Tôhoku Math. Journ. 21(1969), 304-320.

FUNCTIONS OF L^p-MULTIPLIERS

Satoru Igari*)

(Received January 9, 1969)

1. Introduction. Let Γ be a locally compact non-compact abelian group and $B(\Gamma)$ be the space of all Fourier-Stieltjes transforms of bounded measures on the dual group G of Γ . Then it is known that a function Φ on the interval [-1,1] is extended to an entire function if and only if $\Phi(f) \in B(\Gamma)$ for all fin $B(\Gamma)$ with the range contained in [-1,1] (see, for example, [10: p.135]).

A function φ defined on Γ is called an L^p -multiplier if for every $f \in L^p(G)$ there exists a function g in $L^p(G)$ so that $\varphi \hat{f} = \hat{g}$, where \hat{f} denotes the Fourier transform of f. The set of all L^p -multipliers will be written by $M_p(\Gamma)$ and the norm of $\varphi \in M_p(\Gamma)$ is defined by

$$\|\varphi\|_{M_p(\Gamma)} = \sup \{ \|g\|_{L^p(G)} : \|f\|_{L^p(G)} = 1 \}.$$

If we define the product in $M_p(\Gamma)$ by the pointwise multiplication, it is a commutative Banach algebra with identity.

It is well-known that $M_1(\Gamma)$ coincides with $B(\Gamma)$ with the norm of measures and $M_2(\Gamma) = L^{\infty}(\Gamma)$ isometrically. If $1 \leq q \leq p \leq 2$, then $M_q(\Gamma) \subset M_p(\Gamma)$ and if 1/p + 1/p' = 1, then $M_p(\Gamma) = M_{p'}(\Gamma)$ isometrically.

Our main theorem is the following:

THEOREM 1. Let Γ be a locally compact non-compact abelian group. Assume $1 \leq p < 2$ and Φ is a function on [-1, 1]. Then $\Phi(\varphi) \in M_p(\Gamma)$ for all φ in $M_1(\Gamma)$ whose range is contained in [-1, 1], if and only if Φ is extended to an entire function.

2. Equivalence of multiplier transforms. In this section we shall show the equivalence of multiplier transforms which will be needed later.

A measurable function φ on the real line **R** is said to be regulated if there exists an approximate identity u_{ε} not necessarily continuous such that

$$\lim_{\varepsilon\to 0} \varphi * u_{\varepsilon}(x) = \varphi(x)$$

*) Supported in part by the Sakkokai Foundation.

for all x.

K. de Leeuw proved the followings.

THEOREM A ([2]). Let φ be a bounded measurable periodic function with period 2π and $1 \leq p \leq 2$. Then $\varphi \in M_p(\mathbf{T})$ if and only if $\varphi \in M_p(\mathbf{R})$. In this case we have

$$\|\varphi\|_{M_{\mathfrak{p}}(R)} = \|\varphi\|_{M_{\mathfrak{p}}(T)},$$

where T denotes the circle group.

THEOREM B ([2]). Let φ be a bounded regulated function on \mathbf{R} and $1 \leq p \leq 2$. If $\varphi \in M_p(\mathbf{R})$, then $\varphi(\lambda n) \in M_p(\mathbf{Z})$ for all $\lambda > 0$ and

$$\|\varphi(\lambda n)\|_{M_p(Z)} \leq \|\varphi\|_{M_p(R)},$$

where Z is the set of integers.

The next theorem is the converse of Theorem B which is given in [7], but for the sake of convenience we shall state the complete proof.

THEOREM 2. Suppose $1 \leq p \leq 2$ and φ is a function on \mathbf{R} whose points of discontinuity are null. If $\varphi(\lambda n) \in M_p(\mathbf{Z})$ for all $\lambda > 0$ and $\|\varphi(\lambda n)\|_{M_p(\mathbf{Z})}$ are bounded, then $\varphi(\xi) \in M_p(\mathbf{R})$ and we have

$$\|\varphi\|_{M_p(R)} \leq \lim_{\lambda \to 0} \|\varphi(\lambda n)\|_{M_p(Z)}.$$

Thus if φ is, furthermore, regulated, we have

$$\|\varphi\|_{M_{\mathfrak{p}}(R)} = \lim_{\lambda \to 0} \|\varphi(\lambda n)\|_{M_{\mathfrak{p}}(Z)}.$$

PROOF. Let g be an infinitely differentiable function with compact support and put $g_{\lambda}(x) = \lambda g(\lambda x)$ where λ is chosen so large that the support of g_{λ} is contained in $T = [-\pi, \pi)$. We denote by the same notation g_{λ} the periodic extension of g_{λ} . Then we have

$$egin{aligned} &\left(\int_{-\pi}^{\pi}\Big|\sum_{n=-\infty}^{\infty}arphiinom{(}rac{n}{\lambda}ig)\widehat{g}_{\lambda}(n)e^{inx}\Big|^{p}dx
ight)^{1/p}&\leq \left\|arphiigg(rac{n}{\lambda}igg)
ight\|_{M_{p}(Z)}igg(\int_{-\pi}^{\pi}|g_{\lambda}(x)|^{p}dxigg)^{1/p}\ &=\left\|arphiigg(rac{n}{\lambda}igg)
ight\|_{M_{p}(Z)}\lambda^{1-1/p}igg(\int_{-\infty}^{\infty}|g(x)|^{p}dxigg)^{1/p}, \end{aligned}$$

where $\hat{g}_{\lambda}(n)$ denotes the *n*-th Fourier coefficient:

$$\widehat{g}_{\lambda}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} g_{\lambda}(x) e^{-inx} dx.$$

Changing variable we see that the left hand side equals

$$\lambda^{1-1/p}\left(\int_{-\pi\lambda}^{\pi\lambda}\left|\frac{1}{\lambda\sqrt{2\pi}}\sum_{n=-\infty}^{\infty}\varphi\left(\frac{n}{\lambda}\right)\widehat{g}\left(\frac{n}{\lambda}\right)e^{inx/\lambda}\right|^{p} dx\right)^{1/p},$$

where

$$\widehat{g}(\xi) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(y) \ e^{-iy\xi} dy.$$

