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FUNCTORIAL RESOLUTION BY TORUS ACTIONS

JAROS LAW W LODARCZYK

Abstract. We show a simple and fast embedded resolution of varieties and
principalization of ideals in the language of torus actions on ambient, smooth
varieties with SNC divisors. The canonical functorial resolution of varieties in
characteristic zero is given by the introduced here operations of cobordant blow-
ups with smooth weighted centers. The centers are defined by the geometric
invariant measuring the singularities on smooth schemes with SNC divisors.

As the result of the procedure, we obtain a smooth variety with a torus
action and the exceptional divisor having simple normal crossings. Moreover,
its geometric quotient is birational to the resolved variety, has abelian quotient
singularities, and can be desingularized directly by combinatorial methods.
The paper is based upon the ideas of the joint work with Abramovich and
Temkin [ATW19] and a similar result by McQuillan [McQ19] on resolution in
characteristic zero via stack-theoretic weighted blow-ups.

As an application of the method, we show the resolution of certain classes
of singularities in positive and mixed characteristic.
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1. Introduction

The significance of Gm-actions in birational geometry and their connection with
Mori theory has already been identified by Reid, Thaddeus, and various other
scholars (refer to [Tha94a], [Tha94b], [Tha96], [Rei], [DH98]). Particularly, Reid
[Reid02] highlighted the role of weighted blowings up and flips in birational geom-
etry utilizing Gm-actions. This notion was also reflected in the proof of the Weak
Factorization theorem, which relied on the concept of birational cobordism and a
pivotal role of Gm-action ([W lo00], [W lo03], [AKMW02]).

In the present paper, we propose approaching embedded resolution problems and
the existing resolution algorithms from the point of view of torus actions. This is
an alternative and, to a great extent, equivalent approach to the one pursued in
a paper [McQ19] of McQuillan-Marzo, and a recent paper of Quek [Que20], and
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2 J. W LODARCZYK

most notably, in the series of papers by Abramovich-Temkin-W lodarczyk [ATW17],
[ATW20],[ATW19], where all kind of stack-theoretic blow-ups were considered to
simplify resolution procedure or to adapt the algorithm to the relative situation
of morphisms. The introduced here definition of cobordant blow-up interprets the
stack-theoretic weighted blow-ups, logarithmic Kummer blow-ups, and more gen-
eral birational transformations of stacks in terms of torus actions. Such interpreta-
tion leads to the presentation of the weighed blow-ups and other transformations
as smooth birational cobordisms. The operation is done in the language of smooth
schemes with torus actions in terms of simple transformation rules. In fact, only
one chart is needed to describe the cobordant blow-up, which makes it a very
simple tool for algorithmic computations and possible theoretical implementations.
The method can be applied to many existing and potential embedded resolution
algorithms originally relying on smooth centers, regardless of characteristic. It
also avoids many problems associated with smooth centers and studied intensely
in [Abh67, Moh87, Moh96, Hau98, W lo08, CP08, CP09, Cut11, BVU13, KM16,
HP19]. Moreover, it is significantly faster and eliminates unnecessary blow-ups.
Furthermore, the algorithm in characteristic zero has a very simple structure with
the centers defined by a geometric invariant related to the weighted normal cone (see
Section 4.1.1). The smooth centers are replaced with more general smooth weighted
centers. In fact, the present paper, similarly to [ATW19], contains a highly sim-
plified version of the strong Hironaka algorithm in characteristic zero. Recall that
the standard Hironaka algorithm uses a rather complicated invariant where the ge-
ometry of singularities is mixed with the combinatorics of the monomials. In the
present paper, similarly to [ATW19] and [McQ19], the algorithm is purely geomet-
ric, with the combinatorial part hidden in the torus action or respectively in the
stack-theoretic structure as, in the two papers above.

1.1. Cobordant blow-ups. Unlike the formalism in [ATW19], or in [McQ19], the
resolution here is given in the language of schemes with torus actions and does not
use stack-theoretic language, although, if needed, it can be converted into such. The
algorithm is carried in the language of cobordant blow-ups of weighted centers on
regular schemes. A similar operation in the language of stacks was independently
studied in the paper of Quek-Rydh [QR22].

The cobordant blow-ups of regular varieties have many advantages even when
compared to the standard blow-ups of smooth blow-ups. They are described by
particularly simple transformation rules with one chart only defined by the affine
morphism. They carry important additional information about singularities which
is contained in the vertex of the transformation. The singularities along the vertex
after the blow-up are to a great extent equivalent to the singularities at the center,
and they are removed as typically the worst singularities in the resolution process.
Moreover the torus action contains additional additional important information for
the resolution process.

All of this is especially beneficial for all kinds of generalizations of the resolution
to classes of singularities in positive and mixed characteristic, foliations and others.
In particular in Section 4 we show how to apply cobordant blow-ups with weighted
centers to introduced here, class of almost homogenous singularities in any charac-
teristic (see Theorems 4.2.2, 4.2.3). This class includes, in particular, the isolated
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singularities whose generalized weighted tangent cone also has an isolated singular-
ity. Moreover, the approach can be generalized to the case where the equimultiple
locus of the subscheme and its weighted tangent cone coincide (see Lemma 4.3.1).

The language and the formalism of the cobordant blow-ups are related to the
notion of birational cobordism introduced as the main tool in the proof of the Weak
factorization theorem ([W lo00], [W lo03], [AKMW02]). On the other hand when
looking from a more general perspective of Cox rings of morphisms in the sub-
sequent paper [W lo23] one shows that any proper birational morphism of normal
noetherian schemes has such a cobordant presentation called cobordization, where
the considered here cobordant blow-up of weighted center is the cobordization of
the standard weighted blow-up. Moreover the theorems on the resolution from
Chapter 4 are extended in [W lo23] to generalized cobordant blow-ups of locally
monomial ideals.

1.2. Rees algebras. Another novel of the paper is the use of rational Rees alge-
bras, giving a fast algorithm with automatic uniqueness. One shall mention that
the rational Rees algebras was also briefly used in the first version of [ATW19] to
interpret the algebra of the center.

Recall that there are presently two approaches to the uniqueness and glueing of
the embedded resolutions. The first method is known as ”Hironaka’s trick” which
uses an equivalence relation defined by permissible blow-ups. It was used in the
original Hironaka’s approach, and in the subsequent papers of Bierstone-Milman
and Villamayor and others (see [Hir64],[Vil89],[BM97],[EH02], [EV03]). The other
method is known as ”homogenization-tuning” trick was introduced by the author in
[W lo05], and then used in the papers of Kollar [Kol07], Bierstone-Milman [BM08],
and others. This approach is also used in [ATW17] and [ATW19]. It relies on
the existence of local automorphisms of the homogenized ideals and functoriality
for étale morphisms. Both approaches hinge on the induction on the dimension of
ambient variety. The inductively built centers living on different hypersurfaces of
maximal contact are compared via equivalence relations or étale maps.

With our approach the centers are unique despite being constructed using non-
canonical itermediate steps. Moreover what is important no comparison between
the intermediate steps is needed. Instead all the operations are related directly to
the constructed canonical resolution center.

Recall that the integrally graded Rees algebras have been used for some time in
the resolution algorithms([EV07],[Vil08],[BV11],[CP09],[KM16]). They were also
used recently in the approach by Quek for the weighted logarithmic resolution
[Que20]. They are also considered in the paper by Quek and Rydh [QR22]. There
are however several advantages of the Rees algebras with rational gradations. The
very first one is that the resolution center and the resolution invariant can be
conveniently defined in this language as the natural generalization of the order.

1.2.1. Definition of the invariant. Let us start with the definition of the order of
an ideal I at a point p ∈ X :

ordp(I) = max{a ∈ Z>0 | I ⊂ m
a
p},

where mp ⊂ OX,p is the maximal ideal of the point p in the local ring OX,p. This
can be written as

ordp(I) = max{a ∈ Q>0 | It
a ⊂ OX [mpt]},
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where R = OX [mpt] is the Rees algebra generated by the first gradation mpt, where
t is the dummy variable. Equivalently one writes the latter as

ordp(I) = max{a ∈ Q>0 | It ⊂ OX [mpt
1/a]},

If the divisors are not present that the resolution invariant of I at p can be
written simply as

invp(I) := max{(a1, . . . , ak) | It ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]int},(1)

where a1 ≤ . . . ≤ ak are rational numbers ordered lexicographically and the max-
imum is considered over all the partial coordinate systems x1, . . . , xk. Here ”int”
stands for the corresponding integral closure. The present definition is equivalent
to the one from [ATW19], which was considered in the different language. Note
that the powers of t indicate the weights of the elements. In particular the weight
of xi is 1/ai with the weight 1 assigned to I.

1.2.2. Rational Rees algebras. One of the benefits of Rees algebras is that their
generators lie in the different rational gradations which often leads to a simpler
presentation. Additional advantage of the rational Rees algebras is that no rescaling
is needed and we can always get the simplest possible set of generators by extending
the gradation. This makes the computations of the centers very straightforward.

This could be illustrated by the Veronese embedding. When passing from
the graded algebra R = k[x1, . . . , xk] =

⊕
d∈Z≥0

Rd to the subgradation R(n) =⊕
d∈Z≥0

Rnd, as in the n-tuple Veronese embedding we obtain the graded algebra

R(n) with a very cumbersome set of generators given by all monomials of degree n
and describing the same Proj(R(n)) = Proj(R). Now when we start from Z-graded
algebra R(n) written as R(n) =

⊕
d∈Z≥0

Rndt
d for the dummy variable t then ex-

tending the gradation and passing to the integral closure R(n)[t1/n]int one obtains
back the algebra R = k[x1t

1/n, . . . , xkt
1/k] in the graded form with respect to t1/k

and with the nice set of generators, and giving a nicer presentation of the same
object Proj(R).

The process avoids various multiple rescalings which often leads to the increased
computational complexity. Since no rescaling is needed the construction of the
center can be obtained in a minimalistic way by a series of transformations called
milling.

1.2.3. Milling. The concept behind milling is to systematically decompose the ele-
ments of the ideal I, as represented by the Rees algebra R = OX [It], step by step,
into elements of smaller gradations. This process is done using graded differential
operators and is carried out with the objective of obtaining a smooth weighted
center. A similar idea was considered in the first version of [ATW19] to illustrate
a different construction method. Note that in our process only the final stage is
canonical, and all the intermediate steps rely on the choices made for the convenient
minimalistic computations.

Consider the admissibility inclusion

It ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]int(2)

as in the above definition (1) of the resolution invariant invp(I). The Rees algebra
of the form

A := OX [x1t
1/a1 , . . . , xkt

1/ak ]int
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is called the Rees center. If the inclusion (2) holds then we say that the center A is
admissible for I at p. If additionally invp(I) = (a1, . . . , ak) as in (1) then the Rees
center A on the right will be called a maximal admissible center. This terminology
is to a great extent equivalent to the one introduced in [ATW19] in the language
of Q-ideals.

The algorithm uses the basic concepts of the standard Hironaka algorithm like
the admissibility, coefficient ideal, maximal contact, from [Hir64],[Vil89], [BM97],
[W lo05], [EH02], [EV03], [Kol07], which are redefined from the perspective of ra-
tional Rees algebras and cobordant blow-ups.

1.2.4. The graded differential operators. The idea of milling is to construct the
maximal admissible center through a step-by-step process that involves enlarging
the initial Rees algebra R1 := OX [It] ⊂ A, while keeping A unchanged. To achieve
this, we perform actions on both sides of the admissibility inclusion using graded
differential operators. These operators preserve the right side A of the inclusion
while expanding the left side. They eventually lead to a situation where both sides
become equal. As a result, the maximal admissible center is attained through a
recursive process. Importantly, this process is dependent solely on I, establishing
the uniqueness of the maximal admissible center and the canonical invariant.

To illustrate the action of graded operators consider the inclusion

Ita ⊂ OX [mpt],(3)

where a = ordp(I). Here we can act on both sides of the inclusion by the differential
operators t−1DX for DX being the sheaf of the differential operators on smooth
variety X over a field k, and a ∈ N. The right side is preserved by this action
as t−1DX(mpt)

a ⊂ (mpt)
a−1 while we obtain new elements on the left side. In

particular, we derive the inclusion of t-gradations Da−1
X (I)t ⊂ mpt.

When rescaling (3) we obtain the inclusion

It ⊂ OX [mpt
1/a],

with the action of the differential operators t−1/aDX to get

Da−1
X (I)t1/a ⊂ mpt

1/a.

Similarly if A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int is maximal admissible for I then a1

is necessarily the order of I at p. We can act by the operators t−1/aDX on both
sides of the admissibility relation

It ⊂ A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int

and obtain the inclusion of t1/a1 gradations

Da1−1
X (I)t1/a1 ⊂ A1/a1

t1/a1(4)

where A =
⊕

aAat
a.

1.2.5. Maximal contacts. The maximal contacts of I at p in our approach should
be thought of as simply the graded coordinates x1t

1/a1 , . . . , xkt
1/ak in a certain

presentation of a maximal admissible centerA ⊂ It at p. Unlike the usual definition
this approach makes sense in a nonzero characteristic. The maximal contacts are
defined in terms of the recursively constructed algebras on the left side of the
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admissibility inclusion. In particular, in view of (1) the first maximal contact is
defined by a coordinate

x1 ∈ T
1/a1(R1) := Da1−1

X (I) ⊂ A1/a1

in gradation t1/a1 .
Observe that the notions of the admissibility, the order, the invariant and the

maximal contact can be considered in the general context of Rees algebra R replac-
ing It with R in the relevant definitions.

Consequently, the notion of i-th maximal contact xi for any Rees algebra shall
be understood as the coordinate in t1/ai-gradation of its maximal admissible center
A = OX [x1t

1/a1 , . . . , xkt
1/ak ]int ⊃ It such that xi is independent of the previous

maximal contacts x1, . . . , xi−1.

1.2.6. Coefficient ideals. The coefficient ideal of an algebra R is a way to produce
larger Rees algebras containing the relevant maximal contacts.

Given any Rees algebra R =
⊕
Rat

a, and any graded coordinate xt1/a the
coefficient ideal Cxt1/a1 (R) of R with respect to xt1/a is generated by xt1/a and all
the derivations obtained by the action of the graded derivations Dxt1/a := t−1/a1∂x.
Consequently, by the above if R ⊂ A and x1t

1/a1 is the first maximal contact of R
then Cx1t1/a1 (R) ⊂ A.

The computation of the coefficient ideal is even simpler when we pass to the
completion of the local ring with respect to (x) or maximal ideal mp so that the

splitting gives the inclusion ÔX,p/(x) ⊂ ÔX,p. In such a case ÔX,p · Cxt1/a1 (R) is
generated by the maximal contact and the coefficients in the graded form of the
generators of R with respect to the powers (xt1/a)i. These coefficients by splitting

live on ÔX,p · R|V (x) ⊂ ÔX,p · R. (See Lemma 3.5.7, Examples 3.2.2, 3.2.4, 3.2.6)

1.3. Construction of the center. Going back to the milling process we put

R1 := OX [It] ⊂ A,

R2 := Cx1t1/a1 (R1) ⊂ A = Cx1t1/a1 (A)

. . .

Ri+1 := Cxiti/ai (Ri) ⊂ A = Cxit1/ai (A)

. . .

Rk+1 = A.

The process will continue until Rk+1|V (x1,...,xk) = 0 and thus Rk+1 = A which
completes the procedure. In this recursion, ai = ordp(Ri|V (x1,...,xi−1)) and the

i-the maximal contact xit
1/ai is defined so that the restriction xi|V (x1,...,xi−1) is

a local parameter in the t1/ai-gradation of the algebra obtained by the action of
t−1/aiDxi , . . . , t

−1/aiDxn on Ri|V (x1,...,xi−1). In the process we change the coordi-
nate system in such a way that gradually step by step all the maximal contacts
are included. These changes however do not affect A just its representation. (See
Examples 3.2.2, 3.2.4, 3.2.6). Again the above process in a non-SNC setting shall
be compared to the construction of the algebra associated with the center in the
first version of [ATW19].

The whole algorithm is independent of the a priori chosen maximal admissible
center A. At the same time it is done inside of A which is then uniquely determined
as the terminal algebra of the recursive process.
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1.4. Rees centers and cobordant blow-up. The computed maximal admissible
Rees center A = OX [x1t

1/a1 , . . . , xkt
1/ak ]int determines the extended Rees algebra

Aext = OX [t−1/wA , x1t
1/a1 , . . . , xkt

1/ak ],

where wA = lcm(a1, . . . , ak) is the least common multiple of the rational numers
a1, . . . , ak.

Now the rescaled integral extended Rees algebra algebra

OB = OX [t−1, x1t
w1 , . . . , xkt

wk ],

with wi = wA/ai defines the desired transformation of the full cobordant blow-up

B = SpecX(OX [t−1, x1t
w1 , . . . , xkt

wk ])→ X.

Here the new coordinates are t−1, x1t
w1 , . . . , xkt

wk , where t−1 describes the ex-
ceptional divisor D := VB(t−1), and the vertex of the cobordant blow-up is defined
as V := VB(x1t

w1 , . . . , xkt
wk).

1.5. Controlled transforms. Rescaling the admissibility inclusion It ⊂ Aext

leads to ItwA ⊂ OB. Thus the full transform OB · I of I is divisible by the power
(t−1)wA of the exceptional divisor D = VB(t−1). The result of this factorization
σc(I) := OBItwA is called the controlled transform of I. Thus the admissibility
condition turns into the condition for the controlled transform.

Also the new coordinates x′1 := x1t
w1 , . . . , x′k := xkt

wk are simply the controlled
transforms of x1, . . . , xk. Consequently the controlled transform σc(A) of the center
A can be written at the vertex V as σc(A) = OB[x′1t

1/a1 , . . . , x′kt
1/ak ]. Similarly

the derivations Dx′
i

= t−wiDxi = σc(Dxi) on B are the controlled transforms of
Dxi.

As a result the coefficient ideals Cxit1/ai (Ri) commute with the operation of the
controlled transform: σc(Cxit1/ai (Ri)) = Cx′

it
1/ai (σc(Ri)), and the entire milling

algorithm commutes at the points of the vertex V converging from σc(R1) =
OX [σc(I)t] to the maximal admissible center σc(Rk+1) = σc(A) and giving the
same value of the invariant

inv(σc(R)) = (a1, . . . , ak) = inv(R)

for σc(R) at the vertex V as for I at the center V (A).

1.6. Resolution principle for the resolution in characteristic zero. The
resolution algorithm in characteristic zero can be stated as follows:

For any ideal I and a point p consider a unique maximal admissible center A.
Then

(1) The vanishing locus V (A) describes the locus of the points q where invq(I) =
invp(I) is constant and attains its maximal value in a certain neighborhood
U of p. Thus invp(I) is upper semicontinuous and attains finitely many val-
ues along the maximal admissible centers.

(2) The full cobordant of B at A corresponds to the rescaled algebra OB of
Aext = OX .

(3) Consider the Rees center A associated with the maximum maxinvX(I) of
the invariant inv on X . After the full cobordant blow-up B of X at A
the invariant inv of the controlled transform σc(I) := OB · It

wA attains its
maximum at the vertex V from B. This maximum is equal to to

maxinvB(σc(I)) = maxinvX(I) = invp′(σc(I))
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for any p′ ∈ V .
(4) The invariant “inv” drops for the cobordant blow-up B+ := B r V after

removing the vertex V , that is

maxinvB(σc(I)) < maxinvX(I)

leading to the resolution of singularities.
(5) The maximal admissible center for the ideal σc(I) at V is given by the

controlled transform σc(A) of the centerA so we have maximal admissibility
inclusion σc(I) ⊂ σc(A).

1.7. Resolution principle in general. When considering maximal admissible
centers in characteristic zero for an ideal I we see a strong correlation between
the singularities at the vertex and the center. The singularities along the maximal
admissible center V (A) are the same as the singularities at the vertex V in the
sense they have the same invariant.

This principle is a part of a more general picture and can be pursued in a nonzero
characteristic which leads to various types of resolution and reduction theorems. It
relies on the following observations:

(1) Let D = VB(t−1) be the exceptional divisor. The vertex V consists of two
parts:

V rD ⊂ B− := B rD = X × A1

is isomorphic to V r D ≃ V (A) × A1, showing that the singularities of
V (I) at V (A) are equivalent up to smooth projection to the singularities
of the strict transform V (σs(I)) at V rD. Here the strict transform σs(I)
is obtained by the factoring out the maximal powers of the exceptional
divisors from the functions in the full transform OB · I.

(2) The exceptional divisor D = VB(t−1) is isomorphic to the normal weighted
bundle NX/V (A) of X at V (A). (Lemma 4.1.5) The singularities of the
intersection
V (σs(I)) ∩ D at VD := V ∩ D ⊂ D are isomorphic to the singularities of
the normal weighted cone CV (A)(V (I)) ⊂ NX/V (A) of the V (I) at V (A).
(Lemma 4.1.7)

This allows to resolve or improve singularities if they are controlled along the
center and when the singularities of its normal weighted cone are controlled at the
center as well. The method works for some classes of singularities. In general, in a
nonzero characteristic we may have some automorphisms of the normal cone which
prevent an apparent improvement of singularities.

1.8. SNC divisors. Another novelty of this paper is the direct treatment of the
exceptional SNC divisors without any additional structures. In [ATW19], or in
[McQ19], this problem is omitted and the simple resolution is obtained without
any conditions on the exceptional divisors. In the classical Hironaka approach the
algorithm requires the exceptional divisor must have SNC crossings, and the process
is controlled by a certain inductively defined filtration on the set of the exceptionals
which is arguably the most cumbersome part of the proof. In this paper no structure
is needed and a geometric invariant is a simple function of the subvariety or the
ideal and the set of the exceptional divisors. Consequently, the embedded and
nonembedded resolution of varieties and principalization of ideals is obtained in
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the stronger form where the centers have SNC with the strict transforms, and the
inverse image of the ideal is given by an effective SNC divisor.

