,
implies

\B[f(x)]\ Ú |5[o,(x)]|,        -co < x < oo.

Lemma 4. Iff(z) is an entire function of exponential type r such that hf(Tr/2) = 0,
f(x+iy)¿0far y>k^0, then

(2.1) |/(S)WI á e-"c|g<s)(x-27/c)|,        -oo < x < oo.

Here and elsewhere g(z) stands for ei,z con {/(z)}.

Proof of Lemma 4. Let F(z)=f(z + ik) and consider G(z) = eHz con {F(z)} =
e~,k g(z — ik) which is an entire function of order 1, type 2ït. Since f(z) has no
zeros for Im z>k, hf(rr/2) = 0 and hf( — ir/2)^T, the function G(z) has no zeros for
lmz<0, «g(-tt/2) = t and hG(n/2)^0. The function e'itzl2G(z) therefore belongs
to the class F mentioned above, and by Lemma 1

|exp(-7'rz/2)G(z)| à |exp(-7Tz/2)G(z)|

for Im z<0. Thus for Im z^O we have

|F(z)| = \ehs con {G(z)}\ << \G(z)\.

From Lemma 3 it follows that  |F<s)(z)|^ |C<s,(z)|  for Imz^O. In particular,
|F(s)(x-77c)|^|G<s)(x-7/c)|. Since |F(s)(x-//c)| = |/(s)(x)|,

\&s)(x-ik)\ = e-Jk\gis)(x-2ik)\

the lemma follows.

Lemma 5. Iff(z) is an entire function of exponential type r such that h,( — -n/2) = T
andf(z) has all its zeros in Im z^/cäO then

(2.2) e-*k\gfs)(x-2ik)\ á |/<s)(x)|,        -oo < x < oo.

Proof of Lemma 5. Since f(z) has all its zeros in Im z^k^O the function g(z)
= e"z con {/(£)} has all its zeros in Im z-í -k^O. Henceg(z-2ik) does not vanish
in Imz>/c^O. Since hg(7r/2) = 0 the function g(z-2ik) satisfies the conditions of
Lemma 4. Hence

\g<s)(x-2ik)\ á e-*k\(ds/dxs){e2xkf(x)}\,        -oo < x < oo,

which is equivalent to (2.2).
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Lemma 6. If fi(z) is an entire function of exponential type r such that h¡(rr/2) = 0
andf(x + iy)#0for y>k where kSO, then

(2.3) |g(s>(*)| ^ et,c|/<s)(x + 2/A:)|,        -oo < x < oo.

Proof of Lemma 6. Since f(z)^0 for y>k where kSO, the function g(z)
= eiIZ con {/(z)} has all its zeros in Im zt — k¡zO. Hence by Lemma 5

(2.4) |g(s)(*)l ^ elk\fiis)(x + 2ik)\,        -oo < x < oo.

Lemma 7. Ififi(z) is an entire junction of order 1 type r such that h,(Tr/2)S —c<0,
| f(x) | is bounded for real x andf(x + iy) has all its zeros in y^k where kSO, then

(2.5) \fi(x+2ik)\ ^ exp ((t + c)|zv|)|/(x)|,        -co < x < oo.

Proof of Lemma 7. Note that «,(—jt/2)=t, otherwise/(z) cannot be of type t.
If F(z)=f(z+ik) then the function e"i(I+c)2,2F(z) belongs to the class F. Hence by
Lemma 1

|exp(-/(r + c)z/2)F(z)| è |exp(-/(r + c)z/2)F(z)|

for Imz^O. Thus for real x

|/(x + 2zl)| = \F(x + ik)\ ^ exp(-(r + c)k)\F(x-ik)\ = exp ((r + c)\k\)\fi(x)\.

Hence Lemma 7 is proved.

Lemma 8. Iffi(z) is an entire function of order 1 and type t such that hf(rr/2)=0,
/z/<»)(7t/2) S — cs < 0, | f(x) | is bounded for real x, f(x+iy) has all its zeros ony=kS0,
then

(2.6) exp (cs|Â:|)|/(s>(x)| S \g{s)(x)\,        -co < x < oo.

Proof of Lemma 8. By Lemma 6

(2.7) |g(s)(x)| ^ e'k\fls\x + 2ik)\,        -co < x < oo.

Now we note that/<s)(z) has all its zeros in Imzäi. This follows from the fact that
f(z + ik) belongs to the class P and differentiation leaves the class F invariant.
Hence by Lemma 7

\f%x+2ik)\ ^ exp((r+cs)\k\)\f%x)\.

