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FUNCTIONS OF UNIFORMLY BOUNDED
CHARACTERISTIC

SHINJI YAMASHITA

1. Introduction

We shall introduce a new notion of functions of uniformly bounded characteris-
tic in the disk in terms of the Shimizu-Ahlfors characteristic function.

Let fbe a function meromorphic in the disk D={|z]<1} in the complex plane
C={z]<e}. Let f*=|f/1+|f]»), O<r<1, and z=x-+iy. Set

S, f) = (1/m) ] [ £ @rdxdy.

zl<r
The Shimizu-Ahlfors characteristic function of f,

r

T f)= [ 1750, N,

0
is a non-decreasing function of r, O<r<1, so that
T(1>f) = 11_{1;111(7',_](‘) = oo,
exists.
Let BC be the family of f meromorphic in D with T(1, f)<es. Then, g meromor-

phic in D is of bounded (Nevanlinna) characteristic in D if and only if g€ BC. Letting
w€D as a parameter we set

¢u(2) = z+w)/(1+Wwz), z€D.

The inverse map of ¢, is then ¢_,,. We set f,(z)=f (¢4(2)), zED. If f€BC, then
Jf»EBC for all weD.

Definition. 4 meromorphic function fin D is said to be of uniformly bounded
characteristic in D if and only if

sup T(1, f,) <=
wgD

Denote by UBC the family of meromorphic functions in D of uniformly bounded
characteristic in D. By UBC, we mean the family of functions J meromorphic in D
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such that
,liml 7, f£,) = 0.

[w]—

Then UBCcBC. However, the inclusion formula ‘UBCOCUBC is never ob-
vious and needs a proof (Lemma 2.1.).

In Section 2 we propose a criterion (Theorem 2.2) for a meromorphic fto belong
to UBC or UBC, in terms of the Green function of D.

In Section 3 we show that UBC is a subfamily of the family N of meromorphic
functions normal in D in the sense of O. Lehto and K. 1. Virtanen [5]; an analogue:
UBC,cN,, is also considered (Theorem 3.1). Use is made of J. Dufresnoy’s lemma
[1, p. 218], from which a criterion for f'to be of N or of N, is obtained in terms of the
spherical areas of the Riemannian images of the non-Euclidean disks (Lemma 3.2).
We believe that this criterion itself is novel.

In Section 4 we consider Blaschke products

a,—z

by = 2+ 12l B

1—a,z

(k = 0 integer; > (1—]a,]) <<).

If feUBC is not identically zero, then f, as a member of BC, has the decomposition
big/b,, where g€BC is pole- and zero-free, and b, and b, are Blaschke products
without common zeros. We observe that g¢ UBC. One of the essential differences of
UBC from BC is that UBC is not closed for summation and multiplication. This is
a consequence of Theorem 4.2. For the proof, Blaschke products play fundamental
roles.

In Section 5 holomorphic functions fin D are considered. A criterion for f€UBC
or feUBC, is obtained in terms of the harmonic majorants (Theorem 5.1). In Theo-
rem 5.2 we claim that if the image f(D) is contained in a domain in C of a certain
type, then feUBC.

If £ is holomorphic and bounded in D, then f¢ UBC. In Section 6 we show that
if a meromorphic f satisfies the condition

{ [f*(2rdxdy <,

then fEUBC. Thus, if fis “bounded” in a natural sense, then fcUBC.

In the final section, Section 7, we consider BMOA and VMOA functions. These
are, roughly speaking, holomorphic functions in D whose boundary values are of
bounded or vanishing mean oscillation on the circle {jz]=1} in the sense of F.
John and L. Nirenberg [4] or of D. Sarason [7], respectively. The main result is that
BMOACUBC and VMOAcCUBC,.