The definition of the invariant invp(I) and the maximal admissible centers are
adapted to the regular schemes with SNC divisor. In such a case we only consider
the coordinate systems where each divisorial component at a given point is repre-
sented by one of the coordinates. We shall also think of the divisorial coordiantes
as infinitesimally heavier than the other ones.

Consequently in the admissibility relation

It ⊂ A = OX = OX [x1t
1/a1 , . . . , xkt

1/ak ]int

we associate with the any free, that is non-divisorial coordinate xi the element
bi = ai and with divisorial coordinate xj the slightly ”heavier” symbol bj = aj+.
We assume here that a+ > a for any a ∈ R and if b > a for a, b ∈ R then b > a+

This gives a vector (b1, . . . , bk) and we assume that b1 ≤ . . . ≤ bk. The invariant in
such a case can be written as

invp(I) = max{(b1, . . . , bk) | It ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]int}.

The main point of this construction is that we obtain still upper semicontinuous
invariant, which drops after a cobordant blow-up at the associated maximal ad-
missible center. Moreover, the whole algorithm is only marginally affected by this
modification of the invariant. The only essential change lies in the construction of
maximal contact allowing additional divisorial coordinates tangential to T 1/ai(Ri).

1.9. Comparing to existing strategies and ideas. The ideas of this paper
stem mostly from [ATW19] and the joint project with Abramovich and Temkin.
The main difference here is the use of cobordant blow-ups, rational Rees algebras
for the construction and uniqueness of the centers, and the use of the SNC divisors
giving stronger results on resolution and principalization without changes in the
complexity of the algorithm. Moreover, the paper extends some ideas to a more
general context of schemes in any characteristic. In the case where the exceptional
divisors are ignored we obtain the same centers as in [ATW19].

The cobordant blow-ups were considered independently by Quek and Rydh in
[QR22] from a slightly different angle. They provide a convenient presentation of
the stack theoretic weighted blow-ups. Again the ideas were born from the method
in [ATW19]. One shall stress that using stack-theoretic quotients does not give
here any particular benefit. Instead, some of the information is lost in the process.
It is mostly used in the historic context of the established notion.

In [ATW19] the construction of the center was achieved by a different inductive
argument in a different language and its uniqueness was proven by using the idea of
homogenization ideals from [W lo05]. The centers were represented by the Q-ideals

J = (x
1/w1

1 , . . . , x
1/wk

k ). In the very first version of [ATW19] this construction was

related to the rescaled algebra of the center AJ = OX [x1t
1/a1 , . . . , xkt

1/ak ]int for an
ideal I obtained by applying the saturated weighted derivatives Dxit1/a1 to OX [It],

and the center J = (x
1/w1

1 , . . . , x
1/wk

k ) in the Q-ideal form with w1a1 = . . . = wkak.
Such an interpretation is valid when there are no SNC divisors. This was done as
an illustration of our method, was not used in the context of the resolution strategy
and thus was omitted in the next versions of [ATW19].
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The method in this paper is designed to derive directly in an efficient way the
invariant and the unique maximal center A from I using the minimalistic trans-
formations determined solely by I without any references to prior constructions.
The transformations are done in SNC setting and applied to generators only. As a
consequence, all the intermediate steps are easy to compute but non-canonical and
only the final center is automatically unique, since the process is independent of the
maximal admissible center containing all the transitional algebras (see Examples
3.2.2, 3.2.4, 3.2.6 ).

The compact formula for the coefficient ideal which is generated by the coef-
ficients and maximal contact can be linked to the Bierstone-Milman presentation
with the important distinction that it involves no factorization of monomials and
the coefficient presentation is done on the completion of the local ring of the original
variety in the language of Rees algebras. The Bierstone-Milman coefficient ideal
lives on a hypersurface of maximal contact and is generated solely by the adjusted
coefficients ([BM91],[BM97]).

This type of Bierstone-Milman approach to the coefficient ideal is much more
efficient for computations and practical implementations. Recall that most of the
resolution strategies rely on the Villamayor approach to the coefficient ideal with
rescaling of the ideals (see [Vil89], [W lo05], [EH02], [EV03], [Kol07],[BM08]. This
strategy was also used in [ATW19]. Each coefficient ideal typically increases the
grading from n to n! which severely restricts the implementability of the algorithm.
This is due to the simple fact that already (5!)! exceeds 1097 which is according
to the Standard Model of particles the assumed maximal estimated number of the
subatomic particles in the universe. In practice, computing even the first coefficient
ideal could be tedious for the relatively small gradings say n ≥ 7. Here the grading
n is typically given by the order of the ideal I at a point and is estimated by the
degrees of its generators.

In their paper [QR22], Rydh and Quek observed that the canonical projection
B → A1 determines the deformation to the normal weighted cone. (see Remark
4.1.11). They also noticed that weighted blow-up can be interpreted in terms of
the toric combinatorial construction of Cox rings.

The approach was pursued in the joint work [AQ21] of Abramovich-Quek based
on the Satriano combinatorial method from [Sat13]. Finally in the subsequent pa-
per [W lo23], we give a general formula for the realization of any proper birational
morphism by the torus action using the Cox rings. In the paper [W lo23] we also
extend the methods and results of the weighted normal cone from Section 4 (The-
orems 4.2.2, 4.2.3, 4.3.1) to the context of the blow-ups of any locally monomial
ideals.

1.10. The output of the algorithm. The resolution algorithm outputs a smooth
scheme with a torus action and admitting a geometric quotient having abelian
quotient singularities and birational to the original scheme. The quotient can be
directly resolved by canonical combinatorial methods in any characteristic as in
[W lo20, Theorem 7.17.1], or in [BR19] by the destackification method of Bergh and
Rydh.

1.10.1. Aknowledgements. The author would like to thank Dan Abramovich, Kenji
Matsuki, Mircea Mustaţǎ, Michael Temkin, and Willem Veys and many others for
helpful discussions and suggestions.
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1.11. Main results in characteristic zero. The following theorems extend the
results and the resolution method by stack-theoretic weighted blow-ups from
[ATW19, Section 1.2] in the language of torus actions and SNC divisors.

1.11.1. Functorial principalization.

Theorem 1.11.2. Let X be a smooth variety over a field k of characteristic zero,
and E be a simple normal crossing (SNC) divisor and I be an ideal sheaf on X.
There exists a canonical principalization of I, that is a sequence of cobordant blow-
ups (Definition 2.4.7) at smooth weighted centers

X = X0 ← X1 ← . . .← Xk = X ′, (∗)

such that:

(1) The torus Ti = Gi
m acts on Xi, with finite stabilizers, where T0 = 1, Ti+1 =

Ti×Gm, ans T := Tk so that the geometric quotient (space of orbits) Xi/Ti
exists.

(2) Set I0 := I. For i ≥ 1, the ideals Ii ⊂ OXi , defined as Ii := OXi · Ii−1 are
Ti-stable.

(3) Set E0 := E, and let Ei, for i ≥ 1, be the total transform of Ei−1. The
divisors Ei on Xi are Ti-stable and have SNC.

(4) The smooth weighted centers Ji of the cobordant blow-ups Xi ← Xi+1 are
compatible with Ei (Definition 3.1.2), and are Ti-stable. Moreover V (Ji) ⊆
V (Ii).

(5) OX′ · I = ID′ := OX′(−D′) is the ideal of an SNC divisor D′ whose com-
ponents are the strict transforms of the components of the total transform
E′ of E. Moreover there is a T -equivariant isomorphism over X r V (I):

X ′ rD′ ≃ (X r V (I)) × T.

(6) The sequence (*) defines the sequence of weighted blow-ups on the induced
geometric quotients X = X/T0 ← X1/T1 ← . . . ← Xk/Tk = X ′/T, such
that OX′/T ′ ·I = ID′′ is the ideal of a locally principal divisor D′′ := D′/T ⊂
X ′/T ′, where D′ is a T -stable SNC divisor on X ′, and OX · ID′′ = ID′ .

(7) The sequence (*) defines the sequence of stack-theoretic weighted blow-ups
on the induced smooth stack-theoretic quotients

X = X0 = [X/T0]← [X1/T1]← . . .← [Xk/Tk] = [X ′/T ′],

such that O[X′/T ′] · I is the ideal of an SNC divisor on [X ′/T ′].
(8) The sequence (*) is functorial for smooth morphisms, field extensions, and

group actions preserving (I, E).

1.11.3. Embedded desingularization.

Theorem 1.11.4. Let Y be a reduced closed subscheme of a smooth scheme X
over a field k of characteristic zero. Let E be an SNC divisor on E. There exists
a sequence of cobordant blow-ups at smooth weighted centers

X = X0 ← X1 ← . . .← Xk = X ′ (∗)

and the induced sequence of the strict transforms

Y = Y0 ← Y1 ← . . .← Yk = Y ′,

such that
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(1) The torus Ti = Gi
m acts on Xi, with finite stabilizers, where T0 = 1, Ti+1 =

Ti ×Gm and T := Tk so that the geometric quotient Xi/Ti exists.
(2) The closed subschemes Yi ⊂ Xi are Ti-stable. In particular, they admit

geometric quotients Yi/Ti.
(3) Set E0 := E, and let Ei, for i ≥ 1, be either the total or the strict transform

of Ei−1. The divisors Ei on Xi are Ti-stable and have SNC.
(4) The smooth weighted centers of the cobordant blow-ups Xi ← Xi+1 are

compatible with Ei. Moreover, they are Ti-stable and contained in the locus
SingEi

(Yi) of the points where either Yi is singular, or Yi is smooth but not
transversal to Ei.

(5) Y ′ is a smooth subvariety of X and have SNC with E′ := Ek. If E′ is the
total transform of E then the exceptional divisor of the induced morphism
Y ′ → Y is also SNC.

(6) The sequence (*) defines the sequence of weighted blow-ups on the induced
geometric quotients X = X/T0 ← X1/T1 ← . . . ← Xk/Tk = X ′/T, such
that Y ′/T ⊂ X ′/T admit abelian quotient singularities,

(7) The sequence (*) defines the sequence of stack- theoretic weighted blow-ups
on the induced smooth stack-theoretic quotients

X = X0 = [X/T0]← [X1/T1]← . . .← [Xk/Tk] = [X ′/T ′],

such that [Y ′/T ′] ⊂ [X ′/T ′] is a smooth substack.
(8) The sequence (*) is functorial for smooth morphisms, field extensions, and

group actions preserving Y.

Remark 1.11.5. The total transform of the divisor Ei is the union of the strict
transforms and the exceptional divisors. Using the total transforms gives better
control over the induced exceptional divisor of the resolution morphism X ′ → X
which is SNC and has simple normal crossings with Y ′ ⊂ X ′. The strict transforms
of Ei give a slightly faster and simpler algorithm without control of the exceptional
divisors.

In particular, if E0 = 0 and the strict transforms are considered we get Ei = 0,
and no divisors are present in the algorithm. In this case we obtain the resolution
procedure similar to the one in [ATW19]. Moreover, when applying the stack-
theoretic quotients as in (5), we reprove the main result of [ATW19, Corollary
1.2.3].

1.11.6. Nonembedded desingularization.

Theorem 1.11.7. Let Y be a reduced scheme of finite type over a field k of char-
acteristic zero. There exists a sequence of cobordant blow-ups of regular weighted
centers (as in Definition 2.4.7):

Y = Y0 ← Y1 ← . . .← Yk = Y ′, (∗∗)

such that

(1) Y ′ is a smooth variety.
(2) The torus Ti = Gi

m acts on Yi, with finite stabilizers, where T0 = 1, Ti+1 =
Ti ×Gm and T := Tk, so that the geometric quotient Yi/Ti exists.

(3) The inverse image of the exceptional locus is a T ′-stable SNC divisor E′ on
Y ′

(4) The inverse image of the nonsingular locus Y ns ⊆ Y is equal to Y ns × T ,
with the natural action of T on the second component.
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(5) The sequence (**) defines the sequence of weighted blow-ups on the induced
geometric quotients Y = Y/T0 ← Y1/T1 ← . . .← Yk/Tk = Y ′/T, such that
Y ′/T has an abelian quotient singularities.

(6) The sequence (**) defines the sequence of stack-theoretic weighted blow-ups
on the induced stack-theoretic quotients

Y = Y0 = [Y/T0]← [Y1/T1]← . . .← [Yk/Tk] = [Y ′/T ],

such that [Y ′/T ] is a smooth stack.
(7) The sequence (**) is functorial for smooth morphisms, group actions, and

field extensions.

2. Cobordant blow-ups

2.1. Q-ideals and rational powers of ideals. In [ATW19] we introduced the
notion of the valuative Q-ideals J or simply Q-ideals J . In the simplest case they
could be directly related to the notion of rational powers of ideals considered by
Huneke-Swanson ([HS06, Section 10.5]). They naturally generalize the ideals and
can be used for the compact description of the centers. In this paper, for the most
part and for computations in characteristic zero, we predominantly focus on the
rational Rees algebras.

Definition 2.1.1. ([ATW19]) By a Q-ideal J on a irreducible noetherian scheme
X we mean the equivalence classes of the formal expressions J 1/n, where J is
the ideal on X and n ∈ N is a natural number. We say that J 1/n and I1/m are
equivalent if the integral closures of Jm and In are equal:

(Jm)int = (Im)int.

Remark 2.1.2. Note that if J 1/n and I1/m represent the same Q-ideal for some
ideals I, and J and m,n ∈ N then the ideals I and J are called projectively
equivalent wth respect to the coefficient m/n. ([Rush07])

One can associate with a Q-ideal J = I1/n the unique graded Rees algebra

AJ := (OX [Itn])int ⊂ OX [t]

which is the integral closure of

OX [Itn] = OX ⊕ It
n ⊕ I2t2n ⊕ . . .

in OX [t]. Conversely, it is worth noting that any integrally closed Rees algebra of
the form

OX ⊕ I1t⊕ . . .⊕ Int
n ⊕ . . .

can be expressed as the integral closure of OX [Itn]int for a sufficiently large n,
where I = In. This observation was made, in particular, by Quek:

Proposition 2.1.3. [Que20, Theorem 2.2.5] There is a bijective correspondence
between the Q-ideals J = I1/n on a normal scheme X and the integrally closed
algebras Z-graded Rees algebras on X, given by

J 7→ AJ := OX [Itn]int.

Under this correspondence the ordinary ideal I corresponds to OX [It]int. ♣
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With any Q-ideal J = I1/n on X one can associate the ideal of sections

(I1/n)X = JX := {f ∈ OX | f
mn ∈ Im | m ∈ N} = {f ∈ OX | f

n ∈ I int | m ∈ N}.

. It is exactly the t-gradation of the algebra AJ = OX [Itn]int. In particular, if
J = I is an ideal then JX = I int is it is integral closure.

This terminology is the strictly related to the notion of rational powers of ideals
which was coined by Huneke-Swanson [HS06, Section 10.5].

Definition 2.1.4. ([HS06]) For any ideal I and a Q-ideal Im/n for m,n ∈ N the
ideal of sections (Im/n)X is called the m/n-th rational power of ideal I.

Using the correspondence between the Q-ideals and Rees algebras one can asso-

ciate with the formal sum
∑k

i=1 I
ai/ni

i , of Q-ideals I
ai/ni

i on X the Rees algebra

OX [Ia1

1 tn1 , . . . , I
ank

k tnk ]int,

corresponding to a certain Q-ideal on X .
This leads to the equality of Q-ideals:

∑
I

1/n
i = (

∑
Ii)

1/n and I1/n = (I1/mn)m

and determines the operations of addition and multiplication on the Q-ideals on X .

For any Q-ideals J1 and J2 on X written in a general form as J1 :=
∑
I

1/ni

i and

J2 :=
∑
J

1/nj

j their sum is given by

J1 + J2 =
∑
I

1/ni

i +
∑
J

1/nj

j

and their product by

J1 · J2 =
∑
I

1/ni

i ·
∑
J

1/nj

j =
∑

i,j

I
1/ni

i · J
1/nj

j =

=
∑

i,j

(I
nj

i · J
ni

j )
1

ninj = (
∑

i,j

I
nj

i · J
ni

j )
1

ninj

and they both define Q-ideals on X .
Note that these operations extend the standard notion of the sum and the prod-

uct of ideals. Similarly, we can extend the inclusion relation. Let J1 = I
1/n1

1 , and

J2 = I
1/n2

2 be two Q-ideals on X . We say that J1 ⊆ J2 if we have the inclusion of

ideals (I
N/n1

1 )int ⊆ (I
N/n2

2 )int for sufficiently divisible N .

2.1.5. Graded algebras of Q-ideals. One can associate with the Q-ideal J = I1/n,
the corresponding graded algebra of Q-ideals

OX [J t] :=
⊕

(J i)ti,

where t is a dummy variable. This, in turn, determines the graded Rees algebra of
ideals

AJ = (OX [J t])X :=
⊕

(J i)Xt
i

on X .

2.1.6. Functoriality of Q-ideals. If X ′ → X is any morphism of integral schemes,
and I1/n is a Q-ideal on X then (OX′ · I)1/n is the preimage of I1/n, which is a
Q-ideal on X ′.
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2.1.7. Monomial valuation.

Definition 2.1.8. Let u1, . . . , uk be a partial local system of parameters on a
regular irreducible schemeX . We say that a valuation ν such that ν(ui) = wi ∈ Z≥0

of K(X) is monomial at a point p ∈ X , if

Iν,a,p := {f ∈ OX,p | ν(f) ≥ a} = OX,p · (u
a1

1 · . . . · u
ak

k | a1w1 + . . .+ akwk ≥ a).

Then ν is a monomial valuation on X if it is monomial at all p ∈ V (u1, . . . , uk).

Lemma 2.1.9. Let X be a any regular scheme, and p ∈ X be a point.

(1) If p ∈ V (u1, . . . , uk) then assigning weights w(ui) := wi ∈ Z≥0 determines
a monomial valuation ν on Spec(OX,p) with the ideals Iν,a,p as above.

(2) If V (u1, . . . , uk) is irreducible on X then assigning weights w(ui) := wi ∈
Z≥0 determines a unique monomial valuation ν on X.

Proof. (1) We need to show that if f ∈ Iν,a,p r Iν,a+1,p and g ∈ Iν,b,p r Iν,b+1,p

then fg ∈ Iν,a+b,p r Iν,a+b+1,p. Suppose otherwise fg ∈ Iν,a+b+1,p. By removing
the extra terms we can assume that f =

∑
ν(uα)=a cαu

α and g =
∑

ν(uα)=b dαu
α,

where all cα, dα are invertible. Since OX,p is regular then for the ideal I =
(u1, . . . , uk) we have that grI(OXp) = OXp/(I)[u1, . . . , uk] is a domain, and assign-
ing weights ν(ui) = wi determines a unique monomial valuation ν0 on grI(OXp) =
OXp/(I)[u1, . . . , uk] with the ideals Iν0,a = in(Iν,a,p). Then considering the ini-
tial terms we get ν0(in(fg)) = ν0(in(f)) + ν0(in(g)), which implies that in(fg) 6∈
Iν0,a+b+1. But by the assumption in(fg)) ∈ in(Iν,a+b+1,p) = Iν0,a+b+1.

(2) The valuation ν is centered at V (u1, . . . , uk) and uniquely determined for ev-
ery point. Moreover it is the same when passing to the generic point of V (u1, . . . , uk).

♣

2.1.10. Regular weighted centers. For the purpose of the resolution one considers
Q-ideals on a regular scheme X , called centers, which can be locally presented in
the form (ua1

1 , . . . , u
ak

k ) where u1, . . . , uk is a partial family of local parameters and
ai ∈ Q>0. We shall always assume that a1 ≤ . . . ≤ ak. Note that one can write it
in an equivalent form (ua1

1 , . . . , uak) = (una1

1 , . . . , unak)1/n, where (una1

1 , . . . , unak)
is an ordinary ideal for a sufficiently divisible n. Then (ua1

1 , . . . , u
ak

k )X will denote
the ideal of sections.

One can describe these ideals in a few different equivalent ways.

Lemma 2.1.11. (see also [ATW19],[Que20]) Let X be a regular X scheme. Let
w1 ≥ w2 ≥ . . . ≥ wk be positive integers, and u1, . . . , uk are corresponding local
parameters on X such that V (u1, . . . , uk) is irreducible. There is a natural bijective
correspondence between

(1) Q-ideals J = (u
1/w1

1 , . . . , u
1/wk

k ).
(2) Graded Rees algebras

AJ = OX [u1t
w1 , . . . , ukt

wk ]int = OX [u1t
c1 , . . . , ukt

ak | c1 ≤ w1].

(3) Monomial valuations νJ , such that νJ(ui) = wi, and

IνJ ,a := {f ∈ OX | νJ(f) ≥ a} = (uα | νJ(uα) ≥ a).

Moreover we get

AJ =
⊕

a∈Z≥0

IνJ ,at
a = (OX [J · t])X .
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First we prove a more explicit form of this correspondence for the centers:

Lemma 2.1.12. (see also [ATW19],[Que20]) Let J = (u
1/w1

1 , . . . , u
1/wk

k ) be a reg-
ular center on a regular X, where wi ∈ N. Let νJ be a monomial valuation such
that νJ(ui) = wi, and for any a > 0, IνJ ,a := {f ∈ OX | νJ (f) ≥ a} is equal to
(uα | νJ(uα) ≥ a). Then for any a ∈ Q>0:

((u
1/w1

1 , . . . , u
1/wk

k )a)X = IνJ ,a = {f ∈ OX | νJ (f) ≥ a} =

(uc11 · . . . · u
ck
k | ci ∈ N, c1w1 + . . . ckwk ≥ a).