Since the sum multiplied by $(\lambda \sqrt{2\pi})^{-1}$ converges to

$$\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\widehat{g}(\xi)\,\varphi(\xi)\,e^{i\xi x}\,d\xi$$

for every x as $\lambda \to \infty$, we have by Fatou's lemma

$$\left(\int_{-\infty}^{\infty}\left|\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\widehat{g}(\xi)\varphi(\xi)e^{i\xi x}d\xi\right|^{p}dx\right)^{1/p}$$

$$\leq \lim_{\lambda\to\infty}\left\|\varphi\left(\frac{n}{\lambda}\right)\right\|_{M_{p}(Z)}\left(\int_{-\infty}^{\infty}|g|^{p}dx\right)^{1/p}.$$

Thus we get the theorem.

The *n*-dimensional extensions of Theorems A, B and 2 are obvious.

Let $\Delta(r)$ be the direct sum of countably many copies of the cyclic group Z(r) of order r and D(r) be the dual to $\Delta(r)$. Every element x of $\Delta(r)$ or D(r) has the expression $x = x_1 \oplus x_2 \oplus \cdots$, where $x_j = 0, 1, \cdots, r-1$ are the realization of Z(r). With this realization to every $x = x_1 \oplus x_2 \oplus \cdots$ of D(r) such that $x_j = 0$ except finite numbers of j there corresponds an element of $\Delta(r)$. Thus a function on D(r) is considered as a function on $\Delta(r)$.

THEOREM 3. Let φ be a continuous function on D(r) and $1 \leq p \leq 2$. Then $\varphi \in M_p(D(r))$ if and only if $\varphi \in M_p(\Delta(r))$. In this case we have

$$\|\varphi\|_{M_p(D(r))} = \|\varphi\|_{M_p(A(r))}.$$

PROOF. That $\varphi \in M_p(\Delta(r))$ is equivalent to say that

(1)
$$\left(\int_{D(r)}\left|\sum_{y}\varphi(y)\,p(y)(x,y)\right|^{p}\,dx\right)^{1/p} \leq B\left(\int_{D(r)}\left|\sum_{y}\,p(y)(x,y)\right|^{p}\,dx\right)^{1/p}$$

for all polynomial $\sum p(y)(x, y)$ on D(r), where B is a constant and (\cdot, y) denotes a character of D(r). By the same way that $\varphi \in M_p(D(r))$ is equivalent to say that

(2)
$$\left(\sum_{v}\left|\int_{D(r)}\varphi(u)f(u)(u,v)\ du\right|^{p}\right)^{1/p} \leq C\left(\sum_{v}\left|\int_{D(r)}f(u)(u,v)\ du\right|^{p}\right)^{1/p}$$

for all continuous step function f on D(r), where C is a constant.

We first deduce (1) from (2) with $B \leq C$. Let $\sum_{y} p(y)(x, y)$ be a polynomial. We may assume that the y's run over all elements of the form $y = y_1 \oplus \cdots \oplus y_N \oplus 0 \oplus 0 \oplus \cdots$ for some fixed N. Put $f_M(u) = p(y)r^M$ if u is of the form $u = y_1 \oplus \cdots \oplus y_N \oplus 0 \oplus \cdots \oplus 0 \oplus \cdots \oplus u_{M+1} \oplus u_{M+2} \oplus \cdots$ and $f_M(u) = 0$ otherwise. Then we have

$$\int_{D(r)} f_{M}(u)(u, v) \ du = \sum_{y} p(y)(y, v)$$

for all $v = v_1 \oplus \cdots \oplus v_M \oplus 0 \oplus 0 \oplus \cdots$ and the integral vanishes otherwise. We remark that the right hand side does not depend on the n(>M)-th components of v.

Let U_M be the set of all u of the form $u=0\oplus\cdots\oplus 0\oplus u_{M+1}\oplus u_{M+2}\oplus\cdots$. Then, since φ is continuous,

$$\lim_{M\to\infty} r^M \int_{U_M} \varphi(y+u)(u,v) \ du = \lim_{M\to\infty} r^M \int_{U_M} \varphi(y+u) \ du$$
$$= \varphi(y).$$

Thus we have

$$\int_{D(r)} \varphi(u) f_{\mathcal{M}}(u)(u,v) \, du = \sum_{y} p(y)(y,v) r^{\mathcal{M}} \int_{U_{\mathcal{M}}} \varphi(y+u)(u,v) \, du$$
$$= \sum_{y} p(y)(y,v) \varphi(y) + o(1)$$

uniformly in v of the form as before when $M \rightarrow \infty$. Therefore

$$\left(\sum_{v}\left|\int_{D(r)}f_{\mathcal{M}}(u)(u,v) du\right|^{p}\right)^{1/p} = r^{\mathcal{M}/p}\left(\int_{D(r)}\left|\sum_{y}p(y)(v,y)\right|^{p} dv\right)^{1/p},$$

where we replaced (y, v) by (v, y) and

$$egin{aligned} &\left(\sum\limits_{v}\Big|\int_{D(r)}arphi(u)f_{M}(u)(u,v)\ du\Big|^{p}
ight)^{1/p}\ &\geq r^{M/p}\left(\int_{D(r)}\Big|\sum\limits_{y}p(y)\ arphi(y)(v,y)\Big|^{p}\ dv\ +\ o(1)
ight)^{1/p}. \end{aligned}$$

Thus we get (1) with $B \leq C$.

Now we show that (1) implies (2) with $C \leq B$. Assume φ is continuous and satisfies (1). Let f be a continuous step function so that f(u) depends only on the first N-th components of $u = u_1 \oplus u_2 \oplus \cdots$. Define p(y) = f(u) for $y = u_1 \oplus \cdots \oplus u_N \oplus 0 \oplus 0 \oplus \cdots$ and p(y) = 0 for y not of that form. We fix this p(y).

