
.   FUNCTIONS REPRESENTADLE AS DIFFERENCES
OF SUBHARMONIC FUNCTIONS

BY
MAYNARD G. ARSOVE«

1. Introduction. In what follows we investigate the behavior of functions
of the form u — v, where u and v are subharmonic on a common open set of
«-dimensional Euclidean space 6". Functions of this type will be called "S-sub-
harmonic." A study of these functions has as its motivation the algebraic
completion of the class of all subharmonic functions on a given open set, and
we note also that all potentials and all sufficiently regular functions are
5-subharmonic.

While certain isolated problems concerning 5-subharmonic functions have
been examined by Brelot, Privaloff, and others, no systematic treatment of
the properties of 5-subharmonic functions is available. We begin, therefore,
by developing a general theory of such functions, outlining their basic prop-
erties and illustrating by counterexamples the main points of divergence
between this theory and the theory of subharmonic functions.

As it turns out, not only does the extension from subharmonic to 5-sub-
harmonic functions result in closure as an additive group, but it also results
in lattice closure: the upper and lower envelopes of any pair of ô-subharmonic
functions are themselves ô-subharmonic. Moreover, certain further restric-
tions on the functions give rise to closure under multiplication. One would
of course expect the gain in closure properties to be counterbalanced by a
loss of some of the important properties of subharmonic functions, and this
is indeed the case. Neither of the main convergence theorems for subharmonic
functions (that for decreasing sequences and that for uniformly convergent
sequences) remains valid for S-subharmonic functions. However, the loss is
not quite a catastrophe, since by imposing supplementary conditions we
manage to retrieve a useful convergence theorem in the S-subharmonic case.

The general theory of S-subharmonic functions enables us to introduce a
characteristic function similar to that of Nevanlinna [l], but differing in an
essential way from the characteristic function defined by Privaloff [l]. Ap-
plications of our characteristic function are immediate and yield, for example,
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5-subharmonic analogues of the classical theorems on isolated singularities of
subharmonic functions. Further applications to the theory of entire 5-sub-
harmonic functions and the associated theory of functions of potential type
will appear in a subsequent paper.

In view of the intrinsic connection between subharmonic functions and
the theory of functions of a complex variable we shall center our attention
primarily on the space £2. Notational conventions will be explained as intro-
duced, and a glossary of these conventions is appended.

2. Fundamental definitions. We now formulate in a precise way the defi-
nition of 5-subharmonicity and several allied concepts.

Definition 1. A function w will be said to be 5-subharmonic on an open
subset ß of £" provided there exist functions u and v subharmonic on ß such
that (1) w has as domain the set D of points of ß at which either u or v is
finite, and (2) w = u—v holds in the extended sense on D.

Although w need not be defined throughout ft, the set of points at which
w fails to be defined finitely is clearly of capacity zero and therefore of
Lebesgue measure zero.

A function which coincides almost everywhere with a function 5-sub-
harmonic on ft will be called almost h-subharmonic on ft. For a useful further
variant of 5-subharmonicity we need the notion of "quasi everywhere"
(Brelot [4]), which we recall briefly. A set P(C£") is said to be polar if
there exists a subharmonic function on £" assuming the value -«at all
points of P. Then by quasi everywhere on a set £(C£") we mean "except on
a polar subset of £." With this in hand we say that a function is quasi 5-sub-
harmonic on ft provided it coincides quasi everywhere with a function 5-sub-
harmonic on ft.

It should be remarked that an alternative theory of 5-subharmonic func-
tions, which differs from that presented here mainly in the domains of the
functions involved, can be obtained by using in place of 5-subharmonic func-
tions, functions which are quasi 5-subharmonic on ft and which coincide on
their domains with functions 5-subharmonic on ft. These are the functions
"locally potential" of Brelot [2].

The 1-dimensional case of 5-subharmonicity has a special significance
because on 61 subharmonicity is identical with convexity. Results here are
not only of interest in themselves, but they are also simpler to obtain and lead
by analogy to general properties of 5-subharmonic functions.

Definition 2. A function / representable on an open subset G of £l as
the difference of two convex functions will be called b-convex on G.

Since a 5-subharmonic function can be represented as a difference of sub-
harmonic functions in an infinite variety of ways, it is convenient to introduce
the following terminology.

Definition 3. By a representation of a function w 5-subharmonic (almost
5-subharmonic, quasi 5-subharmonic) on an open set ft we mean an ordered
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pair (u, v) oí functions subharmonic on fi such that w = u — v holds (almost
everywhere, quasi everywhere) on the domain of w.

3. The local character of 5-subharmonicity. Canonical representations.
Completion. The question naturally arises as to whether 5-subharmonicity,
in spite of its global definition, is not also a local property. As Brelot has noted
(Brelot [6]), the answer here is in the affirmative. We give a proof of this
fact and indicate some of its consequences.

It is clear that the Riesz decomposition of a subharmonic function on a
region il gives rise to a negative mass distribution^) on fi. The converse has
been established by Brelot [3]. Since this result plays a key role in the
theory, we sketch a proof (slightly different from that of Brelot) for the case
of £2.

Theorem 1. If m is a negative mass distribution on a region fi, then there
exists a subharmonic function u on fi having m as its mass distribution^).

Proof. We employ a familiar exhaustion of fl by a sequence {fin} of
bounded subregions such that (1) for all n, fi„Cfin+i, (2) each fin has its
boundary composed of a finite number of disjoint Jordan curves, and (3) for
every n each Jordan curve forming the boundary of fi„, except possibly that
forming the outer boundary of fi„, encloses at least one boundary point of fi.
We shall denote 0„+i — ßn by An and define Mo as the potential of m on Öi
and m„ for w^ 1 as the potential of m on An.

The main problem is to prove that m„+i can be uniformly approximated on
fi„ by functions harmonic on fi. For this we fix n and denote the bounding
Jordan curves of fi„+i by 70, Ji, • • • , yP- Taking 70 as the outer boundary,
we know that each 7* with positive index encloses a boundary point tk of fi.
Further, we see that -4n+i consists of p-\-l component half-open regions @k
corresponding to the curves 7*. We denote by vk the potential of m on @k.

It follows from a corollary of a theorem of Runge (Walsh [l]) that any
function harmonic on a simply-connected region can be uniformly approxi-
mated on compact subsets of that region by harmonic polynomials. Hence,
Vo can be uniformly approximated on Í2n by harmonic polynomials. For posi-
tive k the function vk(z)— m(&k) log |z —i*| is harmonic outside of yk, at in-
finity as well as at all finite points. Thus, by first performing an inversion
about tk and then invoking the corollary of Runge's theorem, we see that vk
can be uniformly approximated on Q„ by functions harmonic everywhere

(2) We employ the terminology "mass distribution" in its present measure-theoretic sense,
corresponding to the terminology "generalized mass distribution" as used by Radó [l]: mass
distribution on 0 = Radon measure on ß = signed Borel measure on il. A mass distribution may
thus fail to admit a potential.

(3) This theorem finds its natural background in the Mittag-Leffler, Weierstrass theory
for functions of a complex variable. It can, in fact, be proved for Í2= £2 (or for S2 = any circular
subregion of £2) by use of an integral analogue of the Weierstrass infinite product representa-
tion for entire functions.
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except at h. This proves that wn+i can be uniformly approximated on Q„ by
functions harmonic on ft.

If for every positive integer n we choose U„+i harmonic on ft such that

| u„+i - Un+i | =: 1/2"    on    fi„

and put Uo—Ui = 0, then the series J^T-o (u„—U„) defines on ft a subhar-
monic function having m as its mass distribution.

For the transition to 5-subharmonic functions we have use for
Definition 4. A function w 5-subharmonic on an open set ft and having

domain D will be said to be complete provided every 5-subharmonic function
on ft coinciding with w on D has D as its domain.

In other words, a 5-subharmonic function on ft is complete if and only if
it does not admit an extension of definition on ft preserving 5-subharmonicity.

Theorem 2. To each function b-subharmonic (almost h-subharmonic, quasi
h-subharmonic) on an open set ft there corresponds, in a sense made clear by the
Riesz decomposition theorem, a unique mass distribution on ft. Conversely, given
a mass distribution m on ft, there exists a complete h-subharmonic function on ft
having m as its mass distribution.

Proof. The first part of the theorem is immediate. For the converse we
split m into its positive and negative parts. Theorem 1 yields subharmonic
functions u and v corresponding to these parts, such that (u, v) is a repre-
sentation of a 5-subharmonic function w having the mass distribution m. The
completeness of w is then established by a local application of the Riesz de-
composition theorem.

That local 5-subharmonicity implies 5-subharmonicity (in the global sense
of definition 1) follows directly from this.

Theorem 3. If w is a function h-subharmonic (almost h-subharmonic, quasi
h-subharmonic) in the neighborhood of each point of an open set ft, then w is
h-subharmonic (almost h-subharmonic, quasi h-subharmonic) on ft.

Proof. Local 5-subharmonicity engenders local mass distributions, which
(by the uniqueness of the Riesz mass) agree on overlapping sets and hence
define a mass distribution on ft. It is readily seen that any complete 5-sub-
harmonic function IF having this mass distribution determines a harmonic
function A on ft such that w= W+h holds on the domain of w.

To conclude that w is 5-subharmonic, we need only exhibit a subharmonic
function assuming the value -»at those and only those points of ft at
which w is undefined. It is clear that ft can be expressed as a countable union
of neighborhoods on each of which w is 5-subharmonic, and by ignoring
overlaps we can replace these neighborhoods by a countable family of dis-
joint Borel sets. On each of these sets we consider the negative mass distribu-
tion corresponding to the upper envelope of u and v, where (u, v) is a local
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representation of w, and in this fashion obtain a negative mass distribution on
ft for which any of the corresponding subharmonic functions has the required
distribution of infinities.

Among all possible representations of a given 5-subharmonic function
there is one of a particularly simple nature and determined to within a cer-
tain degree of uniqueness. This representation, which will be seen to play
an essential part in our formulation of a characteristic function, is termed
the "canonical representation" of the given function.

Definition 5. Let w be a 5-subharmonic (almost 5-subharmonic, quasi
5-subharmonic) function, whose mass distribution has positive part p and
negative part n. A representation (u, v) of w will be called canonical provided
the mass distribution for u is —n and that for v is —p.

