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1. fntroduction

We shall introduce a new notion of functions of uniformly bounded characteris-
tic in the disk in terms of the shimizu-Ahlfors characteristic function.

Letf be a function meromorphic in the disk D: {lzl<r} in the complex plane
C:{lzl<.*}. Let fo:l.f,ll!+lfl\,0=r<1, and z:x*iy. Set

s(r, f) : (1ln) .![ f o{4,a*ay
lzl<?

The Shimizu-Ahlfors characteristic function of /

T(r, .f) : j rr s1t, f1dt,

is a non-decreasing function of r,O<r=1, so that

T(1, f): lg1r(r, f) =*,
exists.

Let BC be the family of/meromorphic in D with T(l,f)<.*. Then, g meromor_
phic in D is of bounded (Nevanlinna) characteristic in D if and onty ifg€BC. Letting
w€D as a parameter we set

E*(z) : (z*w)lg*wz), z(D.

The inverse map of E. is then E_..Weset f*(z):f(E.e)), z(D. If /€BC, then
.f*<BC for all w€D.

Definition. A meromorphic function f in D is said to be of uniformly bounded
characteristic in D if and only if

itB 7(1' 'f*) =*'
Denote by UBC the family of meromorphic functions in D of uniformly bounded

characteristic in D. By UBCo we mean the family of functionslf meromorphic in D
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such that

,IP, r(1' 'f-) : o'

Then UBCcBC. However, the inclusion formula UBC'cUBC is never ob-

vious and needs a proof (Lemma 2.1.).

In Section 2 we propose a criterion (Theorem 2.2) for a meromorphicf to belong

to UBC or UBC. in terms of the Green function of D.
In Section 3 we show that UBC is a subfamily of the family N of meromorphic

functions normal in D in the sense of O. Lehto and K. I. Virtanen [5]; an analogue:

UBCocNo, is also considered (Theorem 3.1). Use is made of J. Dufresnoy's lemma

ll,p.2lSl,fromwhichacriterion forftobeof Norof Noisobtainedintermsof the

spherical areas of the Riemannian images of the non-Euclidean disks (Lemma 3.2).

We believe that this criterion itself is novel.
In Section 4 we consider Blaschke products

t^ Ib(z):'rII;:;#
(k = 0 integer; ZG- la,l) <-).

If /€UBC is not identically zerc,thenf, as a member of BC, has the decomposition

b$lbr, where g€BC is pole- and zero-free, and b, and b, are Blaschke products

without common zeros. We observe that g€UBC. One of the essential differences of
UBC from BC is that UBC is not closed for summation and multiplication. This is

a consequence of Theorem 4.2. For the proof, Blaschke products play fundamental

roles.
In Section 5 holomorphic lunctions/in D are considered. A criterion for fiUBC

or /€UBC. is obtained in terms of the harmonic majorants (Theorem 5.1). In Theo-

rem 5.2 we claim that if the image f(D) is contained in a domain in C of a certain

type, then /€UBC.
If/is holomorphic and bounded in D, then 

^UBC. 
In Section 6 we show that

if a meromorphic f satisfies the condition

{-:

then /€UBC. Thus, if/is "bounded" in a natural sense, then /€UBC.
In the final section, Section 7, we consider BMOA and VMOA functions. These

are, roughly speaking, holomorphic functions in D whose boundary values are of
bounded or vanishing mean oscillation on the circle {lrl:l) in the sense of F.

John and L. Nirenberg [4] or of D. Sarason [7], respectively. The main result is that

BMOAcIJBC and VMOAcUBC..
To extend the notion of UBC and UBC. (as well as BMOA and VMOA) to

Riemann surfaces R is possible. Some arguments in D are also available on R. We

hope we can publish a systematic study of UBC and UBC. on R in the near future.

[[ ,* Q)'dxdv



351Functions of uniformly bounded characteristic

2. Criteria

First we show, as was promised in Section 1, that UBC,cUBC; for the proof,
use is made of

Theorem 2.1. ff feBC, then for each p,O-q=1,

'ilå'('' 
'f*) =-'

Proof. Set for w€D and for l,O<),<1,

/(w, A) : lzQD; lw 
* zlllL-frzl =. ),\;

this is the non-Euclidean disk of the non-Euclidean center w and the non-Euclidean
radius (ll2)logl(l+1)10-)')1. The change of variabte C:C+iq:qw@) then
yields that

(2.r) s(t, f-) : (lln) f f n, e)2dxdy : (tln) [ [ t" G),dEdn;t4:L t(*ity-
hereafter, (f*)" :"f* and (E)':Ei for short.