To extend the notion of UBC and UBC, (as well as BMOA and VMOA) to
Riemann surfaces R is possible. Some arguments in D are also available on R. We
hope we can publish a systematic study of UBC and UBC, on R in the near future.
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2. Criteria

First we show, as was promised in Section 1, that UBC,c UBC; for the proof,
use is made of

Theorem 2.1. If f¢BC, then for each g,0<g=<1,
Sup T(Q, f,) <o
w|=<g

Proof. Set for weD and for 4,0<l<l,
4w, 2) = {z€D; lw—z|/[1—7z] < A}

this is the non-Euclidean disk of the non-Euclidean center w and the non-Euclidean
radius (1/2)log [(14+4)/(1—24)). The change of variable ¢ ={+in=g,(z) then
yields that

2.1) S f) =) [[ 3 (2)dxdy = (/m. / [ S Qrdédn;
(w, 1)

lz]<4

hereafter, (f,,)*=fF and (¢,)=¢, for short.
Fix ¢,0=g=1, and then let w satisfy |w|<g. For r,=1/2<r<1, we shall
estimate upwards the characteristic function

T(r, fu) = T(ros f)+ [ 1718, f)dt = atp
by a constant independent of » and w.
For the «-part we note that
2] = o= @, (D] = (W+2D/(L+]2w]) < Ry = (ro+)/(1+700).

Then, for |zj<r,,

@ =T (pw(@)]ow(@)] = [max 5 (O](1—0r) > =K <o

[E]=R,
by the continuity of /*. Consequently,
fo (@) =K for izl <t=<r,,
so that the inequality S(z,f,)=K2? yields
2.2) x = K2/8.
To estimate § we notice that, for O<¢<1,
A, D) < {lzl < b u=(+o)(1+ o).
By (2.1), together with R=(r+0)/(1+r0)=R,, we obtain

¥

B= [17Sw fdt= [ C(u, Qu1S(u, f)du,

0
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where

o u(l—¢®) B
C(u, 0) = w—ol—ow = 2/(Ry—0)

because ¢=R,<u-<1 for ro,<t<r. Therefore
B =2T(R, f)/(Ry—0) = 2T(1, f)/(Ry—0),
which, together with (2.2), completes the proof.
Lemma 2.1. UBC,cUBC.

Proof. For feUBC, thereexists §, 0<8<1, suchthat T'(1, f,)=<lin {6<|w|<1}.
Then f¢BC because f is the composed function f=f,0¢._, for o=(1+0)/2
with f,¢BC. It now follows from Theorem 2.1 that

K= |Sl!1p T(ls fw) =2,
wl<p

whence
sup (1, f,) = K+1.
weD

Remark. Theorem 2.1 also yields:
For f meromorphic in D to be of UBC it is necessary and sufficient that
lifnlsup TQ, f,)) <-<e.
wi->1
The Green function of D with pole at we€D is given by
G(z, w) = log |(1=#2)/(z—w)| =—log |-, (2)}, z€D.
We now propose the main result in the present section.

Theorem 2.2. Let f be meromorphic in D. Then the following propositions hold.
() feUBC if and only if

(2.3) sup { [ £*(2PG(z, wydxdy <.
(1) feUBC, if and only if
@4 fim, [f £#(2*G(z, w)dxdy = 0.

For the proof we need

Lemma 2.2. For f meromorphic in D and for O<r=1 we have

@3) T(, )= Wn) [[ 1) log(r/1z)dxdy.

lz|<r

Proof. For 0<r=<1, we let X, be the characteristic function of the disk {izl<r},
namely, X,(z)=1 for |z]<r, X,(2)=0 for r=lz|<l.
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It suffices to prove (2.5) for O<r<1. For, if (2.5) is true for O<r<1, then
T(r, ) = (Um) [[ S #(2)* X,(2) log (v/|z]) dxdy.
D

Since 0=X,(z) log (r/|z]) ~log (1/|z]) as r—~1 at each z€D, (2.5) for r=1 follows.
Now, for O<r<l,
[ X @dt =log(rflz) if |z{<r,
0

=0 if r=lzl<1,
so that (2.5) is a consequence of

TG, ) = (fm) [ /2@ [ [ %@ ] dudy.

Proof of Theorem 2.2. Since f,F=(f*op,)|0Ll, it follows from Lemma 2.2,
together with the change of variable {=¢,(z), that

(2.6) T(, 1) = Um) [[ £*©log (]e-, (O)dédn.

This completes the proof of Theorem 2.2.