In particular

((ua1

1 , . . . , u
ak

k ))X = (uc11 · . . . · u
ck
k | ci ∈ N, c1/a1 + . . .+ ck/ak ≥ 1).

Proof. Note that for any monomial uc = uc11 · . . . · u
ck
1 with integral ci and for

a ∈ Q>0 we have :

uc ∈ IνJ ,a ⇔ c1w1 + . . .+ ckwk ≥ a.

Let n be now any positive integer which is divisible by lcm(w1, . . . , wk), and
write aiwi = n, for the relevant integers ai. Then, the power (uc)n = (ua1

1 )c1w1 ·
. . . · (uak

k )ckwk is an element of an (ordinary) ideal (ua1

1 , . . . , u
ak

k )n if and only if
c1w1 + . . .+ ckw1 ≥ n.

Thus if uc ∈ IνJ ,n then c1w1+. . .+ckwk ≥ n and (uc)n ∈ (ua1

1 , . . . , u
ak

k )n, whence
uc ∈ ((ua1

1 , . . . , uak

k )int = (ua1

1 , . . . , uak

k )X . This shows that IνJ ,n ⊆ ((ua1

1 , . . . , uak

k )X .
On the other hand (ua1

1 , . . . , u
ak

k ) ⊆ IνJ ,n, and since IνJ ,n is integrally closed
(ua1

1 , . . . , u
ak

k )int ⊆ IνJ ,n. This gives IνJ ,n = (ua1

1 , . . . , uak

k )X , for any integral

n, and ai such that n = aiwi. In general, let a = l
m ∈ Q>0, with l,m integral,

and and let n be as above with n = aiwi. Then, by the definition, and the above

f ∈ ((u
1/w1

1 , . . . , u
1/wk

k )a)X if and only if fmn ∈ ((ua1

1 , . . . , uak

k )l)X = IνJ ,l, which
is equivalent to νJ(fmn) ≥ ln⇔ νJ(f) ≥ a.

For the second part, consider a sufficiently divisible integer a > 0 such that
wi := a/ai are integral. Then we can write

(ua1

1 , . . . , uak

k ) = (u
1/w1

1 , . . . , u
1/wk

k )a

Thus, by the previous part uc ∈ (ua1

1 , . . . , u
ak

k )X is equivalent to c1w1+. . . ckwk ≥ a,
which translates into c1/a1 + . . .+ ck/ak ≥ 1.

♣

Proof. (1) ⇔ (3) By Lemma 2.1.12, we can write the Rees algebra (OX [J t])X
as (OX [J t])X =

⊕
a∈Z≥0

IνJ ,at
a. Thus the valuation νJ is determined uniquely.

Conversely given a monomial valuation ν with the weights w1, . . . , wk one can
recover a Q-ideal J from N -th gradation (J N )X = IνJ ,N of (OX [J t])X for N =

w1 · . . . · wk as J = (IνJ ,N )1/N .
(2) ⇔ (3) Given a monomial valuation νJ , one can form the integrally closed

algebra

AJ :=
⊕

a∈Z≥0

IνJ ,at
a = {f ·ta | f ∈ OX , | a ≤ νJ (f)} = OX [u1t

c1 , . . . , ukt
ck | c1 ≤ w1].

Conversely, any algebra OX [u1t
c1 , . . . , ukt

ck | c1 ≤ w1] determines a monomial
valuation defined as follows: For any f ∈ OX , we put νJ (f) = max{a : ta ·f ∈ AJ}.

♣
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2.1.13. Blow-ups of Q-ideals on X. Any Q-ideal of the form J = I1/n on a normal
scheme X determines a unique blow-up

Y = Proj(AJ )→ X

of J on X which can be understood as the normalized blow-up of I on X . It
transforms J = I1/n into a (OX · I)1/n = (OX(−E))1/n for a Cartier exceptional
divisor E.

2.1.14. Weighted blow-ups of centers. In particular, the center J = (x
1/w1

1 , . . . , x
1/wk

k )
on a regular scheme X determines the weighted blow-up

Y = Proj(AJ ) = Proj(OX [tw1x1, . . . , t
wkxk]int).

2.1.15. Stack-theoretic weighted blow-ups. The above formulas of the standard blow-
up can be natural extended to the stack-theoretic setting. In [ATW19, Section 3.1]
the stack-theoretic blow-up of any Q- ideal J is defined to be the stack-theoretic
quotient of the scheme (using our notation):

[(SpecX(OX [J t])X r V ((J t)X))/Gm],

with the natural action of the multiplicative group Gm := Spec k[t, t−1].

In particular, the stack-theoretic weighted blow-up of J = (u
1/w1

1 , . . . , u
1/wk

k ) is
defined to be the stack-theoretic quotient

= [(SpecX(OX [tw1x1, . . . , t
wkxk]int) r V (tw1x1, . . . , t

wkxk))/Gm] =

=[(SpecX(OX [ta1x1, . . . , t
akxk | ci ≤ wi]) r V (tw1x1, . . . , t

wkxk)/Gm].

Observe that the space SpecX(OX [ta1x1, . . . , t
akxk | ci ≤ wi]) is usually non regular

even for an ordinary blow-up of a regular center.

2.2. Rational Rees algebra. In this paper we are going to consider Rees algebras
on a scheme X with gradations given by a finitely generated additive subsemigoups
Γ of Q≥0.

Definition 2.2.1. By a rational Rees algebra or simply Rees algebra we mean a
finitely generated OX -algebra which can be written of the form:

R =
⊕

a∈Γ

Rat
a ⊂ OX [t1/wR ],

where wR ∈ Q>0 is the smallest rational number such that Γ ⊆ (1/wR) · Z≥0, and
the ideals Ra ⊆ OX satisfy

(1) R0 = OX

(2) Ra ·Rb ⊆ Ra+b

If R is a rational Rees algebra on X , and w is a multiple of wR then Rext :=
R[t−1/w] will be called an extended Rees algebra.

By the integral closure Rint of a rational Rees algebra R =
⊕

a∈ΓRat
a we shall

mean its integral closure in OX [t1/wR ]. The integral closure in OX [t1/w], where
w = nwR is a relevant integral multiple of wR will be denoted by RInt.

By the vertex V (R) of R (or V (Rext) of Rext) we mean the vanishing locus

V (R) = V (
∑

a>0

Ra)

(respectively V (Rext) = V (
∑

a>0R
ext
a )).
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Remark 2.2.2. We do not assume here that Ra ⊆ Rb if a ≥ b for a, b ∈ Γ. However
this condition is satisfied if R = Rint is integrally closed in OX [t1/wR ].

2.2.3. Rational Rees algebras and ideals. With any ideal I one associates the Z-
graded Rees algebra AI := OX [It] =

⊕
Intn, and the extended Rees algebra

Aext
I = OX [t−1, It].

As we mentioned before the main idea of the rational Rees algebras is to enlarge
the gradation so we obtain a simpler presentation of the graded algebra, and thus
a nicer presentation of the blow-up of I.

2.2.4. Rees centers and Q-ideals. By a Rees center we mean a Rees algebra A
locally of the form

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int,

for some a local partial system of coordinates( local sytem of parameters) x1, . . . , xk
and some positive rational numbers a1, . . . , ak, where the integral closure is con-
sidered in OX [t1/wA ], where wA := lcm(a1, . . . , ak) is the smallest positive rational
such that wA/a1, . . . , wA/ak are all integers.

By the extended center which is also called center we shall mean the extended
Rees algebra

Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ],

where w is a multiple of wA, so w/ai are all positive integers.

2.2.5. Rescaling.

Definition 2.2.6. Given w0 ∈ Q>0, by the t 7→ tw0 rescaling of the rational Rees
algebra R =

⊕
a∈ΓRat

a ⊂ OX [t1/wR ] we mean the Rees algebra

Rw0 =
⊕

a∈Γ

Rat
w0a ⊆ OX [tw0/wR ],

Lemma 2.2.7. There is a natural isomorphism R→ Rw0 fta 7→ ftw0a . In partic-
ular, R is integrally closed in OX [t1/wR ] iff Rw is integrally closed in OX [tw0/wR ].

♣

Lemma 2.2.8. Let A := OX [x1t
1/a1 , . . . , xkt

1/ak ]int and

Aext := OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ],

where w is a multiple of wA. Then the integral closure AInt of A in OX [t1/w] is
equal to AInt := Aext

≥0 .

Moreover if V (A) is irreducible then there is a unique monomial associated val-
uation νA such that νA(xi) = 1/ai, and

Aa = {f ∈ OX | νA(f) ≥ a}.

Proof. It is a direct consequence of Lemma 2.1.11, obtained by rescaling t 7→ t1/w.
♣
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2.3. Regular centers vs Rees centers. One can identify a regular Q-ideal center

locally described by J = (u
1/w1

1 , . . . , u
1/wk

k ) with wi ∈ N, with the Rees center
AJ = OX [u1t

w1 , . . . , ukt
wk ]int, or the extended Rees center

Aext
J = OX [t−1, u1t

w1 , . . . , ukt
wk ].

Per analogy with the correspondence J 7→ AJ we associate with arbitrary Q-
ideal J = (xa1

1 , . . . , xak

k ), with positive rational ai the rational Rees algebra

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int,

and the extended center

Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ],

where w = lcm(a1, . . . , ak).
Conversely any extended center Aext = OX [t−1/w, x1t

1/a1 , . . . , xkt
1/ak ], with

lcm(a1, . . . , ak)|w determines a Q-ideal J = (u
a1/w
1 , . . . , u

ak/w
k ), with

AJ = (Aext)w = OX [t−1, x1t
w/a1 , . . . , xkt

w/ak ].

Thus there is a bijective correspondence between

• Q-ideals centers J = (u
1/w1

1 , . . . , u
1/wk

k ) with wi ∈ N
• the extended integral Rees algebras AJ = OX [t−1, x1t

w1 , . . . , xkt
wk ], and

• the extended rational Rees algebrasAext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ],
with wi = w/ai ∈ N, defined up to rescaling.

2.4. Cobordant blow-ups.

2.4.1. Good and geometric quotient. We consider here a relatively affine action of
T = Spec(Z[t1, t

−1
1 , . . . , tk, t

−1
k ]) on a scheme X over Z. By the good quotient (or

GIT quotient) we mean an affine T -invariant morphism π : X → Y = X � T such
that the induced morphism of the sheaves OY → π∗(OX) defines the isomorphism
onto the subsheaf of invariants OY ≃ π∗(OX)T .

Then π : X → Y = X/T will be called a geometric quotient if additionally every
fiber Xy of π over a geometric point y : Spec(k) → Y defines a single orbit of the

action of Tk = T ×k Spec(k) = Spec(k[t1, t
−1
1 , . . . , tk, t

−1
k ]) on Xy.

2.4.2. Birational cobordisms. Since the space SpecX(OX [tw1x1, . . . , t
wkxk]int) =

Spec(AJ ) in the definition of the stack-theoretic quotient is singular even for the
standard smooth blow-up with weights wi = 1 we consider here an alternative
approach which uses the concept of birational cobordisms. The notion was developed
over a field, but it can be extended to the schemes with the action of the group
scheme Gm := Spec(Z[t, t−1]. One shall mention that the theory of cobordisms
was also considered in the language of schemes in [AT19, Definition 4.3], but their
definition of cobordism is far more restrictive.

The following definition is motivated for the analogous definition for the varieties
with Gm-action and is adapted to the schemes.

Definition 2.4.3. Let X be an integral scheme with the action of Gm. Let p ∈ X
be a point. We say that limt→0(tp) exists, (respectively limt→∞(tp) exists) if there
is an open neighborhood U of p such that the morphism Gm × U → X extends to
the Spec(Z[t])× U → X (respectively to Spec(Z[t−1])× U → X).

The following definition extends the original definition over a field.
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Definition 2.4.4. [W lo00, Definition 2] By a birational cobordism representing
a birational map φ : X1 99K X2 of schemes we mean a scheme with an action of
T = Gm = Spec(Z[t, t−1]) such that the sets

B− := {p ∈ B : limt→0 (tp) does not exist in B}
and B+ := {x ∈ B : limt→∞(tp) does not exist in B}

are nonempty Zariski open subsets of B , and the geometric quotients α1 : B+/T ≃
X1, and α2 : B−/T ≃ X2 exists, with the natural birational map ψ : B+/T →
B−/T defined by open inclusions maps (B− ∩B+)/T → B±/T , such that

φ ◦ α1 = α2 ◦ ψ.

Example 2.4.5. [W lo00, Example 2] Let T act on B = An+1
k = Spec(k[x0, . . . , xn])

by t(x0, x1, . . . , xn) = (t−1x0, t
w1x1, . . . , t

wkxk), where w1 ≥ w2 ≥ . . . ≥ wk > 0.
Then B− = B r V (x0), B+ = B r V (x1, . . . , xn).

By using toric geometry, we will see that the induced morphism B+/T →

B−/T = B � T is the weighted blow-up at J = (u
1/w1

1 , . . . , u
1/wk

k ).
First, the cobordism B corresponds to the regular cone

σ = 〈e0, . . . , en〉 :=

n∑

i=0

Qei

in Qn+1 with the basis {e0, . . . , en}. The action of T is determined by the vector
v := −e0 +

∑
wiei, representing the weights. Then the good quotient

B → B � T = Spec(O(B)T )

corresponds to the map σ → π(σ) = 〈e1, . . . , en〉, defined by the projection

π : Qn+1 → Qn+1/span(v) ≃ Qn

where Qn is spanned by {e1, . . . , en}. It can be described as π(x0, x1, . . . , xn) =
(x1 +w1, . . . , xn +wn). Note that face σ0 := 〈e1, . . . , en〉 of σ can be identified with
its image π(σ0) = π(σ).

The cone σ with a vector v and the projection π is an example of the combina-
torial cobordism in the sense of Morelli [Mor96]. The ”lower boundary” B− of B
corresponds to the ”lower boundary” σ− of σ, which is the complex consisting of the
faces of σ visible from below with respect to v. It contains σ0 and all of its faces. The
geometric quotient B− → B−/T corresponds to the restriction σ0 → π(σ0) = π(σ)
of π : Qn+1 → Qn mapping isomorphically σ0 to π(σ0). So both quotients: the
geometric quotient B−/T and the good quotient B � T = Spec(O(B))T can be
identified as they correspond to π(σ0) = π(σ) = σ0 ⊂ Qn.

The ”upper boundary” B+ corresponds to the subcomplex σ+ with the maximal
faces 〈e0, e1, . . . , ěi, . . . , en〉, for i = 1, . . . , n, ”visible from above”. Their projec-
tion π(σ+) corresponds to the star subdivision of σ0 at the vector w := π(e0) =
(w1, . . . , wn) with maximal faces 〈w, e1, . . . , ěi, . . . , en〉.

Consequently, the morphism

B+/T → B−/T = B � T = Spec(k[x0, . . . , xk])T = Spec(k[u1, . . . , uk]),

where ui := xix
wi
0 , is the weighted blow-up corresponding to the star subdivision

π(σ+) of π(σ) = σ0. The Q-ideal J = (u
1/w1

1 , . . . , u
1/wk

k ) defines a piecewise linear
convex function

FI := min{(1/wi) · xi | i = 1, . . . , n}
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on σ0 such that FI(ei) = 0, and FI(w) = 1, and which is linear exactly on the faces

〈w, e1, . . . , ěi, . . . , en〉. Thus we see that the blow-up of J = (u
1/w1

1 , . . . , u
1/wk

k )
corresponds to the star subdivision of σ at v, and can be identified with B+/T →
B−/T = B � T .

One can describe the morphism B+/T → B−/T = B�T explicitly. Set t := x−1
0 .

Then we can write

BJ := O(B) = k[x0, x1, . . . , xk] = k[t−1, tw1u1, . . . , t
wkuk] and

B+/T = (Spec(BJ ) r V (tw1u1, . . . , t
wkuk))/T →

→ B/T = B−/T = Spec(k[u1, . . . , uk]).

Moreover the algebra

AJ = (k[u1, . . . , uk])[T 1/a1u1, . . . , t
akuk | ai ≤ wi] = (k[t−1, tw1u1, . . . , t

wkuk])≥0

is exactly the nonnegative part of the algebra BJ . Thus the natural homomorphism
AJ ⊂ BJ defines the isomorphisms of the localizations (AJ )twiui → (BJ )twiui which
gives the isomorphism of quasi-affine schemes

Spec(BJ) r V (tw1u1, . . . , t
wkuk)→ Spec(AJ ) r V (tw1u1, . . . , t

wkuk),

and their quotients B+/T → ProjX(AJ ) over B/T .

2.4.6. Cobordant blow-ups. The idea of cobordant blow-up is to represent a weighted
blow-up by a smooth cobordism.

Let T := Gm = Spec(Z[t, t−1]).

Definition 2.4.7. Let X be a scheme. A trivial cobordant blow-up of X is simply
the natural projection X × T → X from the product X × T = SpecOX [t, t−1].

By the full cobordant blow-up of X at an extended Rees center

Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ]

we mean the T -invariant morphism σ : B → X defined by the birational cobordism

B := SpecX((Aext)w) = SpecX(OX [t−1, tw1x1, . . . , t
wkxk]),

where w = lcm(a1, . . . , ak), and wi = w/ai.
The upper and lower boundaries are equal to

B+ = B r V ((Aext)) = B r V (tw1x1, . . . , t
wkxk) = B r Vert(B)

B− = B r V (t−1) = SpecX(OX [t, t−1]).

By the cobordant blow-up we mean the T -invariant morphism σ+ : B+ → X . Here
σ− : B− → X is the trivial cobordant blow-up.

Equivalently B, B+ will be called full cobordant blow-up (resp. cobordant blow-

up) of a Q-ideal center J = (x
1/w1

1 , . . . , x
1/wk

k ).
We shall call the closed subscheme

V = Vert(B) := V (tw1x1, . . . , t
wkxk) = V ((Aext)w) = V (OB · J ) = B rB+

the vertex of B (per analogy to the vertex of the affine cone over a projective
scheme.)
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Thus, as we shall see B is in fact the birational cobordism representing the
weighted blow-up of J , with B+ = B r V , and B− = B r D = B × Gm, where
D := VB(t−1) is the exceptional divisor and such that

B+/Gm = B �Gm = Proj(OX [tw1x1, . . . , t
wkxk]int),

and B−/Gm = X .

Remark 2.4.8. The author learned recently from Dan Abramovich that the alge-
brasOX [t−1, tw1x1, . . . , t

wkxk] were also considered in the context of stack-theoretic
blow-ups by Quek and Rydh in their upcoming paper [QR22]. In fact, Rydh no-
ticed independently that such algebras gives a nice and natural description of stack-
theoretic weighted blow-ups, which was part of his original goal for [QR22]. On
the other hand, cobordant blow-ups are a different point of view on the same al-
gebra, and they are motivated by the interpretation of the weighted blow-ups in
terms of torus action and smooth birational cobordisms to avoid the use of the
Artin stacks in positive and mixed characteristic. The cobordant blow-ups and the
full cobordant blow-ups carry additional useful information and are often simpler
for computations. One shall mention that all these ideas stem primarily from the
paper [ATW19].

On the other hand, one can link this definition to the extended Rees algebras
OX [t−1, It] introduced by Rees and considered by Swanson and Huneke in [HS06,
Definition 5.1], in particular, in the context of blow-ups of smooth centers.

Remark 2.4.9. (1) By Lemma 5.2.6, the geometric quotient B+/Gm → X
exists. Moreover, by recalling the considerations in the second part of
Example 2.4.5, it can be naturally identified with the usual weighted blow-
up:

B+/Gm ≃ Spec(OX [t−1, tw1x1, . . . , t
wkxk] r V (tw1x1, . . . , t

wkxk)))/T ≃

Proj(AJ ) ≃ (Proj(OX [tw1x1, . . . , t
wkxk]))nor → X = B � Gm = B−/Gm.

(2) The stack-theoretic quotient of smooth varieties over a field k of charac-
teristic zero [B+/Gm] → X is equivalent to the definition considered in
[ATW19, Section 3.1] .

(3) Similarly to the standard blow-up, the cobordant blow-up is trivial over the
complement of the geometric locus of the center V (J ) = V (x1 . . . , xk):

σ± : B+ ∩B− = σ−1(X r V (J )) ≃ (X r V (J ))× T → X r V (J ).

(4) The vertex V = Vert(B) plays a crucial role in the resolution process. It
typically represents the locus of points on B that exhibit the most severe
singularities. The singularities at Vert(B) usually coincide with the singu-
larities along the center J and are eliminated when transitioning to B+.

2.5. Exceptional divisor. The following result explains the definition of the ex-
ceptional divisor D := VB(t−1) in the language of Q-ideals:

Lemma 2.5.1. The cobordant blow-up B+ transforms the center J = (x
1

w1

1 , . . . , x
1

wk

k )
into the (ordinary) ideal of the exceptional divisor D on B+ generated by a global
invariant parameter t−1:

ID := J · OB+
= t−1OB+
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Proof. We have

J · OB+
= (J · t)t−1 · OB+

Note however that

(J · t) = ((x1t
w1)1/w1 , . . . , (xkt

wk)1/wk) = OB+

is a trivial Q-ideal on B+. ♣

2.5.2. Cobordant blow-up: local equations. Let x1, . . . , xn be a system of local pa-

rameters (or coordinates) at a point p on a regularX , and let J = (x
1/w1

1 , . . . , x
1/wk

k )
be a center. Then the full cobordant blow-up B → X of J , can be represented as

B = Spec(OX [t−1, x′1, . . . , x
′
n]/((x′1t

−w1 − x1), . . . , (x′kt
−w1 − xk)].