Fix g,0<g<1, and then let u satisfy lwl=e. For ro:lf2=r=|, we shall
estimate upwards the characteristic function

T(r, -f*) : T(ro, f-l+ j fL S(t, f*)dt = a* B
ro

by a constant independent of r and w.
For the a-paft we note that

lzl = rr+ lE.k)l = (lrl+ lzl)lg+lzwl) <. Ro : (16*s)/(1+roe).

Then, for lrl=ro,

fI 121 : f" (E-@))lq'*(r)l = [,pg,5,/o (0](r - srJ-2 = K = *
by the continuity of -f+. Consequently,

f#1'1=Y for lzl<t<ro,
so that the inequality S(t,f-)=Kzrz yields

Q.2) u = Kzl8.

To estimate B we notice that, for 0<t<1,
Å(w, t) c. {lzl = u}, u : (t+ q)lg+ qt).

By (2.1), together *r,n .p:(r*q)/(1*rS)=,R0: we obtain

rR

fr a I rr S(u, f)dt : [ 
"@, 

s)u-15(u, f)du,
ro Ro
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where
. u(1-01 , =21(Ro_p)L\u, Q): pt4y1_au)

because p<.Ro<u<l for ro<t<r. Therefore

fr = zT(R, f)l(-P.o- d = 2T(r, "f)/(Ro- e),

which, together with (2.2), completes the proof.

Lemma 2.1. UBC.cUBC.

Proof. For /€UBC, there exists ä, 0<ä < 1, such that T (1, f*) < Iin {ä < |wl < 1 }'
Then /€BC because / is the composed function f:fnoq-n for a:O+6)12
with f€BC. It now follows from Theorem 2.1 that

t = 
':'t!' 

r(t' fn) =*'
whence

i,tBr(t, f-)4K+1.

Remark. Theorem 2.1 also yields:

For f meromorphic in D to be of IJBC it is necessary and sufficient that

,tffi,1,1, r(1, f-) < *.

The Green function of D with pole at p€D is given by

G(z,w): log l(1-il2)l(z-w)l --los lE-*@)1, z(D'

We now propose the main result in the present section.

Theorem 2.2. Let f be meromorphic in D. Then the follov,ing propositions hold.

(I) /€UBC if and only if

Q.3) sup-fIf+@)zG(2,w)dxdY=-.
w € DuDu

(II) /€UBC0 if and only if

Q.4) ,lig,l[ t"(z)zG(2, w)dxdy : s.

For the proof we need

Lemma 2.2. For f meromorphic in D and for 0<r<l we haue

(2.5)

Proof. For 0 =
namely , X,(z) -l

r{r, f) : (Ud 
,{!.fo(r)'1os 

(rllr}dxdy.

r<1, we let X,be the characteristic funr,:tion of the disk {lzl=r),
for lrl-r, X,(r)-O for r=lzl< 1.
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It suffices to prove (2.5) tor 0=r<1. For, if (2.5) is true for 0<r=1, then

T(r, f) : (tld II f +e)z x,(z)tog(rllzl)dxdy.

Since 0=X, (z)log(rllzl)/lolOl)ll 
^, 

r*t at each zeD,(2.5) for r:l follows.
Now, for 0<r<1,

! ,-,*,{r)nt : toeervD it rrr = r,
_0 if r=lzl<1,

so that (2.5) is a consequence of

r(r, .f) : 1t t *> fl f" r,r, { t-lx,(z) ittJ dxdy.

Proof of Theorem 2.2. Since "f#:(f" "E)lE'*|, it follows from Lemma 2.2,
together with the change of variable (:E-(z), that

Q.6) r(r, f*) : (tlO II f+(0,log (tllE_*g)l)d(d4.

This completes the proof of rdelem Z.Z.

Remark. For /€BC, the function T(|,.f*) of w(D is well defined. The iden-
tity Q.6) shows that T(r,"f*) is lower semicontinuous with respect to w(D. Actually,
T(l,f-) is a Green's potential in D of the measure in the differential form

(tln)f+ ((), d(dq.