Remark. For feBC, the function 7(1, £,) of weD is well defined. The iden-
tity (2.6) shows that T(1, f,) is lower semicontinuous with respect to weD. Actually,
T, f,) is a Green’s potential in D of the measure in the differential form

(A/m)f* ()2 dé dn.

3. Normal meromorphic functions

Let N be the family of meromorphic functions f'in D such that
sup(1 -z f#*(z) <o,
zED
and let N, be the family of meromorphic functions fin D such that
lim (1—1zP)/*(2) = 0.

Each f€N is normal in D in the sense of Lehto and Virtanen [5], and vice versa. By
the continuity of /¥, the inclusion formula NycN is easily established.

Theorem 3.1. The following inclusion formulae hold:
UBCc N and UBC, C Ng;
both are shown to be sharp.

We begin with Dufresnoy’s result.
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Lemma 3.1 [1, Lemma, p. 218] (See [3, Theorem 6.1, p. 152].). Suppose that f
is meromorphic in D and that there exists ¥, O<r<1, such that S(r,f)<1. Then

SEOP = S Hr =S O

Note that our Riemann sphere is of radius 1/2, touching C from above at 0,
while Dufresnoy considered the sphere of radius 1 bisected by C.

Lemma 3.2. Let f be meromorphic in D. Then the following propositions hold.
() fEN if and only if there exists r,0=r=<1, such that

ER)) sup S(r, /) = (fmysup [ /(@ dxdy < 1.

A(w,r)

(I) feN, if and only if there exists r, O<r=<1, such that
; . = I H ()2 =
(3.2) lim S(, £,) = lim, A({ f) F#(2)2dxdy = 0.

In the proof of Theorem 3.1, the “if”” parts of (I) and (II) are needed. Lemma 3.2
(I) gives a new criterion for f to be normal in D.

There exist a nonnormal holomorphic function fand =0 for which S{r, f,,)<1
for each weD; see [12, Remark, p. 226]. This function f must satisfy

sup S(r, f,) =1.
weD
Proof of Lemma 3.2. For the proof of (I) we first assume that fcN with
A—|z])) f¥(z2) = K = o for all z€D.
Then, for each wéD,
(1=1z0f5@) = (1= low @) [T (pu(2) = K, z€D.
Therefore, for a small r, O=<r<I1, with K%*(1—-r*)<I,
nS@r, f) = [ fu@)dxdy = 2K [ o(1—0") do = KA =1D),
lz]<r 0
whence (3.1) follows. Conversely, let the supremum in (3.1) be S. Then, by Lemma
3.1, together with x/(1—x), as 0=x 71,
A=W F ) = 20" = r *sa-5)"

for all weD, whence f€N.
To prove (II) we first suppose that féN,. Then, for each &>0, there exists
8, 0=<d<1, such that

3.3) <zl = 1= (1—[z)f*(2) < 2
|
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Choose r such that O<r<d and r?/(1—r%)<1. Then

(3.4 S=0+3)/(1+rd) =wl<1=>dw,r)c {5 <|z| <1}
because
0= (wl—r)/(L—rlw)) <|z| for zcA(w,r).

The formula (2.1), together with (3.3) and (3.4), yields that
SO f) = [[ 7 dxdy = enrti(1—r);

A(w,r)
in fact, the non-Euclidean area of A(w,r) is nr?/(1 —r?). Therefore,
S fu)=<¢ for (r+8)/(1+rd) < |w| < 1.

Conversely, suppose that (3.2) holds. Then, for each >0, there exists J, 0<d<1,
such that
S(rhfw) = Q fOr 5 = ]WI = 1’

where O0<g<1 and or 2(1—g) '<¢/2. By Lemma 3.1,
A= F W) = fu@©)’ <e for 6= |w <1,
which completes the proof.
Remark. The condition (3.1) can be replaced by
limsup S(r, f,) = 1.

fwi-1

Proof of Theorem 3.1. Suppose that f€ UBC. Then (2.3) of Theorem 2.2 holds;
we denote by A4 the supremum in (2.3). Choose r, 0<r=<1, such that

(3.5) Allrlog (1/r)] < 1.
Since, for each weD, the formula (2.1) yields that
A= [[ /4G wdxdy = rlog (1S, 1),

Alwir)
it follows from Lemma 3.2, (I), together with (3.5), that f€N. Therefore UBCcN.
The proof of UBCycC N, is similar.