Thus B ⊂ X×An+1 is locally a closed regular subscheme of X×An+1. Moreover it
has system of local T -semiinvariant parameters t−1, x′1, . . . , x

′
k, xk+1, . . . , xn at the

relevant p′ ∈ V (t−1, x′1, . . . , x
′
k, xk+1 . . . , xn) mapping to p. Consequently, the full

cobordant blow-up B → X at (x
1/w1

1 , . . . , x
1/wk

k ) can be described by a single chart
with the following coordinates:

• t−1 is the inverse of the coordinate t representing the action of torus Gm =
Spec(Z[t, t−1]).
• x′i = xi · twi for 1 ≤ i ≤ k, and
• x′j = xj for j > k.

Remark 2.5.3. For some computations and considerations it is more natural to
replace t−1 with s so that x′i = xi/s

wi in the above formulas. On the other hand
the construction of the center and the majority of the computations are consistent
with the graded Rees algebras and thus with our notation.

The cobordant blow-up B+ = B r V (x′1, . . . , x
′
k) can be covered by the open

subsets (B+)x′
i

= B r V (x′i), associated with x′i producing several more specific
”charts” similarly to the standard blow-up.

2.5.4. Cobordant blow-ups of toric varieties. By definition, the full cobordant blow-
up of a smooth toric variety at a weighted toric center is again a smooth toric
variety. Let Xσ = Spec k[x1, . . . , xn] be the affine toric variety associated with
σ ⊂ NR := Rn

≥0. The full cobordant blow-up B = Xτ → Xσ of the Q ideal

(x
1/w1

1 , . . . , x
1/wn
n ) is the morphism of toric varieties corresponding to the inclusion

of algebras:

k[x1, . . . , xn] ⊆ k[x1t
w1 , . . . , xnt

wn , t−1]

The standard weighted blow-up at J corresponds to the star subdivision of σ
with the center v := w1e1 + . . . + wnen. The full cobordant blow-up B is de-
scribed by the regular cone τ := 〈e1, . . . , en, v + en+1〉 with the natural projec-
tion onto σ = 〈e1, . . . , en〉 along the vector en+1. The cone τ is a cobordism in
the sense of Morelli [Mor96]. The upper boundary τ+ of τ has maximal faces
〈e1, . . . , e

∨
i , . . . , en, v + en+1〉 which are ”visible from above” and which project ex-

actly to the star subdivision of σ at at v. The lower boundary τ− is isomorphic to
σ.

The above construction extends to any smooth toric variety X = XΣ, and v ∈
int(σ), σ ∈ Σ. The fan ΣB associated with B is the union of cones in Σ and those

spanned by the vector v + en+1 and the cones in the closed star Star(τ,Σ).
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3. Resolution of singularities in characteristic zero by weighted

centers

3.1. Resolution invariant on regular schemes with SNC divisors.

3.1.1. Compatibility with SNC divisors.

Definition 3.1.2. A coordinate system (or a partial system of local parameters)
x1, . . . , xn on an open subset U of a regular scheme X is compatible with E if the
restriction Ei|U of any component Ei in E intersecting U is of the form V (xi). If
p ∈ V (xi), where V (xi) determines a component in E|U then we say that xi is
divisorial at p. Otherwise, we say that xi is free at p. We say that a Rees center A
is is compatible with E at p or on U if it can be written as

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int or Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ]

where x1, . . . , xk is compatible with E at p or respectively on U .

Remark 3.1.3. This definition can be linked to the logarithmic language. The
coordinate system defines at every point p ∈ U a regular map

U → Spec(Z[x1, . . . , xn]) = Spec(Z[P ]),

where the divisorial coordinates xi at p generate a monoid P = Mp, and induce
the chart U → Spec(Z[P ]). The free coordinates xj determine a coordinate system
on the stratum s := V (P r 0) through p defined by the divisorial parameters.

3.1.4. The centers compatible with an SNC divisor. Consider the total order on the
set of symbols

Q+ := Q ∐ {a+ | a ∈ Q},

by putting a+ > a, and a+ < b if a < b. Similarly we define Z+ := Z∪{a+ | a ∈ Z}.
The following operations are defined on Q+:

• addition
• subtraction of the elements in Q from an element in Q+.
• multiplication of elements in Q+ by the positive rational elements in Q>0.

Given a center A compatible with E and its local presentation

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int

we associate with a divisorial coordinate xi ∈ Ep the symbol bi := ai+ and with a
free coordinate xi simply bi := ai. We shall always assume that in the presentation:

b1 ≤ . . . ≤ bk.

For any such a center with the presentation A compatible with E we can define

inv(A) := (b1, . . . , bk)

with b1 ≤ . . . ≤ bk.

Remark 3.1.5. Recall that the logarithmic order introduced in [ATW17, Section
3.6] associates with divisorial unknowns the infinity weight, and with free unknowns
the weight 1. This language is compatible with the logarithmic derivations and
leads to the logarithmic resolution. Here we assign the weight 1+ to the divisorial
unknowns. This is the ”minimal weight” greater than the free unknowns weight,
which is still equal to 1. The notion is compatible with the standard derivations
and the standard transformation rules and gives an SNC resolution. It prioritizes
the divisorial unknowns without essentially changing their weights.
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3.1.6. Canonical invariant. In [ATW19] we introduced the resolution invariant used
for the desingularization. The invariant is defined by the inductive procedure, and
can be described in terms of Q-ideals. We shall modify this invariant below so it
can be used in the SNC setting in the context of Rees algebra.

Consider the set

((Q+)≥0)≤n :=
⊔

k≤n

((Q+)≥0)k.

with lexicographic order. We compare the sequences of different lengths lexico-
graphically by placing a sequence of ∞ at the end.

Definition 3.1.7. Let X be a regular scheme with an SNC divisors E, By the
canonical invariant invp(I) of I at a point p we shall mean

invp(I) := max{(b1, . . . , bk) | It ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]int | (b1 ≤ . . . ≤ bk)}.

where (x1, . . . , xk) are the compatible with E at p. Then invp(I) ∈ (Q+
≥0)≤n if it

exists. The Rees center

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int

such that Ip ⊆ OX [x1t
1/a1 , . . . , xkt

1/ak ]int and If invp(I) = inv(A) = (b1, . . . , bk)
will be called a maximal admissible center at p compatible with E.

Remark 3.1.8. It is not clear a priori, that invp(I) is well defined since the max-
imum may not be attained. It will be proven in Section 3.7.1 that there exists
unique maximal admissible algebra OX [x1t

1/a1 , . . . , xkt
1/ak ]int for which the max-

imum (b1, . . . , bk) is attained.

The invariant invp(I) was introduced in [ATW19] in a different language in the
case where no divisors are present giving the embedded desingularization without
the divisorial SNC structure.

On the other hand invp(I) can be also associated with the part of the Hironaka
resolution invariant developed in earlier papers on the resolution of singularities, in
particular, Bierstone and Milman’s [BM97], Villamayor’s [Vil89], Encinas-Hauser
[EH02] and W lodarczyk’s [W lo05], in the particular situation when no exceptional
divisors are present, so at the beginning of the process.

3.1.9. Presentation of centers. One can write centers in a more compact form:

OX [x1t
1/a1 , . . . , xkt

1/ak ]int,

where 0 < a1 < a2 . . . < ak, and x1, . . . , xk is a partial system of local param-
eters compatible with E on open U intersecting V (x1, . . . , xk) and each xi :=
(xi1, . . . , xiki) is a subsystem of coordinates.

Then we associate with each block xit
1/ai the invariant bi = (bi1, . . . , biki), where

bi1 ≤ . . . ≤ biki , such that bij = ai if xij is free on U or bij = ai+ if xij is divisorial
on U . Consequently we can rewrite the definition of the resolution invariant in the
form which is more convenient for computations and presentation.

invp(I) = max{(b1, . . . , bk) | It ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]int}
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3.1.10. Order of ideal revisited. One can see that the number a1 in the maximal
admissible center is simply the order of ideal a1 = ordp(I). In particular we have:

Lemma 3.1.11.

ordp(I) = max{a1 ∈ Q>0 | It ⊂ OX [mpt
1/a1 ]}

Proof. We can write:

ordp(I) = max{a1 ∈ N | Ip ⊂ m
a1

p } = max{a1 ∈ Q>0 | Ip ⊂ m
⌈a1⌉
p }

On the other hand the condition by Lemma 2.2.8, Ipt ⊂ OX [mpt
1/a1 ] means that

Ip ⊂ m
⌈a1⌉
p . ♣

3.1.12. Admissibility condition for ideals.

Lemma 3.1.13. The following conditions are equivalent in a neighborhood of p ∈ X
for an ideal I:

(1) It ⊂ A := OX [x1t
1/a1 , . . . , xkt

1/ak ]int

(2) It ⊂ Aext := OX [t−1/wA , x1t
1/a1 , . . . , xkt

1/ak ]
(3) ItwA ⊂ AwA = OX [x1t

w1 , . . . , xkt
wk ]int, where wi = wA/ai

(4) ItwA ⊂ (Aext)wA = OX [t−1, x1t
w1 , . . . , xkt

wk ]

Proof. The condition (3) and (4) are obtained by rescaling the conditions in (1)
and (2). On the other hand, by Lemma 2.1.11,

(Aext)≥0 = OX [t−1, x1t
w1 , . . . , xkt

wk ]≥0 = OX [x1t
w1 , . . . , xkt

wk ]int = A.

This implies that condition (1) and (2) are equivalent. ♣

Definition 3.1.14. We say that the center A := OX [x1t
1/a1 , . . . , xkt

1/ak ]int or
Aext is admissible for I if one of the four equivalent conditions above holds.

3.1.15. Admissibility of Rees algebras. We extend the admissibility definition to
Rees algebras:

Definition 3.1.16. We say that the Rees center A = OX [x1t
w1 , . . . , xkt

wk ]int is
admissible for a Rees algebra R or simply R-admissible if one of the equivalent
condition holds:

(1) R ⊆ OX [x1t
1/a1 , . . . , xkt

1/ak ]Int, where the inclusion is considered with the
integral closure ”Int” taken in the smallest ring OX [t1/wR,A ] containing
both algebras, or, equivalently in OX [t1/w] for any multiple w = n · wR,A

or for a sufficiently divisible w.
(2) R ⊂ OX [t−1/wR,A , x1t

1/a1 , . . . , xkt
1/ak ].

(3) R ⊂ OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ], where w = n · wR,A.

Remark 3.1.17. Note that the inclusion is independent of choice of sufficiently
divissible w.

3.1.18. Resolution invariant of Rees algebras. We generalize Definition 3.1.7 to the
Rees algebras:

Definition 3.1.19. By the resolution invariant of a Rees algebra R at a point p
on a regular scheme X with an SNC divisor E we mean

invp(R) := max{(b1, . . . , bk) | R ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]Int}
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We show in Section 3.7.1 that there exists unique centerOX [x1t
1/a1 , . . . , xkt

1/ak ]int

for which the maximum (b1, . . . , bk) is attained. We shall call it the maximal ad-
missible center for R at p.

Remark 3.1.20. In the actual resolution process of the ideals all the occurring
Rees algebras R satisfy wR,A = wA and thus the integral closure ”Int” and ”int”
coincide.

One can also define a version of the resolution invariant used for the concept of
maximal contact in Section 3.6.10.

inv1
p(R) := max{b1 | R ⊂ OX [x1t

1/a1 , . . . , xkt
1/ak ]Int}

In particular

Lemma 3.1.21. If R ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]Int (with a1 < a2 . . . < ak) then
inv1

p(R) ≥ b1.

3.1.22. Order of Rees algebras. Consequently one generalizes the notion of the order
of ideals to Rees algebras.

Definition 3.1.23. Let X be a regular scheme with and SNC divisor E. By the
order of the Rees algebra R =

⊕
a∈ΓRat

a at the point p ∈ X , we mean

ordp(R) := min
a∈Γr0

{ordp(Ra)/a}

Since R is finitely generated OX -algebra the order is attained for a certain ho-
mogenous element ftp ∈ Rat

a, so that

ordp(R) = ordp(fta) = ordp(f)/a.

This definition is a generalization of the order of an ideal:

ordp(I) = ordp(OX [It]).

Moreover, if R = OX [It] then ordp(I) = ordp(R).

Lemma 3.1.24. If R ⊆ A = OX [x1t
1/a1 , . . . , xkt

1/ak ]Int then a1 ≤ ordp(R). In
particular,

ordp(R) = max{a1 ∈ Q | R ⊂ OX [mpt
1/a1 ]Int}.

Moreover, if A is maximal admissible for R at p then ordp(R) = a1.

We shall use the following

Lemma 3.1.25.

ordp(Rw) = w · ordp(R)

♣

Proof. (of Lemma 3.1.24) By the assumption,

R =
⊕

Rat
a ⊆ A = OX [x1t

1/a1 , . . . , xkt
1/ak ]int ⊆ OX [mpt

1/a1 ]Int.

Rescaling t 7→ ta1 gives Ra1 =
⊕
Rat

aa1 ⊆ OX [mpt]
Int. Thus Ra ⊆ m

⌈aa1⌉
p whence,

by definition, for any a ∈ ΓR,

(1/a1)ordp(Rat
a) = ordp(Rat

aa1) ≥ ordp(m⌈aa1⌉
p taa1) ≥ 1,

and ordp(R) ≥ a1.
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On the other hand, if ordp(R) = a1 then for any a ∈ Γr{0} we have ordp(Ra) ≥

aa1, so Ra ⊆ m
⌈aa1⌉
p or

Rat
a ⊆ m⌈aa1⌉

p ta ∈ OX [mpt
1/a1 ]Int.

♣

3.1.26. The invariants associated with Rees centers. Per analogy to the resolution
invariant one can associate with the centers

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int

the invariant

inv(A) = (b1, . . . , bk), inv1(A) := (b1)

3.1.27. Uniqueness of presentation of the invariant of centers. The following Lemma
shows that inv(A) is well-defined and independent upon presentation. We shall need
the following result:

3.1.28. Replacement Lemma.

Lemma 3.1.29. [ATW19]( non-divisorial case, i = 1).
Let A = OX [x1t

1/a1 , . . . xkt
1/ak ]int be a center and p ∈ V (A) be a point. Let

x1, . . . , xi−1, x
′ be a system of local parameters compatible with E at a point p, for

some i ≤ k, such that

x′tai ∈ A = OX [x1t
1/a1 , . . . xkt

1/ak ]int

in a neighborhood of p then one can find the coordinates x1, . . . , xi−1, x
′
i, xi+1 . . . , xk

such that x ⊂ x′i and

A = OX [x1t
1/a1 , . . . , xi−1t

1/ai−1 , x′it
1/ai , xi+1t

1/ai+1 . . . , xkt
1/ak ]int

in a neighborhood of p ∈ X.

Proof. By Lemma 2.2.8, Aai ⊂ (x1, . . . , xi)+m2
p. Thus upon the coordinate change

of xi compatible with E in image in mp/(m
2
p + (x1, . . . , xi−1)), of the set of coor-

dinates x is a subset of the image of coordinates in xi. So one can extend x, and
assume that x and xi define the same images in mp/(m

2
p + (x1, . . . , xi−1)). Then

in the completion ÔX,p we can write equality of the vectors of the coordinates

x′i = xi + g, x′j = xj , j 6= i,

where the coordinates of vector g are in Aa1
∩(m2

p+(x1, . . . , xi−1)). This determines

an automorphism of ÔX,p which takes ÔX,p · A onto ÔX,p · A, and determines the
desired coordinate change. ♣

Corollary 3.1.30. [ATW19] Assume that a center A has two different presenta-
tions:

A = OX [x1t
1/a1 , . . . xkt

1/ak ]int = OX [x′1t
1/a′

1 , . . . x′k′t1/ak′ ]int

then the associated invariants (b1, . . . , bk) = (b
′

1, . . . , b
′

k′ ) are the same.

Proof. By Lemma 3.1.24, a1 = a′1 = ordp(A), which can be verifed for generators.

By Lemma 3.1.29, applied to both presentations, we can assume that x1 = x′1.
Restricting both algebras to V (x1) = V (x′1) we get the equality by the inductive
assumption. ♣
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3.2. Motivating examples.

3.2.1. Simple isolated singularities in characteristic zero.

Example 3.2.2. This is the main motivating example as it illustrates the invariant
in simple terms. The example is generalized in Sections 4.2, Example 4.2.4 and in
Section 4.5, Example 4.5.3 in any characteristic in two different ways. Consider the
isolated singularity defined at the origin p by

f = xc11 + . . .+ xcnn ,

on X = An
k = Spec k[x1, . . . , xk], where c1 ≤ . . . ≤ cn. Find the partition of

(c1, . . . , cn):

c1 = . . . = ci1 < ci1+1 = . . . = ci2 < . . . < cik−1+1 = . . . = cik = cn,

and put x1 = (x1, . . . , xi1 ), x2 := (xi1+1, . . . , xi2 ),. . . , xk = (xik−1+1, . . . , xik),
aj := cij−1+1 = . . . = cij . By a slight abuse of notations we shall write:

f = xa1

1 + . . .+ xak

k ,

where

x
aj

j := x
aj

ij−1+1 + . . .+ x
aj

ij
.

The goal is to find the maximal admissible Rees centerA := OX [x′1t
1/a′

1 , . . . , x′kt
1/a′

k ]int

such that:

R := OX [(ft)] ⊆ A := OX [x′1t
1/a′

1 , . . . , x′kt
1/a′

k ]Int,

for a certain k and a′1 < a′2 < . . . < a′k. The center A will be constructed in the
process of transformation of the algebra R and recursive adjoining the generators
x′1t

1/a′
1 .

We put R1 = R. By Lemma 3.1.24,

ordp(R1) = ordp(ft) = a1 = a′1.

Applying iteratively the differential operators t−1/a1DX to the homogenous ele-
ments of positive degree of both sides of the admissibility inclusion R ⊂ A we see
that left side A will be preserved, while the right side R1 will be enlarged so that
it contains so called cotangent ideal T 1/a1(R1) · t1/a1 that is the ideal T 1/a1(R1)
in gradation t1/a1 of obtained from R by applying to It the iterated differential
operators t−1/a1DX , (a− 1)-times. More specifically:

T 1/a1(R1) · t1/a1 := (t−1DX)a1−1(It) = Da1−1
X (I)t1/a1 ⊆ A1/a1

t1/a1 ⊇ x′1t
1/a1 .

Since ordp(I) = a1, we can see that ordp(T 1/a1) = ordp(Da1−1
X (I)) = 1, and

thus it contains a partial set of local parameters called maximal contact. In our
case

T 1/a1(R1) = Da1−1
X (f) = (x1, . . . , xi1 , x

a2−a1

i1+1 , . . . , xak−a1

k )

contains a maximal contact x1 = (x1, . . . , xi1). In general, by Lemma 3.6.20, we
can assume that using a simple transformation one can change the presentation of
the algebra A so that from now on x′1 = x1 is a maximal contact of R1. This will
not affect the algebra A on the right just will change its presentation.

Next we construct R2 as the coefficient ideal

R2 := Cx1t1/a1 (R1) ⊂ A
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In our case we get

R2 = OX [(x1t
1/a1)Int, f t] = OX [x1t

1/a1 , f t].

Here the part OX [ xt1/a1 ]Int, means the integral closure of OX [ xt1/a1 ] in the small-
est subalgebra OX [t1/w] = OX [t1/a1 ] containing all the generators in Cxt1/a1 (R1).

In this example the splitting condition hold in the sense that we have inclusion

OH1
:= OX/(x1) = K[x2, . . . , xk] ⊂ OX ,

with Dx1
(OH1

) = 0. In general such a splitting is possible in the formal (or étale)
coordinate system at a point p ∈ X . In such a case we can write

R2 = Cx1t1/a1 (R1) = OX [(x1t
1/a1)Int, Cx1t1/a1 (R1)|H1

].

In fact the part Cx1t1/a1 (R1)|H1
is generated by the graded coefficients as in Lemma

3.5.6.
To illustrate the construction in our case we can write

ft = (x1t
1/a1)a1 + (xa2

2 + . . .+ xak

k )t.

in the graded coefficient form with respect to the graded coordinate x1t
1/a1 . So

the only graded coefficient is f|V (x1) · t = (xa2

2 + . . . + xan
n )t. Consequently using

presentation in Lemma 3.5.6 we simply write

R2 = OX [(x1t
1/a1)Int, (xa2

2 + . . .+ xan
n )t].

Moreover the maximal admissibility condition is satisfied with R2 ⊆ A.
Moreover we say that R2 is strictly nested at H1 = V (x1) , if it has the presen-

tation

R2 = OX [(x1t
1/a1)Int, R2|H1

],

where, in our case R2|H1
= (xa2

2 + . . .+ xan
n )t. (Definition 3.5.13)

Then, by Lemma 3.5.11,

A|H1
= OH1

[x′2|H1
t1/a

′
2 , . . . , x′k|H1

t1/a
′
k ]int

is a maximal admissible center, for R2|H1
and thus the restricted Rees algebra

R2|H1
= (xa2

2 + . . .+ xan
n )t

is of order a2. This implies that

a2 = a′2 = ordp(R2|H1
).