3. Normal meromorphic functions

Let N be the family of meromorphic functions / in D such that

:åB(1-lzl)f+(z) =*,
and let No be the family of meromorphic functions/in D such that

rlig ft -Pl21f+121: s'

Each /€N is normal in D in the sense of Lehto and virtanen [5], and vice versa. By
the continuity of f+, the inclusion formula NocN is easily established.

Theorem 3.1. The folloting inclusion formulae hold:

UBCcN and UBCocNo;

both arc shown to be sharp.

We begin with Dufresnoy's result.
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Lemma 3.1 U, Lemma, p. 2181 (See [3, Theorem 6.1, p. 1521.). Suppose that f
is meromorphic in D and that there exists F, 0<r=7, such that S(r,f)<|. Then

"f+(o)' = s (r, f)r-2[1 -,s(r, /)]-1.
Note that our Riemann sphere is of radius lf2, touching C from above at 0,

while Dufresnoy considered the sphere of radius 1 bisected by C.

Lemma 3.2. Let f be meromorphic in D. Then the following propositions hold.

(I) /e N if and only if there exists r,0<r<1, such that

(3.1) su-p ^9(r, 71 : Qr)typ^ II f+Q)zclxdy - t.
w €D w €D t(i,)

(II) /€N0 if and only if there exists r, 0<r-1, suclt that

(3'2) 
rlip, 

s(r, Å) : ,lj,T, ^l[ f"@'axctv : s.
r -- /(w,r)

In the proof of Theorem 3.1, the "if" parts of (I) and (II) are needed. Lemma3.2

(I) gives a new criterion for f to be normal in D.

There exist a nonnormal holomorphic function/and r>0 for which S(r, f-)<t
for each w€D; see [12, Remark, p. »6).This function Jf must satisfy

sup ,S(r, l,) : L

Proof of Lemma 3.2. For the proof of (I) we first assume that/€l't with

(l-lrl\"f+(z) = K -: *, for all z(D.

Then, for each w(D,

0-d\f *t) : (t-lirp-(r)l')f"(cp*(z\) = K, z€D.

Therefore, for a small r, 0-r=1, with Kzrzl(l-r27=1,

ns(r,f*): II fI,O)'dxdy=hrKz i ,rt_ p\-'de: xK'r'l(r-r\,
lil<r 0

whence (3.1) follows. Conversely, let the supremum in (3.1) be §. Then, by Lemma

3.1, together with xlQ-x)/ as 0=x/1,

(t -l*l\ f"(r)' : f*tol' = r-'s(1 -^s)-'

for all p(D, whence /€N.
To prove (II) we first suppose that /€N6. Then, for each e=0, there exists

ä, 0<ä<1, such that

(3.3) ö < lzl < 1 =.+ (l-lzl2)f+(z) '. euz.
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Choose r such that 0<r<ä and r2l(l-r2)=1. Then

(3.4) ä < (rf ä)/(1*rä) < lwl = 1 =+ A(w, r) c {ä =.lzl<. t}
because

ä < (lwl -r)l$-rlwl) -- lzl for z(/(w, r).

The formula (2.1), together with (3.3) and (3.4), yields that

nS(r, f.) : ll foe)ra*dy = enrzl(t-r);
/(w,r)

in fact, the non-Euclidean area of /(w,r) is nrzl(l-rz). Therefore,

^S(r,1,) = e for (r+ä)/(1*rä) < lwl = 1.

Conversely, suppose that(3.2) holds. Then, for each e>0, there exists ä,0=ä=1,
such that

S(r,f*)-.9 for ä<lwl <1,
where 0=q=1 and gr-2(l-q)-r<.e12. By Lemma 3.1,

(t-lrl')'.fo(r)': f*,e\'-e for ä<lwl <1,

which completes the proof.

Remark. The condition (3.1) can be replaced by

"i1'tt' ^s(r' fi) = l'

Proof of Theorem 3.1. Suppose that J€UBC. Then (2.3) of Theorem2.2 holds;
we denote by A the supremum in (2.3). Choose r,O<r<1, such that

(3.s) Al[ntog(1/r)] - 1.

