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FUNCTIONS ON NONCOMPACT LIE GROUPS
WITH POSITIVE FOURIER TRANSFORMS

TAKESHI KAWAZOE

(Communicated by J. Marshall Ash)

Abstract. Let G be a homogeneous group with the graded Lie algebra or a

noncompact semisimple Lie group with finite center. We define the Fourier

transform / of / as a family of operators f(it) = fGf(x)n(x)dx (n e G),

and we say that / is positive if all f(n) are positive. Then, we construct

an integrable function f on G with positive / and the restriction of / to

any ball centered at the origin of G is square-integrable, however, / is not

square-integrable on G.

1. Introduction

When G is a compact abelian group, integrable functions f on G with the

nonnegative Fourier coefficients and being pXh (1 < p < 2) power integrable

near the identity of G have the Fourier coefficients in lq (q = p/(p - 1)). This
result was first obtained by N. Wiener in the case of G = T and p = 2 (cf. [3])
and then by Rains [9] and Ash, Rains, and Vági [1] for arbitrary compact abelian

groups. When G is a compact semisimple Lie group, an analogous result was

obtained by the author and Miyazaki [6]. Furthermore, Nassiet [8] and Blank
[2] treated the same problem in the case that G is a compact separable group.

When G is not compact, for example, when G = R, a counterexample was

obtained by the author, Onoe, and Tachizawa [7]: there exists an integrable
function / on R with nonnegative Fourier transform and the restriction of /
to a neighborhood of 0 is square-integrable, however, / is not square-integrable

on R. In this paper we shall also give a counterexample when G is a homoge-

neous group with the graded Lie algebra (see [4, Chapter 1]) and also when G is

a noncompact semisimple Lie group with finite center. In the case of a homoge-

neous group with the graded Lie algebra we can find a one-parameter subgroup

si/ of G for which axa~x = x for all a e srf and x e G. Then, regarding M'
as R, we can apply the same idea used in [7] to construct the counterexample on

G. As compared with [7], our proof is simple and group-theoretical. Especially,

the condition (3) in [7] can be replaced by a weaker condition. In the case of
a noncompact semisimple Lie group we can take a one-parameter subgroup stf

of G as a subgroup of the maximal abelian subgroup A of G. Although sf
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does not belong to the center of G, the same idea is still applicable to obtain a

counterexample.

2. Homogeneous groups

2.1. Notation. Let G be a homogeneous group whose Lie algebra g is graded

and |-| : G —> R+ a homogeneous norm of G (see [4, Chapter 1]). g is endowed

with a vector space decomposition g = J2h=i *fc sucn mat Wi> Vj] c Vt+j >
where all but finitely many Vk 's are {0} . Then if we take ko = max{k ; Vk ̂

{0}} and X ¿ 0 e Vh , sé = exp(RX) satisfies

(*) axfl_1=x   for all a esé and x e G.

Some examples may be in order: (i) Noncompact abelian groups R" ; (ii)

Heisenberg group Hn. The underlying manifold is C"xR and the multi-

plication law is given as

(z\,..., z„, t)(z\, ... , z'„, t')

Then s/ = (0, ... , 0,R) satisfies (*) ; and (iii) The group of all upper triangle

matrices (atj)i<t,j<n with a¡¡ = 1 (1 < j < ri). Then sA = exp(R£'i„)
satisfies (*), where Ex„ is the matrix with 0 entries but 1 in the (1, ri) entry.
Let dx be a G-invariant measure on G. We denote the volume of a measurable

set 5 of G by \S\ and the ZAnorm ( 1 < p < oo) of a function / on G by

H/llp = (JG\f(x)\pdx)x/p. For any integrable functions / on G we denote

the Fourier transform / of / as a family of operators f(n) = JG f(x)n(x) dx

(n e G). We say that / is positive if all f(n) (n e G) are positive operators

(see [11, p. 317]), which we denote by f(n) > 0. Let B(r) = {xeG; \x\ < r]
(r e R+). Then there exists a positive constant D such that

(**) \B(r)\~rD       (reR+)

(see [4, p. 10]). Let {an}„€^ be a sequence in sA such that \a„\ = n, and let

{bn}neN and {r„}„eN be sequences in R+ satisfying

(1) ri < 1/2, rn is decreasing, and there exists L e R+ such that r„ > 2rm

(m > ri) if and only if m > Ln ,

(2) EZibn\B(rn)\<œ,
(3) for each M e R+ , ZT=lEmet*,\n-m\<Mbnbm\B(rn)\l>2\B(rm)\<oo,
(4) for each N e R+ ,

OO        OO (X)

EE E bnbn'bn+,bH,+l\B(rH.)\\B(rn+l)\\B(rn,+l)\ = 0O.
n=l n'=nl>Nn'

Example. Let (a, ß) be a pair of positive numbers satisfying (i) a-ß + 1 < 0,

(ii) 4a - 3ß + 2 < 0, and (iii) 4a - 3ß + 3 > 0.  For instance, a = 3 and

ß = 5. Here we let bn = na and \B(r„)\ = n~P . Then (1) is obvious and (2)
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follows from (i). For (3) it is enough to estimate the sum of n over 2M and

then
OO OO

£      J2     naman-^2m-^ < c £ n2a~W2 < oo

n=2M      meN n=2M
\n-m\<M

by (ii). (4) follows from (iii) as

OO        OO OO

EE  E naria(n + l)a(ri + l)an'-^(n + l)-^(ri + l)-ß
n-X n'=n l>Nn

OO        OO

^ E E na"'a~ß /    (n + x)a~ß(ri + x)a~ß dx

„=1 n'=n Jn"'

oo       OO p»O0

> E E nan'3a~3ß+l /   (x + l)2a~2ß dx

n=l n'=n Jn

oo /»OO

>cY,na       x3a~iß+xdx

n=l       Jn
OO

= 00.