By separating the mass distribution for a given 5-subharmonic function
into its positive and negative parts and applying Theorem 1, we readily ob-
tain

Theorem 4. Every h-subharmonic (almost h-subharmonic, quasi h-sub-
harmonic) function w admits a canonical representation (u, v), the functions u
and v being unique to within a common additive harmonic function. Moreover,
the h-subharmonic function u — v defined at all points for which u and v are not
both — «j is complete.

In particular, this tells us that every function 5-subharmonic on an open
set ft admits a unique complete extension on ft.

Although canonical representations have been defined in terms of mass
distributions, it is of interest to note that they can be characterized by
extremal properties in such a way as to avoid all reference to mass distribu-
tions.

Theorem 5. The canonical representations of a function w h-subharmonic '
(almost h-subharmonic, quasi h-subharmonic) on an open set ß are characterized
by the following property of minimal subharmonicity. A representation (u, v)
of w is canonical if and only if to each representation ( U, V) of w there cor-
responds a function S subharmonic on ß such that

U = u + S    and    V = v + S

hold on the domains of U and V, respectively.

The proof depends simply on the minimal nature of the positive and nega-
tive parts of the mass distribution for w.

4. 5-convex functions. Functions of this sort were considered by F. Riesz
[l] as early as 1911 and have been studied more recently by Brelot, Zygmund,
and others. Their theory is, of course, much easier than that of 5-subharmonic
functions in higher dimensional spaces, in view of the wealth of analytical
machinery available for the real line.
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However, we shall not be concerned here with collecting a vast amount of
data on 5-convex functions. Instead, we state a few well known elementary
results, which will serve to orient our thinking as to the possible behavior of
5-subharmonic functions in general.

As shown by Brelot (4) the choice of |x — i| for the potential kernel in
61 yields results for convex functions, hitherto established only for sub-
harmonic functions in £" for n ^ 2. Consequently, for 5-convex functions we
have at our disposal the local properties discussed in §3(6). Certain other
properties, notably continuity, are peculiar to the 1-dimensional case.

These special properties of 5-convex functions lead to very precise results,
which have only approximate analogues in higher dimensions.

Theorem 6. A function f is 8-convex on an open set if and only if it can be
expressed on every compact subinterval as the indefinite integral of a function of
bounded variation on that subinterval.

Thus, the continuity of a 5-convex function is absolute on compact sub-
intervals. A further criterion for 5-convexity has been given by L. Schwartz in
terms of the theory of distributions (Schwartz  [l, p. 54]).

Theorem 7. A function f is 8-convex on an open set if and only if its second
derivative in the sense of the theory of distributions is a measure.

However, perhaps the most useful characterization of 5-convexity is the
following one, in which only the first derivative appears.

Theorem 8. A function f on an open set G is 8-convex if and only if (1)/
is continuous and (2) f exists finitely at all except perhaps a countable set of
points of G and is locally of bounded variation on the subset on which it exists
finitely.

For the sake of comparison with corresponding sufficient conditions for
5-subharmonicity we state the evident

Corollary 8.1. Any of the following conditions ensures 8-convexity of a
function f on an open set G :

(1) the graph of f is a polygonal arc whose vertices do not have a limit point
over G;

(2) f" exists and is locally bounded on G;
(3) f exists and satisfies a locally uniform Lipschitz condition on G.

Theorem 8 permits us also to describe concisely the family of all 5-convex
functions on a given open set.

(4) This material appears in lectures, as yet unpublished.
(6) An alternative way of arriving at these properties is to use the corresponding properties

for the plane together with the following two principles: (i) if / is convex, then /(log \z\),
\z\ >0, is subharmonic, and (ii) if u is subharmonic, then its circumferential mean is convex
in log r.
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Corollary 8.2. The family of all functions h-convex on an open set G forms
an algebra over the real field with respect to the ordinary operations of addition
and multiplication of functions and of multiplication of functions by reals(e).

5. Criteria for 5-subharmonicity and almost 5-subharmonicity. The
Wiener variation. Although the necessary and sufficient conditions of the
preceding section cannot be paralleled exactly for higher dimensions, it is
possible to give a simple characterization of 5-subharmonicity in terms of the
Riesz decomposition. However, the 5-convexity criterion which admits the
closest analogue is that given in terms of distributions (Theorem 7), but its
counterpart is a criterion for almost 5-subharmonicity, rather than for 5-sub-
harmonicity.

Local application of the Riesz decomposition theorem yields

Theorem 9. A necessary and sufficient condition that a function w be a
complete h-subharmonic function on an open set ß is that w be expressible locally
on il as a potential plus a harmonic function.

Deny has shown (Deny [l]) that given any polar G¡ set £ in £" («^2),
there exists a positive mass distribution whose potential is infinite through-
out £ and finite at all other points of £". Conversely, it is clear that the set
of points at which a subharmonic function assumes the value — <» is a polar
Gä. Since the set of points at which a 5-subharmonic function with representa-
tion (u, v) is undefined is exactly the set on which the upper envelope of u
and v assumes the value -~,we have

Corollary 9.1. A necessary and sufficient condition for a function w to be
h-subharmonic on an open set ß is that there exist a polar Gs set E such that w
has domain ß — £ and is expressible in the neighborhood of each point ofil — E
as a potential plus a harmonic function.

One might at first hope to be able to characterize 5-subharmonicity also
in terms of the behavior at each point of the circumferential or areal means
in a manner similar to that for subharmonicity, but the following trivial
example serves to dispel this hope.

Example 1. Let w be defined on £2 as 1 on the left half-plane (x<0), 0
on the y-axis, and —1 on the right half-plane (x>0). Then w is the differ-
ence of two upper semi-continuous functions, and the circumferential and
areal means taken over sufficiently small circles about any point z have the
constant value w(z). However, w is not even almost 5-subharmonic, in view
of a theorem of Evans (Radó [l, p. 45]) which forces a 5-subharmonic func-
tion w(x, y) to be absolutely continuous in x for almost all y.

For almost 5-subharmonicity a very concise criterion is available in terms
of the theory of distributions of L. Schwartz [2].

(6) An algebraic proof of this fact appears in Theorem 25.
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Theorem 10. Let w be a function defined almost everywhere on an open set
fi and summable on compact subsets of fi. A necessary and sufficient condition
for w to be almost 8-subharmonic is that Aw be a measure, where A denotes the
generalized Laplacian of Schwartz.

Shorn of the elegant distribution-theoretic formulation given by Schwartz,
this result seems to go back, in essence, at least to Zaremba [l ]. The classical
condition, which we state below, is in fact somewhat more precise than that
in terms of distributions. Since it appears rather difficult to trace down a
simple derivation of this condition, we shall outline briefly its proof.

As a notational convenience, we restrict ourselves to the plane Ê2 for the
remainder of this section, but the results generalize immediately to any £".
Lebesgue plane measure will be denoted by a.

Theorem 11. Let w be a function defined almost everywhere on an open set
fi and summable on compact subsets of fi. A necessary and sufficient condition for
w to be almost 8-subharmonic on fi is that to each compact subset K of fi there
correspond a constant y(K) such that for all functions /GG2(fi) with support K

^ 7(F) max |/|.

Furthermore, under these conditions

(5.2) (- 1/2*-) j  wAfda =  \ fdm,
Ja Ja

where m is the mass distribution for w.

Proof. (Necessity). The subclass of C2(fi) consisting of those functions
supported by compact subsets of fi will be designated by Q2. Classical po-
tential theory then yields the result that every/GC2 is the potential of the
mass distribution having density —A//2x. For a given K we pick fi* as a
bounded open set containing K and having closure in fi. Then almost every-
where on fi* we have w = w*-\-h*, where w* is the potential of m on fi* and
h* is harmonic on fi*. From Green's theorem it is clear that

j     h*Afda = 0,
Ja'

and (5.2) follows from the reciprocity theorem (Fubini's theorem).
(Sufficiency). Under the uniform topology Q2 is dense in the space Q of

all continuous functions on fi supported by compact subsets. Hence, the
linear functional L defined on Q2 by

L(f) = (- l/2x) f   wAfda
J a

(5.1) /.
wAfda
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can be extended to Q, and (5.1) ensures that the resulting linear functional
will be bounded. From the Riesz representation theorem for bounded linear
functionals on Q it follows that there exists a mass distribution m on fi such
that (5.2) holds. Taking IF as any 5-subharmonic function on fi having mass
distribution m thereby yields

J   (w - W)Afda = 0
J a

tor all/G(32, and this persists for w— W replaced by its triple areal means.
Since the latter are then harmonic (by Green's theorem) and converge in the
mean to w—W, it follows that w—W must be almost harmonic on fi.

In an article published at the request of F. Riesz, N. Wiener [l ] has de-
veloped a representation for continuous linear functionals similar to that of
the classical Riesz representation theorem. Wiener states as his aim a circum-
vention of dependence on the choice of axis system inherent in the Riesz repre-
sentation, and he carries out the details with the use of the theory of Fourier in-
tegrals. We propose to derive the Wiener representation from that of Riesz and
to correlate the two in terms of the theory of almost 5-subharmonic functions.

By analogy between the finite difference quotient for a function / of one
variable and the Blaschke difference operator for a function w of several vari-
ables, Wiener defines a "total variation" for the function w. However, it
should be noted that this total variation is more appropriately a "variation
in convexity," since the Blaschke difference operator corresponds to the
second, rather than the first, derivative of/. We shall employ the terminology
"Wiener variation" for this functional and show that local boundedness of
the Wiener variation is equivalent to almost 5-subharmonicity, a result due
in part to Rosenbloom [l].

The circular neighborhood of radius r and center z will be denoted by
NT(z), its closure by Sr(z), and its boundary by CT(z). Then for w an integrable
function, prw(z) will signify the integral mean of w over Cr(z), and arw(z) the
integral mean over ST(z). In this notation the definition of the Blaschke dif-
ference operator A? appears as

Ar w(z) = (4/r2) [prw(z) — w(z)].

The corresponding Privaloff difference operator Af is defined by replacing /¿rw
by arw and the factor 4/r2 by 8/r2.

Definition 6. Let w be a measurable function defined finitely almost
everywhere on an open set fi and integrable on compact subsets of fi. By the
Wiener variation oí w on a measurable subset £ of fi we mean the quantity
ype(w) defined in the extended sense as

\pE(w) = lim sup (l/27r) I     | Ar w \ da,
r-K) J Er
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where £r denotes the set consisting of those points of £ whose distance from
the boundary of ß exceeds r(7).