This together with (2.7) gives Lemma 8.

Lemma 9. Iff(z) is an entire function of exponential type r such that h,(Tr/2)=0,
f(x + iy) has all its zeros in ySk, then for every real y the junction /(z) + eiyJr(z),
where ^(z) = eMz~ik) con {f(z + 2ik)}, has all its zeros on Im z=k.

Proof of Lemma 9. It is clear that |^"(z)| = |/(z)| for Im z = k. Besides it can be
proved with the help of Lemma 1 that

(2.8) |^(2)| è |/(z)|
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for Im z < k, whereas

(2.9) \&(z)\ è |/(i)|

for Im z>k. The argument is contained in the proof of Lemma 4 so we omit it.
Equality is possible in (2.8) or (2.9) only if/(z) is a constant multiple of .^~(z). This
follows easily from the maximum modulus principle. Hence unless/(z) is a constant
multiple of &(z), \^(z)\ > \f(z)\ for Im z<k, whereas \&(z)\ < |/(z)| for Im z>k.
Therefore f(z) + eiyJF(z) can vanish only when Im z = k. In case/(z) is a constant
multiple of 3F(z) the function f(z) cannot have a zero in Im z < k ; otherwise ^(z)
which has all its zeros in Im z^k cannot be a constant multiple of/(z). Hence in
this case/(z) has all its zeros on Im z = k and so does/(z) + eiy^(z), being a constant
multiple of/(z).

Lemma 10. Let f(z) be an entire function of exponential type t with \f(x)\^M
on the real axis. If hf(ir/2) = 0 then

(2.10) |/'(*)l + lc?'(*)| â Mr,        -oo < x < oo.

The proof of this lemma is contained in ([8], see (3.12)). For sake of completeness
we include a brief outline of the proof. From hf(rr/2) = 0, \f(x)\SM, it follows that
\f(z)\^M for lmz>0. Hence for |A|>1 the function </>(z)=f(z) — XM is asym-
metric. From Lemma 4 it follows that

(2.11) |/'(x)| = |f(x)| Ú |f(x)|,        -oo<x<co,

where xb(z) = eHz con {</>(z)}. Noting that xu(z)=g(z) — M~\e"z we can easily deduce
(2.10) from (2.11).

Lemma 11. Letf(z) be an entire function of order 1 type r having all its zeros in
Im zá/c^O. If \f(x)\ is bounded for real x, hf(ir/2) = 0, h¡ (tt/2)¿ -cx <0, hg.(-n/2)
^ - cx < 0, then

(2.12) exp(Cl|/i|)|/'(x)| ^ \g'(x)\,       -oo < x < oo.

Proof of Lemma 11. If/(z) has all its zeros in Im z^/c^O and y is real, then by
Lemma 9 the function

LY(z) = /(z) + eiVI(2-iw con {/(z + 2/Â:)}

has all its zeros on Im z = k. Besides we claim that hLy(rr/2) = 0 except possibly for
one value of y mod 27r. The fact that hLy(-rr ¡2)^0 for every y is obvious. We need to
prove that hLi(-n ¡2)^0 except possibly for one value of y mod 2n. From hf(n/2) = 0
it follows that for a given e>0 there exists a sequence {yn} tending to infinity such
that |/(7>n)| >exp (-eyn). If &r(iyn)lf(iyn) = Pn exp (7^n), then

\Ly(iyn)\ = \f(iyn)\ |l + ^^0>n)//0>n))|
=   l/0>n)|  |l+/3„eXp(7(y + <An))|.
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Now unless y+</>n tends to n, there exists a positive number S and a subsequence
{y + <f>n?sT=i of the sequence {y + <£n}"=1 such that \y + j>ni\S^— 8 for j=l,2,....
Since pnSl we have

\Ly(iyn)\ = \f(iyni)\ |i + f>»exp('(^+y))l
^ exp(-eyny)sin8.

Hence «Ly(7r/2)2:0 except possibly for one value of y mod 2tt.
In an analogous manner it can be verified that Ly(z) is of order 1 and type r

except possibly for one value of y mod 27r.
Thus the conditions of Lemma 8 are satisfied for Ly(z) except possibly for two

values of y mod 2tt. Therefore

exp (cx\k\)\f(x) + py{ë«x-™ con {f(x+2ik)})'\
S \g'(x) + e-iVkfi'(x + 2ik)\

for real x and for every y in [0, 2tt) except possibly two.
By continuity the above inequality holds for every y. Now we first choose y such

that the left-hand side of (2.13) is

exp ((cx\k\)\fi'(x)\+exp (Ci\k\)\{eUix'ik) con {f(x+2ik)}}'\.