Since, for each w(D, the formula (2.1) yields that

n = 
^r{{nf"Q)2G(z,w)dxdy 

> zrog (tlr)s(r, f*),

it follows from Lemma 3.2, (l), together with (3.5), that /€N. Therefore UBCcN.
The proof of UBCocN, is similar.

To prove the sharpness it suffices to observe the existence of /€N.-BC. Then

/€N'-UBC' and /€N-UBC. Consider the gap series

f(r): åoor,*, zeD,

where the sequence {ry} of positive integers satisfies n1,a1fno-:q>-l for all k>1.
Suppose that 

§bul, : * and JiB larl : o.
t:1
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Then it is known (see [10, Corollary, p. 34]) that

rliq ft - Pl'z)lf'(z)l : Q

and/does not have finite radial limit a.e. on {lzl :1}. Therefore, /6N0, yet /( BC.

4. Blaschke products

First of all we prove

Lemma 4.1. Suppose that felJBC and that g is a rational function. Then

gol€UBC.

Proof. There exists K>0 such that

g+(z) = Kl].+lzl\ for all z(C.

Since (gof).:gof-, it follows that

G"fl*: (goÅ)o :(g+ of-)lJil 
= xf,f .

Consequently,
T(1, kor,) = Kz T (1, f,"),

which shows that go/€UBC.
As we shall observe later in Theorem 4.2,UBC is not closed for summation and

multiplication. The family UBC resembles N at this point. However, a decisive dif-
ference between UBC and N is that, each non-zero /€UBC, as a member of BC,

admits the decomposition
(4.L) f - brslbr,

where g€BC has neither pole nor zero in D, andbr(br, respectively) is the Blaschke

product whose zeros are precisely the zeros (poles, respectively) of f, the multiplicity
being counted. For simplicity we shall call b2 the polar Blaschke product of f. If f
is pole-free, then år=1.

We shall show that g of (4.1) is a member of UBC if /€UBC as a corollary of

Theorem 4.1. Let f€UBC, and let b be the polar Blaschke product of f. Then

bf€uBc.

For the proof of Theorem 4.1, we first deduce the formula (a.a) in Lemma 4.2

by making use of a precise description of the first step in the Nevanlinna theory. The
adjective "precise" in the preceding sentence means that there is no Landau's nota-
tion O(1).

Let

.li ,or(r + l-f(rr")l') dt,I(,", J') : (lan)
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and let n(r, f) (n* (r, "f)) be the number of the poles of f in the disk llzl=r\ (on the
circle {lrl:r\), the multiplicity being counted, 0<l<1. Delete from {lzl<r}
the closed disks, with poles on the closed disk {lzl=r} as centers, and with common
small radii e>0, apply the Green formula to log (1+I,fl) in the resulting domain,
and, finally, let e*0. Then, for 0<r=1, the identity llog(I+lfl2):4f+2
(except for poles of /) yields

(4.2) r(dldr)I(r, .f) : S(r, f)-n(r, f)-(ll2)n* (r, f).

Arrange r=0 with n*(r,f)+O as

0< ro < .., < ri <fi+t< ... < 1.

For each Ä,r6<R<1, there is a7 such tbat rr=R<.r;ar. Divide both sides of
@2) by r, and integrate from e, O<e<to, to R, to obtain

(4.3) /(4, f)- I(e, f)- t r-1,S (r, f)ar- { r-Ln(r, f)rtr,

where

Lemma 4.2. Let b be the polar Blaschke product of f€BC. Then,

(4.4) r(r, .f) - /(1 , f)-$12) los [tb (0)l'+9gä lb(r)f(41'f,
where

I(r, f) : lg1 I(r, J).

Proof. Suppose that 0 is a pole of order k=0. Then

and, in case k:A,
r(e,f) * (Llz) los (t + l/(0)1,),

as t*0, while in case k=0,

I (e, "f) ,-, - k log t*log A
as 6*0r where

Therefore, t * 0, and then R * 1 in (4.3) yield

r(1, .f) - I(r, J) - $ 12) los (1 + l/(0)l') - los lb (0)l

P-L J

lo

J r-Ln(r, f)dr - /c (1og ro-1og e)
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if k:0, while if k=0, then

T(t, "f) : I(r, f)-losA-toe [l1IB lz-kb(z)l]

: I (1, f) - toe llry; lb (r)t f k)11,

which completes the proof.
As an immediate consequence of (a.$ in Lemma 4.2 we obtain

Lemma 4.3. If f is holomorphic and bounded, lfl=K, in D, then

T(r, .f*) = I(L,l) = Glz) log (1 *r('z) for all w€D.