It is obvious that \pE has the usual elementary properties of a variation
functional: (1) ^s(»).__Q, (2) \pEt(w)^\pE2(w) for EiGE2, (3) \pE(cw)
= \c\\pE(w) for c a real number, and (4) ipE(wi+w2) ^ipe(wi)+ipB(w2).

The importance of the Wiener variation in potential theory was first
recognized by Rosenbloom [l], who devised an elegant measure-theoretic
summability technique for estimating the Wiener variation of potentials(8).
Lemma 1 and Theorems 12 and 13 (which follow) are results of Rosenbloom,
modified in an unessential way by insertion of the function / in the inte-
grands (9).

Lemma 1. Let w be the potential of a mass distribution m, and let f be a
bounded Borel measurable function on £2. Further, let e be a bounded Borel set,
and let us denote by Me*(/, z, /) the total mass on the neighborhood Nt(z) due to
the mass distribution of density f on e:

*M*if, «. Ü - f fda
If we set

[r (i/t)M\
•7 o

«.(/, r, z) = (2/xr2)        il/t)Meif, z, t)dt,

then

/S.if, r, z)dmiz) = (- l/2x)  | fA*wda.
£2 *>e

Proof. An integration by parts yields

f   S.if, r, z)dmiz) = (2/xr2)  f     f   log ir/t)dM*if, z, t)dmiz)
J £2 J£2Jo

i- l/2x) f   ABr w*dm,
£2

where w* is the potential due to the mass distribution of density/ on e. The
lemma follows by an application of Fubini's theorem.

Taking er as the set of all points whose distance from e is less than r leads
to

(') Note that Er is measurable and that A^ is defined almost everywhere and measurable
on Er.

(8) The author wishes to express his gratitude to Professor P. C. Rosenbloom for the oppor-
tunity of reading his manuscript prior to its publication.

(9) As Rosenbloom has shown, Theorem 13 (with/= 1) yields a concise proof of the unique-
ness of the mass distribution producing a given potential.
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(1/2*-) I   I A? w | da ̂   I  8,(1. f, z) | ¿m(z) | á.'.f | áw

There follows

Theorem 12. Let w be a function almost 8-subharmonic on an open set fi.
If we denote by <j>e(w) the total variation of the mass distribution for w on any
Borel subset e of fi, then for all such sets \pe(w) ^<f>ena(w).

A further consequence of the lemma is

Theorem 13. Let w be the potential of a mass distribution m, and let f be a
bounded continuous function on £2. Then for all bounded Borel sets e having
no mass on their boundaries

(5.3) lim ( - l/2x)  f /Af wda =   f fdm.
r-tO J e Je

Proof. Employing the notation of the lemma and denoting by x« the char-
acteristic function of e, we see from the continuity of / that

lim 8.(f, r, z) = Xe(z)f(z)
r->0

holds for all z not on the boundary of e. It is clear also by the boundedness of
/ that 5e(/, r, z) is bounded. Hence,

lim    (- l/2x) j fABrwda -  i fdm

= lim   I cM°y< r- z) ~~ Xe(z)f(z)]dm(z) = 0
r-*o J C¿

in view of the fact that e has no mass on its boundary.
Theorem 13 can be obtained also by means of the theory of distributions.

It suffices to prove that the mass distributions mr defined by

mr(e) = (— l/2x)  I  A, wdar(e) = (- l/2r) j ABr

converge weakly(10) to m, and for this we define pr as the mass distribution
formed by distributing a unit mass uniformly on Cr(0), r2:0. We consider
the mass distribution

Tr  =   Wr2)(Pr -  Po)

as a distribution of Schwartz and show that Tr converges to the A of Schwartz.
Here we take J as any family of infinitely differentiable functions <f> whose

(10) See Definition 7 and subsequent remarks.
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supports lie in a fixed bounded set and having the property that J, as well as
each family formed by taking derivatives of any fixed order of the functions
<f>, is bounded. Then a classical argument based on the Taylor expansion
yields

Um    Tri<t>)    =    0X.(O)   +   <PyyiO)
r-K)

uniformly tor <p in J. That is, TT tends to hxx+hyy in the sense of distributions,
where 5 is the Dirac distribution. Denoting the operation of convolution by
an asterisk and recalling the expression for the A of Schwartz as Aw
= ihxx+hyy) *w, we see that Tr*w converges to Aw= — 2xwi. Moreover, a
direct computation verifies that

iTr*w)i<¡>)=  I <¡>AT wda.

Since the functions of the form <f> constitute a total set in the sense of Banach
[l], it follows that mr converges weakly to m.

We propose to show next that local finiteness of the Wiener variation
implies almost 5-subharmonicity.

Theorem 14. Let w be a function defined almost everywhere on an open set ß
and summable on compact subsets of ß. A necessary and sufficient condition for
w to be almost h-subharmonic on ß is that ^x(w) be finite for all compact sub-
sets K of ß.

Proof. The necessity is obvious from Theorem 12. For the sufficiency we
take / as any function in C2(ß) vanishing outside of a compact subset K. A
simple computation yields

/wArfda =   I /Ar wda,
a J a

from which there results

If     B      I      / £ ,   m   i     \
I   wAr fda   _* I   I    | Ar w | da 1

IJ a \J k /
max | /1

By virtue of the hypotheses on /, Af/ converges boundedly to A/, so that in
the limit as r—>0 we obtain

I/'wAfda ^ 2-mpKÍw) max | /

An application of Theorem 11 completes the proof.
Turning now to the Wiener representation theorem, we take ß as any

open set and £ as a bounded linear functional defined on the class Q of all
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continuous functions on fi having compact supports. The Riesz representa-
tion theorem asserts the existence of a unique mass distribution m on fi such
that L(f) =fafdm holds for all/GC- If w is any 5-subharmonic function on fi
having mass distribution m, then by Theorem 13 we obtain

L(f) = lim (- l/2x)  f/A? wda.
r->0 J a

Thus, the Wiener representation theorem (stated below) is a consequence of
the classical Riesz theorem.

Theorem 15. Let fi be an open set, Q the class of all continuous functions on
fi having compact supports, and L a bounded linear functional on Q. Then there
exists a function w on fi, having finite Wiener variation on compact subsets and
determined uniquely almost everywhere to within an additive harmonic function,
such that

L(f) = lim (- l/2x)  Ç fABr wda
r->o J a

for all feC-
In addition to the criteria for 5-subharmonicity and almost 5-subhar-

monicity, a criterion can be given for quasi 5-subharmonicity in terms of
almost S-subharmonicity and the behavior of the circumferential or areal
means.

Theorem 16. A necessary and sufficient condition that a function w defined
quasi everywhere on an open set fi be quasi 8-subharmonic on fi is that w be al-
most 8-subharmonic and satisfy

w = lim prW or w = lim aTw
r->0 L r^O J

quasi everywhere on fi.

Proof. Since w is almost 5-subharmonic, it coincides almost everywhere
with a function IF 5-subharmonic on fi. The theorem follows from the fact
that the circumferential and areal means of IF tend to IF quasi everywhere
as r—»0.

6. Some sufficient conditions for 5-subharmonicity. It goes without say-
ing that the criterion for 5-subharmonicity given in Corollary 9.1 is frequently
difficult to apply. We therefore develop certain conditions sufficient to ensure
5-subharmonicity, and which, in spite of their restrictive nature, have im-
portant applications. They yield, in fact, 5:subharmonic functions bearing
little superficial relation to potential theory.

Let us begin by trying to find analogues of the 5-convexity conditions
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mentioned in Corollary 8.1.

Theorem 17. Any function on an open subset of £2 whose graph is a poly-
hedral surface ithat is, a continuous piecewise planar surface) with faces locally
finite in number is h-subharmonic.

Proof. In view of the harmonicity of linear functions it is only necessary
to verify 5-subharmonicity in the neighborhood of the edges and vertices.
This is trivial for the edges, since on any neighborhood of an edge not con-
taining a vertex the function is either the upper or the lower envelope of the
two planes forming the faces, and is therefore either subharmonic or super-
harmonic. The reasoning is slightly more complicated for the vertices.

By inserting additional edges if necessary, we can assume that successive
edges about a fixed vertex form angles less than a right angle. Taking p, q,
and r as three successive edges, we then see that the faces pq and qr lie either
both above or both below (or on) the plane pr. The polyhedral surface formed
by adjoining to faces pq and qr the appropriate portion of the plane pr is
then either max[pr, min ipq, qr)] or min[£r, max ipq, qr)]. As is shown
later in Theorem 22, both of these functions are 5-subharmonic. Subtracting
this new polyhedral surface from the given surface replaces pq and qr by
faces which are horizontal.

Let us suppose now that s and t are edges taken in succession after p, q, r
and that (by virtue of the above transformation) p, q, and r are horizontal.
If t' is the horizontal ray through the vertex and lying in the same vertical
plane as t, our previous argument shows that the polyhedral surface de-
termined by r, s, t' represents a 5-subharmonic function. Subtraction of this
polyhedral surface replaces rs by a horizontal face and at the same time
leaves the faces pq and qr horizontal. An iteration of this process yields a
surface identically constant, proving that the given function is the sum of a
finite number of 5-subharmonic functions in the neighborhood of the given
vertex.

Although the above derivation has the merit of being particularly ele-
mentary, a proof which is more concise, and at the same time considerably
more general, proceeds effortlessly from Green's theorem. In this and in the
remainder of the section we again restrict ourselves to the plane case.

Theorem 18. Let ß be an open set triangulated into a locally finite complex
of class C2. If w is a function continuous on ß and coinciding on each 2-cell
a of ß with a function of class C2 on â, then w is h-subharmonic on ß. More-
over, the mass distribution for w has density ( —l/2x)Aw in the interior of each
cell a and density with respect to arc length equal to l/2x times the jump of
dw/dn on each boundary curve da.

Proof. For any function fGC2i<r) Green's theorem yields
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/wAfda =  f fAwda-\- f     [w(âf/dn) — f(dw/dn)]ds.
a J c J du

Hence, if/ is in C2(fi) and vanishes outside of some compact subset, we have

/wAfda =  | fAwda — £} I    f(dw/dn)ds.
a Ja * J a*

It follows by Theorem 11 that w is almost 5-subharmonic and has the as-
serted mass distribution. That w is actually 5-subharmonic is now evident
from the nature of its mass distribution.