Thus

exp (cx\k\)\f'(x)\ +exp (c1|*|)|{«w-<» con {f(x+2ik)}}'\

S \g'(x)\+Pk\fi'(x + 2ik)\.

Next choose y such that the right-hand side of (2.13) is equal to |g'(x)|
— exk\f'(x + 2ik)\ which is possible by Lemma 6. We get

exp (ci|zv|)|/'(x)| -exp (cx\k\)\{e<«*-ik> con {/(x+2/A:)}}'|

S |g'(*)|-«'*|/'(*+2ifc)|.
Adding the corresponding sides of (2.14) and (2.15) the lemma follows.

3. Proofs of the theorems.
Proof of Theorem 1. Since/(z) is periodic on the real axis with period 2tt, and

h,(n/2)=0, we have [2, p. 109]

f(z) = 2 a¡e^ = pié")
i = 0

where « = [t]. The polynomialp(w) does not vanish in \w\ <eM since/(z) has all its
zeros inlmzSkSO. Thus

n

P(w) = a„ fi (w-Rj exp (idj))
i = l

where R^ew fory'=l, 2,...,«.
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If 1 £/»£«"•*', 0á<¿<277, then clearly

pe^-RjexpQB,)
«**-Jl,GXp(Í0y)

<p + R1<P + em
= l + Rj = 1+e1*1

Hence

/*/*'*) | < (p + e^y
/*<?'*) | = \I+ew)

for l<p^e2|k|, 0^^<2tt. This implies that

Io+ew\*max       1X^)1 Ú   r—Tfi    max IP*»!»
(|iD| = pSexp(2|k|)) \l+e""/    |io| = l

which is equivalent to the desired result.
Proof of Theorem 2. The theorem follows immediately from Lemmas 10 and 8.
Proof of Theorem 3. This theorem follows from Lemmas 10 and 11.
Proof of Theorem 4. Let P(z) be a polynomial of degree « having all its zeros in

|z|<l. If g(z) = zn con {P(l/z)}, then the function f(z)=P(z)/Q(z) is analytic
in |z| ^ 1 and |/(z)| = 1 for |z| = 1. By the maximum modulus principle |/(z)| ^ 1 for
|z|ál. Replacing z by 1/z we conclude that |ß(z)| = |F(z)| for |z|äl. Hence for
every A such that |A| > 1 the polynomial g(z)-AF(z) has all its zeros in |z| < 1. By
Gauss-Lucas theorem the polynomial Q(s)(z) — AF(s)(z) does not vanish in |z| ä 1 for
any A with |A| > 1. This implies that

(3.1) |ß(s)(z)| Ú \P(s)(z)\    for ¡r|fc 1.

If p(z) is a polynomial of degree n such that \p(z)\^M for |z|¿l, then by
Rouché's theorem the polynomial p(z) — XMzn has all its zeros in \z\ < 1 if |A| > 1.
Applying (3.1) to the polynomial p(z)-XMzn we conclude that if q(z)
= zn con {p(l/z)}, then

(3.2) |/>(s)(z)| + |a(s)(z)| ^ 7)/n(n-l)---(n-j+l)|z|n-s   for |z| ä 1.

Inequality (3.2), which holds for all polynomials p(z) of degree n satisfying
\p(z)\ Ú M for |z| ^ 1, is a result of independent interest.

Now we wish to prove that if p(z) is a polynomial of degree n having all its zeros
in |z|äF^l, then

(3.3) Ks\p^(eie)\ Ú \q{t\eie)\,       0 á 0 < 2n.

To start with let us suppose that all the zeros of p(z) lie on |z| = F^ 1. All the
zeros of the polynomial P*(z)=p(Kz) lie on |z| = l and so do the zeros of Q*(z)
= zncon{P*(l/z)} = Knq(z/K).  For every  A with   |A|>1   the polynomial P*(z)

(p2 + R2-2pRicos(<p-0,)y12
\ l+Rf-2Rjcos(</>-ej) /
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— ÁQ*(z) has all its zeros on |z| = 1. By Gauss-Lucas theorem all the zeros of the sth
derivative P*(s)(z)-XQ*{s\z) lie in |z|^ 1. This implies that

Ks\pls)(Kz)\ = |F*(s)(z)| S |ß*(s)(z)l = Kn~s\qis)(z/K)\

for |z|^ 1. In particular we have

(3.4) \pis\K2eie)\ S Kn-2s\qis\eie)\,       0 S Ö < 2tt.