For every $\varepsilon > 0$, there exists a continuous step function φ_{ε} converging uniformly to φ such that

$$\left(\int_{D(r)} \left|\sum_{y} \varphi_{\varepsilon}(y) p(y)(x,y)\right|^{p} dx\right)^{1/p} \leq (B+\varepsilon) \left(\int_{D(r)} \left|\sum_{y} p(y)(x,y)\right|^{p} dx\right)^{1/p}$$

Thus there exists an integer M so that $\varphi_{\epsilon}(u)$ depends only on the first M-th components of u. We may assume M > N. Let Y be the set of u in D(r) whose n(>N)-th components are zero and X the set of x's in D(r) whose n(>M)-th components are zero. Then we have

$$\int_{D(r)} \varphi_{\varepsilon}(u) f(u)(u, v) \ du = r^{-M} \sum_{y \in Y} \varphi_{\varepsilon}(y) p(y)(y, v)$$

for $v \in X$ and the left hand side vanishes for v not in X. By the same way we have

$$\int_{D(r)} f(u)(u,v) \ du = r^{-M} \sum_{y \in Y} p(y)(y,v)$$

for v in X and zero for v not in X. Therefore

$$\left(\sum_{v} \left| \int_{D(r)} \varphi_{\varepsilon}(u) f(u)(u, v) du \right|_{p} \right)^{1/p}$$
$$= r^{-M(1-1/p)} \left(\int_{D(r)} \left| \sum_{y \in Y} \varphi_{\varepsilon}(y) p(y)(x, y) \right|_{p} dx \right)^{1/p}$$

and

$$\left(\sum_{v} \left| \int_{D(r)} f(u)(u,v) \ du \right|^{p} \right)^{1/p} = r^{-M(1-1/p)} \left(\int_{D(r)} \left| \sum_{y \in Y} p(y)(x,y) \right|^{p} dx \right)^{1/p}.$$

Therefore we get from (1)

$$\left(\sum_{v}\left|\int_{D(r)}\varphi_{\varepsilon}(u)f(u)(u,v)\ du\right|^{p}\right)^{1/p} \leq (B+\varepsilon)\left(\sum_{v}\left|\int_{D(r)}f(u)(u,v)\ du\right|^{p}\right)^{1/p}$$

Letting $\mathcal{E} \to 0$ we get (2).

3. Proof of Theorem 1.

LEMMA 1. Let Γ be \mathbb{Z} or $\Delta(r)$. Then for any $1 \leq p < 2$ we have a constant $K_p > 1$ depending only on Γ and p such that

$$\sup \|e^{i\varphi}\|_{M_p(\Gamma)} \geq K_p^a,$$

where φ ranges over all real-valued functions in $M_1(\Gamma)$ satisfying $\|\varphi\|_{M_1(\Gamma)} \leq a$.

PROOF. Let G be the dual to Γ . For a function f on G define

$$\|f\|_{A_p(G)} = \left(\sum_{\gamma \in \Gamma} \left| \hat{f}(\gamma) \right|^p \right)^{1/p},$$

where \hat{f} denotes the Fourier coefficient of f. Then we know [9] that there exists a constant $K_p > 1$ for which we have

$$\sup_{Q} \|e^{iQ}\|_{A_p(G)} > K_p^a,$$

where Q runs over all real polynomials on G with $||Q||_{A_1(G)} \leq a$.

Since $\|Q\|_{A_1(G)} = \|Q\|_{M_1(G)}$ and $\|f\|_{A_p(G)} \le \|f\|_{M_p(G)}$, there exists a real polynomial φ on G such that $\|\varphi\|_{M_1(G)} \le a$ and

$$\|e^{i\varphi}\|_{M_p(G)} > K_p^a.$$

Assume $\Gamma = Z$, then by Theorems A, B and 2 we have a real-valued continuous function φ on T such that

$$\|e^{iarphi(\lambda n)}\|_{M_p(Z)} > K_p^a \quad ext{and} \quad \|arphi\|_{M_1(T)} \leq a$$

for sufficiently small $\lambda > 0$. Remark that $\|\varphi(\lambda n)\|_{M_1(Z)} \leq \|\varphi\|_{M_1(R)} = \|\varphi\|_{M_1(T)} \leq a$ and then we get the desired inequality for $\Gamma = Z$,

For the group $\Delta(r)$ the result is obvious by Theorem 3.

LEMMA 2. Let Γ be **R** or a discrete group and assume $1 \leq p < 2$. If $\Phi(\varphi) \in M_p(\Gamma)$ for all $\varphi \in M_1(\Gamma)$ whose range is contained in [-1, 1], then Φ is continuous in [-1, 1].

PROOF. First we assume Γ is a discrete group. If Φ is discontinuous at a point in [-1, 1], there exists a sequence $\{a_j\}_{j=0}^{\infty}$ in [-1, 1] and a finite number B satisfying:

$$B \neq \Phi(a), \ a_i \neq a_j \ (i \neq j), \ \sum_{j=0}^{\infty} \left| a_j - a \right| < \infty$$

and

$$\sum_{j=0}^{\infty} \left| \Phi(a_j) - B \right| < \infty.$$

We may assume $\Phi(a) = 0$.