To prove the sharpness it suffices to observe the existence of f€N,—BC. Then
JEN;—UBC, and feN—-UBC. Consider the gap series

f(Z) = k;; aank7 ZED,

where the sequence {n,} of positive integers satisfies n, /n,=¢g=1 for all k=1.
Suppose that

M
3
&)

?=eco and lim la,] = 0.

=
I
A
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Then it is known (see [10, Corollary, p. 34]) that
lim (1—[z)f"(2)] =0

jz|-1

and f does not have finite radial limit a.e. on {jz|=1}. Therefore, fEN,, yet f¢BC.

4. Blaschke products

First of all we prove

Lemma 4.1. Suppose that f¢UBC and that g is a rational function. Then
gofeUBC.

Proof. There exists K=0 such that
g¥ () = K/(G+]z») for all zeC.
Since (gof),=gof,., it follows that

gofhw = (gof) =(g% of)lfil = Kfi.

T(1, (gof).) = K2T(L, £,),

which shows that gof€UBC.

As we shall observe later in Theorem 4.2, UBC is not closed for summation and
multiplication. The family UBC resembles N at this point. However, a decisive dif-
ference between UBC and N is that, each non-zero f¢UBC, as a member of BC,
admits the decomposition

@“.1) J=big/bs,

where g€¢BC has neither pole nor zero in D, and b, (b,, respectively) is the Blaschke
product whose zeros are precisely the zeros (poles, respectively) of £, the multiplicity
being counted. For simplicity we shall call b, the polar Blaschke product of f. If f
is pole-free, then b,=1.

We shall show that g of (4.1) is a member of UBC if f€UBC as a corollary of

Consequently,

Theorem 4.1. Let feUBC, and ler b be the polar Blaschke product of f. Then
bfe UBC.

For the proof of Theorem 4.1, we first deduce the formula (4.4) in Lemma 4.2
by making use of a precise description of the first step in the Nevanlinna theory. The
adjective “precise” in the preceding sentence means that there is no Landau’s nota-
tion O(1).

Let

1(r, 1) = (1/47) [log (L+1f(re?) d1,
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and let n(r, f) (n*(r, ) be the number of the poles of fin the disk {|z]<r} (on the
circle {lz|]=r}), the multiplicity being counted, O<r<1. Delete from {z]<r}
the closed disks, with poles on the closed disk {|z|=r} as centers, and with common
small radii >0, apply the Green formula to log (141 ]? in the resulting domain,
and, finally, let &—0. Then, for O=<r<I, the identity A4log(l +| f|B) =4f**
(except for poles of f) yields

“4.2) r(d/dn I, f) = S, f)—nlr, H—A2)n* @, f)-
Arrange r=>0 with »"(r,f)=0 as
O<ry<..=<rj<rj<..=<L

For each R,ry=R<]1, there is a j such that r;=R<r;,. Divide both sides of
(4.2) by r, and integrate from ¢, 0<e<r,, to R, to obtain

R R
4.3) IR, /)—I(s, f) = / r=18(r, f)dr— f r=1n(r, f)dr,
where ’ ’
sf :s +(Pg;r {p)-l_r'./.'

Lemma 4.2. Let b be the polar Blaschke product of fEBC. Then,

449 T\, f) =10, f)~1/2) log[|bO)F+1im |b(2)f(2)["],
where

14, /) = H 1 £).

Proof. Suppose that 0 is a pole of order k=0. Then

f rin(r, )dr = k (logry—loge)

and, in case k=0,

I(e, f) - (1/2) log (1+1£(0)}?),
as e¢—0, while in case k=0,
I(e, ) ~ —kloge+log 4

as ¢—~0, where
4 = lim IZF f(2)].

