FUNCTIONS WITH A CLOSED GRAPH ${ }^{1}$

IVAN BAGGS

Abstract

Let X be a T_{2} Baire space. A set $F \subset X$ is closed and nowhere dense in X if F is the set of points of discontinuity of a function with a closed graph from X into R^{n}. Although the converse does not hold in general, it does hold when X is the real line.

1. Introduction. Let X and Y be topological spaces and let f be a function from X into Y. Put $D(f)=\{x \in X \mid f$ is discontinuous at $x\}$. f has a closed graph if $\{(x, f(x)) \mid x \in X\}$ is closed in $X \times Y . R^{n}$ is used to denote Euclidean n-space. It is well known (see [3, p. 78]) that in order for $F \subset X$ to coincide with the set of points of discontinuity of a real-valued function on X, it is necessary that F be an F_{σ} set without isolated points. It is shown in [1] that this condition is also sufficient for a wide class of topological spaces.

In this note it is shown that if X is a Baire space which is also Hausdorff and if f is a function from X into R^{n} with a closed graph, then $D(f)$ is a closed and nowhere dense subset of X (Theorem 2). It is also shown that a set $F \subset R$ is closed and nowhere dense in R if and only if there exists a function $f: R \rightarrow R$ with a closed graph such that $D(f)=F$ (Theorem 3). This theorem cannot be extended to arbitrary T_{2} Baire spaces (Example 2).
2. The main results. The following theorem is known (see for example [2, p. 228]).

Theorem 1. Let X be a Hausdorff space and let Y be compact. Then $f: X \rightarrow Y$ is continuous if and only if the graph of f is closed.

The following two lemmas will be useful in establishing the main results.
Lemma 1. Let X be a Hausdorff space and let Y be a metric space in which each bounded set has a compact closure. If $f: X \rightarrow Y$ is a function with a closed graph, then $D(f)$ is a closed subset of X.

Proof. For each $x \in X$, put

$$
\omega(x)=\inf \{\operatorname{diam} f(U) \mid U \text { is a neighbourhood of } x\} .
$$

[^0]Suppose there exists some $x \in D(f)$ such that $\omega(x)=L$, where $0<L<+\infty$. Let $\varepsilon>0$, then there exists an open neighbourhood U of x such that $L-\varepsilon<\operatorname{diam} f(U)<L+\varepsilon$. Hence, $f(U)$ is contained in a compact subset of Y and this implies, by Theorem 1 , that $f \mid U$ is continuous on U. However, U is a neighbourhood of x, therefore, f is continuous at x. But this is impossible, since $x \in D(f)$. Therefore, for each $x \in D(f), \omega(x)=$ $+\infty$. (If $x \notin D(f)$ it is easily seen that $\omega(x)=0$.) Let $\alpha \in R$. Then $\{x \in X \mid \omega(x)<\alpha\}$ is an open subset of X (see [3, p. 78]). Hence $D(f)=$ $\{x \in X \mid \omega(x)=+\infty\}$ is a closed subset of X.

Remark 1. Let X be a Hausdorff space and let $f: X \rightarrow R^{n}$ be a function with a closed graph. Let $x \in D(f)$. It follows from the proof of the preceding lemma that $\omega(x)=+\infty$. Therefore, f is unbounded on every neighbourhood of x.

Lemma 2. Let X be a Baire space which is Hausdorff. If $f: X \rightarrow R^{n}$ is a function with a closed graph, then $D(f)$ is a nowhere dense subset of X.

Proof. Suppose there exists an open set $U \subset X$ such that $U \subset D(f)$. It follows from Lemma 1 that $\bar{U} \subset D(f) . \bar{U}$ is of second category since, in a Baire space, a set of first category has no interior (see [2, p. 250]). For each positive integer m, let $B_{m}=\{x \in \bar{U}| | f(x) \mid \leqq m\}$, where $|\cdot|$ denotes the usual Euclidean norm on R^{n}.

For each integer m, B_{m} is closed. Suppose this is not true. Then for some m there exists $x \in \bar{B}_{m}$ such that $x \notin B_{m}$. Let $\left\{x_{\alpha}\right\}_{\alpha \in A}$ be a net converging to x such that $x_{\alpha} \in B_{m}$ for all $\alpha \in A$. Put $N=\{x\} \cup\left\{x_{\alpha} \mid \alpha \in A\right\}$. Then $f(N) \subset K$, where K is a compact subset of R^{n}. Since N is a closed subset of X and since X is Hausdorff, $f \mid N$ has a closed graph in $N \times K$ (and also in $X \times R^{n}$). Therefore, $f \mid N$ is continuous on N, by Theorem 1 , and $f\left|N\left(x_{\alpha}\right) \rightarrow f\right| N(x)$. This implies that $f\left(x_{\alpha}\right) \rightarrow f(x)$. Since $\left|f\left(x_{\alpha}\right)\right| \leqq m$, for all $\alpha \in A$, it follows that $|f(x)| \leqq m$. This contradicts the assumption that $x \notin B_{m}$. Hence, for each integer m, B_{m} is a closed subset of X.