Take a function f in $L^p(G)$ and a sequence $\{\mathcal{E}_j\}_{j=0}^{\infty}, \mathcal{E}_j = \pm 1$, such that $\sum_{j=0}^{\infty} \hat{f}(\gamma_j) \mathcal{E}_j(x, \gamma_j)$ does not belong to $L^p(G)$, where $f \sim \sum_{j=0}^{\infty} \hat{f}(\gamma_j)(x, \gamma_j)$ (see [3] or [11]). Thus if we set $\eta_j = \Phi(a_j)$ for $\mathcal{E}_j = 1$ and $\eta_j = 0$ for $\mathcal{E}_j = -1$, then $\sum_{j=0}^{\infty} \hat{f}(\gamma_j) \eta_j(x, \gamma_j) \in L^p(G)$. In fact we have

$$\sum_{j=0}^{\infty} \hat{f}(\boldsymbol{\gamma}_j) \, \eta_j(x, \boldsymbol{\gamma}_j) = \frac{B}{2} \sum_{j=0}^{\infty} \hat{f}(\boldsymbol{\gamma}_j)(x, \boldsymbol{\gamma}_j) + \frac{B}{2} \sum_{j=0}^{\infty} \hat{f}(\boldsymbol{\gamma}_j) \, \boldsymbol{\varepsilon}_j(x, \boldsymbol{\gamma}_j) \\ + \sum_{\boldsymbol{\varepsilon}_j=1} \hat{f}(\boldsymbol{\gamma}_j) \, [\Phi(a_j) - B] \, (x, \boldsymbol{\gamma}_j).$$

The first and the third sums on the right hand side belong to $L^{p}(G)$ and the second does not by the assumption.

Put $\varphi(\gamma_j) = a_j$ for $\mathcal{E}_j = 1$ and $\varphi(\gamma) = a$ for other γ . Then for any g in $L^1(G)$ we have

$$\sum \widehat{g}(\mathbf{Y}) \varphi(\mathbf{Y})(x,\mathbf{Y}) = \sum \widehat{g}(\mathbf{Y}) [\varphi(\mathbf{Y}) - a](x,\mathbf{Y}) + a \sum \widehat{g}(\mathbf{Y})(x,\mathbf{Y}),$$

which also belongs to $L^{1}(G)$, that is, $\varphi \in M_{1}(\Gamma)$. On the other hand $\Phi(\varphi(\gamma_{j})) = \eta_{j}$. Thus $\Phi(\varphi) \in M_{p}(\Gamma)$ which contradicts our assumption.

Next we assume $\Gamma = \mathbf{R}$. First we show that there exist positive numbers δ and M such that if φ is a real-valued function in $M_1(\mathbf{R})$, the support of $\varphi \subset [0, 1]$ and $\|\varphi\|_{M_1(\mathbf{R})} < \delta$, then $\|\Phi(\varphi)\|_{M_p(\mathbf{R})} \leq M$.

To prove this we may assume $\Phi(0) = 0$. If this assertion is false, then we have a sequence $\{\varphi_j\}$ such that the suport of $\varphi_j \subset (2j, 2j + 1)$, the range of $\varphi_j \subset [-1, 1]$, $\|\varphi_j\|_{\mathcal{M}_1(\mathbb{R})} < 2^{-j}$ but $\|\Phi(\varphi_j)\|_{\mathcal{M}_p(\mathbb{R})} > j$. Put $\psi = \sum_{j=1}^{\infty} \varphi_j$. Then $\|\psi\|_{\mathcal{M}_1(\mathbb{R})} \leq 1$. Let ξ_j be the continuous function such that $\xi_j(x) = 1$ on (2j, 2j + 1), = 0 outside (2j - 1/2, 2j + 3/2) and is linear otherwise. Then $\xi_j \Phi(\psi) = \Phi(\varphi_j)$. Thus

$$3\|\Phi(\boldsymbol{\psi})\|_{\boldsymbol{M}_{\boldsymbol{p}}(\boldsymbol{R})} \geq \|\boldsymbol{\xi}_{j}\Phi(\boldsymbol{\psi})\|_{\boldsymbol{M}_{\boldsymbol{p}}(\boldsymbol{R})} = \|\Phi(\boldsymbol{\varphi}_{j})\|_{\boldsymbol{M}_{\boldsymbol{p}}(\boldsymbol{R})} > j$$

which is impossible.

Suppose Φ is not continuous at a point a. Let $\{a_j\}$ be a sequence converging to a such that $\Phi(a_j)$ converge to $B \neq \Phi(a)$. We may assume $\Phi(a) = 0$ and a = 0. Let F be any closed set contained in (1/4, 3/4) and $\{C_j\}$ be an increasing sequence of closed sets in $[0, 1]\setminus F$, such that $m(F \cup C_j) \rightarrow 1$. Then we have a sequence $\{\chi_j\}$ of functions in $M_1(\mathbf{R})$ which equal 1 on F and 0 on $(-\infty, 0) \cup C_j \cup (1, \infty)$. Take a sequence $\{k_j\}$ such that $||a_{kj}\chi_j||_{M_1(R)} < \delta$. Then we have $||\Phi(a_{kj}\chi_j)||_{M_p(R)} < M$ for all $j = 1, 2, \cdots$, Since $\Phi(a_{kj}\chi_j) = \Phi(a_{kj})$ on F and 0 on $(-\infty, 0) \cup (1, \infty)$, $\Phi(a_{kj}\chi_j) \rightarrow B\chi_F$ almost everywhere as $j \rightarrow \infty$ and $||B\chi_F||_{M_p(R)} \leq M$, where χ_F is the characteristic function of F. This implies that every open set in (1/4, 3/4) is an L^p -multiplier, which is impossible (see, [8]).

LEMMA 3. Suppose Γ is a locally compact, non-compact abelian group and $1 \leq p < 2$. If Φ is a function on the real line possessing the property that $\Phi(\varphi) \in M_p(\Gamma)$ for all real valued function φ in $M_1(\Gamma)$, then Φ has the similar property for an infinite discrete group.

PROOF. By the structure theorem Γ contains an open subgroup Γ_0 which is the direct sum of a compact group Λ and an N-dimensional euclidean space

 \mathbf{R}^{N} . Let H be the annihilator of Γ_{0} . Then H is the dual to Γ/Γ_{0} and a compact subgroup of $G = \hat{\Gamma}$.

(a) The case where N > 0. First we observe that Φ maps $M_1(\Gamma_0)$ to $M_p(\Gamma_0)$.