Therefore, ¢-0, and then R-1 in (4.3) yield

T(1, /) = I(1, fH—(1/2) log (1+|£(0)?) —log[b(0)|
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if k=0, while if k=0, then
T(L, f) = 11, f)~log A—log[lim |=*b(2)]]
= 1(1, ) —log [lim [b(2) (2)].

which completes the proof.
As an immediate consequence of (4.4) in Lemma 4.2 we obtain

Lemma 4.3. If f is holomorphic and bounded. |f|=K, in D, then
TA, £ =10, ) =1/ log(1+K?)  jor all weD.
Therefore fcUBC.

Lemma 4.4. Let b be the polar Blaschke product of feBC. Then for each
constant o, |u|=1,

4.5) T, abf) =T, f)+(1/2)log?2.
Proof. By (4.4) in Lemma 4.2, applied to f with g=bf, we obtain

T(Lf) = I(1, £)—(1/2) log (1b(0)]*+[2(0)])?,
and it is apparent that (ag)*=g". Therefore,
T(1,abf) =T(1, ) = I(1, )—(1/2) log (1+ g(0)2)
= I(1, )+ (L, /)—(1/2) log (1-++]g(0)}2) = (1/2) log 2+ T(L, £)+(1/2)log 4,
where
A4 =(bOF+gOF)/(1+gOF) = L.
We thus obtain (4.5).

Proof of Theorem 4.1. Let b" be the polar Blaschke product of £,,. Then |p*|=
| in D. Actually, defining

i

Ibw

V(z,a) = |z—al/]l —az], z€D,

for acD, one obtains

lp(Z, P —w ((1)) = lfl/((pw (Z)’ (l)

Since a€D is a pole of order k=1 of fif and only if ¢ _,.(a) is a pole of order k=1
of £, it follows from the expression

oo

b)) = [[¥(zay

Jj=1

that

D@ = [T0 (= 9-0@) = o)
for all zeD.
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Now, there is a constant «a, |o/=1, such that b,=ab”. Set g=bf. Then
g, =b, f,,=ob"f,,. It follows from (4.5) in Lemma 4.4, applied to f,,, that

T, g, =T, f,)+(1/2)log2 for all weD.
Consequently, g€ UBC.
Corollary 4.1. If feUBC with (4.1), then gcUBC. The converse is false.
Proof. By Theorem 4.1, bg=b,fcUBC. By Lemma 4.1,
h = 1/(byg) = (1/g)/b;¢ UBC.

Again, by Theorem 4.1, 1/g=bh€¢ UBC, whence, by Lemma 4.1 once more, g€ UBC.
To prove that the converse is false we remember that there exist Blaschke products
b, and b, with no common zero in D such that the quotient b,/b, is not normal in D;
see, for example, [11] and [13]. Therefore, g=1¢UBC, yet f=b,g/b,¢ UBC be-
cause f¢ N.

Finally in this section we prove

Theorem 4.2.
(1) There exist f€UBC and geUBC such that fg¢N.
(I1) There exist feUBC and gcUBC such that f+g¢N.

Combined with the inclusion formula UBC<cN, Theorem 4.2 asserts that UBC
is not closed for the product and the sum.

Lemma 4.5. Let feUBC, and let g be a holomorphic function bounded from

below and above in D:
O=m=lg| =M <-c.
Then fgcUBC.

Proof. By Lemma 4.3, gcUBC. Set
K = (1 +M?/min (1, m?).

Then,

L+ fglr = K11+ [P (1 +]gP),
whence

N2 l_f’g[2+2|ﬁ"gg’!+|fg'!2 — 22 oot L g2
(46) (fg) - ng(l_;_:f;g)g(l +;2‘z)3 — (_](‘#t fzf# g#"i_o )

On the other hand, the Cauchy inequality, together with (2.1), yields
[ [[7* @t (Ddxdy]* = 72S(r, £)S(r 2,)
A(w, r)

for all wéD and all r, O<r=<1. Consequently, by (2.1), together with (4,6), we
obtain
wS(r, (f2)y) = nK2{S(r, £+ S, g)+2[S(r, £) S g )]V}
= 2nKP[S(r, £,)+S(r, g,
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Therefore

T(1, (f2).) = 2K2[T(L £)+T(, g,)].
whence fgc UBC.