n=l

2.2. Counterexample. For each measurable set S of G we denote by xs the
characteristic function of S. Now we define a function gn (n e N) on G

as gn(x) = b„xn(x) = b„XB(r„)(anlx) (x e G) and put g = ¿^, #„. Then,

lláHli = E~i llalli = E^i *»|Ä(rfl)| < oo by (2). Here we let / = g~ * g,
where g~(x) = g(x~x). Then

(5) H/lli < lirilillo-lli = 11*11? < oo   and   f(n) = g(n*)g(n) > 0      (a e G).
Since supp(x~ * xm) = B(rn)am-„B(rm) c £(/•-. )am_„.B(/-i) (see (1)), it follows

that g~ *gm(x) = 0 if x e B(R) (R e R+) and |ra - «| > 2rx + R. Therefore,
we can deduce that for each R e R+

|/(x)|2¿x <£        E        \\8ñ*8mh
'BW / n=l m€N

|n-m|<2ri+J»:

7P./.BÍ

(6) <E E U*»ll2llSmlll
n=l        meN

|n-m|<2/-i+Ä

=  E E bnbm\B(rn)\Xl2\B(rm)\ <00
n=l        m€N

|n-m|<2r.+Ä

by (3). Finally we show that ||/||2 = oo . Since

x~ * xm(x) = \a„B(r„)x n amB(rm)\ = \a-x_nB(rn)x n £(rm)|       (x € G),

it follows from (*) that if m > n and x e am-„B(rn-rm), then a~l_„B(r„)x D

B(rm) and thus, x~*xm(x) = \B(rm)\. On the other hand, (1) implies that there

exists N = L - 1 e R+ such that rn- rm> r„/2 if and only if m > (N + l)n .
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Therefore, we can deduce that if m > (N+ l)n , then x~ *xm(x) = \B(rm)\ for

x e B(rn/2). Since \B(r)\ ~ \B(2r)\ by (**), it follows from (4) that

ii/iii = r,***(*~**r(i)
oo     oo        oo

- E E  E bnb„'bn+ibnl+¡x~ *x„+/ *x~, *xB,+/(l)
(7) n=ln'=nl>Nn'

oo     oo       oo

>EEE b„b„.bH+ib„,+i\B(rH.)\\B(rH+,)\\B(rn,+,)\ = ao,
n=l n'=nt>Nn'

where the symbol " ~ " means that the ratio of the right- and left-hand sides
is bounded below and above by positive constants. Then (5)-(7) implies the

following

Theorem 1. Let G be a homogeneous group with graded Lie algebra. Then there

exists an integrable function f on G with positive f and the restriction of f

to any ball centered at the origin of G is square-integrable, however, f is not

square-integrable on G.

3. Semisimple Lie groups

3.1. Notation. Let G be a noncompact semisimple Lie group with finite center

and G = KCL(A+)K a Cartan decomposition of G. Let a: G —> R+ denote

the AT-bi-invariant function on G defined by o(x) = d(l, x) (x e G), where

d is the Riemannian distance on the symmetric space X = G/K, x —> x is the
natural map of G to X, and 1 is the origin of G (cf. [10]). Let sé = {at e
A ; t e R} be a one-parameter subgroup of G for which {an}neN is a sequence
in A+ such that o(an) — n. Let dx be a G-invariant measure on G. As in

the case of homogeneous groups, we define the volume \S\ of a measurable set

S of G, the Lp-norm \\f\\p , and the Fourier transform / of a function / on
G. Let B(r) = {x e G; a(x) < r}. Then there exists a positive constant D

such that

(***) |5(r)|~rD       (r<l)

(cf. [5, Chapter X]). We fix two sequences {b„}new and {r„}n€N in R+ satis-

fying the exactly same conditions (l)-(4).

3.2. Counterexample.  We define a right A-invariant function gn   (n e N) as

g„(x) = b„x„(x) = b„XB(rn)(ct-xx) (xeG). We put g = E^=i gn and define a

AT-bi-invariant function /on G as / = g~ * g. By the same arguments which

yield (5) and (6), we see that feLx(G), / > 0, and f\B(R) e L2(G) for each
R e R+ . Now we show that ||/||2 = oo . Although (*) does not hold for sé , it

follows that

(****) aB(r)a~xK D B(r)   for all a e A and r e R+.

Therefore, if m > n and x = am-„z e am-„B(r„ - rm), we can deduce that

a~l_nB(r„)x D B(r„)l D B(rm) ; and thus, applying the same argument used in

the case of homogeneous groups, we can obtain that ||/||2 = oo .
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Theorem 2. Let G be a noncompact semisimple Lie group with finite center.

Then there exists an integrable K-bi-invariant function f on G with positive

f and the restriction of f to any ball centered at the origin of G is square-
integrable, however, f is not square-integrable on G.

In the proofs of Theorems 1 and 2 the structure of Lie groups is not essential.

Actually, let G be a noncompact separable group and suppose that G has a one-

parameter subgroup sé = {at;t eR) of G and the family of neighborhoods of

the identity of G parametrized as B(r) (0 < r < 1) satisfying (i) B(r) c B(r')

if r < /■', (ii) \B(r)\ ~ r° for D > 0, (iii) a„B(l) (n e N) are disjoint,
and (iv) aB(r)a~x D B(r) for all a e sé and 0 < r < 1. Then, by the same

argument used in the proof of Theorem 2, we can construct the counterexample

for G.
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