In fact for $\varphi \in M_1(\Gamma_0)$ put $\widetilde{\varphi} = \varphi$ on Γ_0 and 0 outside Γ_0 . Then $\widetilde{\varphi} \in M_1(\Gamma)$. For if $f \in L^1(G)$. then $f^*(x) = \int_{II} f(x+y) dm_{II}(y)$ belongs to $L^1(G/H)$ and $\widehat{f}^*(\gamma) = \widehat{f}(\gamma)$ on Γ_0 , where dm_{II} denotes the Haar measure on H. Thus there exists a function g^* in $L^1(G/H)$ such that $\widehat{g}^* = \varphi \widehat{f}^* = \widetilde{\varphi} \widehat{f}$ on Γ_0 . Let π be the natural homomorphism of G onto G/H, then $g = g^* \circ \pi \in L^1(G)$ and satisfies the relation $\widehat{g} = \widetilde{\varphi} \widehat{f}$ on Γ .

On the other hand if $\Psi \in M_p(\Gamma)$ and $\Psi = 0$ outside Γ_0 , then $\Psi \in M_p(\Gamma_0)$. For if $f^* \in L^p(G/H)$, then the function $f = f^* \circ \pi \in L^p(G)$ and $\hat{f} = \hat{f}^*$ on Γ_0 . Thus there exists a function g in $L^p(G)$ such that $\Psi \hat{f} = \hat{g}$. Put $g^*(x) = \int_{H} g(x+y) \ dm_H(y)$, then $g^* \in L^p(G/H)$, since H is compact. Furthermore we have $\Psi \hat{f}^* = \Psi \hat{f} = \hat{g} = \hat{g}^*$ on Γ_0 .

Therefore we can conclude that Φ maps $M_1(\Gamma_0)$ into $M_p(\Gamma_0)$.

Since $\Gamma_0 = \Lambda \oplus \mathbf{R} \oplus \cdots \oplus \mathbf{R}$, Φ maps also $M_1(\mathbf{R})$ into $M_p(\mathbf{R})$. Thus Φ is continuous by Lemma 2. Let φ be a real-valued function in $M_1(\mathbf{Z})$, then there exists a measure μ on \mathbf{T} such that

$$\varphi(n)=\int_{-\pi}^{\pi}e^{-inx}\ d\mu(x).$$

Thus the function φ^* defined by

$$\varphi^*(\xi) = \int_{-\pi}^{\pi} e^{-i\xi x} d\mu(x)$$

is real-valued on \mathbf{R} and $\varphi^* \in M_1(\mathbf{R})$. Thus $\Phi(\varphi^*) \in M_p(\mathbf{R})$. Since Φ is continuous, Theorem B implies $\Phi(\varphi^*(n)) = \Phi(\varphi(n)) \in M_p(\mathbf{Z})$. Therefore Φ maps $M_1(\mathbf{Z})$ into $M_p(\mathbf{Z})$.

(b) The case where N = 0. We shall show that Φ maps $M_1(\Gamma/\Gamma_0)$ into $M_p(\Gamma/\Gamma_0)$.

For $\varphi \in M_1(\Gamma/\Gamma_0)$ we put $\varphi^* = \varphi \circ \sigma$ where σ is the natural homomorphism of Γ onto Γ/Γ_0 . Let T_{φ} and T_{φ^*} be the corresponding multiplier transforms on $L^1(H)$ and $L^1(G)$ respectively. Every element z of G is written as z = x + ywhere $x \in H$ and y is an element of a coset of H. Then we have

$$[T_{\varphi^*}f](z) = T_{\varphi}[f(y + \cdot)](x)$$

for all f in $L^{1}(G)$. In fact the Fourier transform of the right hand side is

$$\begin{split} \int_{G/H} dm_{G/H}(y) &\int_{H} (x + y, \gamma) T_{\varphi}[f(y + \cdot)](x) \ dm_{H}(x) \\ &= \int_{G/H} (y, \overline{\gamma}) \ dm_{G/H}(y) \int_{H} \overline{(x, \gamma)} T_{\varphi}[f(y + \cdot)](x) \ dm_{H}(x) \\ &= \int_{G/H} \overline{(y, \gamma)} \ dm_{G/H}(y) \int_{H} \overline{(x, \gamma)} \varphi^{*}(\gamma) f(y + x) \ dm_{H}(x) \\ &= \varphi^{*}(\gamma) \hat{f}(\gamma). \end{split}$$

The last term is the Fourier transform of $T_{\varphi^*}f$.

On the other hand if $\Psi \in M_p(\Gamma)$ and Ψ is constant on each coset of Γ_0 , then Ψ considered as a function on Γ/Γ_0 belongs to $M_p(\Gamma/\Gamma_0)$. For if $f \in L^p(H)$ put $\tilde{f} = f$ on H and 0 otherwise. Then $\tilde{f} \in L^p(G)$ and $\|\tilde{f}\|_{L^p(G)}$ $= \|f\|_{L^p(H)}$. $\hat{\tilde{f}}(\Upsilon)$ is constant on each coset of Γ_0 and $\Psi(\Upsilon)\hat{\tilde{f}}(\Upsilon) = \Psi(\Upsilon_1)\hat{f}(\Upsilon_1)$ where $\Upsilon_1 \in \Gamma/\Gamma_0$ and $\Upsilon \in \Upsilon_1$. Since $T_{\Psi}\tilde{f} = T_{\Psi}f$ on H and 0 otherwise, we get $T_{\Psi}f \in L^p(H)$, that is, $\Psi \in M_p(\Gamma/\Gamma_0)$.

Therefore Φ maps $M_1(\Gamma/\Gamma_0)$ into $M_p(\Gamma/\Gamma_0)$. We remark that Γ/Γ_0 is an infinite discrete group, since Γ is not compact.

We refer the following lemma to [5].