Proof of Theorem 4.2. Again we consider the Blaschke products b; and b,
such that by/b, is not normal. To prove (I), set f=b, and g=1/b,. Then f€UBC
and gcUBC, yet fg¢N. To prove (II) we set f=2/b, and g=(b,—2)/b,. Then
JEUBC. Since 1<|b;—2/<3 and 1/h,¢ UBC, it follows from Lemma 4.5 that
gc¢UBC. However, f+g=b,/b,¢N.

5. Harmonic majorant

Let u = —c be a subharmonic function in a domain 9c C. We call & a har-
monic majorant of u in & if h is harmonic and u=h in 9. If u has a harmonic majo-
rant in &, then u has the least harmonic majorant #” in 2, thatis, »~ is a harmonic
majorant of #in @ and u” =h for each harmonic majorant & of u in 9. In the special
case =D, u is given by the limiting function

W’ (2) = lim (1/27) f u(re”) '] dt, zeD.

Theorem 5.1. Let f be holomorphic in D. Then the following criteria hold for
the subharmonic function F=(1/2)log (1-+|f|?) in D.
() feUBC if and only if
sup (F~(w)— F(w)) <ee.

@) feUBC, if and only if
l‘1Vilr_r>11 (F*"(w)—F(w)) = 0.
Lemma 5.1. Suppose that a subharmonic function u in D has a harmonic majo-
rant in D. Then (ucg,) =u"oq, for each weD.

Proof. Since u” o¢,, is a harmonic majorant of uoe, for each webD, it
follows that

(5.1) (voo,) =u"oop,.
Apply (5.1) to v=uog, and ¢_,, instead of u and ¢,,, respectively. Then

= (UO(P—W)A =0 CP s
whence

uop,=v" =(oce,)" .

Combining this with (5.1) we have the equality.
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Proof of Theorem 5.1. (1) There exists K=0 for feUBC such that K=T7(l, f,)
for all wéD. On the other hand, by Lemma 5.1,

I(1, ) = (Fog,) (0) = F 0, (0) = F~ (w),
whence

K=TQ,f,) =11, f,)—1/2)log(1+]f,,(0)*) = F" (w)— F(w) for all weD.
The converse is also true, so that (I) is established. The proof of (II) is similar.

Remarks. (a) We may replace F in the UBC criterion (I) by log* |f|=
max (log|f|, 0) because

log* |f] = F=logh |f|+(1/2)log 2.
(b) Suppose that f€BC is pole-free. Since F~ exists and since the identity
(L, f,) = F*(w)—F(w), weD,
is also true for the present f,
F(w) = F W —T(1, f,), weD,

represents the Riesz decomposition of the subharmonic function F which has a har-
monic majorant in D. The potential 7(1, f,,) is continuous in the present case because
the same is true of ' and F". The problem is that T(1, £,) is or is not continuous de-
pending on whether f admits poles in D. If T(1, £,,) is proved to be continuous in D
for each meromorphic feBC, then Theorem 2.1 is immediate.

A subdomain & of C is called a UBC domain if each holomorphic function f
in D which assumes only the values in & is of UBC. We next consider a criterion for
a holomorphic f in.D to be of UBC.

Theorem 5.2. Suppose that the function H(z)=(1/2)log (1+|z|?) has a har-
monic majorant in 9<C, and suppose that H —H is bounded in 9. Then 9 is a
UBC domain. The converse is true under the condition that the universal covering sur-
Jface of @ is conformally equivalent to D.

Proof. Let F=(1/2)log (1+|f]? for a holomorphic f: D—~%2. The first half
follows from F=H of, F"=H  of and Theorem 5.1 (I). To prove the converse we let
p be the projection of the universal covering surface 2~ of & onto &, andlet g be a
conformal homeomorphism from D onto 2. Then f=pogcUBC. Since F=
(1/2)log (1+1£]%) and F~ both are automorphic with respect to the covering trans-
formations, namely, automorphic with respect to a group of conformal homeomor-
phisms from D onto D, H (z)=F A( f71(2)) is well-defined in 2. Consequently,

FT—F=K in D by Theorem 5.1 (I)
implies
H —H=K in 9.
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6. Riemannian image of finite spherical area

In this short section we prove

Theorem 6.1. Suppose that a meromorphic function f in D satisfies

]ff“‘* (2)2dxdy < .