Remark 1. A continuous almost subharmonic function is necessarily
subharmonic. Extrapolating from this, one might be tempted to conclude
that a continuous almost 5-subharmonic function must be 5-subharmonic.
However, as we observe in connection with example 5, such a conclusion
would be false.

A typical method for establishing 5-subharmonicity of a continuous al-
most 5-subharmonic function is that employed in the above proof: for a con-
tinuous almost 5-subharmonic function to be 5-subharmonic it is necessary
and sufficient that the potential of its mass distribution on compact subsets
be continuous.

To derive analogues of (2) and (3) of Corollary 8.1, we first recall the
definition of the upper Blaschke operator in terms of the Blaschke difference
operator as

A w = lim sup Ar w.
r-»0

Replacing lim sup by lim inf gives rise to the lower Blaschke operator. If the
upper and lower operators applied to a given function w yield identical func-
tions, then w is said to admit a Blaschke operator, which appears as

ABw = lim Afw(n).
r-*0

It is well known that whenever w has continuous second partial derivatives
at a point, the Blaschke operator exists for w at that point and coincides
with the value given by the Laplacian.

Of fundamental importance is the following criterion for subharmonicity
(Radó [l, p. 14]) : a function « is subharmonic on a region fi if and only if u
is upper semi-continuous and ABu is non-negative on fi. Whence

Theorem 19. Let w be a function upper semi-continuous on an open set fi.
If ABw is bounded below on compact subsets of fi, then w is 8-subharmonic on fi.

(n) Corresponding Privaloff operators are defined similarly in terms of the Privaloff
difference operator. Results for the Privaloff operators parallel those for the Blaschke oper-
ators.
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Proof. Taking casa lower bound for ABw on a disc crCß, we define u by
uix, y) = (l/2)cx2. From the inequality ABiw — u) =ABw—Aw_0 and the
upper semi-continuity of w — u it follows that w — u is subharmonic on the
interior of a. Hence, w is 5-subharmonic.

Corollary 19.1. If' w is a continuous function admitting a Blaschke operator
bounded on compact subsets of an open set ß, then w is h-subharmonic on ß.

In particular, we recover the classical condition: if w is a function pos-
sessing continuous second partial derivatives on an open set ß, then w is
5-subharmonic on ß.

This, moreover, admits a further refinement.

Corollary 19.2. Let w be a function admitting partial derivatives of the first
order on an open set ß. A sufficient condition for w to be h-subharmonic on ß is
that each point of ß lie in a corresponding neighborhood on which wx and wy
satisfy a uniform Lipschitz condition of the form

I Wxix1, y') — wxix, y) | ^ M \ x' — x \,

I Wyix', y') — Wyix, y) | = M \ y' — y \.
Proof. Let us employ the notation z=(x, y) and z' = (x', y') for distinct

points of a neighborhood on which the above inequalities hold. Defining a
remainder function n by

wiz') = wiz) + w.(z)(x' - x) + Wyiz)iy' - y) + r¡iz', z),

we find

| Ar wiz) | = (2/xr2)  I       | riiz + reie, z) \ d9.
J o

Since the Lipschitz condition guarantees the continuity of the partial deriva-
tives and thereby of w, it suffices to show that the right-hand member is
bounded. For this we note that the mean value theorem yields

riiz', z) =  [wxiz") - Wxiz)]ix' - x) + K(z") - wviz)]iy' - y)

for some z" on the segment joining z and z', so that

|i?(z', z)| ^ M\z' - z\2.

An alternative approach to Corollary 19.2 would be to apply the theory of
distributions. In fact, it is readily seen that the Lipschitz condition forces
wxx and Wyy (taken as distributions) to be locally bounded and hence meas-
ures^2). Almost 5-subharmonicity of w then follows from Theorem 10. How-
ever to prove that w is actually 5-subharmonic would require some sort of

(12) Observe that, for <j> an infinitely differentiable function with compact support, wxx(<t>)
= lim^o/<i>(3c, y){ [wxix-h, y)-wx(x, y)]/h}da(x, y).
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supplementary argument.
In addition to the preceding results attention should be called to the

somewhat more delicate sufficient conditions for 5-subharmonicity, in terms
of the Blaschke operators, developed by Rudin [l].

While a criterion corresponding to that of Theorem 6 is not available for
5-subharmonicity, a sufficient condition of this sort can be established if we use
the Arzelà definition of bounded variation (Adams and Clarkson [l]).

Theorem 20. Let w be a function on an open set fi. If each point of fi lies
in the interior of a corresponding compact cell K= [a, ai]x [b, ôi] on which w
is given by

/x     ny

J       ̂

where f is a function of bounded variation in the sense of Arzelà on K, then w is
8-subharmonic on fi.

Proof. Theorem 7 of Adams and Clarkson [2] allows us to decompose/
as g — h, where each of the functions g, h is nondecreasing in y for fixed x and
nondecreasing in x for fixed y. From their convexity properties it follows
(Radó [1, p. 18]) that the functions u and v defined in the interior of K by

/< X     /% y r '     C "I    g    and    v(x, y) =  I h
a     J b J a     J b

are subharmonic. Hence, w is 5-subharmonic.
7. Closure and convergence properties. Many of the basic properties of

subharmonic functions remain valid for 5-subharmonic functions. However,
the widening of the original class of functions effects two important changes.
It extends the closure properties, in fact more than one might at first expect,
and it restricts the convergence properties rather severely.

As indicated earlier, a motivation for the study of 5-subharmonic func-
tions is the property of algebraic closure, which we now state explicitly.

Theorem 21. The family of all functions 8-subharmonic (almost 8-subhar-
monic, quasi 8-subharmonic) on an open set fi constitutes a linear space over the
real field with respect to the ordinary operations of addition of functions and of
multiplication of functions by reals.

Clearly, the space of all 5-subharmonic functions on fi is the space gen-
erated by the family of all subharmonic functions on fi. Note also that we
obtain a linear space if we consider the family of all complete 5-subharmonic
functions and modify our operations by taking the complete extensions of
the resulting 5-subharmonic functions.

Furthermore, under the usual ordering of functions according to func-
tional values, the spaces in Theorem 21 are actually vector lattices.
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Theorem 22. If w, w%, and w2 are functions h-subharmonic ialmost h-sub-
harmonic, quasi h-subharmonic) on an open set ß, then max (net, w2), min (wt, w2),
and \w\ are h-subharmonic ialmost h-subharmonic, quasi h-subharmonic) on ß.

Proof. For Wi and w2 5-subharmonic the 5-subharmonicity of max (wlF w2)
hinges on the lattice identity

max («i — »i, u2 — v2) = max («i + v2, u2 + v{) — (»i + v2).

A reflection yields the corresponding property of min (wi, w2), while that
for \w\ results from |w| —2w+ — w. In each case the infinities of the various
functions are accounted for in obvious fashion.

Thus, the upper and lower envelopes of any finite number of 5-subhar-
monic functions on ß are themselves 5-subharmonic.

— 1 —Oi —a2 0 02 ai 1 x—»

Fig. 1

Passing to the case of the upper envelope of an arbitrary family of such
functions, we recall (Brelot [l, p. 15]) that in the subharmonic case the
upper envelope is subharmonic provided it is upper semi-continuous. More-
over, H. Cartan has shown (Cartan [l, p. 99]) that whenever the family is
bounded above, its upper envelope is at least quasi subharmonic.

The situation for 5-subharmonic functions presents a marked contrast.
Example 2. There exists an increasing sequence {wk} of continuous 5-sub-

harmonic functions on £2 converging to a function w which is bounded and
continuous but not almost 5-subharmonic. We consider for this a function /
continuous on the real axis, vanishing outside of the interval ( —1, 1), and
defining on ( — 1, 1) a continuous polygonal arc of unbounded variation, as
indicated in Fig. 1. Then for every positive integer k we define/* as the func-
tion which coincides with/ outside of ( — a*, a*) and vanishes on ( — at, a*).

Setting Wkix, y) =/¡t(x), we find that {wk} converges upward to the func-
tion w defined by w(x, y) =/(x)(13). By Theorem 17 each Wk is 5-subharmonic.

(13) The sequence can, of course, be made strictly increasing by subtracting l/k from Wi¡
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However, the theorem of Evans employed in example 1 shows that w is not
even almost 5-subharmonic.

A further conclusion to be drawn from this example is that the limit of a
uniformly convergent sequence of 5-subharmonic functions need not be al-
most 5-subharmonic(14). As one might well suspect from the construction
employed, the underlying reason for non-5-subharmonicity of the limit func-
tion is to be found in the behavior of the mass distributions of the approximat-
ing functions: if fi is any open set intersecting the y-axis, {<j>a(wk)} is un-
bounded.

By stipulating that the mass distributions have uniformly bounded total
variations, we arrive at a convergence theorem for almost 5-subharmonic
functions. First, however, a few remarks on weak convergence of mass dis-
tributions are in order.

Definition 7. Let fi be an open set and f~ the set of all functions / con-
tinuous on fi and tending to 0 on dfi. A sequence {mk} of mass distributions
on fi will be said to converge weakly on fi to a mass distribution m provided

lim   I fdmk =   j fdm
it-..» «J a J a

for all / in Qf, the indicated integrals being assumed to exist finitely.
Identification of a mass distribution m on il with the linear functional

A(/) =   ffdm
J a

reveals that weak convergence of {mk} to m is simply weak convergence of
linear functionals on the Banach space Q* (under the usual norm, ||/||
= max |/| ). In dealing with weak convergence unstinting use is made of the
theorems of §4, pp. 122-123, of Banach [l]and of the fact (Hewitt [l, p.
459]) that

||a|| = |m|(Q).
The separability of (3#and the density in Qf of the spaces Q2 and Qf (appear-
ing in the proof of Theorem 11) also play important roles. Replacing (¡f by
Q in Definition 7 yields the notion of vague convergence according to H. Car-
tan [l, p. 77]. Clearly, weak convergence is equivalent to the combination of
vague convergence and boundedness of the total variations of the mass dis-
tributions.

The above remarks find application in the proof of our convergence
theorem.