The polynomial p{s)(Kz) is a polynomial of degree n — s having all its zeros in
|z| S 1. Considering the quotient

zn~s con {p{s)(K/z)}/p(s\Kz)

in |z|^l, it is an easy consequence of the maximum modulus principle that
|z"-s con {pis\K/z)}\ S \p{s\Kz)\ for \z\ ^ 1.

This gives

(3.5) Kn-s\pM(eie)\ S \p(s)(K2ew)\,       0 S 6 < 2^r.

Combining this with (3.4) we get (3.3) for polynomials having all their zeros on
\z\=K^l.

If the zeros of p(z) lie in |z| ï: K^ 1 but not necessarily on |z| =K, then for every
real y the polynomial p(z) + eiyQ*(z/K) has all its zeros on \z\ = K^ 1. This follows
from the fact that either p(z) is a constant multiple of Q*(z/K) or else \p(z)\
<\Q*(z/K)\ for \z\>K, and \Q*(z/K)\ < \p(z)\ for \z\<K. Since (3.3) has already
been proved to be true for polynomials having all their zeros on |z|=A"^l, we
obtain

Ks | /,(s)(eifl) + eiy( i /£*) Q*™<ei<>iK) |

S Ws\ée) + e-iy(l/Kn-s)p*^(Kée)\,       0 á 0 < 2tt.

Arguing in the same way as for Lemma 11 we can now complete the proof of (3.3).
Theorem 4 follows from (3.2) and (3.3).
Proof of Theorem 5. Let us consider the case «i S n2. If Çx, f 2,... £m are the zeros

of/>2(z) = ¿n2n?=i(z-^) lying in \z\£l-d, we write

/(*) = ——**%-ft fer -A»-/**
1=1 i=m+l

On |z| = l, |/2(z)| = l, |A(z)| = |/(z)//2(z)|ál, and hence

(3.6) \f'(z)\ = |/i(z)/2'(z)+/2(z)/i'(z)| S |/i'(z)| + |/2(z)|.

Since the polynomial

qi(z) = bn2n(z-ti)   n   <&*-!)
y=l j=m+l
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has all its zeros in |z| < 1 and

1/iWI = \Pi(z)lqM = 1    on |z| = 1,

it follows from a theorem of De Bruijn [4, p. 1265] that \p'x(z)\ á \q'x(z)\ on \z\ = 1.
Hence for |z| = 1

\m\ = píft) pÂz) q'Áz)
qi(z) q±(z) ?i(z)

PÍft)

(3.7) < 2

= 2

q'Az)

?ift)

<7Íft)
?ift) + Pift)

?ift)
q'i(z)
tfift)

<?ift)
m . 12 1

y—+ y —-|/tSí-fo       ;=V+l2-l/fí

í 2n¿\ + d)ld.

On the other hand, it is fairly easy to verify that for |z| = 1

I/¡ft)(3.8) /aft)
<    V   161 + 1 ̂ »2(2 + a-)= Á+i 161-1=       ¿

Inequalities (3.7) and (3.8) imply (1.11).
If the degree nx of the polynomial /^(z) is greater than the degree n2 of the poly-

nomial p2(z), we write

/ft)  =  Zni-"3(Plft)/zni"n2/>2ft)).

Then by (1.11)

max
|2|=1

Plft)
ú?z \zni-n2p2(z) Ú nx(3 + 4/d),

and obviously enough

max dz
(zni-n=) = n,-n..

Hence for |z| = 1

|/'(z)| ï nx-n2 + nx(3 + 4/d) = 4nx(l + l/d)-n2

and (1.12) follows.
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Proof of Theorem 6. With the notation used in the proof of Theorem 5, the
function fix(z)=px(z)/qx(z) is analytic in |z|S I, \fx(z)\S 1 on |z| = l. Hence by the
maximum modulus principle, |/(r)| S I for |z| ^ 1. Hence for |z|^ 1

|/(z)| = |/i(z)l |/a(z)l

= 1/^)1
\j,z-l= n

;=m + l *-iy

(3.9) "2       |£ I   |z|_lfl    rJi    ■-■     for 1+i/ > |z| ̂  1
j = m+l    I Vf I      lZl

•(l+</)|z|-nna-
(l+¿)-|z

In particular, for 1 < |z|<¡ l+d/n2

(3.10) |/(2)| < e3

if «2^3.
In order to estimate |/(z)| for 1 —d< \z\ < 1, we write

for l+d > \z\ £ 1.

m = - -—p-^
bniUds—i) uM-t,)

(lz-l)
-f\i=i yz ç'>

i = m + 1

On |z| = l,

\A(z)\ = F        l/a(z)| = |/(z)//4(z)| S 1.