D
Then feUBCNN,.
See the remark at the end of the next section.
Proof of Theorem 6.1. For the proof of fEN, we set

A= [[f*(2)dxdy,
D
and we fix », O<r=<1, arbitrarily. Since

lim fH(2)Pdxdy =0,
o1 5<f£‘£1
it follows that, for each &=0, there exists §, O0<d=1, such that

ff FF(2Pdxdy < re.

5<j’z\<1
Since
F<)r+d)/(A+ér)<w <1l=>dw,r)c {0 < |z] < 1},

it follows that
7S f) = [[f*(E)rdxdy < ne,

A7)

or S(r, f,)<e. By Lemma 3.2 (II), f is a member of Nj.
For the proof of fcUBC, we first note that

A=z fE) = (1-]o.(DP) f*(ou(2) = K

forallzand win D, because féN. Fix R, 0<R<1, andthenlet R<r<1. Wehave
then

TG, £,) = TR, f)+ [ 1725( fL)de = 2+p.

By (2.5) in Lemma 2.2,
6.1

R
o = Tfff‘j;*(z)‘z log (R/|zDdxdy = 27K* [ o(1—¢**log(R/e)de = C1(R) = <=
Izl<R 0

On the other hand, since

IS, f,) = R4 for R<t<=r,
it follows that
7 =(1—R)R 4 = Cy(R) < oo,
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which, together with (6.1), yields that
7z sup T(1, f,) = C,(R)+Cy(R).
weD

This completes the proof of Theorem 6.1.
Remark. There exists a holomorphic function f in D such that f¢ N, yet
[ 1f@Fdsdy < forall p 0=<p=2;
D

see [9]. Therefore f¢ UBC, yet
(6.2) fff’“: (z)Pdxdy <o forall p, O0<p<2.
D

In other words, condition (6.2) for meromorphic f does not necessarily assure that
JfEUBC.

7. BMOA and VMOA

Let /] be the linear Lebesgue measure of a subarc J of the circle I'={z|=1}.
For each f of complex L*(I') we set

J() = WD [readr,

called the mean of fon J. Then f'is said to have bounded mean oscillation on I', in
notation, fEBMO(I), if and only if the mean oscillation J(|f—J(f)!) of fon J.
the mean of |f—J(f)l onJ, remains bounded as J ranges over all subarcs of I
Furthermore, f is said to have vanishing mean oscillation on [I'. in notation,
JEVMO(I), if and only if f€BMO(I') and for each &=0 there exists =0 such
that
I =0=J(f~J(N) ==

For the properties of BMO(I') and VMO(I'), see [6] and [8].

Let H” be the Hardy class consisting of f holomorphic in D such that | f|” has
a harmonic majorant in D, where O<p-<<. Each f¢H? has a boundary value
f(e"eC, being the angular limit, at a.e. point €*cI" and f(e") is of L*(I'). For
JEH?, the norm [|f],=0 is defined by

I£15 = (F1D)7©) = (1/27) [ |f(ePdr.

By definition ([8, p. 90]; see also [2, Theorem 3.1, p. 34]),

BMOA = {feH"; f(e"eBMO()},

VMOA = {fcH'; f(e"eVMO(T)}.
It is known (see {8, Theorem, p. 36]) that if f€BMOA, then for each p, 1=p<ce,
(7.1) sup (I/=FW)IPY " (w) = oo
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An immediate consequence of (7.1) is that f€ H” for all p, because, for p=1,

(7.2) (f19)" = 227 f~£(O)F)" + 271 |/ (O)2,
where (| f—f(0)]F)" exists by (7.1), namely,

(If=F@)17)"(0) <.
Conversely, if feH!' and if (7.1) is valid for a certain p, I=p<eo, then
JEBMOA.
Therefore, a holomorphic function f'in D is of BMOA if and only if

73 sup | fy =/ ()]s <
Actually, setting g=f~f(w) and considering Lemma 5.1, one calculates that
1A =Sz = (g 29,,[)"(0) = (Ig[*2¢,)"(0)
= (12" 00, (0) = (g (W) = (If/~f(W)[*)"(W).
A straightforward modification of the proof of [8, Theorem, p. 36] yields the

VMOA version:
If fEVMOA, then for each p, 1=p=<eco,

(7.4) lim_ (Lf—f(w)}7)"(w) = .