Therefore 

^UBC.Lemma 4.4. Let b be the polar Blaschke product of f€BC. Then for each

constant a, lal:l,
(4.s) T(t, abf) = T(1, f)+(Uz)ros2.

Proof. By (a.a) in Lemma 4.2, applied to/with S:bf, we obtain

r(1,f) : I(r, f)-(U2) log (lb(0)1'z+ lg(0)l)',

and it is apparent that (ag)+:g+. Therefore,

T(1, abf) : T(t, 8) : I(1, d-Glz) log (1+ ig(0)l')

= r(1, b) + t(t, f)-(u2) log (1+ lg(o)1,) = (rl2)tog2*r(t, f )+:ol2)tog A,

where
A : (lb(0)1'z+ lg(o) j'z)/(t + !g(0)l') = 1.

We thus obtain (4.5).

Proof of Theorem 4.t. Let å* be the polar Blaschke product off,. Then lb'l :
lb.l in D. Actually, defining

,L @, a) : lz - allll - azl, z € D,

for a(D, one obtains
,1, (r, E - *@)) :,1, (E*Q), n).

Since a€D isapoleoforder k>l offif andonlyif E-,@)isapoleoforder fr>l
of f*, it follows from the expression

lb(z)l: fi 4,g, ai)
j=L

that

lb' (41 : 
,irv tr, E -*@i)) : I,b o E,Q)l

for all z(D.
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Now, there is a constant u,lal:I, such that b*:ilb*. Set 9:6; 1tr"r,
gn:b-f*:ab'-f-. It follows from (4.5) in Lemma 4.4, applied to f-, that

T(1, s*) = T(1, f*) y(ll2)log2 for all w(D.

Consequently, g€UBC.

Corollary 4.1. If f€UBC with (4.1), then g(UBC. The conuerse is false.

Proof. By Theorem 4.1, brg:SzfeuBc. By Lemma 4.1,

h : 1 l(b,g) : (tl g)lbL<UBC.

Again, by Theorem 4.1, I I g :$rh<UBC, whence, by Lemma 4. 1 once more, g( UBC.
To prove that the converse is false we remember that there exist Blaschke products
b, and å, with no common zero in D such that the quotient brlbzis not normal in D;
see, for example, [1] and [13]. Therefore, g:lqIJBC, yet f=brglb2{UBC be-

cause /( N.
Finally in this section we prove

Theorem 4.2.
(I) There exist fQUBC and g(UBC such thst "fg(N.(lI) There exist f(UBC and C€UBC such that ,f+g(N.

Combined with the inclusion formula UBCcN, Theorem 4.2 asserts that UBC
is not closed for the product and the sum.

Lemma 4.5. Let f<UBC, and let g be a holomorphic function bounded from
below and aboue in D:

O<m=lsl =M<*.
Then fg€UBC.

Proof. By Lemma 4.3, g€UBC. Set

,( : (1 I Mz)lmin(!, mr).
Then,

r+l"fsl'= 1(-'(1 +lfw* lgl'),
whence

| 

"f 
, gl, + 2l fJ., c c, I + 

I fc, l,(4.6) (fdo' < I = K'(-f +'+2f+ g= + g+').

;;;," ",,:,;",;,f" :H,i'll:flItogether with (2,), yie,ds

I I I t. Q)g+ (z)(tx dtf' = n' s 1r, Å) s(r, s,,)
Å(w, r)

for all w(D and all r, 0-<r<1. Consequently, by (2.1), together with (4,6), we

obtain
ftS(r, (fg)*) < zK2{S(r, f*)+S(r, g,)+2[,S(r, Å),S(r, g*)]'t']

< 2nKzlS (r, l,) +,S(r, 9,,)1.
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Therefore
T(1, (fd-) = 2K2fT(t,-f*)*T(1, g)1,

whence fCeUBC.

Proof of Theorem 4.2. Again we consider the Blaschke products b, and b,
such that bllbris not normal. To prove (I), set .f:bt and g:llbz. Then /€UBC
and g€UBC, yet /g(N. To prove (II) we set f:2lbz and g:(br-2)lbr. Then
/€UBC. Since 1=lår-21<.3 and llbzQ.lJBC, it follows from Lemma4.5 tbat
g€UBC. However, f*g:b1lb2{N.