Since/3(z) is analytic in |z|á 1, inequality |/3(z)| S 1 holds inside the unit circle as
well. Hence for |z| < 1

\fi(z)\ = |/«(z)|
l.fc-1

(3.11)
n
z=i »-f.

I k|-(l-a)J
In particular (3.10) holds for l—d/n2S \z\ < 1 if «2^3.

By Cauchy's integral formula

l/(s)d)i = i- Í
-«T J la-lj =

\m\
l=d/n2 lz-1 71 \dA-
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Using (3.9) for |z| > 1, (3.11) for |z| < 1, we easily get

., ^-cos-id/2n2 r(i+í/)(i+í/2/„2 + (2a7«2)cos0)1,2-n'I2-'" /«2
l/<s)(l)l á -

n Jo

+
s! r
rr Jn-

(l+d)-(l+d2/nl + (2d/n2)cos O)1"

l-(l-d)(l +d2/n2+(2d/n2) cos t?)1,2>

(f
515

de

0)'de.
-xdl2n2 \(l + d2/n22 + (2d/n2)cos ef'2-(I-d),

This last inequality is a refined version of (1.13).
In case the degree nx of the polynomial px(z) is greater than the degree «2 of

p2(z) we may write /ft) in the form

ft)   =   Z"l-''2/,1ft)/znl-n2/>2ft)

and get a bound for |/<s)(l)| in the obvious way.
Proof of Theorem 7. By Hadamard's factorization theorem

(z) =
- exp (Qx(z)) exp ( f z/Ù f\ (I -z/L)

\n = l / n = l
(co \     oo

2   Zlzn)   Il   (1-Z/Zn)
n = l / n=l

where $n are the zeros of/ift) and zn those of/2(z). If an are the zeros of/2(z) which
lie in the lower half-plane and ßn those which lie in the upper half-plane, then

/ft) =

(3.12)

2- exp (Ô^z)) exp ( 2 z/Ù U (1-z/íO ñ (1 -z/AO
\n= 1 /  n = l n = l

exp (ßaft)) exp ( 2 z/zB) ñ (1-z/o,) Ô (1-« ñ (l-z/p\.)
\n=l / n=l n=l n=l

= H(z)
no-«

n = l_

It is easy to verify that under the hypotheses of the theorem //ft) is of exponential
type tx + t2 in the upper half-plane. Since |//(x)| á 1 for real x we have [2, see 6.2.4
on p. 82]

(3.13) \H(x + iy)\ Ú expff^ + r^),       0 ú y < co.
For 0^y = lm z<d

n(i-^n)

n (1-Z//3J
n = l

exp GH.4D
(3.14)

^^(Iffoifcr))
gexp((2d/i»/(d-}0).
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Combining (3.12), (3.13) and (3.14), we get for 0Sy<d

(3.15)      |/(x+/y)| S exp({(rx + T2) + 2d A/(d-y)}y),       -oo < x < co.

Clearly we can infer a similar inequality for — d<y<0. Hence for O^0<27r,

2d A        Ï     d\sin 6\Íx+(^+-T)) exp (ti + t2) + -
d\sin 0|    }(ti + t2+1)

(Ti + T2+1)

-co < x < oo.

Therefore by Cauchy's integral formula

lAsv m < i! r/Ti + T2+lY        \(, x'    2A(tx + t2+1)   \     dsinO    I17   Wl =   * J0  (-TT-)   -P [{^ + ̂ ^ri + r2+l-sin4(7^TT)J^

7T J0  \        ¿       / L (ri +r2+l-sin 6»)J

— oo < x <oo

and (1.14) follows.
Proof of Theorem 10. Without loss of generality we may assume a3= 1. Since

laj =K\a2\ we have

ST \p'(eie)\2 dd       |ai|2 + 4|a2|2 + 9
ST \P(eie)\2 de      K6+\ax\2+\a2\2+l

(A:2+4)|a2|2 + 9
Ke+(K2+i)\a2\2+i

This last expression is at most equal to

9 9(1+4/c:2+a:4)or

according as

i+a:6 "'   i+9ä:2+9a:4+Fv6

(A:8+4A:6-8A'2-5)|a2|2 S 0

or

(/í8 + 4A:6-8A:2-5)(9A:2-|a2|2) ^ 0.

This gives the desired result since clearly 0^ \a2\2S9K2.
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