Theorem 23. Let fi be an open set and {wk} a sequence of functions almost

(") The fact that {wk\ happens to converge uniformly to w is not really essential here.
Any continuous function can be uniformly approximated on compact sets by i-subharmonic
functions (in particular by polynomials).
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h-subharmonic on ß. If the sequence {<j>aiwk)} of total variations of the mass dis-
tributions is bounded and {Wk} converges in the mean to a function w on ß, then

(1) w is almost h-subharmonic on ß, and
(2) the sequence {mk} of mass distributions for the functions Wk converges

weakly to the mass distribution m for w.

Proof. The boundedness of [<paiwk)} implies the existence of a subsequence
of [mk\ converging weakly on ß to a mass distribution m, and for the sake of
notational simplicity we take this subsequence as {mk} itself. Furthermore,
there is no loss of generality in supposing ß to be a bounded Dirichlet region,
thus admitting a Green's function G. We then introduce the 5-subharmonic
functions

Wkiz) =  { Giz, fiimtit)    and    IF(z) =  f Giz, f)¿m(f)
Ja Ja

and note that Wk= Wk+Hk, where Hk is harmonic on ß.
The function

Griz, r) = (1/xr2)  f '   f  'dz + pe«, Ç)pdddp,
Jo   Jo

appearing as the integrand in the expressions

ccrWkiz) =  ÇGriz, f)¿»_(f)    and    OrWiz) =  (gtÍz, f)imit),
Ja Ja

is continuous on f for fixed r and z, and coincides with Giz, f) for f outside
of Nriz). Thus, the weak convergence of {mk} to m, together with the
continuous vanishing in f of Giz, f) on the boundary of ß, yields

lim arWk = arW.

Also, by the mean convergence of [wk] to w we have

lim aTWk = arw,

from which it follows that {Hk} converges to a function H continuous on
ß and that arw = aTW+H. A duplication of the preceding argument results
in arH = H, proving that H is harmonic. In the limit as r—>0 we obtain w
= W+H almost everywhere on ß, so that w is almost 5-subharmonic.

Having ascertained the almost 5-subharmonicity of w, we infer without
difficulty from (5.2) of Theorem 11 that the original sequence of mass dis-
tributions converges weakly on ß to m.

The following strengthening of conclusion (2) seems noteworthy.

Theorem 24. Let J be a bounded equicontinuous family of functions on the
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open set fi, such that all functions in J vanish outside a fixed compact subset of fi.
Then, under the hypotheses of Theorem 23

lim   I   fdmk =  |   fdm uniformly for f in J.
t->» J a Ja

Proof. Let us take/ as any function in J, and F as the double areal mean
F = ararf. Since F is in G2(fi) and (for r sufficiently small) vanishes outside of
a compact subset of fi, we see from (5.2) that

/Fdmk -  | Fdm\ ^ (l/2x) max | AF |   I   | wk - w \ da.
a J a Ja

Moreover, the evident inequalities

| A(ararf)\ á (4/r2) max |/|

and

|<W-/| á*ví»,
where o>j denotes the modulus of continuity of/, lead to

/fdmk -   f fdm\ ^ 2o>,(2r)M + (2/irr2) max \f\   I   \wk- w\da
a J a Ja

with M taken as any upper bound for the total variations of the mass dis-
tributions. Uniformity of the convergence is now obvious.

We examine next the extent to which the multiplicative closure property
of Corollary 8.2 carries over to higher dimensions. A direct analogue of this
corollary is readily obtained by algebraic methods, provided we impose on the
functions involved certain boundedness restrictions automatically fulfilled in
the 1-dimensional case.

Theorem 25. The space of S-subharmonic functions on an open set fi gen-
erated by the family of all locally bounded subharmonic functions on fi is an
algebra (that is, it is closed under the operation of multiplication of functions).

Proof. We wish to show that the product of any two functions Wi and w2
of the space can be represented as the difference of two locally bounded sub-
harmonic functions, and the identity WiW2 = (1/4) [(wi+w2)2— (wi — w2)2] re-
duces this to the case of Wi = w2. Then, starting with w = u — v, where u and v
are locally bounded subharmonic functions, we have w2 = 2(u2+v2) — (u-j-v)2.
From this and the fact that the square of a positive subharmonic function is
subharmonic (Radó [l, p. 19]) it follows that w2 is 5-subharmonic and that
the subharmonic functions appearing in the canonical representation for w
are bounded.

Remark 2. In connection with the statement of Theorem 25 it should be
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mentioned that a bounded 5-subharmonic function may fail to admit a repre-
sentation as the difference of two locally bounded subharmonic functions.
(See example 3.)

However, in contrast with the 5-convex situation it is not true that the
product of two arbitrary 5-subharmonic functions is 5-subharmonic, or even
almost 5-subharmonic. For example, w2, where w(z)=log |z|, is not almost
5-subharmonic on any neighborhood of the origin, since the concentrated mass
at z for any 5-subharmonic function w is given by limr^0 [j-rw(z)/( — log r)].

Turning our attention to the space of almost 5-subharmonic functions,
we show that the local boundedness requirement in Theorem 25 can be re-
moved for one of the factors whenever the other factor is sufficiently well
behaved.

Theorem 26. Let ß be an open set and S the space of h-subharmonic func-
tions generated by the family of all subharmonic functions on ß which are locally
bounded and have locally essentially bounded first partial derivatives. If Wi and
w2 are almost h-subharmonic functions on ß one of which coincides almost every-
where with a function in S, then Wiw2 is almost h-subharmonic on ß.

Proof. There is obviously no loss of generality in assuming Wi and wz
to be subharmonic. By Theorem 25 it then suffices to prove that uv is almost
5-subharmonic, where m is a bounded subharmonic function having essen-
tially bounded first partial derivatives and v is the potential of a negative
mass distribution m.

For convenience we suppose that £1/2(0) Cß and that the mass of v lies en-
tirely on u = NyiiO). Let us denote by U„ the triple areal mean of u over
circles of radius p and for z[ = (x, y)] and r[=(£> v)] on co define

W,,.tiz) = U¿z)Lriz, f),

where

Lriz, f) = max (log | z - f |, log r).

By Theorem 25, Wf,r,t is 5-subharmonic on <o. This is, however, also a conse-
quence of Theorem 18, which asserts further that the mass of Wf,r,t is given
by a distribution of density (— l/2x)AfFp,r,f on to— Cr(f) and of linear density
l/2x times the jump of dWp,r,¡/dn on coP\Cr(f)-

Let us determine estimates for the total variation of this mass distribu-
tion. Direct computation yields

AIFp,r,f(-) = 2 [(x - í
dU,iz) dU,iz)

-+iy-v) —-
dx dy    _

+ [A _/,(_)] log | z - r I on co - Srit)
[AU,iz)]logr oncoH^f)
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and shows the jump of dWp,r,(/dn to be Up(z)/r on wf^Cr(f)- The total varia-
tion is then given by

(*) <t>»(Wp,r,t) = (l/2x) f | ATFp,r,r | da + (l/2xr) f [ U,\ ds.
J a-Crlt) J wncr(f¡

Taking M as a bound for \u\ and (except for a set of measure zero) for
\ux\ and \uy\, we see that M also bounds | Up\, \dUp/dx\, and \dUp/dy\.
Now, the choice of 1/2 as radius of w ensures log r<0 and log |z — f | <0, so
that

(l/2x) f | AW„r,r | da g (Jf/x) f
J u-Cr(() Ju

x - £ I + | y - v I
<n •*» Iz — f I

da(z)

-(1/2»)  f [Ai/„(z)]log |s-f|do(«)

- (l/2x)(log r)  f A77, ¿a.
•7 ̂ nw-inc«nivr(r)

By Green's theorem the final term in the right-hand member is seen to
be dominated by —21/2Mr log r. Also, since the second term in the right-hand
member is the negative of the potential at f of the mass distribution for U„,
it is apparent that the left-hand member is bounded for all f Gwand all suffi-
ciently small p and r. From the obvious boundedness of the remaining inte-
gral in (*) we infer the existence of a constant K such that <t>u(WPyT,i) ^K.

Letting p—»0 results in convergence in the mean of Up to u. It follows by
Theorem 25 that the function wr,t defined on w by

Wr.f(z) = u(z)LT(z, i)

is almost 5-subharmonic and that <j>u(wr,{)^K. We use next the fact that
uv is the limit in the mean of a sequence {sk} of finite sums of the form

sk(z) = - «(z) Z) Fi/*(z, Ç,)m(ej),
i

where {e¡} is a partition of w. Almost 5-subharmonicity of uv now follows
from the evident inequality <pu(sk) SK<ba(v).

A somewhat different proof of this theorem can be given by approximat-
ing u and v by functions having continuous second partial derivatives, in-
vestigating convergence for the various terms obtained by taking the La-
placian of the product of the approximants, and concluding that the A of
Schwartz for uv is a measure.

In particular, the product of a harmonic function and an almost 5-sub-
harmonic function is almost 5-subharmonic. This fact can be utilized to ad-
vantage to obtain a concise proof for the 5-subharmonic analogue of the
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absolute continuity of 5-convex functions, a result due to Evans  [l, p. 45]
who applied the theory of potential functions of generalized derivatives.

Theorem 27. Every continuous almost h-subharmonic function is absolutely
continuous in the sense of Tonellii16).

Proof. Let w be a continuous almost 5-subharmonic function on an open
set ß, and let a be a disc lying in ß. Defining IF by IF(x, y) =xw(x, y), we find
by a simple calculation

B B T2*
Ar IF(z) = xAr wiz) + (2/xr)  I      wiz + reiS)cos Odd.

J o

The final term here can be expressed in terms of the areal mean arw as
2[darw(z)/dx], and we have

2 | darwiz)/dx | ^ | A? IF(z) | + | x | • | A? wiz) \.

Since IF and w are both almost 5-subharmonic, it follows from Theorem 14
that

(7.1) lim sup        | daTw/dx\ da < + <x>.
r-H)        J *

The same being true for the derivative with respect to y, we conclude (Saks
[l, p. 179]) that w has finite area over a. Evans has shown (Radó [l, p. 45])
that w is absolutely continuous in x for almost all y and absolutely continu-
ous in y for almost all x. Hence, w is absolutely continuous in the sense of
Tonelli.

As a consequence, the surface defined by a continuous almost 5-sub-
harmonic function w has finite area over any closed disc a lying in the domain
of w, and the area 5 is given by the classical formula

= j [iwx)2 + iwy)2 + lY'2da.