LEMMA C. (a) Let $\{\Omega_j\}, j = 1, 2, \dots$, be a sequence of finite subgroups of $\Delta(r)(r \ge 2)$. Then there exists a sequence $\{\gamma_j\}$ of $\Delta(r)$ having the property: Let Γ_j be the group generated by Ω_j and γ_j , then no two of groups Γ_j have a non-zero element in common. Let $\{f_j\}$ be a sequence of polynomials (real-valued if r = 2) on D(r) such that f_j has its support in Ω_j , then we have an element x_0 in D(r) so that

$$\|f_j\|_{\infty} \leq 2 \Re[(x_0, \gamma_j) f_j(x_0)], \quad j = 1, 2, \cdots,$$

(b) Let Γ be an infinite discrete group of unbounded order and G is the dual to Γ . Let $\{n_j\}$, $j = 1, 2, \dots$, be a sequence of positive integers. Then there exist a sequence $\{m_j\}$ of positive integers and a sequence $\{\gamma_j\}$ in Γ having the properties:

(4) The order of γ_j exceeds $2m_j + 6n_j^2$.

(5) The sets $E_j = \{n\gamma_j : m_j - 2n_j \leq n \leq m_j + 2n_j\}$ are disjoint.

(6) If $\{f_j\}$ is a sequence of polynomials on T such that \hat{f}_j has its support in $\{n: |n| \leq 2n_j\}$, then we have an element x_0 in G such that

$$\|f_j\|_{\infty} \leq 2 \Re[(x_0, m_j \gamma_j) \sum_{-2n_j}^{2n_j} \hat{f}_j(n)(x_0, \gamma_j)], \quad j = 1, 2, \cdots.$$

LEMMA 4. Let Γ be an infinite discrete group and Φ be a continuous periodic function. Suppose $\Phi(\varphi) \in M_p(\Gamma)$ for every real-valued multiplier φ in $M_1(\Gamma)$. Then for any positive number a, there exists a constant C_a such that

(7)
$$\|\Phi(\boldsymbol{\varphi})\|_{\boldsymbol{M}_{\mathbf{p}}(\boldsymbol{\Lambda})} \leq C_{\boldsymbol{a}}$$

for all real-valued φ in $M_1(\Lambda)$ such that $\|\varphi\|_{M_1(\Lambda)} \leq a$, where Λ is a group $\Delta(r)(r \geq 2)$ or \mathbb{Z} .

PROOF. We may suppose $\Phi(0) = 0$. If (7) is false, we can find polynomils p_j on L and real-valued multipliers φ_j satisfying

$$\begin{split} \| p_j \|_{L^{\mathbf{p}},L^{j}} &\leq 2^{-j}, \\ \| \varphi_j \|_{M_1(\mathcal{A})} &\leq a, \\ \\ \| \sum_{\gamma} \Phi(\varphi_j(\gamma)) \, \widehat{p}_{j}(\gamma)(\cdot,\gamma) \|_{L^{\mathbf{p}},L^{j}} > j, \quad j = 1, 2, \cdots, \end{split}$$

where Λ indicates the groups $\Delta(r)$ $(r \ge 2)$ or Z, and L is the dual to Λ .

Here we can assume that the support of φ_j is finite. For let k_j be the polynomials on L so that $||k_j||_{L^1(L)} \leq 3$ and $\hat{k}_j = 1$ on the support of \hat{p}_j . Then $||\hat{k}_j\varphi_j||_{M_1(A)} \leq 3a$ and

$$\sum_{\gamma} \Phi(\hat{k}_{j}(\gamma) arphi_{j}(\gamma)) \, \widehat{p}_{j}(\gamma)(x,\gamma) = \sum_{\gamma} \Phi(arphi_{j}(\gamma)) \, \widehat{p}_{j}(\gamma)(x,\gamma).$$

First we assume that Γ is a group of bounded order. Then we can write $\Gamma = \Delta(r) \oplus \Pi$ for some $r \ge 2$. Therefore Φ has the same property for $\Delta(r)$ as in the lemma, so that we can assume $\Gamma = \Delta(r)$. We show (8) is impossible for $\Lambda = \Delta(r)$.

Let Ω_j be the subgroup generated by the support of φ_j , then Ω_j is a finite subgroup of $\Delta(r)$. Let X be the space of real-valued continuous functions f of the form

314

(8)

$$f(x) = \sum_{j=1}^{\infty} (x, \gamma_j) f_j(x),$$

where $\{\gamma_j\}$ is a sequence of (a) in Lemma C and the support of f_j is contained in Ω_j . Then this representation of f is unique and we have

$$\|f\|_{\infty} \leq \sum_{j=1}^{\infty} \|f_j\|_{\infty} \leq 2\|f\|_{\infty}.$$

Thus the functional defined on X by

$$Tf = \sum_{j=1}^{\infty} \int_{D(r)} f_j(-x) \sum_{\gamma} \varphi_j(\gamma)(x,\gamma) dx$$

is bounded. Therefore there exists a finite measure μ on D(r) such that

$$Tf = \int_{D(r)} f(-x) \, d\mu(x) \, .$$

In particular $\hat{\mu}(\gamma + \gamma_j) = \varphi_j(\gamma)$. If $\hat{\mu}$ is not real-valued we replace $\hat{\mu}$ by its real part. Since $\hat{\mu} \in M_1(\mathcal{A}(r))$ and $\left\| \sum_{j=1}^{\infty} p_j(\cdot, \gamma_j) \right\|_{L^{\mathbf{p}}(D(r))} \leq 1$, we have

$$\left\|\sum_{j=1}^{\infty}\sum_{\gamma}\Phi(\hat{\mu}(\gamma+\gamma_{j}))\hat{p}_{j}(\gamma)(\cdot,\gamma+\gamma_{j})\right\|_{L^{\mathbf{p}}(D(r))} \leq \|\Phi(\hat{\mu})\|_{M_{\mathbf{p}}(\mathcal{A}(r))} < \infty.$$

Consider the characteristic function of $\Omega_j + \gamma_j$ which is a multiplier of norm one. Then

$$\begin{split} \|\Phi(\hat{\mu})\|_{M_{\mathfrak{p}}(\mathfrak{a}(r))} & \geqq \left\| \sum_{\gamma} \Phi(\hat{\mu}(\gamma + \gamma_{j})) \, \hat{p}_{j}(\gamma)(\cdot, \gamma + \gamma_{j}) \right\|_{L^{\mathfrak{p}}(D(r))} \\ & = \left\| \sum_{\gamma} \Phi(\varphi_{j}(\gamma)) \, \hat{p}_{j}(\gamma)(\cdot, \gamma) \right\|_{L^{\mathfrak{p}}(D(r))} \\ & \geqq j, \end{split}$$

 $j = 1, 2, \cdots$, which is impossible.