We compute the maximal contact of R2|H1
= (xa2

2 + . . .+ xan
n )t to be the maximal

subsystem of local parameters

x2 ⊂ T
1/a2(R2|H1

) = Da2−1
x2,...,xk

(f) = Da2−1
x2,...,xk

(xa2

2 + . . .+ xak

k ) ⊇ (x2).

Here T 1/a2(R2) is obtained from R2 by applying the differential operators
t−(a2−1)/a2Da2−1

x2,...,xk
to the generator ft of R2 in the gradation t, or in the split form

to ft|H1
.

Since T 1/a2(R2) ⊂ A1/a we conclude that x′2 = x2, after a change of the coordi-
nate presentation of A.

Then, as before the coordinate x2 splits and computing the coefficients of the
only generator

f|H1
= (xa2

2 + . . .+ xan
n )t = (x2t

1/a2)a2 + (xa3

3 + . . .+ xan
n )t
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of R2|H1
gives the split form of the coefficient ideal as in Lemma 3.5.22:

R3 := Cx2t1/a1 (R2) = OX [(x1t
1/a1 , x2t

1/a2)Int, f|H2
] =

= OX [(x1t
1/a1 , x2t

1/a2)Int, (xa3

3 + . . .+ xan
n )t] ⊂ A,

where H2 := V (x1, x2). We maintain the maximal admissibility condition R3 ⊂
A, while enlarging R2. At the same time R3 is in the strictly nested form for
x1t

1/a1 , x2t
1/a2 (Definition 3.5.13), which means exactly

R3 = OX([x1t
1/a1 , x2t

1/a2)Int, R3|H2
] = OX([x1t

1/a1 , x2t
1/a2)Int, f t|H2

] ⊂ A

We continue the recursive process so that

Ri+1 = Cxit1/ai (Ri) = OX [(x1t
1/a1 , . . . , xit

1/a1)Int, f t|Hi
] ⊂ A,

where Hi = V (x1, . . . , xi) until Rk+1|Hk
= 0. The latter implies, after reverting to

our original notation that

Rk+1 = A = OX [x1t
1/a1 , . . . , xkt

1/ak ]Int = OX [x1t
1/c1 , . . . , xnt

1/cn ]int.

Consequently, invp(I) = (c1, . . . , cn). Since A is an a priori chosen maximal I-
admissible center, which remains unchanged, we conclude that the process is inde-
pendent of choices and thus canonical.

The full cobordant blow-up B of X at

Aext = OX [t−1/w, x1t
1/a1 , . . . , xit

1/ak ],

where w = lcm(a1, . . . , ak) is defined by the rescaled algebra

OB = (Aext)w = OX [t−1, x1t
w1 , . . . , xkt

wk ],

where wi := w/ai.

Equivalently one can write the center in the Q-ideal form (x
1/w1

1 , . . . , x
1/wk

k )
representing formally t-gradation of OB .

Observe that

B = Spec(OX [t−1, x1t
w1 , . . . , xit

wk ]) = Spec((K[t−1, x1t
w1 , . . . , xit

wk ])

is an affine space with coordinates t−1 and x′i = xit
wi .

Now, the admissibility condition ft ⊂ Aext implies that ftw ⊂ OB. Here ftw ∈
OB is so called controlled transform σc(f) of f is obtained by factoring the inverse
image by the power (t−1)w, of the exceptional divisor t−1.

Solving for xi and substituting into f gives

f = t−w((x′1)a1 + . . .+ (x′n)an).

After clearing the exceptional divisor we obtain the formula for

σc(f) = ta1w1f = (x′1)a1 + . . .+ (x′n)an

in the new unknowns x′1, . . . , x
′
n on B which is identical to the original formula

for f on X . Thus the singularity locus on B at the vertex V = V (x′1, . . . , x
′
n) is

described by the same formula, and the cobordant blow-up B+ = BrV (x′1, . . . , x
′
n)

is smooth so the resolution is obtained by the single cobordant blow-up.
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3.2.3. Generalizations. The previous example can be easily generalized without
essential changes in computations.

Example 3.2.4. For the coordinate system x1, . . . , xk, consider forms Fi(xi) of
degree ai such that a1 < . . . < ak, and for which (xi) = Dai−1

xi
(Fi). Then for

f = F1 + . . . + Fk and I = (f) and R = R1 = OX [ft], As before we obtain the
recursive formula

Ri+1 = Cxit1/ai (Ri) = OX [(x1t
1/a1 , . . . , xit

1/a1)Int, f|Hi
· t] ⊂ A,

where Hi = V (x1, . . . , xi), f|Hi
= Fi+1 + . . . + Fk and xi+1t

1/ai+1 is a maximal
contact for Ri+1|Hi

= OHi [f|Hi
t]. In the inductive step we write

f|Hi
· t = Fi+1(xi+1t

1/ai+1) + (Fi+2 + . . .+ Fk)t = Fi+1(xi+1t
1/ai+1) + f|Hi+1

· t,

leading to the split formula for the Ri+2 = Cxi+1t1/ai (Ri+1). Consequently

Rk+1 = A = OX [(x1t
1/a1 , . . . , xkt

1/ak)]Int = OX [x1t
1/a1 , . . . , xnt

1/ak ]int

is a maximal admissible center.
The full cobordant blow-up B of X at

Aext = OX [t−1/w, x1t
1/a1 , . . . , xit

1/ak ],

where w = lcm(a1, . . . , ak) is defined by the rescaled algebra

OB = (Aext)w = OX [t−1, x1t
w1 , . . . , xkt

wk ],

where wi = w/ai.
It transforms f into its controlled transform

σc(f) := twf = F1(x′1) + . . .+ Fk(x′k),

For the new coordinates x′i = σc(x′i) = twixi. Removing the vertex of the trans-
fromation we obtain B+ = B r V (x′1, . . . , x

′
k), where the order of one of the forms

Fi(x
′
i) drops, which causes the invariant invp(I) drop.

In particular if
f = x1x2x3 + x4

4 + x2
5x

2
6

then R1 = OX [ft]. The first (multiple) maximal contact is (x1, x2, x3) for a1 =
ordp(f) = 3.

Since H1 = V ((x1, x2, x3) splits we can write

R2 = C(x1,x2,x3)t1/3(R1) = OX [(x1, x2, x3)t1/3, (x4
4 + x2

5x
2
6)t]

for the graded coefficient decomposition for (x1, x2, x3)t1/3:

ft = x1t
1/3x2t

1/3x3t
1/3 + (x4

4 + x2
5x

2
6)t

Then
a2 = ordp(f|H1

) · t = ordp((x4
4 + x2

5x
2
6)t) = 4/1 = 4

with maximal contact (x4, x5, x6)t1/4, giving the maximal admissible center

R3 = C(x4,x5,x6)t1/4(R2) = A = OX [(x1, x2, x3)t1/3, (x4, x5, x6)t1/4]int,

and the invariant invp(f) = (3, 3, 3, 4, 4, 4). The extended center

Aext = OX [t−1/12, (x1, x2, x3)t1/3, (x4, x5, x6)t1/4])

determines the full cobordant blow-up

B = Spec(OX [t−1, (x1, x2, x3)t4, (x4, x5, x6)t3].
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Alternatively one can write the center as the Q-ideal

((x1, x2, x3)1/4, (x4, x5, x6)1/3)

formally representing t-gradation of OB .

3.2.5. Varieties with a divisorial SNC- structure.

Example 3.2.6. Let f = (x1 + x2
2)2 + x7

3, where x1, x2 are divisorial at the origin
at x3 is free. In this case the process is similar except finding maximal contact is
slightly different as it depends on the divisorial structure. Set R = R1 = OX [ft].
Then the order of f and of R1 at the origin is equal to 2. The computation of the
cotangent ideal is the same T 1/2(R) = D(f) = ((x1 + x2

2), x6
3).

The maximal contact for the Rees algebra of order a1 is given by the free co-
ordinates in T 1/a1(R) and the divisorial unknowns occurring in the linear parts of
T 1/a1(R). In our case the maximal contact u := (x1) for R1 = OX [ft] is determined
by the only divisorial coordinate x1 tangential to T 1/2(R) = ((x1 + x2

2), x6
3) at p

such that u+m2
p ⊃ T

1/2(R). (Definitions 3.6.2, 3.6.11)

Write ft = ((x1 + x2
2)2 + x7

3)t in the coefficient form

ft = ((x1 + x2
2)2 + x7

3)t = (x1t
1/2)2 + (x1t

1/2)2x2
2t

1/2 + (x4
2 + x7

3)t.

with respect to the graded maximal contact x1t
1/2. We form the coefficient ideal

R2 := Cx1t1/2(R1) = OX [(x1t
1/2)Int, x2

2t
1/2, (x4

2 + x7
3)t].

Then R2 is in a strictly nested form: R2 = OX [(x1t
1/2)Int, R2|H1

], where H1 =
V (x1).

The order ordp(R2|H1
) = 4, with

T 1/4(R2) = D(x2,x3)(x
2
2) +D3

(x2,x3)((x
4
2 + x7

3) = (x2, x
4
3)

consisting of all elements in gradation t1/4 of the algebra obtained by applying
iterated operators D(x2,x3)t1/4 to R2. Thus the maximal contact is equal to x2 in

gradation t1/4 (Definition 3.6.2). Write (x4
2 +x7

3)t ∈ R2 in the coefficient form with
respect to x2t

1/4:

(x4
2 + x7

3)t = (x2t
1/4)2 + x7

3t.

Thus

R3 := Cx2t1/4(R3) = OX [(x1t
1/2, x2t

1/4)Int, x7
3t].

The order of R3|H2
= ord0(x7

3t) = 7. The maximal contact is x3 ∈ T 7(R3) =

D6
x3

(x7
3) in gradation t1/7. Then

R4 := Cx3t1/7(R3) = OX [x1t
1/2, x2t

1/4, x3t
1/7]int.

Since R4|H3
= 0, for H3 = V (x1, x2, x3),we conclude that A = R4 is a maximal

admissible center for (x1 + x2
2)2 + x7

3) t . Since w = lcm(2, 4, 7) = 28 we get the
formula for the extended Rees center

Aext = OX [t−1/28, x1t
1/2, x2t

1/4, x3t
1/7]

Rescaling defines the cobordant blow-up B = OX [t−1, x1t
14, x2t

7, x3t
4] at

Aext. Since x1, x2 are divisorial and x3 is free, and A = OX [x1t
1/2, x2t

1/4, x3t
1/7]int

is a maximal admissible center one obtains

inv0(f) = (2+, 4+, 7).



34 J. W LODARCZYK

The effect of the full cobordant blow-up is exactly

f = t−28((x′1 + (x′2)2)2 + (x′3)7).

Let us examine this effect on the cobordant blow-upB+ = BrV = BrV (x′1, x
′
2, x

′
3)

after removing the vertex V = V (x′1, x
′
2, x

′
3).

On B r V (x′1, x
′
2) we write the equation f ′ := t28f as f ′ = u2 + (x′3)7, where

u := x′1 + (x′2)2

is a free coordinate. Thus A′ = OX′ [u1/2, (x′3)1/7]int is maximal admissible center
for (f ′) at V (u, x′3) with the invariant

invp′(f ′) = (2, 7) < inv0(f) = (2+, 4+, 7)

for p′ ∈ V (u, x′3).
The next cobordant blow-up at A′ = OX′ [ut1/2, (x′1/3)t1/7]int resolves the singu-

larity.
On B r V (x′3), the derivative

Dx′
3
(f ′) = Dx′

3
(x′1 + (x′2)2)2 + (x′3)7) = (7x′3)6

is invertible and f ′ is nonsingular.
In case there are no divisors on X , the process is faster as we can write im-

mediately f = u2 + x7
3, where u = x1 + x2

2. So maxinv(f) = (2, 7), and by the
previous example, A′ = OX′ [ut1/2, (x′3)t1/7]int is the maximal admissible center.

The cobordant blow-up of J = (u1/7, x
1/2
3 ) resolves the singularity.

3.3. Splitting of derivations and compatibility. Splitting of derivations on
regular schemes allow for the coefficient representations of functions and simplifies
the computations of the coefficient ideals. A similar concept in a different language
was also used in [ATW19].

Definition 3.3.1. We say that a closed subscheme H of a scheme X splits if the
closed embedding i : H →֒ X splits, so there is an affine morphism π : X → H
which is a left inverse of i with πi = idH .

In other words for any open U , and any function f ∈ OX(π−1(U)) its restriction

f|H ∈ OH(U) ⊂ OX(π−1(U)).

The splitting condition implies that there is an injective morphism π−1(OH) →֒
OX of sheaves on X with the left inverse OX →֒ i∗(OH) given by the restriction.

The notion can be extended to derivations corresponding to a system of local
parameters.

Definition 3.3.2. Consider a set of derivations Dx = (Dx1
, . . . , Dxk

) of DX on a
regular scheme X for a certain partial system of coordinates x = (x1, . . . , xk) such
that Dxi(xj) = δij , we say that Dx splits in OX , if H = V (x) ⊂ X splits and the
derivations in Dx vanish on π−1(OH) ⊂ OX .

Example 3.3.3. Let X be a variety smooth over a field K. Let x1, . . . , xn ∈ mp

be a complete coordinate system at a closed point p. Any regular subscheme

H = V (x1, . . . , xk) ⊂ Spec(ÔX,p) = Spec(Kp[[x1, . . . , xn]])
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for any natural k ≤ n, splits. Here Kp = OX,x/mp,X is the residue field at p ∈ X .
Indeed, we can always write

OH,p ≃ Kp[[xk+1, . . . , xn]] ⊂ Kp[[x1, . . . , xn]].

Moreover the system of derivations Dx1
, . . . , Dxk

on Spec(ÔX,p) split as they vanish
exactly on Kp[[xk+1, . . . , xn]].

Both notions are strictly related:

Lemma 3.3.4. Let H = V (x) be a smooth subvariety on a smooth variety X. If
H splits on variety X, and π : X → H is a splitting morphism, then there is a
unique system of derivatives Dx which splits in OX , so that Dxi(xj) = δij and
Dx vanishes on π−1(OH). Conversely, if (H,Dx) splits then it defines a unique
splitting morphism π : X → H for the closed embedding H. Moreover Dx = ∂x is
computed by any coordinate coordinate system (x, y), where y = y|H .

Proof. If H splits in X we extend x to a complete system of coordinates (x, y) by
adjoining a system of coordinates y ⊂ π−1(OH) ⊂ OX . Then Dx = ∂x is defined
with respect to the coordinate system (x, y). Conversely if (H,Dx) splits then
π−1(OH) is determined exactly by vanishing Dx. ♣

Recall a well known fact in our setting:

Lemma 3.3.5. If (x,Dx) splits on a smooth variety X then for any open affine
subset U , and f ∈ OX(π−1(U) there is a decomposition of f up to (xk) for any
k ∈ N.

f ≡
∑

|α|<k

cαx
α(mod (xk)),

where

cα =
1

α!
Dxα(f)|H ∈ OH(U) ⊂ OX(π−1(U).

Proof. Let H = V (x). Observe that f − f|H ∈ (x).
Note that

1

α!
Dxα(f −

∑

|α|<k

cαx
α)|H = cα − cα

1

α!
Dxα(xα) = 0.

Suppose that g := (f −
∑

|α|<k cαx
α) 6∈ xk. Then there is a l < k, such that

g ∈ xl r xl+1. Then g =
∑

|α|=l bαx
α, where at least for one α0 we have bα0

6∈ (x).

Then
1

α0!
Dxα0 (g)|H =

∑
(

1

α0!
Dxα0 bαx

α)||H 6= 0,

which is a contradiction. ♣

Definition 3.3.6. Let x1 = (x11, . . . , x1s1 ) be a partial system of coordinates on
a a regular scheme X with a set of derivations Dx1

:= (Dx11
, . . . , Dx1s1

) such that

Dx1j(x1i) = δij . We say that a system of derivations Dx1
is compatible with a Rees

center A on X if there is a certain presentation

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int,

such that so that Dx1
(xi) = 0 for i ≥ 2.

Lemma 3.3.7. Let A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int be a center. If (x,Dx1
) splits

in OX then it is compatible with the center A.
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Proof. Set x′i := xi|H1
. Then x′i − xi ∈ (x1), and since ai > a1, we have that

x1t
1/ai ∈ A. So

x′it
1/ai − xit

1/ai ∈ (x1t
1/ai) ⊂ A.

Hence x′it
1/ai ∈ A and we have inclusion of the centersOX [x1t

1/a1 , . . . , xkt
1/ak ]int ⊆

A. By symmetry we have the reverse inclusion. ♣

Corollary 3.3.8. If X is smooth over a field K then any derivation Dx1
splits in

ÔX,p so it is compatible with any center of the form

A = ÔX,p[x1t
1/a1 , . . . , xkt

1/ak ]int.

♣

3.4. Derivations on the Rees centers. For an ideal I of order a ∈ N at a point
p ∈ X on a smooth variety X we can place it in ta-gradation of a certain Z-graded
Rees algebra R = OX [Ita] so that we have the admissibility condition

R = OX [Ita] ⊂ OX [mpt],

with respect to maximal ideal mp ⊂ OX,p. Here we naturally associate with the
coordinates gradation t, and since the derivatives Dxi lower the order of ideals by
1 and we associate with with gradation t−1. Consequently the graded derivations
t−1Dxi act on the elements of R ⊂ OX [t] with positive gradations. Moreover they
preserve OX [mpt].

In our approach we place the ideal I in gradation t. Then the order of the
Rees algebra R = OX [It] at a point p is a1 = ordp(I) and thus the corresponding
coordinates and derivations shall be rescaled accordingly and we consider the action
of t−1/a1Dxi . A similar concept was used in the first version of [ATW19] to interpret
the algebra of the center.

In general, let R =
⊕
Ra ⊂ OX [t1/w] be any Rees algebra on a smooth X .

For any local coordinate system x = (x1, . . . , xn) compatible with E on a smooth
variety X , and a given a1 ∈ Q (which is usually the order of the Rees algebra R)
one considers graded derivations

Dxit1/a1 := t−1/a1Dxi

acting on the elements of Ra of the gradations a ≥ 1/a1.
Consequently, if fta ∈ OX [t1/w], where a ≥ 1/a1 then

Dxit1/a1 (fta) = Dxi(f)ta−1/a1 ∈ OX [t1/w].

The idea is the following if

R ⊆ A = OX [x1t
1/a1 , . . . , xkt

1/ak ]Int

then when applying the differential operators Dx1t1/a1 to the both sides we preserve
the right side while enlarging the left side by adding new elements. This way we
step by step enlarge R which at some point of the algorithm becomes equal to the
center A on the right side.

More generally, by composing Dx1t1/a1 we consider differential operators:

Dα
xt1/a1

:= t−|α|/aiDxα , where

Dxα :=
1

α1! . . . αk!
·

∂|α|

∂xα1

1 . . . ∂xαn
n
, |α| = α1 + . . .+ αn.
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acting on elements fta ∈ OX [t1/w] and a ≥ |α|/a1:

Dα
xt1/a1

fta = Dxα(f)ta−|α|/a1

Example 3.4.1. If ft = (x3 + x2y + y3)t, and a1 = 3 then

Dxt1/3((x3 + x2y + y3)t) = (3x2 + 2xy)t2/3.

3.4.2. Differential operators preserving centers. A main consequence of the condi-
tion a1 ≤ . . . ≤ an is that the center A is preserved by the action of Dxit1/a1 for
i = 1, . . . , k.

Lemma 3.4.3. Let A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int, and x = (x1, . . . , xn), where
n ≥ k, be a complete coordinate system on X extending (x1, . . . , xk). If fta ∈ Aat

a,
and |α|/a1 < a then

Dα
xt1/a1

(fta) ∈ Aa−(|α|/a1)t
a−(|α|/a1),

Proof. The property can be verified on monomials (xb11 · . . . · x
bk
k )ta ∈ Aat

a and

on the differential operators Dxit1/a1 for i = 1, . . . , k. If xb11 · . . . · x
bk
k ∈ Aa then

b1/a1 + . . . bk/ak ≥ a. So

b1/a1 + . . .+ (bi − 1)/ai + . . .+ bk/ak ≥ a− (1/a1)

and

Dxit1/a1 (xb11 · . . . · x
bk
k · t

a) ∼ (xb11 · . . . · x
bi−1
i · . . . · xbkk · t

a−(1/a1)) ∈ Aa−(1/a1)

♣

3.5. Coefficient ideal of Rees algebra. The origin of the coefficient ideals con-
cept can be traced back to the work of Abhyankhar and Hironaka, as seen in [Hir64].
Various definitions of this notion have been explored in multiple studies, including
[Vil89], [BM97], [W lo05], and [Kol07], among others.

In the context of our methodology, the coefficient ideal is used to derive a better
approximation of a maximal admissible center. As demonstrated in Section 3.7.1,
the maximal admissible center A can be obtained by the recursive application of
coefficient ideals to a specified Rees algebra R = OX [It]. The coefficient ideal, as
per our definition, is a non-canonical concept that is relatively straightforward to

compute in the completion ÔX,p in what we refer to as a ’split form’ (as discussed
in Section 3.5.4).

This version of the coefficient ideal simplifies and streamlines computations and
can be likened to the approach used by Bierstone-Milman in their resolution algo-
rithm, as referenced in [BM91] and [BM97], albeit in a differing framework.

Remark 3.5.1. If Dx splits in OX then any f ∈ OX can be written in the coeffi-
cient form

f =
∑

cαx
α,

where cα ∈ OV (x) ⊂ OX so we can obtain a particularly nice description of the

center on X . This can be always done in the completion ÔX,p.