Since $\bigcup_{m=1}^{\infty} B_{m}=\bar{U}$ and since \bar{U} is of second category in X, it follows that, for some integer m_{1}, there exists an open set V (open in X) such that $V \subset \bar{V} \subset B_{m_{1}}$. Again, $f \mid \bar{V}$ is a bounded function on \bar{V} and hence $f \mid \bar{V}$ is continuous on \bar{V}. This implies that f is continuous at each point of V. This contradicts the assumption that $V \subset \bar{U} \subset D(f)$. Therefore, $D(f)$ is a nowhere dense subset of X.

The following theorem is an immediate consequence of the preceding two lemmas.

Theorem 2. Let X be a Baire space which is Hausdorff. If $f: X \rightarrow R^{n}$ has a closed graph, then $D(f)$ is a closed and nowhere dense subset of X.

In general, closed and nowhere dense subsets of a T_{2} Baire space cannot be characterized as the points of discontinuity of a real-valued function with a closed graph (see Example 2). The next theorem shows this characterization does hold in a special case.

Theorem 3. A set $F \subset R$ is closed and nowhere dense if and only if there exists a function $f: R \rightarrow R$ such that f has a closed graph and $D(f)=F$.

Proof. The sufficiency of the condition follows from Theorem 2. Conversely, if $F=\varnothing$, the theorem is immediate. So, we may assume that $F \neq \varnothing . F^{c}=\bigcup_{n=1}^{\infty} I_{n}$, where $I_{n} \cap I_{m}=\varnothing$, if $n \neq m$, and $I_{n}=\left(a_{n}, b_{n}\right)$, for $n=1,2, \cdots$. For each n, let m_{n} be the midpoint of the open interval I_{n}. Define a function $f: R \rightarrow R$ as follows:

$$
\begin{aligned}
f(x) & =n\left(m_{n}-a_{n}\right) /\left(x-a_{n}\right), & & \text { if } x \in\left(a_{n}, m_{n}\right], \text { for } n=1,2, \cdots, \\
& =0, & & \text { if } x \in F, \\
& =n\left(b_{n}-m_{n}\right) /\left(b_{n}-x\right), & & \text { if } x \in\left[m_{n}, b_{n}\right), \text { for } n=1,2, \cdots .
\end{aligned}
$$

Then f is well defined, f is continuous at each point of F^{c}, and f is discontinuous at each point of F, since F is closed and nowhere dense in R.

It remains to be shown that the graph of f is closed. If $x \in F^{c}$, then, since f is continuous on $F^{c},(x, y)$ is a limit point of the graph of f only if $y=f(x)$. Let $p \in F$ and $0 \neq y \in R$. Let k be a positive integer such that $-k<y<k$. If $x \in \bigcup_{n>k}^{\infty} I_{n}$, then $|f(x)|>k$. Therefore, there exists a neighbourhood N_{1} of (p, y) such that $(x, f(x)) \notin N_{1}$, for all $x \in \bigcup_{n>k}^{\infty} I_{n}$. It follows from the construction of f that there exists a neighbourhood N_{2} of (p, y) such that $(x, f(x)) \notin N_{2}$, for $x \in\left\{\bigcup_{n=1}^{k} I_{n}\right\} \cup F$. Hence the graph of f is closed in $R \times R$.

Remark 2. If F is a nowhere dense perfect subset of R, then the function f constructed in the preceding theorem has a closed graph and has a discontinuity of the second kind at each point of F. [That is, if $a \in F$, then either $\lim _{x \rightarrow a^{+}} f(x)$ or $\lim _{x \rightarrow a^{-}} f(x)$ does not exist.]
3. We now give three examples to indicate some of the restrictions encountered in an attempt to extend Theorem 2.

Example 1. In Theorem 2 we cannot omit the condition that X is a Baire space. Let X be the space of rational numbers with the topology inherited from R. Let $\left\{\gamma_{n} \mid n=1,2, \cdots\right\}$ be an enumeration of X. Define $f: X \rightarrow R$ by $f\left(\gamma_{n}\right)=n$. Then the graph of f is closed in $X \times R$ and $D(f)=X$.

Example 2. There exists a compact Hausdorff space X (hence, a Baire space) and a closed nowhere dense subset F of X such that, if $f: X \rightarrow R$ is a function with a closed graph, then $D(f) \neq F$. Let X be the space of all ordinals less than or equal to the first uncountable ordinal, Ω,
with the order topology. Put $F=\{\Omega\}$. Let $f: X \rightarrow R$ be any function with a closed graph. $X-F$ is countably compact, so, if f is continuous at each point of $X-F, f$ must be bounded on $X-F$. This implies, by Remark 1, that $D(f) \neq F$.

Example 3. In Theorem 2, we cannot replace R^{n} with an arbitrary metric space. Let X denote the real line with the usual metric and let Y denote the real line with the discrete metric. Let f be the identity function from X into Y. Then f has a closed graph and $D(f)=X$.

The author gratefully acknowledges the suggestions of the referee.

References

1. R. Bolstein, Sets of points of discontinuity, Proc. Amer. Math. Soc. 38 (1973), 193-197.
2. J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 \#1824.
3. E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 32 \#5826.

Department of Mathematics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada

Current address: Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada

[^0]: Received by the editors April 1, 1973.
 AMS (MOS) subject classifications (1970). Primary 54C10, 54C30, 54C50, 26A21.
 Key words and phrases. Baire space, closed graph, closed and nowhere dense sets.
 ${ }^{1}$ This research was partly supported by the National Research Council of Canada Grant A8016.