Next we treat the case where Γ is not of bounded order. Assume (8) holds for $\Lambda = \mathbb{Z}$.

We can suppose that the support of $\hat{p}_j \subset [-n_j, n_j]$ and the support of $\varphi_j \subset [-2n_j, 2n_j]$. Let $\{\Upsilon_j\}, \{E_j\}$ and $\{m_j\}$ be the sequences of (b) in Lemma C.

Let X be the space of continuous functions f on G of the form

$$f^{\ast}(x) = \sum_{j=1}^{\infty} (x, m_j \gamma_j) f_j^{\ast}(x),$$

where $f_j^*(x) = \sum_{-2n_j}^{2n_j} \hat{f}_j(n)(x, n\gamma_j)$. Then the representation is unique. For f^* put

$$f(heta) = \sum_{j=1}^{\infty} e^{im_{\cdot} heta} f_{j}(heta),$$

where $f_j(\theta) = \sum_{-2n_j}^{2n_j} \hat{f}_j(n) e^{in\theta}$. Then we have, by (b) of Lemma C,

$$\sum_{j=1}^{\infty} \|f_j\|_{\infty} \leq 2 \|f^*\|_{\infty}.$$

We define a functional T on X by

$$Tf = \sum_{j=1}^{\infty} \int_{-\pi}^{\pi} f_j(-\theta) \sum_{-2n_j}^{2n_j} \varphi_j(n) e^{in\theta} d\theta.$$

Then this is bounded on X. Thus there exists, by extension theorem, a finite measure μ on G such that

$$Tf = \int_{G} f^*(-x) \, d\mu(x).$$

In particular $\hat{\mu}(m_j\gamma_j + n\gamma_j) = \varphi_j(n)$ for $|n| \leq 2n_j$, $j = 1, 2, \dots$. As above we may assume $\hat{\mu}$ is real-valued.

Now for the polynomial q on T of order $\leq n_j$, put

$$q^*(x) = \sum_{-n_j}^{n_j} \hat{q}(n)(x, n\gamma_j), \quad x \in G.$$

If γ_j is of infinite order, then $\|q^*\|_{L^{p}(G)} = \|q\|_{L^{p}(T)}$. If γ_j has order d, say, then

$$\|q^*\|_{L^{p}(G)} = \left[\sum_{k=1}^{d} \frac{1}{d} \left|q\left(\frac{2\pi k}{d}\right)\right|^p\right]^{1/p}.$$

This differs from

$$\|q\|_{L^{p}(T)} = \left[\sum_{k=1}^{d} \frac{1}{2\pi} \int_{(2k-1)\pi/d}^{(2k+1)\pi/d} |q(\theta)|^{\nu} d\theta\right]^{1/\nu}$$

by at most

$$\frac{\pi}{d} \|q'\|_{\infty} \leq \frac{5\pi}{d} n_{j}^{2} \|q\|_{L^{1}(T)} \leq \frac{1}{2} \|q\|_{L^{1}(T)} \leq \frac{1}{2} \|q\|_{L^{p}(T)}.$$

Thus we have

$$2\|q\|_{\iota^{\mathbf{p}}(T)} \geq \|q^*\|_{\iota^{\mathbf{p}}(T)} \geq \frac{1}{2} \|q\|_{\iota^{\mathbf{p}}(T)}.$$

Therefore from (8) we get

$$\|p_j^*\|_{L^{p}(G)} \leq 2^{-j+1},$$

(9)

$$\left\|\sum_{-n_{j}}^{n_{j}} \Phi(\varphi_{j}(n)) \,\hat{p}_{j}(n)(\cdot, n\gamma_{j})\right\|_{L^{\mathbf{p}}(G)} \geq \frac{1}{2} \,j,$$

$$j = 1, 2, \cdots. \quad \text{Since} \quad \hat{\mu} \in M_{1}(\Gamma) \text{ and } \quad \left\|\sum_{p} p_{j}^{*}\right\|_{L^{1}(G)} \leq 2,$$

$$\left\|\sum_{j=1}^{\infty} \sum_{-n_{j}}^{n_{j}} \Phi(\hat{\mu}(m_{j}\gamma_{j} + n\gamma_{j})) \,\hat{p}_{j}(n)(\cdot, m_{j}\gamma_{j} + n\gamma_{j})\right\|_{L^{\mathbf{p}}(G)} \leq 2 \|\Phi(\hat{\mu})\|_{M_{p}(\Gamma)}$$

$$< \infty.$$

If we put $\hat{K}_j(\gamma) = \min(1, 2 - |n|/n_j)$ for $\gamma = m_j \gamma_j + n \gamma_j$, $|n| \leq 2n_j$ and $\hat{K}_j = 0$ otherwise, then $\|\hat{K}_j\|_{M_p(\Gamma)} \leq 3$. Thus

$$6\|\Phi(\hat{\mu})\|_{M_{\mathfrak{p}}(\Gamma)} \geq \left\|\sum_{-n_{j}}^{n_{j}} \Phi(\hat{\mu}(m_{j}\gamma_{j} + n\gamma_{j}))\hat{p}_{j}(n)(\cdot, m_{j}\gamma_{j} + n\gamma_{j})\right\|_{L^{\mathfrak{p}}(G)}$$
$$= \left\|\sum_{-n_{j}}^{n_{j}} \Phi(\varphi_{j}(n))\,\hat{p}_{j}(n)(\cdot, n\gamma_{j})\right\|_{L^{\mathfrak{p}}(G)},$$

which contradicts (9). Thus the lemma is proved.