Definition 3.5.2. Let a1 ∈ Q>0, and R = OX [fjt
bj ]j=1,...,s be a Rees algebra gen-

erated by fjt
bj for j = 1, . . . , s and let x be any partial system of local coordinates

compatible with E at p, and set H := V (x). By the coefficient ideal with respect to
xt1/a1 we mean the Rees algebra:

Cxt1/a1 (R) := OX [( xt1/a1)Int, Dα
xt1/a1

(fjt
bj ), |α| < bja1, j = 1, . . . , s ]
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Recall that the part OX [ xt1/a1 ]Int, means the integral closure of OX [ xt1/a1 ] in
the smallest subalgebra OX [t1/w] containing all the generators in Cxt1/a1 (R). Thus

OX [ xt1/a1 ]Int = OX [xt1/w, . . . , xtw1/w],

where w1 = w/a1, so xtw1/w = xt1/a1 .

Remark 3.5.3. The key concept of the coefficient ideal as well as the role of the
graded local parameters x1t

1/a1 are encapsulated by Lemma 3.5.11. The coefficient
ideal maintains admissibility property, while containing already some generators
x1t

1/a1 from a to be constructed maximal admissible center A. Moreover after
splitting it is generated by (x1t

1/a1)Int and the part Cx1t1/a1 (R)|V (x1
which is in-

dependent of the coordinates x1.

3.5.4. Coefficient ideal in the split form. The process of computing the coefficient
ideal becomes remarkably straightforward when utilizing splitting derivations Dx

in OX . This can be always done by passing to the completion ÔX,p or to a corre-
sponding étale neighborhood. Assume that (x,Dx) splits on X . For any element
fjt

bj ∈ Rbj , one can write fj in OX we can write

fj ≡
∑

cjαx
α =

∑

|α|<bja1

cjαx
α +

∑

|α|≥bja1

cjαx
α ∈ ÔX , p

where cjα ∈ ÔH ⊂ OX for H := V (x). Then, for |α| < bja1 we have

Dα
xt1/a1

(fjt
bj )|H = cjαt

bj−|α|/a1

Thus the restricted coefficient ideal can be represented in the format which is
simpler for computations and justifies the name ”coefficient”:

Lemma 3.5.5.

Cxt1/a1 (R)|H := OH [Dα
xt1/a1

(fjt
bj )|H , |α| < bja1] = OH [ cjαt

bj−|α|/a1 , |α| < bja1 ]

As a corollary from the above we obtain:

Lemma 3.5.6. Suppose Dx splits in OX . Then, with the above notations and the
assumptions the coefficient ideal Cxt1/a1 (R) can be written in the split form:

Cxt1/a1 (R) = OX [(xt1/a1)Int, Cxt1/a1 (R)|H ] =

= OX [(xt1/a1)Int, cjαt
bj−|α|/a1 , |α| < bja1 ]

where cjα ∈ OH ⊂ OX , for H = V (x).

Proof. Let R = OX [fjt
bj ]. In the presentation

fj =
∑

cjαx
α =

∑

|α|<aa1

cjαx
α +

∑

|α|≥aa1

cjαx
α ∈ OX

the term

(
∑

|α|≥bja1

cjαx
α)tbj = (fj −

∑

|α|<bja1

cjαx
α)tbj ∈ OX [xt1/a1 ]Int

Then we have

f0
j t

bj :=
∑

|α|<bja1

cjαx
αtbj ∈ Cxt1/a1 (R)
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Thus for any maximal α0
j in the above presentation we have

1

α0!
D

α0
j

xt1/a
(f0

j t
bj ) = cjα0

j
tbj−|α0

j |/a1 ∈ Cxt1/a1 (R).

Thus
cjα0

j
xα0 tbj = cjα0

j
tbj−|α0

j |/a1 · xα
0
j t|α

0
j |/a1 ∈ Cxt1/a1 (R).

Next consider
f1
j t

bj := f0
j t

bj − cjα0
j
xα0tbj ∈ Cxt1/a1 (R),

and repeat the process for maximal α1
j in f1

j , and continue inductively for αi
j in f i

j

until fk
j = 0. ♣

In particular, we have

Corollary 3.5.7.

ÔX,p · Cxt1/a1 (R) = ÔX,p[(x1t
1/a1)Int, Cx1t1/a1 (R)|H ] =

= ÔX,p[(xt1/a1)Int, cjαt
bj−|α|/a1 , |α| < bja1 ].

3.5.8. Split vs non-split form of the coefficient ideal. The split form of the coeffi-
cient ideal is highly efficient for computations. The subsequent example provides a
comparison between two methods used for computing the coefficient ideal:

Example 3.5.9. Let a1 = 3 then H = V (x) splits in X = Spec(K[x, y, z] and

ft = (x3 + x2yw + zn)t = (xt1/3)3 + (xt1/3)2ywt1/3 + znt

has coefficients ywt1/3, and znt. Thus the split form of the coefficient ideal :

Cxt1/3(x3 + x2yw + zn)t = OX [(xt1/3)Int, ywt1/3, znt]

is generated by (xt1/3)Int and the coefficients ywt2/3, znt.
Note that the standard form of the coefficient ideal is more complicated, though

still easily computable in this case:

Cxt1/3(x3 + x2yw + zn)t = OX [(xt1/3)Int, f t,Dxt1/3(ft), D2
xt1/3(ft)] =

= OX [(xt1/3)Int, (x3 + x2yw + zn)t, (3x2 + 2xyw)t2/3, ywt1/3],

3.5.10. Coefficient ideals and admissibility.

Lemma 3.5.11. Let R = OX [fjt
bj ] be the Rees algebra on X. The following

conditions are equivalent in a neighborhood of p ∈ X.

(1) R ⊆ AInt = OX [x1t
1/a1 , . . . , xkt

1/ak ]Int.
(2) Cx1t1/a1 (R) ⊆ A = OX [x1t

1/a1 , . . . , xkt
1/ak ]Int

(3) Cx1t1/a1 ((R)|H ⊆ A|H = OH [x2|Ht
1/a2 , . . . , xk|H t

1/ak ]Int.

Proof. We can pass to the completion ÔX,p, and replace xi with xi|H , so that Dx1

split and are compatible with A. Then Cx1t1/a1 (R) is obtained from R by applying

Dx1t1/a1 . Note that Dx1
splits, it is compatible with xi|H in OX,p.

(1) ⇒ (2) by Lemma 3.4.3, the operator Dx1t1/a1 preserves both sides of the
inclusion in (1) giving (2).

(2)⇒ (3) The assertion in (3) follows from (2) simply by taking the restriction.
(3)⇒ (1) By Lemma 3.5.6, Cx1t1/a1 (R) ⊃ R can be written in the split form

Cx1t1/a1 (R) = OX [(xt1/a1)Int, Cx1t1/a1 ((R)|H ] ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]Int.

♣



40 J. W LODARCZYK

3.5.12. Nested Rees algebras. The following definition is motivated by the construc-
tion of the coefficient ideal.

Definition 3.5.13. Given a partial system x1, . . . , xn of local parameters compat-
ible with E. Let

R|Hk
=

⊕
Ra|Hk

ta

be the restriction of R to Hk := V (x1, . . . , xk), for k ≤ n, and let

0 < a1 < a2 . . . < ak

be a sequence of rational numbers.
We say that the Rees algebra R is strictly nested at Hk if Hk ⊂ X splits and

R = OX [(x1t
1/a1 , . . . , xkt

1/ak)Int, R|Hk
].

We say that the Rees algebra R is nested at Hk if it contains subalgebra

OX [x1t
1/a1 , . . . , xkt

1/ak ]Int

and such that ÔX,p · R is strictly nested at Hk:

ÔX,p · R = ÔX,p[(x1t
1/a1 , . . . , xkt

1/ak)Int, R|Hk
],

The order ordp(R|Hk
) will be called the nested order of R at Hk and p.

Using this terminology one can rephrase the Lemma 3.5.6 we get

Lemma 3.5.14. The coefficient ideal Cxt1/a1 (R) is nested at H = V (x).
Moreover, if (H,Dx) splits in OX then Cxt1/a1 (R) is strictly nested at H:

Cxt1/a1 (R) = OX [(xt1/a1)Int, Cxt1/a1 (R)|H ]

♣
In particular we can always write

ÔX,p · Cxt1/a1 (R) = ÔX,p[(xt1/a1)Int, Cxt1/a1 (R)|H ]

3.5.15. Nested coefficient ideals. The definition of the coefficient ideal can be ex-
tended to the setting of nested Rees algebras.

Definition 3.5.16. Let x1, . . . , xn be a local system of local coordinates. Let

R = OX [(x1t
1/a1 , . . . , xkt

1/ak)Int, fjt
bj ]j=1,...,s

be the Rees algebra nested at Hk = V (x1, . . . , xk). Assume ak+1 ≥ ak ≥ . . . ≥ a1.
Then we shall call the coefficient ideal C

xk+1t
1/ak+1

(R) at xk+1t
1/ak+1 nested for R

at Hk = V (x1, . . . , x1).

Lemma 3.5.17. With the above notation the nested coefficient ideal of R at xk+1t
1/ak+1 ,

with respect to Hk can be written as

C
xk+1t

1/ak+1 (R) :=

:=OX [(x1t
1/a1 , . . . , xk+1t

1/ak+1)Int, Dα
xk+1t

1/ak+1
(fjt

bj ), |α|/ak+1 ≤ bj ]

The subsequent statement is a straightforward extension of Lemma 3.5.7:

Lemma 3.5.18. Let R be a Rees algebra nested at Hk = V (x1, . . . , xk+1). The
nested coefficient ideal C

xk+1t
1/ak+1

(R) at xk+1t
1/ak+1 is a nested Rees algebra at

Hk+1 = V (x1, . . . , xk+1).
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Proof. By the assumption

ÔX,p ·R = ÔX,p[(x1t
1/a1 , . . . , xkt

1/ak)Int, R|Hk
]

Then by the above

ÔX,p · Cxk+1t
1/ak+1

(R) = ÔX,p[(x1t
1/a1 , . . . , xkt

1/ak)Int, C
xk+1t

1/ak+1
(R|Hk

)]

is also nested in Hk. On the other hand, by Lemma 3.5.7, C
xk+1t

1/ak+1
(R|Hk

) is

nested in Hk+1 on Hk. Consequently C
xk+1t

1/ak+1 (R) is nested on X at Hk+1. ♣

3.5.19. Nested coefficient ideals in the split form. We can adapt Lemma 3.5.6 to
strictly nested Rees algebras: Let x1, . . . , xn be a system of local coordinates com-
patible with E at p. Let

R = OX [(x1t
1/a1 , . . . , xkt

1/ak)Int, fjt
bj ]j=1,...,s

be a Rees algebra nested at Hk = V (x1, . . . , xk), for k + 1 ≤ n. Then

ÔX,p · R = ÔX,p[(x1t
1/a1 , . . . , xkt

1/ak)Int, fj|Hk
tbj ]j=1,...,s

with fj|Hk
∈ OHk

. Moreover (xk+1, Dxk+1
) splits in Spec(ÔX,p) and we can write

each generator fj|Hk
tbj as

fj|Hk
tbj ≡

∑

|α|<aak+1

cjαx
α
k+1t

bj ≡
∑

|α|<aak+1

(cjαt
bj−|α|/ak+1)xαk+1t

|α|/ak+1

modulo the ideal

ÔX,p((xk+1)αtbj | |α| ≥ bjak+1) ⊂ ÔX,p[x1t
1/a1 , . . . , xkt

1/ak ]Int,

where cjα = cjα(xk+2, . . . , xn) ∈ OHk+1
⊂ ÔX,p. Thus we obtain the result:

Lemma 3.5.20. With the above assumptions and notations the completion of the
nested coefficient ideal with respect to xk+1t

1/ak+1 is equal to:

ÔX,p · Cxk+1t
1/ak+1 (R) = ÔX,p[(x1t

1/a1 , . . . , xkt
1/ak)Int, C

xk+1t
1/ak+1 (R)|H ] =

= ÔX,p[(x1t
1/a1 , . . . , xk+1t

1/ak+1)Int, cjαt
bj−|α|/ak+1 , |α| < bjak+1 ]

with cjα = cjα(xk+2, . . . , xn) ∈ OHk+1
⊂ ÔX,p.

♣

3.5.21. Strictly nested coefficient ideals in the split form. The result can be stated
for the strictly nested Rees algebras in view of Lemma 3.3.4.

Lemma 3.5.22. Let x1, . . . , xn be a complete coordinate system. Let

R = OX [(x1t
1/a1 , . . . , xkt

1/ak)Int, fjt
bj ]j=1,...,s

be a Rees algebra nested at Hk = V (x1, . . . , xk), for k ≤ n − 1, where fj ∈
OHk

⊂ OX . Assume that Hk+1 ⊂ X splits. Then upon the coordinate change
x1, . . . , xk, xk+1|Hk

, . . . , xn|Hk
, Dxk+1

= ∂xk+1
splits in OX and the coefficient ideal

C
xk+1t

1/ak+1
(R) is strictly nested at Hk+1 and admits the split form

C
xk+1t

1/ak+1 (R) = OX [(x1t
1/a1 , . . . , xk+1t

1/ak+1)Int, cjαt
bj−|α|/ak+1 , |α| < bjak+1 ]

with cjα = cjα(xk+2, . . . , xn) ∈ OHk+1
⊂ ÔX . ♣
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Example 3.5.23. Let

R = OX [(xt1/3)int, (y5
1 + y1y

6
2 + y7

3)t]

be a Rees algebra strictly nested at H1 = V (x). The subvariety H2 = V (x, y1)
splits in X = Spec(K[x, y1, y2, y3]) and Dy1

splits on H1 (so Dy1
vanishes on OH2

=
K[y1, y3] ⊂ K[x, y1, y2, y3]). Then the generator (y5

1 + y1y
6
2 + y7

3) can be written in
the coefficient form with respect y2t

1/5:

(y5
1 + y1y

6
2 + y7

3) = (y1t
1/5)5 + (y1t

1/5)y6
2t

4/5 + y7
3t],

with the coefficients cy1 = y6
2t

4/5, c0 = y7
3t. Consequently the nested coefficient

ideal with respect to yt1/5 is equal to:

Cyt1/5OX [(xt1/3)Int, (y5
1 + y1y

6
2 + y7

3)t] = OX [(xt1/3, yt1/5)Int, y6
2t

4/5, y7
3t]

is generated by (xt1/3, yt1/5)Int, and , y6
2t

4/5 and y7
3t.

As an immediate corollary from Lemma 3.5.11, by considering the restriction
R|Hk

we obtain its extension:

Lemma 3.5.24. Let R be the Rees algebra on X nested at Hk, so that

ÔX,pR = ÔX,p[(x1t
1/a1 , . . . , xkt

1/ak)Int, R|Hk
].

The following conditions are equivalent.

(1) R ⊂ A = OX [x1t
1/a1 , . . . , xnt

1/an ]Int.
(2) C

xk+1t
1/ak+1 (R) ⊂ OX [x1t

1/a1 , . . . , xnt
1/an ]Int

(3) C
xk+1t

1/ak+1 (R)|Hk+1
⊂ OHk+1

[xk+2|Hk+1
t1/ak+2 , . . . , xn|Hk+1

t1/an ]Int.

Proof. Passing to the completion ÔX,p we may assume that R is strictly nested.
Moreover, by replacing xk+2 by xk+2|Hk+1

we can assume that Dxk+1
is compatible

with A. Let R′ := R|Hk
. Observe that

C
xk+1t

1/ak+1
(R′) = (C

xk+1t
1/ak+1

(R))|Hk
.

By Lemma 3.5.11, we have the equivalent conditions for R′. On the other hand,
since R is strictly nested the condition

R ⊂ OX [x1t
1/a1 , . . . , xnt

1/an ]Int

is equivalent to

R′ = R|Hk
⊂ OX [xk+1|Hk

t1/ak+1 , . . . , xn|Hk
t1/an ]Int.

Thus the result from Lemma 3.5.11. ♣

3.6. Maximal contact.

3.6.1. Cotangent ideal of Rees algebra. From now on until the end of Chapter 3.7
we shall assume that the characteristic of the base field K is zero.

First, recall that given an ideal I on smooth variety X , and a positive integer a,

the set of points where ordp(I) ≥ a is described as V (D≤a−1
X (I)), where D≤a−1

X (I)
is the ideal generated by all the derivatives Dxα(f), where f ∈ I and 0 ≤ |α| ≤

a − 1. If the order of I is a at a point then the order D≤a−1
X (I) is equal to 1

and thus it contains a local parameter u, called a maximal contact, such that V (u)

contains V (D≤a−1
X (I)). In such a case we shall call the ideal T 1/a(I) := D≤a−1

X (I)
cotangent. The maximal contact plays a critical role in the classical Hironaka
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resolution algorithm. It allows for the inductive reduction of the process to the
hypersurface of maximal contact.

In our context, the meaning of the maximal contact is different. It is simply
the coordinate in the gradation t1/a1 occurring a some presentation of a maximal
R-admissible center A = OX [x1t

1/a1 , . . . , xkt
1/ak ] for any Rees algebra R

Consider the admissibility condition

R ⊂ AInt = OX [x1t
1/a1 , . . . , xkt

1/ak ]Int.

The idea of the cotangent ideal T 1/a1(R) is to gather the elements occurring in
gradation t1/a1 , obtained by applying differential operatorsDα

xt1/a1
to the generators

of R, for x being a complete system of coordinates. The differential operators
Dα

xt1/a1
preserve the right side of the admissibility condition (See Lemma 3.4.3).

Then the ideal T 1/a1(R) is necessarily contained in the gradationAInt
1/a1

. Conversely

by the maximal admissibility condition T 1/a1(R)t1/a1 contains all the coordinates in
x1t

1/a1 up to the higher order terms of the gradationAInt
1/a1

. So, by the Replacement

Lemma 3.1.29, we can assume that the T 1/a1(R) contains x1t
1/a1 . This way we

will determine x1t
1/a1 - part of the center A on the right side of the inclusion with

x1 ∈ T 1/a1, which would be called a maximal contact at a point. A similar idea was
used in the first version of [ATW19] to interpret the algebra of the center.

Consequently T 1/a1(R) generalizes D≤a1−1
X (I) for the ideal I of order a at p. In

particular, if It ⊂ A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int, then by Lemma 3.4.3,

t−(a1−1/a1)D≤a1−1
X (I) = D≤a1−1

X (I)t1/a1 ⊂ OX [x1t
1/a1 , . . . , xkt

1/ak ]int.

Thus D≤a1−1
X (I) ⊂ Aint

1/a1
.

Definition 3.6.2. Given a Rees algebra R = OX [fjt
bj ]j=1,...,s =

⊕
Rat

a on an
open affine subset U of X , and a rational number a1 > 0.

T 1/a1(R) :=
∑

|α|=bja1−1

OXDxα(fj) ⊆ T ≤1/a1(R) :=
∑

|α|<bja1

OXDxα(fj) ⊆

⊆ T <1/a1(R) :=
∑

|α|≤bja1

OXDxα(fj).

Remark 3.6.3. As the ideal T 1/a1(R) is in the gradation t1/a1 , it can be written
in the graded form

T 1/a1(R)t1/a1 :=
∑

|α|=bja1−1

Dα
xt1/a1

(fjt
bj ).

Remark 3.6.4. The definition intentionally uses a specific representation of Rees
algebras for the purpose of streamlining computations. The uniqueness of the center
obtained during the resolution process in Section 3.7.1 is automatic and unaffected
by any choices made.

The set of generators for R can be chosen arbitrarily, and we have the option to
select the entire set of homogeneous elements of R as generators instead.

In the following examples, when we refer to Di
X(I) ⊂ D≤i

X (I), as the ideal
generated by all the derivatives Dxα(fi), where fi ∈ I are generators of I, and
|α| = i. This ideal is consistent with the definition of T 1/a1(R).
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Example 3.6.5. Let a1 = 3 = ord0(R), where R = OX [(x3 + y4 + z5)t].

T 1/3(R)t1/3 = OX [D2
X(x3 + y4 + z5)t1/3] = OX [(x, y2, z3)t1/3]

Example 3.6.6. a1 = 3 = ord0(R), where

R = OX([(x3 + y4 + z5)t, (w2x4 + z7)t2, (y2 + xz2)t2/3, w3
1t

3/4]

Then

T 1/3(R)t1/3 = (D2
X(x3 + y4 + z5), D5

X(w2x4 + v7), DX(v2 + xz2))t1/3 =

= (x,w, v, y2, z2)t1/3,

with local paremeters x,w, v in gradation t1/3. The element w3
1t

3/4 is of higher
order 4 > 3. It is thus ignored as ba1 = 3/4 · 3 = 9/4 is not integral. It will not
contribute to the set of local parameters of gradation t1/3. Corresponding local
parameter is w1t

1/4 is of order 4.
On the other hand the ideal T≤1/3(R) = (x,w, v, y2, z2, w1) is generated by

T 1/3(R), and D2(w3
1) ∼ w1, for the derivation order 2 < ba1 = 9/4. The element

w1 is however, in gradation t1/4. The ideal T≤1/3(R) is used only in the context of
Lemma 3.6.9.

In a more general context, we can state the following:

Lemma 3.6.7. Let us assume that ordp(R) = a1. Then

T 1/a1(R) +m2
p = C1/a1

+m2
p

where C1/a1
t1/a1 is the gradation of the algebra

Cxt1/a1 =
⊕

Cat
a,

generated by all the elements Dα
xt1/a1

(fta), where f ∈ Ra, and |α| < aa1. In

particular, T 1/a1(R) +m2
p is independent of the choice of generators. ♣

3.6.8. Singular locus, and the cotangent ideal. The following lemma extends the
analogous result for the ideals.

Lemma 3.6.9. (1) suppord(R,≥ a1) := {q ∈ U | ordq(R) ≥ a1} = V (T
≤1/a1

(R)).