[w|>1
Conversely, if f€BMOA and (7.4) for a certain p, 1=p<co, holds, then f€VMOA.
However, it must be emphasized that the condition f€BMOA in the preceding
sentence can be dropped. Namely, if a holomorphic f in D satisfies (7.4) for a p,
I=p=co, then fEVMOA. To ascertain this it suffices to show that f¢BMOA
under the condition (7.4). First, there exists 8, 0=d<1, such that

(1.5 5= wl = 1= (I/~fOIP) (w) < 1.

On replacing 0 in (7.2) by ry=(140)/2, we observe that fcH”. Now, for w,
|WI§}"0,

(If=FWIP) W) = 2271119 (W) + 272 f(w) 2.

The right-hand side is apparently bounded for iw|=r,, which, together with (7.5),
shows that (7.1) is valid. Consequently, f¢BMOA.

By the observation in the preceding paragraph we can now conclude that a holo-
morphic function f'in D is of VMOA if and only if

(7.6) lim | £, =/ 9], =0,

a VMOA counterpart of (7.3).
We propose

Theorem 7.1. The inclusion formulae

BMOA < UBC and VMOA < UBC,
hold.
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For the proof we first consider the holomorphic analogue T*(r, f) of the Shimi-
zu-Ahlfors characteristic function basing on the identity

(1.7 A(fP) = 417

for f holomorphic in D instead of 4 log (1+|f[?)=4f*%
For f holomorphic in D we set

MG, )= [A/2m) [ Ifeepa]™, 0<r=1,

where M(1, f)=lim,,, M(r,f). If f€H?, then |[fll,=M(1,f). Since (7.7) holds,
the Green formula yields

r(d/dn)[M(r, ) = A, f),
where
A ) =@ [[1f @dxdy

|z]=r

is the holomorphic analogue of S(r,f). Setting

T f) = [t 4@ fd, 0<r=1,
0
one obtains the formula
(7.8) M@, fR—fOR=T"@[ ), 0<r=L
Applying (7.8) to g=f,,—f(w) (g(0)=0), one observes from (7.3) and (7.6), together
with
T*(r,g) =T"(r, 1)

fEBMOA ifand only if supT*(1,f,) <o,
weED

that

while
JSEVMOA  if and only if |1vi[r—1>11 T*(1, ) = 0.
Since

T f) = @) [f1f @ log (r/iz)dxdy

zj=<r

for f holomorphic in D and for O<r=1, the analogue of (2.5) holds, and it is now
an easy exercise to obtain the following holomorphic counterpart of Theorem 2.2.

Lemma 7.1. Let f be holomorphic in D. Then the following propositions hold.
(I) feBMOA if and only if

(D2G(z, wydxdy = oe.
»Svlel%-[f‘f()" (z, w)dxd)
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(1) fEVMOA if and only if

izviln*llj/):/. (212G (z, wydxdy = 0.

Lemma 7.1 (I) is known [6, Proposition 7.2.13, p. 85]. Theorem 7.1 now fol-
lows from Theorem 2.2 and Lemma 7.1, because |f’|=f* for f holomorphic in D.

Remark. At this point we remark that if f is holomorphic in D and if
[ @pdxdy <,
D

then feVMOA. By the theorem at the bottom of [8, p. 50] it suffices to show that

Jim s (RO =0,

where |J|<=n, and R(J) is the annular trapezoid

(z€D; Zllzled, 1-12| = lTjen),
and

wA(RWD) = [[=12)]f (2)2dxdy.

R(J)

Since 1-—|z|=|J|(2n), it follows that

wRWD) = WD) [ @Fdxdy =@ [ |f ()Pdxdy.

R 1— I /(En) <]z] <1

Therefore u;(R(J))/|J|~0 as |J]-0.
A natural question then arises: Can the conclusion in Theorem 6.1 be replaced
by fcUBC,?
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