Now we proceed to the proof of Theorem 1. Let Φ be the function in the theorem. Considering $\Phi(\sin t)$ and $\Phi(\varepsilon \sin t) (0 < \varepsilon < 1)$, it is sufficient to show that Φ is entire under the additional assumption that Φ is defined on the whole line and periodic. By Lemmas 2 and 3 Φ is continuous and maps real-valued functions in $M_1(\Lambda)$ into $M_p(\Lambda)$ where Λ is an infinite discrete group. We have

$$e^{in\varphi}\,\hat{\Phi}(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}\Phi(\varphi+x)\,e^{-inx}\,dx,$$

where $\varphi \in M_1(\Lambda)$ and $\Lambda = \Delta(r)(r \ge 2)$ or Z. Hence by Lemma 4

$$\|\hat{\Phi}(n)\| \|e^{in\varphi}\|_{M_p(\Lambda)} \leq C_a$$

for any φ such that $\|\varphi\|_{\mathcal{M}_1(\mathcal{A})} \leq a$. Therefore by Lemma 1 we get $|\hat{\Phi}(n)| \leq C_a K_p^{-an}$ for any a > 0. Therefore Φ is extended to an entire function.

REMARK. Let Γ be a compact abelian group and $1 \leq p < 2$. If Φ is a function on [-1,1] and $\Phi(\varphi) \in M_p(\Gamma)$ for all φ in $M_1(\Gamma)$ with the range contained in [-1, 1], then Φ is the restriction of a function analytic in a neighborhood of [-1, 1].

In fact $M_1(\Gamma) = A_1(\Gamma)$ and $M_p(\Gamma) \subset A_p(\Gamma)$, so that this follows from a theorem of Rudin in [9].

4. Some consequences of Theorem 1. Let $1 \leq p < 2$ and $m_p(\Gamma)$ be the space of continuous functions in $M_p(\Gamma)$. Since $\|\varphi\|_{\infty} \leq \|\varphi\|_{M_p(\Gamma)}$, $m_p(\Gamma)$ is a closed subalgebra of $M_p(\Gamma)$ and each point of Γ is identified with a maximal ideal of $m_p(\Gamma)$.

THEOREM 4. Let $1 \leq p < 2$ and Γ be a locally compact non-compact abelian group. Then for any complex number z there exist a real-valued function φ in $m_p(\Gamma)$ and a homomorphism h of $m_p(\Gamma)$ such that $h(\varphi) = z$.

PROOF. Otherwise the function $\Phi(x) = (x - z)^{-1}$ would carry the realvalued functions in $m_p(\Gamma)$ to $M_p(\Gamma)$, which is impossible since $M_1(\Gamma) \subset m_p(\Gamma)$.

COROLLARY 5. Under the conditions in Theorem 4 the algebra $m_p(\Gamma)$

is asymmetric and not regular.

PROOF. By Theorem 4, Γ is not dense in the maximal ideal space \mathfrak{M} of $m_p(\Gamma)$. Therefore $m_p(\Gamma)$ is not regular. Let φ be a function in $m_p(\Gamma)$ such that the Fourier-Gelfand transform $\tilde{\varphi}$ is real-valued on Γ but not on \mathfrak{M} . If for some $\psi \in m_p(\Gamma)$ we have $\tilde{\psi} = \overline{\tilde{\varphi}}$ on \mathfrak{M} , then $\psi(\gamma) = \varphi(\gamma)$ for all $\gamma \in \Gamma$, that is, $\tilde{\varphi}$ is real-valued. Thus $\overline{\tilde{\varphi}} \in \widetilde{m_p(\Gamma)}$.

THEOREM 6. Under the conditions in Theorem 4 there exists a realvalued function φ in $M_1(\Gamma)$ such that $\varphi(\gamma) \geq 1$ but $1/\varphi \in M_p(\Gamma)$.

PROOF. It suffices to consider the function $\Phi(x) = 1/(x^2 + 1)$.

This will be interesting in connection with the inversion theorem of the singular integral operators; see Calderón-Zygmund [1].

From Theorem 1 and Remark in § 3 we have the following result which is proved partially by Hörmander [6] and Figà-Talamanca [4] in the case $\Gamma = \mathbf{R}$.

THEOREM 7. Let Γ be a locally compact abelian group and $1 \leq p < 2$. Then the contraction does not operate on $M_p(\Gamma)$ and $m_p(\Gamma)$.

REFERENCES

- A. P. CALDERON AND A. ZYGMUND, Algebras of certain singular operators, Amer. J. Math., 78(1956), 310-320.
- [2] K. DE LEEUW, On L^p-multipliers, Ann. of Math., 81(1965), 364-379.
- [3] R. E. EDWARDS, Changing signs of Fourier coefficients, Pacific J. Math., 15(1965), 463-475.
- [4] A. FIGA-TALAMANCA, On the subspace of L^p invariant under multiplication of transform by bounded continuous functions, Rend. Sem. Mat. Univ. Padova, 35(1965), 176-189.
- [5] H. HELSON, J.-P. KAHANE, Y. KATZNELSON AND W. RUDIN, The functions which operate on Fourier transforms, Acta Math., 102(1959), 135-157.
- [6] L. HORMANDER, Estimates for translation invariant operators in L^p spaces, Acta Math., 104(1960), 93-140.
- [7] S. IGARI, Lectures on Fourier Series of Several Variables, Univ. of Wis., 1968.
- [8] H. ROSENTHAL, Projections onto Translation Invariant Subspaces of $L^p(G)$, Mem. Amer. Math. Soc., 1966.
- [9] W. RUDIN, A strong converse of the Wiener-Lévy theorem, Canad. J. Math., 14 (1962), 694-701.

- [10] W. RUDIN, Fourier Analysis on Groups, Interscience. Publ., 1962.
 [11] A. ZYGMUND, Trigonometric Series, vol. 1 2nd ed., Cambridge 1958.

MATHEMATICAL INSTITUTE TÔHOKU UNIVERSITY Sendai, Japan