(2) suppord(R,> a1) := {q ∈ U | ordq(R) > a1} = V (T
<1/a1

(R)).

Proof. (1)ordq(R) ≥ a1 if and only if ordq(fj) ≥ bja1 for any j iff all Dxα(fj) vanish
at q for |α| < bja1. (2) The reasoning is similar. ♣

3.6.10. Maximal contact of Rees algebra. The concept of hypersurfaces of maximal
contact was initially introduced by Hironaka, Abhyankhar, and Giraud, and further
developed in the works of Bierstone-Milman, Villamayor, and others. In the case
where I is an ideal of order a1, and no divisors are present a maximal contact is

defined as a local parameter u ∈ T 1/a(I) = Da−1
X (I) ⊂ D≤a−1

X (I). Its zero locus

V (u) includes the set V (D≤a−1
X (I)), which consists of the equimultiple locus of all

points where ordp(I) = a.
Our definition of maximal contact is intended for Rees algebras. From our per-

spective, a maximal contact refers to a partial coordinate system x1 found in t1/a1 -
gradation of a maximal R-admissible center

A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int
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at a point p. It can be characterized using Corollary 3.6.20. This definition a priori
does not need the property that V (x1) contains the equimultiple locus and thus
can be used in a nonzero characteristic. (See for instance Example 4.5.4)

The definition is straightforward when no divisors are present. In such cases,
”maximal contact” refers to a maximal partial set of coordinates contained in
T 1/a1(R). However, in general, maximal contact at a point p is a partial set of
coordinates that is compatible with an SNC divisor, consisting of free coordinates
in T 1/a1(R) along with the divisorial coordinates contained in T 1/a1(R)+m2

p, thus

tangential to T 1/a1(R).
The concept is specifically designed to enhance the efficiency of computations

by eliminating unnecessary steps. Unlike in the standard approach, the notion
incorporates multiple maximal contact coordinates simultaneously, which simplifies
the representation of the main invariant and significantly aids in its computation.
The idea of utilizing multiple maximal contacts is well-known among experts and
is commonly employed in practical implementations for its effectiveness.

Definition 3.6.11. Given a Rees algebra R on X and a rational number a1 > 0.
By a partial maximal contact of (R, a1) on an open affine subset U we mean a
partial system of coordinates on U compatible with E:

x = (x1, . . . , xs, xs+1, . . . , xr),

such that

(1) If i ≤ s then xi ∈ T 1/a1(R)(U) and xi is free on U . In particular ∂
∂xi

(T 1/a1R) =
OU .

(2) If s+ 1 ≤ i ≤ r, then V (xi) ∈ E, and ∂
∂xi

(T 1/a1R) = OU ,

If p ∈ V (x), and ordp(R) = a1, and the conditions (1) and (2) are satisfied in a
neighborhood of a point p then x is a partial maximal contact of R at p.

If additionally ∂
∂xj

(T 1/a1R) 6= OX at p for j > r, where (x1, . . . , xn) is a local

system of parameters extending (x1, . . . , xr) then we say that x is a maximal contact
of R at p.

We shall associate partial maximal contact with respect to (R, a) gradation t1/a1

and write it in the graded form xt1/a1 .

Lemma 3.6.12. Let x1t
1/a1 be a maximal contact for R at p, with ordp(R) = a1.

Then it is a partial maximal contact for (R, a1) in a certain neighborhood U of
p. ♣

Proof. Let us consider an open neighborhood where the conditions (1) and (2) of
Definition 3.6.11 are met. ♣

Remark 3.6.13. Note that a partial maximal contact on U exist if a1 is an integer
such that ordp(R) ≤ a1 for all p ∈ U . More specifically we have:

Lemma 3.6.14. If x is a partial maximal contact of (R, a1) on U , then ordq(R) ≤
a1 for any q ∈ U .

Proof. It follows from the definition of the partial maximal contact thatDX(T 1/a1R) =
OU . As a consequence, for every point q in U , there exists Dxα(fj) that is invertible
at q, where fjt

bj is a generator of R and |α| = bja1.
♣
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Example 3.6.15. Let

R = OX [(x3 + y5 + z7)t, (v4w2)t2]

where a1 = 3 = ord0(R), as in Example 3.6.6.
Then T 1/3(R)t1/3 = (x, y3, z4, v, w)t1/3, and the maximal contact at 0 is given

by (x, v, w)t1/3 in gradation t1/3. It is a partial maximal contact for (R, 3) on X .

Lemma 3.6.16. (1) A maximal contact of R at p ∈ X exists.
(2) Any partial maximal contact of R at p can be extended to a maximal contact

of R at p.
(3) The image of a maximal contact x at p in mp/m

2
p is determined uniquely.

It is the smallest subspace compatible with Ep containing the image of

T
1/a1

p (R).
(4) The divisorial coordinates in the maximal contact x at p are uniquely de-

termined and do not depend upon the maximal contact.

Proof. According to the definition, for a given a, we have ordp(Ra) = aa1. Conse-

quently, Daa1−1(Ra) ⊂ T 1/a1R, and ordp(Daa1−1(Ra)) = ordp(T 1/a1R) = 1.
Let IE,p denote the ideal generated by the divisorial coordinates in Ep (i.e., in

E passing through p). Consider the image

T
a1

R := (T 1/a1R+ IE,p +m2
p)/(IE,p +m2

p)

of T 1/a1R in mp/(IE,p+m2
p). Its basis is determined by a partial system of local free

parameters x1, . . . , xs ∈ T 1/a1(R). Then we can extend it to a partial coordinate
system

x := (x1, . . . , xs, xs+1, . . . , xr),

where xi, for i ≥ s + 1 are divisorial at p with the smallest image in mp/m
2
p

containing the image of T 1/a1(R). Consequently, for any divisorial xj , there exists

an element v =
∑
cixi ∈ T 1/a1 +m2

p with cj 6= 0 at p, and all xi are divisorial.
Furthermore, x precisely represents a maximal contact of R at p. Conversely,

any maximal contact of R at p can be constructed in this manner.

If x is any partial maximal contact, its image in T
1/a1

R can be extended to form

a basis for T
1/a1

R. This allows us to extend the free part of x to a maximal contact
x′. We need to show that x′ contains the entirety of x.

If xj ∈ x is a divisorial coordinate, according to the previous discussion,Dxj (v) 6=

0, where v ∈ T 1/a1(R) and v =
∑
aixi, (mod m2

p), with xi all being divisorial

coordinates that include xj . As the image of the maximal contact x′ in mp/m
2
p

necessarily includes the image of v, it also contains the images of all xi with ai 6= 0,
including the coordinate xj . Hence, x ⊆ x′.

In conclusion, the divisorial coordinates are precisely those that appear in the
presentation of some v ∈ T 1/a1(R), where v =

∑
aixi, (modm2

p), with all xi being
divisorial. Therefore, the divisorial coordinates are uniquely determined.

♣

Lemma 3.6.17. Let R ⊂ AInt = OX [(x1t
1/a1 , . . . , xkt

1/ak ]Int at a point p ∈ X
such that a1 = ordp(R). Then upon the change of the coordinate representation of
A, x1 contains a maximal contact x of R at p.
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Proof. According to Lemma 3.4.3, the operators t−|α|/a1Dxα in the definition of
T 1/a1(R) preserve AInt. Therefore, we have the following inclusion:

R ⊂ AInt = OX [(x1t
1/a1 , . . . , xkt

1/ak ]Int

implies that T 1/a1(R)t1/a1 ⊂ AInt. Consider the free part (x1, . . . , xr) of the maxi-
mal contact x in T 1/a1(R). According to Lemma 3.1.29, we can assume that

(x1, . . . , xr)t1/a1 ⊆ x1t
1/a1 ⊆ AInt

1/a1
,

after a coordinate change. Since ai > a1 for i ≥ 2,the image of x1 in mp/m
2
p is

the same as the image of AInt
1/a1

in mp/m
2
p and includes the image of T 1/a1(R). By

Lemma 3.6.16, it also includes the image of the maximal contact x of R. Moreover,
x1 is compatible with the divisorial structure, indicating that it must also contain
the divisorial part of the maximal contact itself. Therefore, x1 ⊇ x.

♣

Definition 3.6.18. To a partial maximal contact x = (x1, . . . , xr) of R on U , we
can associate the invariant

inv1(x) = (1, . . . , 1, 1+, . . . 1+),

where the 1’s correspond to the free maximal coordinates in x, and the 1+’s corre-
spond to the coordinates in x that define the divisors on U .

Lemma 3.6.19. Given a Rees algebra R of order a1 at p ∈ X with a maximal
contact x of R at p. Then

(1) inv1
p(R) = a1inv(x).

(2) R ⊂ OX [xt1/a1 , yt1/a2 ]Int, for some a2 > a1, and a coordinate system (x, y)
at p compatible with E.

(3) If x is a partial maximal contact for (R, a1) on U then inv1
p(R) ≤ a1inv(x).

Proof. (1) and (2). If R ⊂ OX [(x1t
1/a1 , . . . , xkt

1/ak ]) at p, where a1 = ordp(R),
then according to Lemma 3.6.17, x1 contains a maximal contact of R after a coor-
dinate change. Therefore, based on Definition 3.6.18, we have inv1

p(R) ≤ a1inv(x).
Moreover, note that since ordp(R) ≥ a1, we have ordp(Cxt1/a1R) ≥ a1 and

ordp(Cxt1/a1R)|H ≥ a1. Suppose the latter order is equal to a1. Then, since
Cxt1/a1 (R)|H is generated by the coefficients as shown in Lemma 3.5.5, there exists
a generator

fta =
∑

cαx
αta ∈ Rat

a

of R, with cα = cα(y), for the corresponding system of local parameters (x, y),
such that ordp(cα) = a1a − |α| for some α. Moreover, for some β with |β| =
ordp(cα) = a1a − |α|, the derivative Dyβ (cα) = D

y
b1
1

,...y
bk
k

(cα) is invertible. Con-

sequently, DyβDxα(f) is invertible, and we have D
y
b1−1

1
,...y

bk
k

Dxα(f) ∈ T 1/a1(R).

Thus, Dy1
(T 1/a1(R)) is invertible, contradicting the condition of maximal contact

at a point as defined in Definition 3.6.11.
This implies that ordp(Cxt1/a1R)|H = a2 > a1. By Lemma 3.1.24, this further

implies that Cxt1/a1 |HR ∈ OH [yt1/a2 ]Int. Hence, based on Lemma 3.5.11,

R ⊆ OX [xt1/a1 , yt1/a2 ]Int,

which yields,by Lemma 3.1.21, that inv1
p(R) ≥ a1inv(x), resulting in equality.
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(3) If x represents a partial maximal contact on U , then for any point p ∈ U ,
either ordp(A) < a1 or ordp(A) = a1. According to Lemma 3.6.17, in the latter

case, x can be extended to a maximal contact x′. Thus, we obtain the following:

inv1
p(R) = a1inv(x′) ≤ a1inv(x).

♣

Corollary 3.6.20. Let x be a maximal contact of R at p. Let

A = OX [(x1t
1/a1 , . . . , xkt

1/ak ]int

be a maximal R-admissible center at a point p ∈ X. Then upon the change of the
coordinate representation of A, x1 = x is the maximal contact of R at p.

Proof. According to Lemma 3.6.17, x1 contains x after the coordinate change. Fur-
thermore, based on Definition 3.6.18 and Lemma 3.6.19(1), we have

inv1
p(R) = a1(inv(x1)) = a1(inv(x)).

This implies the equality x1 = x. ♣

3.6.21. Support of the invariant. Let

suppinv1(R, b1) := {p ∈ X | inv1
p(R) = b1}

The following lemma highlights a fundamental property of maximal contact within
our context:

Lemma 3.6.22. Let x be a partial maximal contact of (R, a1) on U , and set b1 :=
a1inv(x). Then we have

suppinv1(R, b1) ⊆ V (x).

Proof. Let’s denote x = (x1, . . . , xr, xr+1, . . . , xs), where xi are free on U for 1 ≤
i ≤ r and divisorial for r + 1 ≤ i ≤ s. Consider q ∈ U r V (xi), where xi ∈ x is a
free coordinate.

In this case, we have xi ∈ T 1/a1(R) = OX , and Da1bj−1(fj) is invertible for some
generator fjt

bj ∈ Rbj . It follows that

ordq(fjt
bj ) ≤ (a1bj − 1)/bj < a1,

which implies ordq(R) < a1. Therefore, we have inv1
q(R) < b1.

Consider q ∈ V (x1, . . . , xr)∩UrV (xi), where x1, . . . , xr are free coordinates, and
xi with i > r is a divisorial coordinate on U . Additionally, we haveDxi(T

1/a1(R)) =
OX , which implies that xi is a free coordinate at q since q 6∈ V (xi). Furthermore, for
a certain local parameter u ∈ T 1/a1(R), we have Dxi(u) invertible. Consequently,
u is linearly independent from x1, . . . , xr as well as from the other divisorial coor-
dinates at q.

As a result, in a partial maximal contact (x1, . . . , xr, u) of R at q, there are at
least r + 1 free coordinates. According to Lemma 3.6.19(3), this implies that

inv1
q(R) ≤ a1inv1(x1, . . . , xr, u) < b1 = a1inv(x).

In this context, it is worth noting that the (r + 1)-th component of
a1inv1(x1, . . . , xr , u) is a1, while for b1 = a1inv(x), it is a1+.

♣
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Example 3.6.23. Consider the ideal I = (x2
1 + x2) ⊂ K[x1, x2], where x1 is a free

coordinate and x2 is a divisorial coordinate. Then

T 1(It) = (x2
1 + x2)t

At the point 0, (x2) represents a maximal contact, while on the scheme X =
Spec(K[x1, x2]), (x2) corresponds to a partial maximal contact. Thus, we obtain
the following:

inv1
0(It) = inv1(x2) = (1+) and

suppinv1(It, (1+)) ⊆ V (x2).

When calculating the invariant inv1
p(It) away from the origin, such as at p ∈

V (I)r 0, the coordinate x′1 := x2 + x2
1 is free. Therefore, (x′1,∈ T

2(It)) represents
a maximal contact at p, which yields the following:

inv1
p(It) = inv1(x′1) = (1) < (1+).

Consequently, the invariant drops in a neighborhood of 0.
This example illustrates the concept of assigning heavier weights: 1+ > 1, to the

divisorial coordinates.

Lemma 3.6.24. Let x = (x1, . . . , xr) be a partial maximal contact for (R, a1) on
an open subset U . Then

(1) suppinv1(R, b1) ⊆ V (T≤1/a1(R)) ∩ V (x).
(2) x is a partial maximal contact at all points q ∈ V (T≤1/a1(R)) ∩ V (x) for

which ordq(R) = a1.

(3) suppinv1(R, b1) = V (T≤1/a1(R))∩V (x)∩V (Dxr+1,...,xk
(T 1/a1R))) is closed

on U .
(4) x is a maximal contact for the points in suppinv1(R, b1).

Proof. (1) and (2) Based on Lemmas 3.6.22 and 3.6.9, we have

suppinv1(R, b1) ⊂ V (T≤1/a1(R)) ∩ V (x).

Furthermore, according to Lemma 3.6.14, for points q ∈ V (T≤1/a1(R)) ∩ V (x), we
have ordq(R) ≤ a1, and by Definition 3.6.11, x represents a partial maximal contact
at q as long as ordq(R) = a1.

(3) and (4). Let’s assume that Dxj(T 1/a1(R)) = OX at q ∈ V (T≤1/a1(R))∩V (x)
for some j > r.

If xj is a divisorial coordinate, then (x, xj) represents a partial maximal contact

at q, and according to Lemma 3.6.19, we have invq(R) ≤ a1inv(x, xj) < b1.

If xj is a free coordinate at q, there exists a free local parameter u ∈ T 1/a1(R)
such that Dxj (u) is invertible. In this case, (x1, . . . , xr, u) represents a partial

maximal contact at q, and we have invq(R) ≤ a1inv(x, xj) < b1.

Conversely, if q ∈ V (T≤1/a1(R))∩ V (x)∩ V (Dxr+1,...,xk
(T 1/a1R)), then the con-

dition (3) of Definition 3.6.11 is satisfied, and x represents a maximal contact at q.
According to Lemma 3.6.19, we have inv1

q(R) = a1(inv(x)).
♣
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3.6.25. Maximal contact for nested ideals. We can directly extend the definition of
maximal contact to nested Rees algebras. Consider a coordinate system x1, . . . , xn
of local parameters that is compatible with E. Let

R = OX [(x1t
1/a1 , . . . , xkt

1/ak)Int, fjt
bj ]j=1,...,s

be a Rees algebra nested atHk := V (x1, . . . , xk), with the nested order ordp(R|Hk
) =

ak+1. The nested cotangent ideal T 1/ak+1(R) of R can be defined as follows:

T
1/ak+1

HK
(R) :=

∑

|α|=bjak+1−1

OXD
α
xk+1,...,xn

(fj)

in t1/ak+1 - gradation. Its restriction T
1/ak+1

HK
(R)|Hk

defines the cotangent ideal of
R|Hk

on Hk. Consequently we define a nested maximal contact for R at Hi given
by a partial system of coordinates

xk+1 = (xk+1,1, . . . , xk+1,s, xk+1,s+1, . . . , xk+1,r))

on X , with free coordinates xk+1,1, . . . , xk+1,s ∈ T
ak+1

HK
(R), and divisorial

xk+1,s+1, . . . , xk+1,r such that its restriction xk+1|Hk
is a maximal contact for R|Hk

.

Corollary 3.6.26. Let

R = OX [(x1t
1/a1 , . . . , xkt

1/ak)Int, fjt
bj ]j=1,...,s

be a Rees algebra nested at Hk := V (x1, . . . , xk), and assume that

A = OX [x1t
1/a1 , . . . , xnt

1/an ]int,

with n ≥ k, is a maximal R- admissible center at p ∈ X so that

R ⊂ A = OX [(x1t
1/a1 , . . . , xkt

1/ak ]Int

Then the nested order ordp(R|Hk
) = ak+1. Let x be a nested maximal contact of R

at p and Hk. Then upon the change of the coordinate representation of A, xk+1 = x
is the maximal contact of R at p.

Proof. Given that R is nested at Hk, it can be expressed in the split form in ÔX,p

as:

ÔX,p ·R = ÔX,p[(x1t
1/a1 , . . . , xkt

1/ak)Int, R|Hk
]

Consequently,

A|Hk
= OH [xk+1|Hk

t1/ak+1, . . . , xn|Hk
t1/an ]int

serves as a maximal admissible center for R|Hk
. By applying Lemma 3.1.24, we can

observe that ordp(R|Hk
) = ak. According to Lemma 3.1.29, the free coordinates in

x are a part of xk+1 after a coordinate change. Moreover, since x|Hk
represents a

maximal contact for R|Hk
, we can deduce from Lemma 3.6.16(4) that xk+1|Hk

and
x|Hk

share the same divisorial coordinates. Consequently, we obtain the equality
xk+1 = x.

♣

3.7. Effective algorithm.
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3.7.1. The algorithm. Consider an arbitrary Rees algebra R on a smooth variety X .
In particular case, if an ideal I is given we consider the Rees algebra R = OX [It].
We shall construct a maximal A-admissible center R at a given point p ∈ X .
Assume, at first that the Rees center

A = OX [(x1t
1/a1 , . . . , xkt

1/ak ]int,

which is maximal admissible at the point p ∈ X for R on X exists. We shall use A
only as the reference for our construction. All the operations are done for R without
using or modifying the algebra A. We will however modify the presentation of A
so it will be compatible with the presentations of modifications of R.

The procedure is recursive and we put R = R1. Assume that the center A is
maximal admissible R, so that

R = R1 ⊆ A := OX [x1t
1/a1 , . . . , xkt

1/ak ]Int.

Using Lemma 3.1.24, we see that ordp(R1) = a1. Let x′1 ⊆ T
1/a1(R1) be a maximal

contact at p ∈ X , and put H1 := V (x′1).
By Lemma 3.6.20, one can change the presentation of the algebra A so that

x1 = x′1 is a maximal contact. This modification does not affect the algebra A on
the right, but only changes its presentation.

Let R2 := Cx1t1/a1 (R1) be the coefficient ideal with respect to the maximal
contact x1. By Lemma 3.5.7, R2 is nested at H1 := V (x1), and can be written in

ÔX,p in the split form

ÔX,pR2 = ÔX,p[(x1t
1/a1)Int, R2|H1

] = ÔX,p[(x1t
1/a1)Int, Cx1t1/a1 (R1)|H1

]

Furthermore, according to Lemma 3.5.24, the same center A remains maximal
admissible for R2 = Cx1t1/a1 (R1).