5. Harnronic majorant

Let u# -- be a subharmonic function in a domain gcC. We call h ahar-
monic majorant of u in I if h is harmonic and u=h in g.lf u has a harmonic majo-
rantin 9,thenuhasthe leastharmonicmajorant u^ in g,thatis, u^ is aharmonic
majorant of uin I and u^ =h for each harmonic majorant h of uin g.lnlhe special
case 9:D, z^ is given by the limiting function

Zn

u^ (z) - lE gf2n) j'" u(re")ffi a,, z€D.

Theorem 5.1. Let f be holomorphic in D. Then the following uiteriahold for
the subharmonic function p:(ll2)1og(1+lfl2) in D.
(I),fe UgC if and only if

sup (F^ (rr) - lt(r)) { oo.
w€.D

r#rT, 
(r^ (w)-r(r)) __ o.

(II) /€UBCo if and only if

Lemma 5.1. Suppose that
ront in D. Then (uoE)n :sn

Proof. Since Lf o e* is a

follows that
(5.1)

whence
u

Combining this with (5.1) we

a subhormonic function u in D has a harmotic majo-
o e* _fo, each w(D.

harrnonic rnajorant of u o e,u for each weD, it

-(uoe-*,)^ = 'D^ oe-*,

^oErrsTs^ 
-(uoe*)^.

have the equality.

Apply (5.1) to u:uoew and cp-* instead of u and E., respectively. Then
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Proof of Theorem 5.1. (I) There exists K>0 for /€UBC such that K>T(l,f*)
for all w(D. On the other hand, by Lemma 5.1,

I(1, .f-): (Fo9*)^(0) : F^ "8,(0) 
: F^ ()v),

whence

K=T(1.,f*): I(l,f*)-(U2) log(1+lÅ(0)l): F^(w)-F(w) for all w€D.

The converse is also true, so that (I) is established. The proof of (II) is similar.

Remarks. (a) We may replace F in the UBC criterion (I) by 1og+ l/l:
max (log l/1, 0) because

log+ 1r', < F= log+ l/l+(112)log2.

(b) Suppose that /€BC is pole-free. Since F^ exists and since the identity

T(1, f*) : F^(w)-F(w), w€D,

is also true for the present /
F(w) : F^(w)-T(l, f-), w€D,

represents the Riesz decomposition of the subharmonic function F which has a har-
monic majorant in D. The potential T(|,f.) is continuous in the present case because
the same is true of F and F^. The problem is that T(l,.f*) is or is not continuous de-
pending on whether/admits poles in D- If T(|,f.) is proved to be continuous in D
for each meromorphic f€BC, then Theorem 2.1 is immediate.

A subdomain g of C is called a UBC domain if each holomorphic function/
in D which assumes only the values in I is of UBC. We next consider a criterion for
a holomorphic f in D to be of UBC.

Theorem 5.2. Suppose that the function H(z):(ll2)log(1*lzl'z) has a har-
monic majorant in 0cC, and suppose that H^ -H is boundedin g. Then I is a
UBC domain. The conuerse is true under the condition that the uniuersal couering sur-

face of 9 is conformally equiaalent to D.

Proof. ys1 p:(ll2)log(1+lfl\ for a holomorphic f; D*9. The first half
follows from F:H of, F^ =H^ 

of and Theorem 5.1 (I). To prove the converse we let
p be the projection of the universal covering surface 9- of I onto g,andlet q be a
conformal homeomorphism from D onto 9*. Then .f:poq(.UBC. Since F-
(ll2)log(1+l,fl) and F^ both are automorphic with respect to the covering trans-
f,ormations, namely, automorphic with respect to a group of conformal homeomor-
phisms from D onto D, H^(z):F^(f-'(r)) is well-defined in g. Consequently,

F^ -F = K in D by Theorem 5.1 (I)
irnplies

H^-H=K in 9.
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6. Riemannian image of finite spherical area

In this short section we prove

Theorem 6.I. Suppose that a merontorphic function f in D satisfies

{.f '" 
G)'ctxdY < oo'

Then feUgCnNo.
See the remark at the end of the next section.
Proof of Theorem 6.1 . For the proof of "/€N, we set

A- fff"{r)'clxdy,

and we fix r,0< r-1" arbitrarily.orrn..