The finiteness of the area, which is of course the key to the above proof,
stems from the finiteness of the area of log | z| over any disc. On this basis one
can establish (7.1) by a direct calculation for w a potential and thereby ob-
tain a more elementary, but somewhat less concise, proof of the theorem.

A further closure property which we consider involves the operation of
composition of functions. Given a 5-subharmonic function w and a real func-
tion/ whose domain contains the range of w, we can form the composite func-
tion W=fow (that is, the function defined on the domain of w by IF(z)

(16) See Saks [l, p. 169ff. ] for the definition of, and properties related to, this type of
absolute continuity.
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=f[w(z)]).   Under certain conditions on / and w the resulting composite
function will be 5-subharmonic, or at least almost 5-subharmonic.

For example, Theorem 25 assures us that IF is 5-subharmonic whenever
w is the difference of two locally bounded subharmonic functions and / is a
polynomial. However, as is to be expected, almost 5-subharmonicity of IF can
be established under considerably weaker hypotheses on /.

Theorem 28. Let w be a function almost 8-subharmonic on an open set fl
and admitting a representation (u, v), where u and v are bounded subharmonic
functions. Further, let f be a real function having a Lipschitzian derivative on an
interval I containing the range of w. Then the composite function W=f o w
is almost 8-subharmonic on fi.

Proof. For some M>0 the function/ satisfies

| f{t) - f'(s) \ú'M\'t-s\
for all s, i on I. Then, defining a remainder function r, by

At) = M + f'{s){t - s) + v(s, t),
we see from the mean-value theorem that

|t(í,í)| á^|i-s|2.

A simple calculation yields

|A?lF(z)| ^\f'[w(z)]\ ■ \aBt w(z)\

[w(z + re") - w(z)]2dd,
0

and it is convenient here to transform the final term by means of the identity

[w(z + reie) — w(z)]2 = w2(z + reie) — w2(z)

— 2w(z) [w(z + rea) — w(z)].
There results

| ArV | ^ (\f'ow\ + 2M\w\) ■ | Arw | -f M • | Af w |.
Since/' and w are bounded and w and w2 are almost 5-subharmonic, Theorem
14 shows that IF is almost 5-subharmonic.

Having observed that the Lipschitz condition on/' forces/ to be 5-convex,
one may well ask whether anything more than 5-convexity is really needed.
We leave this question open in the general case, but answer it in the negative
for w restricted in a manner reminiscent of Theorem 26.

Theorem 29. Let w be an almost 8-subharmonic function which is bounded
and has essentially bounded first partial derivatives on an open set fi. If [a, b]
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is an interval containing the range of w and f is a function h-convex on [a — e,
b + e] for some e>0, then W=f o w is almost h-subharmonic on ß.

Proof. Without loss of generality we can suppose / to be an increasing
convex function, linear on [a — e, a] and [b, b+e]. We then fix a as any
closed disc contained in ß and define wp on a as the triple areal mean of w
over circles of radius p: wp = apapapw. Similarly, fp will be defined as a double
mean for/:

(J    7*-
Setting Wp =/p o wf, we find

| AW„ | £ if, O wp) | Aw, | + iff o »,) [(top/^)! + (awp/dy)2}.

It is clear that for small p the functions/¿ are uniformly bounded above by
some number M, and there follows

v„ i daf | AIF, \ da ^ M \   \ Aw„

+ f if" o wp) [idwp/dx)2 + idw„/dy)2]da.
J <r

Now, an application of Lebesgue's bounded convergence theorem shows
that W„—*W in the mean as p—»0. Moreover, f„\Awp\da remains bounded.
Our theorem will therefore be proved if we can establish boundedness of the
final integral. To this end we set Fp =f'p o wp and observe that the term in
question becomes

f [idFp/dx)idwp/dx) + idF„/dy)idwp/dy)]da,

which Green's theorem permits us to express as

—   I FpAwpda +  I FPidwp/dn)ds i£ M I   | Awp \ da + M I    | dwp/dn \ ds.
J „ J d<r J <r J da

By virtue of the essential boundedness of wx and wv, dwp/dn is uniformly
bounded, and the theorem follows.

Spaces of 5-subharmonic and almost 5-subharmonic functions can in gen-
eral be normed in a wide variety of ways. We indicate here a norm which is
closely related to convergence in the mean and gives rise to a Banach space.

Theorem 30. Let ß be an open set and <B the space of all summable almost
h-subharmonic functions w on ß such that <paiw) < + oo. Then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] DIFFERENCES OF SUBHARMONIC FUNCTIONS 353

IMI = 4>a(w) +|   \w\da
J a

defines a norm under which B is a Banach space.

Proof. The norm properties are readily verified, and completeness is an
easy consequence of Theorem 23.

Banach spaces of 5-subharmonic functions under a slightly different norm
will be discussed in a later paper dealing with functions of potential type.

8. Some specific decompositions. A problem of interest, but one which
is on the whole rather difficult, is that of determining when a given 5-sub-
harmonic function possessing a property F can be decomposed as the dif-
ference of two subharmonic functions both possessing the property P.

For example, it is well known that a polynomial of degree « on a bounded
region can be represented as the difference of two subharmonic polynomials
of degree at most n(16). We show now that if the restriction on the degrees
of the representing polynomials is relaxed, the result remains valid for un-
bounded regions.

Theorem 31. Every polynomial on £2 can be represented as the difference of
two polynomials subharmonic throughout £2.

Proof. It clearly suffices to show that each term of the given polynomial
admits such a representation, and there is no loss of generality in supposing
that the generic term under consideration has coefficient one.

Taking first the terms which are of degree at least two in each variable,
we have a polynomial of the type w(x, y) =xp+tyi+2t where p and q are non-
negative integers. The polynomials

u(x, y) = kx2p+2y2 + xp+2y"+2 + x2y2«+2

and
v(x, y) = ¿x2"+2;y2 + x2y2"+2

have the evident property that w = u—v, and we show that for k sufficiently
large both u and v are subharmonic on £2. This is immediate for v, whose
Laplacian contains only even powers of x and y. For u we compute the
Laplacian as

Au(x, y) = y2[k(2p + 2)(2p + l)x2p + (p + 2)(p + l)xpy" + 2y2*]

+ x2[2kx2p + (q + 2)(q + \)xpy» + (2q + 2)(2q + \)y2*]

and observe that both of the bracketed quadratic forms in xp, y" are positive
definite provided k is chosen sufficiently large.

(16) The proof consists simply of translating the given region into the first quadrant and
noting that those terms with positive coefficients are subharmonic, while those with negative
coefficients are superharmonic.
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Terms of degree one in x and of degree one or less in y are obviously
harmonic, so we need only consider terms of degree one in x which are of the
form w(x, y) =xyq+2, where g is a non-negative integer. The desired decomposi-
tion here is obtained by setting w(x, y)=kx2y2+xyq+2+y2q+2 and t>(x, y)
= kx2y2+y2q+2 and applying the previous argument. Similarly, the term
wix, y) =yi+2 of degree zero in x can be expressed as the difference of

nix, y) = ky2 + y"+2 + y2«+2    and    »(*, y) = ky2 + y2"+2.

The next property which we consider is based on the following gen-
eralization of Poisson's equation: a necessary and sufficient condition for a
function w 5-subharmonic on an open set ß to have its mass distribution given
by a continuous density function p is that w be continuous and admit a
continuous Blaschke operator(17) on ß; when this condition is satisfied,
ABw = — 2xp. The necessity has been demonstrated by Privaloff [2], and the
sufficiency is readily established.

Theorem 32. If w is a continuous function admitting a continuous Blaschke
operator on an open set ß, then the canonical representation for w consists of two
continuous subharmonic functions admitting continuous Blaschke operators on
ft(17).

Proof. We observe simply that the mass distributions for these subhar-
monic functions are given by the continuous density functions (l/2x) [ABw]~
and(-l/2x)[ABw]+.

If the property under consideration is weakened to be merely that of
continuity, then, as the following counterexample shows, it is no longer gen-
erally preserved under decomposition.

Example 3. We construct a bounded continuous potential w on £2 for
which every representation (w, v) has the property that both u and v are un-
bounded at the origin. To accomplish this, we consider the circles Cr/t(0) with
radii rk = e~k for all positive integers k. If the mass —l/kz is distributed on
Cniff) in any manner whatsoever, then the total mass taken over all the
circles is finite and the potential of the resulting mass distribution is finite at
the origin. The actual distribution of mass on Crt(0) which we employ is a
uniform distribution on a subarc ak with midpoint at (rk, 0) and with length
so small that the potential Uk due to this distribution has a value ^ — k at
irk, 0).

It is well known from classical potential theory that the potential of a
continuous line distribution is continuous. Hence, Uk is uniformly continuous
on SiiO), and there exists a positive number 4 less than rk — rk-i such that
\ukiz) —Ukiz+tk)\ %.1/k2 for z on Si(0). Defining Vk as the potential of the
mass — 1/W distributed uniformly on the arc ßk obtained by translating a*
a distance tk to the left, we see that vki¿) =ukiz+tk).

(17) A corresponding theorem holds for the Privaloff operator.
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If w is the potential due to the given distributions on all the arcs ak and
the negative of the given distributions on all the arcs ßk, then it is apparent
that the series X)*°=-i (uk—vk) converges uniformly on Si(0) to w. Hence, w
is continuous on £2, and since it vanishes at infinity, w is also bounded. We
see, however, from the definition of the mass distribution for w that all repre-
sentations of w consist of subharmonic functions unbounded at the origin.

9. Local behavior of 5-subharmonic functions. Possibilities for the local
behavior of 5-subharmonic functions are considerably more complicated than
for subharmonic functions and give rise to marked distinctions between the
two theories. We proceed to examine a few of these possibilities.

The following lemma is fundamental in the construction of some im-
portant examples.

Lemma 2. Let {ak} be an alternating sequence of real numbers for which
2Z*-i Ia* I = cc- Then there exist concave strictly increasing functions fi and /2
on [O,  oo) with the following properties:

(l)'/i(0)-/i(0)-0,
(2) lim«,/i = lim«,/a = °o,
(3) lim^«, [fi(x)/x]=limx^x,  [/a(x)/x]=0,
(4) /i andf2 are piecewise linear, and
(5) the piecewise linear function f'=fi—j"a has alternate maximum and mini-

mum values given by the sequence {ak}.