Jlry ,={[;f 
o (')'dxct-v : o'

it follows that, for each r=0, there exists ö, 0<ä= 1, such that

f f fo Q)'dxcllt < nt'
ä<lzl<1

Since

it follows that
rs(r, f*) : IIf"k),a*dy = nr.

Ä(w,r)

or S(r,f.)<e. By Lemma 3.2 (Il), f is a member of Nu.

For the proof of /€UBC, we first note that

(t-lzl,)fg(z) : (1- 1,?*1r11,).f " (E*e)) = K

for allzandwinD,because /€N. Fix R, 0<R<1, andthen let R<r<l. Wehave
then

T(r, .f-) : T(R, f;+ jl-1,s(1, J)dt : a* B,

By (2.5) in Lemma 2.2,

(6.1) 
R

nq.: Ilt*<rl'tog(Rllzl)dxdy =2nK2 I ,Q-Q')-'log(R/q)dq: cl(Å) <-.
lzl=R 0

On the other hand, since

nt-tS(t, f.) = R-'A for fi' < t '< r,
it follows that

n§ = (l-,R)R-U = Cr(R) <-,
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which, together with (6.1), yields that

zr sup 7(1, f-) = Cr(R)+Cr(A).

This completes the proof of Theorem 6.1.

Remark. There exists a holomorphic function f in D such that /(N, yet

II V'frlP axdl' - * for all P, o = P '= 2;

see [9]. Therefore /(UBC, yet

(6.2) 
$t"Q)pdxcly 

-=* for all p, O <. p -2.
In other words, condition (6.2) for meromorphic/does not necessarily assure that

/€uBC.

7. BMOA and VMOA

Let lJl be the linear Lebesgue measure of a subarc .r of the circle f : {lrl:I).
For each / of complex I1(.1-) we set

r(.f): (ulr) [f@tt)dt,

called the mean of/on "/. Then/is said to have bounded mean oscillation on l', in
notation, ./€BMO(I), if and only if the mean oscillation J(lf-J(f)l) of f on J,
the mean of lf-l(f)l on-/, remains bounded as -I ranges over all subarcs of .l'.

Furthermore, / is said to have vanishing mean oscillation on l-, in notation.

/€VMO(D, ifandonlyif /€BMO(i-) andforeach e>0 thereexists ä>0 such

that
l"rl= ä + J(lf-t(f)l) ='.

For the properties of BMO(j-) and VMO(i'), see [6] and [8].
Let Hp be the Hardy class consisting of/holomorphic in D such that l/je has

a harmonic majorant in D, where 0<p-<-. Each f€He has a boundary value

f(et)eC, being the angular limit, at a.e. point eitcf and f(ei') is of lp(l-). For

-f(H', the norm ll,filr=O is defined by 
zn

ll.fltl: (l/19^(0) :(Il2n) [ lf{,\*, a,.

By definition ([8, p. 901 ; see also 12, Theorem 3.1 , p. 3+l),

BMOA : {/e Hr; -f(r,')€BMO(l-)},
VMOA : {f€Hr; -f(r,')€VMO(t-)}.

Theoreffi, p. 361) that if "feBMOA, then for each p,l=pd*,
sup (lf-ftu)lo)^(*) < oo.
w€D'

It is known (see [8,

(7.r)
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An immediate consequence of (7.1) is that f€He for allp, because, for p>_1,

{7.2) (J',n^ =2o-'(lf*f(0)lr)^12r-rl^0)1,,
where (lf-f@f\^ exists by (7.1), namely,

(lf-f(o)n^(o) = -.
Conversely, if fCHt and if (7.1) is valid for a certain p,l=p<*, then

/€BMOA.
Therefore, a holomorphic function f in D is of BMOA if and only if

(7.3) s2oollf.-f(w)llz = -.
Actually, setting s:-f-f(w) and considering Lemma 5.1, one calculates that

ll f.-f(w)ll| : (le 
" E*l\^(0) : (l g l, o E,)^(0)

: (lgl,)^ oE*(0) : (lgl')^(w) : (lf-f(w)1,)^(w).