Proof. We indicate graphically the construction of /i and /2 as polygonal
arcs issuing from the origin and formed by successive segments pi, p2, pz, • ' •
and qi, ça, qs, • • ■ , respectively. Taking the slope of pi as 2 and that of qi as
1, we proceed on these segments until/i—/a attains the value ai (>0). Then
the slope of /i is reduced to 1/2, and we proceed on the segments p2 and ci
until /i— /a attains the value a2 (<0). At this point the slope of/2 is reduced
to 1/4 and the process repeated. Carrying this on ad infinitum, we arrive at
the definition of /i and /2.

Properties (1), (4), and (5) are immediate, and for (2) we make use of the
divergence of ^¡T-i |a*|. Property (3) follows from the fact that the slopes
of the segments forming the graphs of /i and /2 tend downward to zero, so
that /i and /2 are ultimately dominated by linear functions of arbitrarily
small slope.

Since a convex function of a harmonic function is subharmonic (Radó [l,
p. 16]), the functions defined by — /i( — log |z| ) and — /2( — log |z| ) are sub-
harmonic on A7i(0) — (0). Furthermore, both of these functions have limit
— oo at 0, so that we can extend them to be subharmonic throughout A^i(O).
It follows that the function w defined on Ni(0) by w(z) =f( — log |z|) is
5-subharmonic. Also, since limr,0 [prw(0)/log r]=0, w has no concentrated
mass at the origin. By an appropriate choice of the successive peaks, we ob-
tain
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Example 4. There exists a 5-subharmonic function on NiiO) whose cir-
cumferential mean on Cr(0) does not tend to a limit as r—>0.

The following example is noteworthy because it shows (as pointed out al-
ready in Remark 2) that a continuous almost 5-subharmonic function may
fail to be 5-subharmonic.

Example 5. There exists a bounded complete 5-subharmonic function w
on NiifS) such that wiz) tends to a finite limit as z—»0 but w itself is undefined
at 0. Here we set a* = ( — l)i~1/k, which ensures the existence of the limit.
However, since p-rW(O) is not of bounded variation in r on any interval (0, R),
we see that no definition of to at 0 can yield a 5-subharmonic function.

It is a trivial matter to obtain from w a bounded 5-subharmonic function
w* on A^i(0) such that w*(z) does not tend to a limit as z—»0, but limr,0 prw*i0)
= 0 and w* is complete but undefined at 0. We need only add to w a bounded
subharmonic function assuming the value 0 at the origin but discontinuous
there.

In view of the existence of a pseudo limit(18) for any subharmonic function
at each point of its domain, it is natural to consider questions involving the
pseudo limit in the 5-subharmonic case. From the subharmonic result it is
obvious that any 5-subharmonic function has a pseudo limit at every point at
which it is defined, finitely or infinitely. However, the function appearing
in Example 4 shows that a 5-subharmonic function on an open set ft need not
have a pseudo limit at all points of ft.

On the other hand, assuming the existence of a pseudo limit, we can under
certain conditions infer properties of the corresponding means.

Theorem 33. If w is a bounded h-subharmonic function on an open set
ft, admitting a pseudo limit A at z£ft, then

lim nrwiz) = A.
r-.0

Proof. There exists a set £ thin at z such that limf(^E),z w(f) =A, and
by the theory of thin sets (Brelot [5]) there exists a finite subharmonic func-
tion v such that viz) =0 and \im^^E)^. »(f) = — =° • Hence lim sup2 iw+v) —A,
so that lim sup,..o ßrwiz)^A. A similar argument yields the reversed in-
equality for the limit inferior, and the theorem follows.

Of course, whenever the circumferential mean has limit A, the areal mean
likewise has a limit A.

In dropping the boundedness condition, we consider the areal mean rather
than the circumferential mean and note a fundamental distinction between
the 2-dimensional and higher dimensional cases.

Lemma 3. Let E be a measurable subset of £2 thin at 0, and denote by Er
the intersection of E with Nri0). If w is any function almost h-subharmonic in

(ls) For a discussion of pseudo limits and thin sets see Brelot [5].
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the neighborhood of 0, then

lim (1/r2) |    wda = 0.
J—>0 J ET

Proof. A result of Deny [l, p. 170] assures us that a(Er) is o(r*), and we
can therefore take w as the potential of a mass distribution m on œ = Ni/2(0).
Then

(1/r2)  f   wda= -  f (1/r2)  f   log | z - f | da(z)dm(^),
J Br Ja J Er

so that it suffices to show that (l/r2)/^ log |z — f|aa(z) tends to zero uni-
formly for f on w. For any admissible value of f this integral does not de-
crease in magnitude when ET is replaced by a circular neighborhood Nn(\X)
of the same area. A direct calculation then yields

(1/r2) f   log |z-f|áa(z)
J E.

¿ | (xF2/r2) (log F - 1/2)

and the lemma follows.
An immediate consequence is

Theorem 34. Let w be an almost 8-subharmonic function on an open subset
fi of £2. If w admits a pseudo limit A (finite or infinite) atzG^t, then limr,o«rw(z)
= A.

Since Lemma 3 is based on a result of Deny peculiar to the plane, it is
to be expected that Theorem 34 does not extend in general to higher dimen-
sional spaces. We have, in fact,

Example 6. There exists a potential w in £3 having pseudo limit 0 at
the origin but for which the spatial mean over a sphere of radius r about the
origin tends to infinity as r—»0. To construct this potential, we take 0<s<l
and consider the sequence of points (sk, 0, 0). For k sufficiently large we can
insert spheres ak with centers on the x-axis and radii rk = sk/k2 between the
&th and (fc-f-l)th points of the sequence. The Wiener criterion (Brelot [5])
shows that the set E consisting of the union of these spheres is thin at the
origin.

We define w as the potential of the mass distribution formed by concen-
trating the mass \/k2 at the center of a* and distributing the mass — 1/k2
uniformly over the boundary of ak, for all admissible k. Since w vanishes out-
side of E, it has pseudo limit 0 at the origin. However, a simple computation
shows that the spatial mean tends to infinity.

Local properties allow a sharpening of some of the closure results of §7
for the case of quasi 5-subharmonic functions.

Remark 3. If we assume that the functions Wi, w2, and w in Theorems
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26, 28, and 29 are quasi 5-subharmonic, then we can conclude that the func-
tions Wiw2 and / o w are likewise quasi 5-subharmonic.

This assertion follows trivially from the fact that two quasi 5-subharmonic
functions which are equal almost everywhere must actually be equal quasi
everywhere (since each coincides quasi everywhere with its pseudo limit).

10. The characteristic function. In the theory of meromorphic functions
the so-called "characteristic function" introduced by Nevanlinna [l] plays
a central role. It is defined for an arbitrary meromorphic function / by the
formula

r2"      , i       cr Pit) - pío)
Trif, z) = (l/2x) log+ I /(_ + re«) \ dB +  I-^ it + p(0) log r,

Jo Jot

where pit) denotes the number of poles of/on the disc Stiz).
Privaloff [l] has given a direct extension of this definition to functions

w = u — v, where u and v are subharmonic, by defining Triw, z) according to
the above formula, but with w+ replacing log+ |/| and p(t) denoting now the
negative of the total mass of v on St(z)(19). Another extension of the Nevan-
linna characteristic function has been given for potentials by Rosenbloom [l].

The Privaloff extension retains many of the properties of the original
Nevanlinna characteristic function, such as those of being monotone non-
decreasing in r and convex in log r. However, the situation is complicated
somewhat by the fact that the improper integral fó((P(t) —p(0))/t)dt appear-
ing in the Privaloff extension may fail to converge. That is, there may exist
values of z for which Tr(w, z) does not exist finitely for any r(>0). The deriva-
tion of Privaloff shows, in fact, that the finite existence of lim supf^ [»(f)
— p(0) log |z —f | ] is a necessary and sufficient condition for the finite exist-
ence of Tr(w, z). This condition, which is certainly satisfied when the mass
distribution consists of discrete point masses (as in the meromorphic case),
does not hold in general (20).

We propose still another definition of the characteristic function.
Definition 8. Let w be a function 5-subharmonic on an open set ft, and

let (u, v) be a canonical representation of w. The upper envelope X of m and »
will be termed a canonical envelope for w, and the function TT(w, z) defined for
all circles Cr(z) in ft by the formula

Tr(w, Z)   =   Ur\(z)

will be called a characteristic function for w.

(19) Although Tr(w, z) here depends on v, i.e. on the particular representation (u, v) used
in specifying w, it is clear that we have only to take (u, v) as canonical to determine TT(w, z)
uniquely.

(M) For example, the negative mass distribution obtained by distributing the mass — 1/k2
uniformly on C,-t (0), for every positive integerk, gives rise toa potential v such that limo »
—= —  00 .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1953] DIFFERENCES OF SUBHARMONIC FUNCTIONS 359

This characteristic function is always finite and, by virtue of Theorem 5,
is given without reference to mass distributions. Furthermore, the point z
figuring in our definition need not even belong to fi, a fact which is essential
in subsequent theorems. The exact relationship between the characteristic
function defined here and those of Privaloff and Nevanlinna will be indicated
later.

Since the canonical representations of w are unique only to within the
addition of a common harmonic function to each of the representing subhar-
monic functions, it follows that the characteristic functions are defined only
to within an additive function of the form prh(z), where h is harmonic on fi.
For this reason we introduce 13a(w) to denote the equivalence class of all char-
acteristic functions (considered as functions of r and z) for the given 5-sub-
harmonic function w and the given open set fi(21).

Certain elementary properties of the characteristic function are immedi-
ate.

Theorem 35. Let w, Wi, and w2 be functions 8-subharmonic on an open set
fi, and let Cr(z) be any circle in fi. Then

(1) for c any real number there exist characteristic functions such that

Tr(cw, z) =\c\ Tr(w, z);
and

(2) for any choice of the indicated characteristic functions there exists a func-
tion s subharmonic on fi such that

Tr(Wi +   W2, Z)   Ú   Tr(Wl, Z)   +   Tr(w2, z)   —  prs(z).