A straightforward modification of the proof of [8, Theorem, p. 36] yierds the
VMOA version:

If 
^VMOA, 

then for each p,l<p=*,
(7.4) $p,(lf-f(*)l,)^(lr):0.
Conversely, if 

^BMOA 
and(7.4) for a certain p, l=_p=*, holds, then /€VMOA.

However, it must be emphasized that the condition /€BMOA in the preceding
sentence can be dropped. Namely, if a holomoryhic f in D satisfies (7.4) for a p,
1=p=-, then /€VMOA. To ascertain this it suffices to show that /€BMOA
under the condition (7.4). First, there exists ä, 0<ä<1, such that

(7.5) ä< lwl < 1.+ (lf-f(*)lr)^(w) = 1.

On replacing 0 in (7.2) by ro:Q*6)12, we observe that .f€Hr. Now, for ur,

lrl=ro,
(l f - f (DP)^ (w) 

= zn - t 1 ; f lp)^ (w) + 2p -, 
I f (w)lo .

The right-hand side is apparently bounded for lu'l<16, which, together with (7.5),
shows that (7.1) is valid. Consequently, /€BMOA.

By the observation in the preceding paragraph we can now conclude that a holo-
morphic function f in D is of VMOA if and only if
(7.6) ,Ip,ilf**f{e)llz:0,
a VMOA counterpart of (7.3).

We propose

Theorem 7.1- The inclusion formulae

BMOA c UBC and VMOA c UBC,
hold.



Functions of uniformly bounded characteristic 365

For the proof we first consider the holomorphic analogue T* (r, f) of the Shimi-

zu-Ahlfors characteristic function basing on the identity

(7.7) /(lfn: lf'l'
for/holomorphic in D instead of /log(l+lfl2):4f+2.

For f holomorphic in D we set

M(r, f) : l{rlzn) f Ve"\Pal't', o < r = 1,
to"

where M(l,f):lim,-1M(r,f). lf f€Hz, then ll/llr:M(|,"f ). Since (7.7) holds,

the Green formula yields
r(dldr)lM(r, -f)'f : A(r, f),

where
A(,,f) : Qln) II lf'e)Paray

lzl-r

is the holomorphic analogue of S(r,f). Setting

T* (r, .f) : t' t-L,eQ, f)dt, 0 < r -- 1,

one obtains the formula 
o

(7.8) M(r,f)'-l"f(0)l':T*(r,f),0<r=1.

Applying (7.8) to S:.f*-f(w) (S(0)=0), one observes from (7.3) and(7.6), together

with
T* (,, g) : T* (r, f-)

that
/€BMOA if and only if itBr-(t,Å) =*,

while
,fevnaoa if and only if ,Iprr*{t,f*) 

: 0.

Since

r* (r, .f) : (2lr) f f lf'@f bgQllzfidxdl,
t4!,

for/holomorphic in D and for 0<r< l, the analogue of (2.5) holds, and it is now

an easy exercise to obtain the following holomorphic counterpart of Theorern 2.2.

Lemma 7.1. Let f be holomorphic in D. Then the.following propositions hold.

(D /e el\4oe if and only if

sup f f ff'Q)l2G(2. w\clxely =*.
-(DuDu
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(fI) ,f€VMOA if and only iJ

,lil,$ lf'(z)l2G(2, w)dxdY : s'

Lemma 7.1 (l) is known [6, Proposition 7.2.13, p. 85]. Theorem 7.1 now fol-
lows from Theorem 2.2 and Lemma 7.1, because lf'l=f" for/holomorphic in D.

Remark. At this point we remark thatif f is holomorphic in D and if

f f 11'' 1111,axdy =*,

then fiVMOA. By the theorem at the bottom of [8, p. 50] it suffices to show that

rli*, 
pt(R(r))llrl: o'

where lJl-n, and R(/) is the annular ttapezoid

and
{zQD; zllrl€J, I -lrl = lJllQn)),

w(R(/)) : {f (1 - l4l/'@)lz ctxdy.
R(J)

Since l-lzl=lJlQn), it follows that

pÅR(r)) = llrllQn)l II V' r,,lPaxdy = tlrllQr:)j II lf' (z)lzdxdy.
R(J) 1-lJl/(zn)<lzl<1

Therefore p1(n@)lltl*0 as l/l*0.
A natural question then arises: Can the conclusion in Theorem 6. I be replaced

by fiUBCo?
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