Proof. For (1) we take (u, v) as a canonical representation of w and observe
that |c|max (u, v) is a canonical envelope for cw. To establish (2), we start
with canonical representations (ui, vi) and (m2, i>2) of Wi and w2, respectively,
and let (u, v) be a canonical representation of Wi+w2. By Theorem 5 there
exists a function s subharmonic on fi such that Mi+îî2 = m+s and Vi-r-V2 — v-\-s.
Our assertion then follows from the evident inequality

max (u, v) ^ max («i, vi) + max (w2, v2) — s.

An important special case of (1) is the symmetry condition Tr( — w, z)
= Tr(w, z).

The following properties of characteristic functions are obvious from the
subharmonicity of canonical envelopes.

Theorem 36. Let w be a function 8-subharmonic on an open set fi and

(2I) Admittedly, the symbolism TT(w, z) involves an abuse of the functional notation'
since the characteristic function depends not only on the open set £2 but also on the particular
choice of canonical envelope X. Use of a more cumbersome notation to avoid this inaccuracy
does not seem warranted, and any ambiguity that might arise is easily sidestepped by inserting
the proper quantifier.
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Ar,,rt(z) an annulus contained in ft. If TT(w, z) is any characteristic function in
erDa(w), then Tr(w, z) is convex in log r for r on (rx, r2).

Theorem 37. Let w be a function h-subharmonic on an open set ft and Nr(z)
a neighborhood lying in ft. If Tr(w, z) is any characteristic function in rBa(w),
then Tr(w, z) is monotone nondecreasing in r for r on (0, R).

Theorem 38. Let w be a function h-subharmonic on an open set ft, and let
ft, be the set of all points z for which .S,(z)Cft. Then, considered as a function of
z for r fixed, any characteristic function TT(w, z) in fGa(w) is a continuous sub-
harmonic function on ft,.

A theorem of Brelot [l, pp. 34-35 ](22) asserts that a function u sub-
harmonic on N'R(0) =Nr(0) — (0) can be extended so as to be subharmonic at
0 if and only if lim,,0p-rW+(0) exists finitely. Moreover, Saks has shown (Radó
[l, p. 49]) that this condition can be replaced by lim,_0 [MrW+(0)/log r]=0.
Since M+ is a canonical envelope for u, both of these results can be interpreted
in terms of the characteristic function. It is natural, therefore, to look for
5-subharmonic counterparts of theorems of this sort.

Theorem 39. Let w be a function h-subharmonic on a deleted neighborhood
^¿¡(0), and let Tr(w, 0) be any characteristic function. Then a necessary and suffi-
cient condition for w to be h-subharmonic on the full neighborhood Nr(0) is that
Iim,_o [Tr(w, 0)/log r] exist finitely.

Proof. The necessity of this condition results from the fact that the indi-
cated limit equals the negative of the concentrated mass at 0 for the canonical
envelope X. For the sufficiency we employ a theorem of Brelot (Radó [l,
7.14]) which ensures the existence of a harmonic majorant A for X on some
deleted neighborhood of 0. Obviously, u — h and » — A can be extended so as
to be subharmonic at 0, and the theorem follows.

Of course, w may here fail to be defined, or to admit an extension of defini-
tion at 0. However, if w is defined, finitely or infinitely, at 0, then X must have
a finite value there. This leads to

Corollary 39.1. Let w be a function h-subharmonic on N'B(Q). If w admits
an extension of definition at 0 so as to be h-subharmonic throughout Nr(0), then
there exists a characteristic function in T5.yB«»(w) such that limr<0 [Triw, 0)/log r]
= 0.

Although the above condition is not sufficient for w to admit an extension
of definition at 0 preserving 5-subharmonicity, we have by similar considera-
tions

Corollary 39.2. A necessary and sufficient condition for a function w h-sub-
harmonic on N'Ri0) to admit an extension of definition at 0 so as to be h-sub-
harmonic on NBi0) is that there exist a characteristic function in 1s>N'B(0)iw) such
that lim,,o Triw, 0) exists finitely.

(22) See also Radó [l, p. 49].
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A further application of the characteristic function is concerned with the
behavior of w near the boundary, rather than in the neighborhood of a point.

Theorem 40. A necessary and sufficient condition for a function w 8-sub-
harmonic on Nr(Q) to admit a representation (u, v), where u and v are negative
subharmonic functions, is that there exist a characteristic function Tr(w, 0)
bounded above for r on (0, R).

Proof. The necessity follows from Theorem 5, since if (u*, v*) is a canon-
ical representation of w there is a subharmonic function s on Nr(0) such that
m = w*+s and v = v*-r-s. Hence Tr(w, 0) ^ — prs(0), and the monotone non-
decreasing nature of prs(0) ensures that Tr(w, 0) is bounded above. For the
sufficiency we use the fact (Privaloff [2]) that jurX(0) bounded above for r on
(0, R) implies the existence of a harmonic majorant for the subharmonic
function X.

Invoking a theorem of Littlewood (Radó [l, 7.22]) on the existence for
almost all radial directions of the radial limit of a negative subharmonic
function, we obtain

Corollary 40.1. Let w be a function 8-subharmonic on NR(0). If there
exists a characteristic function Tr(w, 0) bounded above for r on (0, R), then
limr..R- w(rea) exists finitely for almost all values of 0.

Of significance in linking our characteristic function with those of
Nevanlinna and Privaloff is the trivial observation that

(10.1) max (u, v) = w+ + v

holds whenever w = u — v. We apply this lattice identity to obtain alternative
expressions for the characteristic function TT(w, z) considered as a function
of r for fixed w and z.

Theorem 41. Let w be a function 8-subharmonic on a region fiC£2, and let
p be the positive part of the mass distribution for w. Further, let fi* be a sub-
region of fi, and let z be fixed such that Cr(z) lies in fi* for all r on (ri, r2). If p
confined to fi* admits a potential, then for Tr(w, z) any characteristic function
there exist constants A and B such that

/> It w+(z + rei$)dd
o

(10.2) r
+  I    max (log I z - £ |, log r)dp(Ç)

Ja'

+ A log r + B

for r on (ru r2).

Proof. From the formula
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Triw,  Z)   =  HrW+(z)   + ßrv(z)  + P,A(z),

where » is the potential of —p confined to ft* and A is a function harmonic on
ft*, we obtain the desired expression for Tr(w, z) by evaluating urv(z) and
MrA(z).

A further specialization of the hypotheses yields

Corollary 41.1. Let w be a function h-subharmonic on N'B(z), p the positive
part of the mass distribution for w, and P(t) the mass p[St(z)]. If p admits a
potential finite at z, then for Tr(w, z) any characteristic function there exist con-
stants A and B such that

/> 2ir w+(z + reie)dd
o

+ f       log -¡-'—j dp(i) + A log r + B
J N'rW |   Z   —   f |

(10.3)
w+(z + rei0)dd

o

rr P(t) - P(0)
+ -dt + A log r + B

Jo t

for r on (0, R). If further w is h-subharmonic at z, and Tr(w, z)GcÇ>nr(.Z)(w),
then A=P(0).

Proof. Given r£(0, R), we fix pG(r, R) and denote by vp the potential of
— p confined to N'p(z). Since v„ is finite at z, formula (10.2) remains in force
when we subtract the constant vp(z) from its right-hand member. Formulas
(10.3) then follow from (10.2) and the equalities

/max (log | z - f |, log r)dp(Ç) - vp(z)

PU) - P(0)=   f        log-r—- dpit) =   f   ■
J N'r{z) |  Z  —  Ç | ^0

dt.

That A =P(0) when w is 5-subharmonic at z is readily seen from the fact that
the function A in the proof of Theorem 41 must then be the potential of the
concentrated mass at z plus a function harmonic on N„iz).

A slightly different expression for the characteristic function can be de-
rived by methods paralleling those given above if we take cognizance of the
relation

(10.4) 2 max (w, v) = \ w \ + u + v,

where w = u — ». We thus arrive at the following theorem and corollary, appli-
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cations of which will be made in a subsequent paper on entire 5-subharmonic
functions and functions of potential type.

Theorem 42. Let w be a function 8-subharmonic on a region fiC£2, and
let m be the mass distribution for w. Further, let fi* be a subregion of fi, and let z
be fixed such that Cr(z) lies in fi* for all r on (ru r2). If m confined to fi* admits a
potential, then for Tr(w, z) any characteristic function there exist constants A
and B such that

| w(z + re") | dd
o

+ (1/2)  f   max (log | z - f1, log r) | ¿«(f) | + A log r + B
Ja'

for r on (ru r2).

Corollary 42.1. Let w be a function 8-subharmonic on N'R(z), m the mass
distribution for w, and i>(i) the total variation of m on St(z). If m admits a poten-
tial finite at z, then for TT(w, z) any characteristic function there exist constants
A and B such that

| w(z + re") | dd
o

+ (1/2)  f        log-r—j | dm{t) | + A log r + B
J N\W |   Z   —   f |

/> 2,r | w(z + re") | dd
0

(1/2) f '
J o

$(i) - $(0)
--— dl + A\ogr+B

for r on (0, R). If further w is 8-subharmonic at z and Tr(w, z)G^nbi.z)(w),
then A =$(0).

The correlation between our characteristic function and that of Privaloff
is at once evident from Corollary 41.1 : at those points for which the Privaloff
characteristic function is defined finitely the two characteristic functions,
considered as functions of r, differ only by a constant. This observation of
course applies also to the Nevanlinna characteristic function, since the latter
appears as a special case of the Privaloff characteristic function.

We remark in passing that it is possible to formulate a characteristic
function along the lines of Definition 7 but with an areal mean replacing
the circumferential mean. Moreover, we get still another characteristic func-
tion by setting Tr(w, z)=max [pru(z), p,rv(z)]. Many of our basic results re-
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main valid for these two variants of the characteristic function, but equation
(10.3), bridging the gap with the classical theory, is no longer available.

Notational glossary
£" = w-dimensional Euclidean space.

C(z)={f: |r-«|-r).
7Y,(z) = {f: |f-z|<r|.
S,(-)={f: |f-«|__r}.
K(z)=Nr(z)-(z).

ßrw(z) = (1/2t) fSww(z+rew)dd.
arw(z) = (l/xr2)/0'/02,rw(z-|-pei9)p¿o¿p.

d£ = boundary of £.
a(E) = 2-dimensional Lebesgue measure of £.

<j>E(w) = total variation on £ of the mass distribution for w.
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