This recursive procedure can be summarized as follows. Let Ri, for i ≥ 2, be the
algebra nested at Hi−1 = V (x1, . . . , xi−1) such that

ÔX,pRi = ÔX,p[(x1t
1/a1 , . . . , xi−1t

1/ai−1)Int, Ri|Hi−1
] ⊆

⊆ ÔX,pA = ÔX,p[x1t
1/a1 , . . . , xkt

1/ak ]Int,

where A is a maximal admissible center for Ri. According to Lemma 3.6.26, we
have ordp(Ri) = ai. We find a nested maximal contact x′i for Ri at Hi−1 and p.
Using Lemma 3.6.26 we can modify the coordinates xi, . . . , xk in the presentation
of A and assume that the maximal contact x′i = xi occurs in the presentation of
A. Consequently, by Lemma 3.5.24,

Ri+1 := Cxit1/ai (Ri) ⊆ A
Int = OX [(x1t

1/a1 , . . . , xkt
1/ak ]Int,

whereA on the right represents a maximal admissible center for Ri+1. Furthermore,

by Lemma 3.5.18, Ri+1 is nested at Hi = V (x1, . . . , xi), and can be written in ÔX,p

as

ÔX,p ·Ri+1 = ÔX,p[(x1t
1/a1 , . . . , xit

1/ai)Int, Ri+1|Hi
] =

=ÔX,p[(x1t
1/a1 , . . . , xit

1/ai)Int, Cxi+1
(Ri)|Hi

],

We continue the procedure until we reachRk+1 which is nested atHk = V (x1, . . . , xk),
such that Rk+1|Hk

= 0. Finally

Rk+1 = OX [x1t
1/a1 , . . . , xkt

1/ak ]Int = AInt,
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with the extended Rees algebra

Aext = OX [t−1/wR,A , x1t
1/a1 , . . . , xkt

1/ak ],

where wR,A = lcm(a1, . . . , ar, wR).

3.7.2. Uniqueness. Throughout this process, we do not alter the algebra A =
OX [x1t

1/a1 , . . . , xkt
1]int. However, we do modify the coordinates within A, which

gradually transform into maximal contacts for the nested Rees algebra on the left.
This demonstrates that the procedure, which is independent of A, results in a

unique, predetermined center A that is maximal admissible for R at p.

3.7.3. Existence.

Proposition 3.7.4. (see also [ATW17, Theorem 5.3.1] (in the language of Q-
ideals)), ). For any Rees algebra R on a smooth variety X over K with a SNC
divisor E, and for any point p ∈ X there exists a uniquely determined Rees center

A = OX [x1t
1/a1 , . . . , xkt

1]int

which is a maximal admissible for R at p.
Moreover AInt = Rk+1 is obtained by the recursive procedure R1 = R, and

Ri+1 = Cxit1/a1 (Ri) independent of A, where

(1) Ri is nested at Hi−1 := V (x1, . . . , xi−1), for i− 1 = 1, . . . , k, and H0 := X.
(2) ai = ordp(Ri|Hi−1

)
(3) xi is a maximal contact for Ri|Hi−1

.
(4) invp(R) = (a1inv(x1), . . . , akinv(xk)).

Proof. The construction does not rely on the Rees center A on the right side of
the admissibility condition at any step. Moreover, the inductive process leads to
a Rees center A′ that is admissible for R at p. We obtain a sequence of nested
Rees algebras Ri at Hi−1 = V (x1, . . . , xi−1) such that ordp(Ri|Hi−1

) = ai and xi is

a maximal contact for Ri|Hi−1
. The final Rees center A′ = Rint

k+1 is an admissible
center for R.

Now, consider another admissible center

A′′ = OX [x′1t
1/a′

1 , . . . , x′kt
1/a′

k ]int,

for R at p. Suppose inv(A′′) ≥ inv(A′). We run the recursive procedure using
A′′ on the right side. By Lemma 3.1.24, we conclude that a1 = a′′1 . Furthermore,
according to Lemma 3.6.17(2), after a coordinate change, x′′1 contains a maximal
contact x1 such that inv1(x1) ≥ inv1(x′′1). Since inv(A′′) ≥ inv(A′), it follows that
inv1(x′′1 ) ≥ inv1(x1). Therefore, we have x′′1 = x1. We continue this process step
by step, demonstrating that ai = a′′i and x′′i = xi after a possible change in the
coordinate representation of A′. This shows that A′′ = A′ = Rint

k+1 is the maximal
admissible center for I at p. ♣

3.7.5. The inductive principle. [ATW19],
Let R be a Rees algebra of order a1 at p with a maximal contact x1, and let H1 :=

V (x1). By Lemma 3.5.11, a center A = OX [x1t
1/a1 , . . . , xkt

1/ak ]int is maximal
admissible for R if and only if A|H1

= OH1
[x2|H1

t1/a2 , . . . , xk|H1
t1/ak ]int is maximal

admissible for Cx1(R)|H1
.

This leads to the following inductive formula, as stated in [ATW19]:

invp(R) = (inv1
p(R), invp(Cx1

(R)|H1
)),
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3.7.6. Semicontinuity of canonical invariant. Local admissibility. The inductive
principle above ensures the semicontinuity of the invariant invp, as in [ATW19].
We proceed with an induction on n = dim(X) and assume that the function p 7→
invp(R) is upper semicontinuous for any Rees algebra R′ on any smooth variety H
of dimension n− 1. Let R be a Rees algebra on a smooth X of dimension n.

The condition invp(R) ≥ (b1, . . . , bk) implies either inv1
p(R) > b1, or inv1

p(R) = b1
and invp(Cx1|H1

(R)) ≥ (b2, . . . , bk). This description corresponds to a closed subset,

which follows from the semicontinuity of inv1
p as established in Lemma 3.6.24, and

with the inductive assumption.

3.7.7. Duality of Rees centers. The Rees centers A possess a dual interpretation:
they serve as admissible centers with a dummy variable t, and they also represent
the extended algebras of the full cobordant blow-ups, where t−1 serves as the intro-
duced coordinate on B. These two concepts are intimately connected and can be
described by identical formulas, up to rescaling. In order to prevent any confusion,
we will introduce a distinct variable tB specifically for the algebras on B, where the
differentiation between t and tB becomes necessary.

3.7.8. Controlled transforms of ideals. [ATW19], Let I be an ideal on regular X .
One writes I-admissibility condition as:

It ⊂ Aext = OX [t−1/wA , x1t
1/a1 , . . . , xkt

1/ak ]

By employing the variable tB and applying rescaling, we can rewrite this inclu-
sion as follows:

I · twA

B ⊂ OB = OX [t−1
B , x1t

w1

B , . . . , xkt
wk

B ] = OX [t−1
B , x′1, . . . , x

′
k],

where x′i := xit
wi .

According to Lemma 2.5.1, the exceptional divisor on B+ can be expressed as
t−1
B , which serves as a local parameter on B. Using this information, we can deduce

that the full transformOB ·I is divisible by t−wA

B since twA ·OB ·I = OB ·t
wA

B ·I ⊂ OB.
Now, we introduce the concept of the controlled transform of the ideal I, which

is defined as:

σc(I) := OB · t
wA

B · I ⊂ B.

3.7.9. Strict transform of ideals. Recall that

B− = B r V (t−1) = X ×Gm → X

is trivial over X . By the strict transform σs(I) of an ideal I on X under a full
cobordant blow-up σ : B → X of A on X we mean the schematic closure of
(OB · IX)|B−

= OB− · IX . Thus

σs(I) := {taf ∈ OB | f ∈ OB · IY , a ≥ 0}.

Consequently, the strict transform of a closed subscheme Y of X is the schematic
closure Y s of Y ×Gm ⊂ B− = X ×Gm in B. It is defined by IY s = σs(IY ). This
implies that σc(I) ⊆ σs(I), and thus inv(σc(I)) ≥ inv(σs(I)) for any p ∈ B.

Remark 3.7.10. Observe that for the cobordant blow-up σ+ : B+ → X the in-
duced strict transform coincides with the standard definition σs

+(I) as the schematic
closure on B+ of

Oσ−1

+
(XrV (J )) · I|XrV (J ) = (OB · I)|B+∩B−

.
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3.7.11. Controlled transforms of Rees algebras and double gradation. The relation-
ship between admissibility and the controlled transforms of ideals can be described
using the concept of double gradation. Let I correspond to the gradation It in
the Rees algebra AI = OX [It]. We can assign a double gradation OB · I · t

wA

B t
in the Rees algebra OB[I · twA

B t] on B, which can be interpreted as the controlled
transform denoted by

σc(It) := (OB · t
w
B · I)t ⊂ OB [I · twA

B t]

under the gradation t. One can simply write it as

σc(I) := (OB · t
w
B · I) ⊂ OB

In a more general setting, suppose we have a Rees algebra R =
⊕
Rat

a, and A
is an R-admissible center. Then, we have the inclusion

R ⊂ Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ],

where w is a multiple of wR,A. By rescaling A with tB 7→ twB and defining wi :=
w/ai ∈ Z≥0, we obtain the cobordant blow-up of Aext:

B = Spec([t−1
B , x1t

w1

B , . . . , xkt
wk

B ] = SpecOB[t−1
B , x′1, . . . , x

′
k],

where x′i := xit
wi

B . By combining the gradations on both t and twB, we can express
the admissibility of Rees algebras on B as follows:

⊕
Rat

a·w
B ta ⊂ OB [t−1

B t−1/w, x1t
w1

B t1/a1 , . . . , xkt
wk

B t1/ak ] ⊂

⊂ OB[t−1/w, x′1t
1/a1 , . . . , x′kt

1/ak ].

Hence, the Rees algebra on B can be denoted as:

σc(R) :=
⊕

(OB · Ra · t
a·w
B )ta,

and it will be referred to as the controlled transform of R.

3.7.12. Cobordant blow-ups and admissibility. Consequently, based on the previous
discussion, we can conclude that:

Lemma 3.7.13. If Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ]int is admissible for R ,
and σ : B = SpecX(OB [t−1

B , x1t
w1

B , . . . , xkt
wk

B ]) is the full cobordant blow-up of Aext

then the Rees center on B:

Aext
B := σc(Aext) := OB[t−1/w, x1t

w1

B t1/a1 , . . . , xkt
wk

B t1/ak ]int =

OB[t−1/w, x′1t
1/a1 , . . . , x′kt

1/ak ]

is admissible for σc(R) =
⊕
OBRat

wa
B ta. ♣

3.7.14. Derivations on cobordant blow-up. [ATW19],
Consider be the full cobordant blow-up

B = SpecX(OX [t−1
B , x1t

w1

B , . . . , xkt
wk

B ]→ X

of a center Aext = OX [t−1/w, x1t
1/a1 , . . . , xkt

1/ak ]. The sheaf DX of derivations on
X is a coherent OX -module that is locally generated by the derivations Dxi . Using
chain rule we can write derivations Dx′

i
on B as Dx′

i
= t−wi

B Dxi , and Dx′
j

= Dxj .
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This above formula can be extended using a double gradation principle: To ob-
tain the controlled transform, we associate the derivations t−1/aiDxi in the graded
form with a double gradation with respect to t and twB.

σc(t−1/aiDxi) = t−1/ait−wi

B Dxi = t−1/aiDx′
j

In a similar manner, we define the ”controlled transform” of t−1/a1DX to be the
subsheaf

σc(t−1/a1DX) := t−1/a1OBt
−w1

B DX ⊆ t
−1/a1DB

of the sheaf DB of the derivations on B in gradation t−1/a1 . Note that the sheaf

OBt
−w1

B ·DX is generated by t
−(w1−wi)
B t−wi

B Dxi = t
−(w1−wi)
B Dx′

i
for i = 1, . . . , k and

t−w1

B Dxi = t−w1

B Dx′
i

for i = k + 1, . . . , n.

3.7.15. The order of the controlled transforms.

Lemma 3.7.16. [ATW19], Let σ : B → X be a cobordant blow-up of R-admissible
center Aext = OX [t1/w, x1t

1/a1 , . . . , xkt
1/ak ], where ordp(R) ≤ a1 for p ∈ X. Then

ordp′(σc(R)) ≤ a1 for p′ ∈ B.

Proof. Write R = OX [fjt
bj ]j=1,...,s. If ordp(R) = a1 then ordp(fjt

bj ) = bja1

for some j. Thus there exists α, with |α| = bja1, such that Dxαfj is invertible.
Consequently

1 ∼Dxαfj = (t
−bjw
B t−bjDxα)(fjt

bjw
B tbj ) ∈ σc(D

bja1

X t−bj )(σc(fjt
bj ))

⊆ D
bja1

B t−bj (σc(Rbj )tbj ) = D
bja1

B (σc(Rbj )) = OB,

which shows that ordpσ
c(R) ≤ a1. ♣

3.7.17. Controlled transforms of cotangent ideal. Similarly we have

Lemma 3.7.18. [ATW19], Let σ : B → X be a cobordant blow-up of R =
OX [fjt

bj ]-admissible center Aext = OX [t1/w, x1t
1/a1 , . . . , xkt

1/ak ]. If T 1/a1(R) is
the cotangent ideal for R then

σc(T 1/a1(R)t1/a1) ⊆ (T 1/a1(σc(R))t1/a1 .

Proof. Let fjt
bj ∈ Rbj , and |α| = bja1 − 1. Then

(Dxαfj)t
1/a1tw1

B = σc((Dxαfj)t
1/a1) = σc(Dα

xt1/a1
fjt

bj ) =

= σc(Dα
xt1/a1

)(σc(fjt
bj ) ∈ D

|α|
B t−|α|/a1(σc(Rbj )tbj ) =

= D
|α|
B (σc(Rbj ))t1/a1 ⊆ (T 1/a1(σc(R))t1/a1 .

♣

3.7.19. Controlled transforms of a partial maximal contact.

Lemma 3.7.20. [ATW19], Let σ : B → X be a cobordant blow-up of R =
OX [fjt

bj ]-admissible center Aext = OX [t1/w, x1t
1/a1 , . . . , xkt

1/ak ]. Assume that
x1 = (x1, . . . , xr) is a partial maximal contact for (R, a1) on an open affine subset
U then σc(x1) is a partial maximal contact for σc(R) on σ−1(U).



56 J. W LODARCZYK

Proof. σc(x1) = (x′1, . . . , x
′
r) is a local system of coordinates. So if xi ∈ T 1/a1(R)∩

x1 is free then x′i = σc(xi) ∈ T 1/a1(σc(R)) ∩ σc(x1) is free. Thus condition (1) of
Definition 3.6.11 is satisfied.

If xi ∈ x1 is divisorial, then using Lemma 3.7.18, we have

OB = OB ·Dxi(T
1/a1(R)) = σc(Dxit1/a1 (T 1/a1(R)t1/a1) =

= σc(Dxit1/a1 )σc(T 1/a1(R)t1/a1) =

= t−1/a1Dx′
i
σc((T 1/a1(R)t1/a1) ⊂ Dx′

i
(T 1/a1(σc(R))

and thus condition (2) of Lemma 3.6.11 is also satisfied.
♣

3.7.21. Controlled transform of the coefficient ideal.

Lemma 3.7.22. (see also [ATW19]) Let σ : B → X be a cobordant blow-up
of R = OX [fjt

bj ]-admissible algebra A = OX [x1t
1/a1 , . . . , xkt

1/ak ] then σc(R) =
OB[σc(fjt

bj )], and we have commutativity:

σc(Cx1t1/a1 (R)) = Cx′
1
t1/a1 (σc(R)).

Proof. The assertion follows from the of the commutativity of the controlled trans-
forms with derivations:

σc(Dα
x1t1/a1

(fjt
bj )) = σc(Dα

x1t1/a1
)(σc(fjt

bj )) = Dα
x′
1
t1/a1

(σc(fjt
bj ))

in t|α|-gradation for |α| < bja1. ♣

3.7.23. Restriction of cobordant blow-up to a maximal contact.

Lemma 3.7.24. [ATW19], If Aext is admissible for R then Aext
|H is admissible for

R|H and σc(R)|H = σc
H(R|H), where H := V (x1).

The restriction of the blow-up σX : B → X of Aext to the strict transform
HB = V (x′1) of H = V (x1) is the cobordant blow-up σH : HB → H of the restriction
Aext

|H . ♣

3.7.25. The centers with maximal invariant.

Lemma 3.7.26. (see also [ATW19]) Let R be a Rees algebra, and A be a maximal
admissible center for R at a point p ∈ X. Then there exists an open neighborhood
U of p such that

maxinvU (R) = invp(R) = inv(A)

on U is attained at V (A).

Proof. Let x1 be a maximal contact at p for R. Then, by Lemma 3.6.12, it is a
partial maximal contact on an open subset U of p. Thus by Lemma 3.6.19(3),

inv1(R) ≤ b1 := a1inv(x1).

In addition, by Lemma 3.6.24, the maximum max inv1(R) = b1 of the invariant
inv1

q(R), where q ∈ X , is attained at the closed subset suppinv1(R, b1) ⊂ H1 =

V (x1), and x1 is a maximal contact along suppinv1(R, b1). Furthermore for the

points in suppinv1(R, b1), we have

invp(R) = (inv1
p(R), invp(Cx1t1/a1 (R)|H1

),
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Moreover A|H1
is maximal admissible for R at p. It suffices to use induction

on dimension to find an open neighborhood U of p such that invp(Cx1t1/a1 (R)|H1
)

attains its maximal on V (A|H1
) = V (A) ⊂ H .

♣

Proposition 3.7.27. , Let R =
⊕
Ra be a Rees algebra on a smooth variety X

over a field K such that Ra 6= OX for any a ∈ A. There exists a unique center
A(R) = A such that

(1) The maximum maxinv(R) = (b1, . . . , bk) of the invariant invp(R), where
p ∈ X, is attained at V (A).

(2) A = OX [x1t
1/a1 , . . . , xkt

1/ak ] is a maximal admissible center for R, with
inv(A) = (b1, . . . , bk), where bi = aiinv(xi).

Proof. Lemma 3.7.26 implies that invp(R) is upper semicontinuous, and admits
finitely many values. Consider the closed point set

S := suppinv(R, (b1, . . . , bk)) := {p ∈ X | inv(R) = (b1, . . . , bk)},

where invp(R), where p ∈ X , attains its maximal value maxinv(R) = (b1, . . . , bk).
Then for any point p ∈ S let A be a maximal admissible center for R at p. Then

V (A) = suppinv(R, (b1, . . . , bk))

locally around p. Moreover, A is a unique maximal admissible center for R at
all points of V (A) in a neighborhood of p. Thus A glues to a unique maximal
admissible center for R along V (A) = suppinv(R, (b1, . . . , bk)) as desired.

♣

3.7.28. Cobordant blow-ups of the centers with maximal invariant.

Proposition 3.7.29. (see also [ATW19]) Let R =
⊕
Ra be a Rees algebra on a

smooth variety X over a field K such that Ra 6= OX for any a ∈ A. Let A = A(R)
be maximal admissible center for R at V (A), and B → X be a full cobordant blow-
up of Aext. Then in a neighborhood of V (A) such that invp(R) attains its maximum

maxinv(σc(R)) = (b1, . . . , bk) at V (A) we have

(1) The maximum maxinv(σc(R)) = (b1, . . . , bk) is attained at V (σc(A)) with
the invariant inv(σc(R)), and such that

σc(Aext) = OB [t−1/w, x′1t
1/a1 , . . . , x′kt

1/ak ]

is maximal admissible center for σc(R)

(2) maxinv(σc(R)) < (b1, . . . , bk) on B+ = B r V (σc(A)).

Proof. We shall use induction on dimension of X . If dim(X) = 0 then A = R =
OX = OX [0], p = X , and invp(R) = () has no entries and thus corresponds to the
infinite sequence of ∞. Let p ∈ V (A), and set ordp(A) = a1.

Consider a neighborhood U of p such that x1 is a maximal contact on U at
p, and a partial maximal contact on U . Then, by Lemma 3.6.24, inv1 attains its
maximum b1 on suppinv1(R, b1) ⊂ V (x1). Moreover x1 is a maximal contact along

suppinv1(R, b1).
Consequently for the points p ∈ suppinv1(R, b1) we have

invp(R) = (inv1
p(R), invp(Cx1t1/a1 (R)|H1

)).
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By Lemma 3.7.20, the controlled transform σc(x1) = x′1 is a partial maximal
contact on BU = σ−1(U) for σc(R). Then, by Lemma 3.6.24, maxinv1(σc(R)) ≤ b1,

and it attains its value b1 on

suppinv1(σc(R), b1) ⊆ H ′
1 = V (x′1),

and for the points p′ in suppinv1(R, b1) we have that x′1 is a maximal contact.
Moreover, by Lemma 3.7.22, and Section 3.7.5 we get

invp′(σc(R)) = (inv1
p′(σc(R)), invp′(Cx′

1
t1/a1 (σc(R))|H′

1
).

By Lemma 3.7.24, the restriction of B → X to H ′
1 = VB(x′1) is the cobordant

blow-up σH′
1

: H ′
1 → H1 of Aext

|H1
. By the inductive assumption on dimension the

conditions (1), (2) of the Proposition are satisfied on H1 for Cx1t1/a1 (R)|H1
and

for the cobordant blow-up σH′
1

: H ′
1 → H1. Moreover, by Lemma 3.5.11, and the

assumption, Aext
|H1

is maximal admissible for Cx1t1/a1 (R)|H1
on H1, associated with

maxinv(Cx1t1/a1 (R)|H1
).

Consequently, by the inductive argument σc(Aext)|H1
= Aext

B|H′
1

is maximal ad-

missible for

σc
H′

1
(Cx1t1/a1 (R)|H1

) = Cx′
1
t1/a1 (σc(R))|H′

1
.

By Lemma 3.5.11 and the fact that x′1 is a partial maximal contact associated
with maxinv1(σc(R)) = b1 we conclude that Aext

B is maximal admissible for σc(R).
By the inductive assumption, the maximum

maxinv(σc(Cx′
1t1/a1

(R)|H1
)) = (b2, . . . , bk)

on B is attained at V (σc
H1

(A|H1
). Thus

maxinv(σc(R)|H′
1
) = max(b1, inv(Cx′

1t1/a1
(R)|H1

) = (b1, . . . , bk)

is attained at

V (σc
H1

(A|H1
) = V (σc(A)|H′

1
) = V (σc(A)) ⊆ H ′

1,

and σc(A) is a maximal admissible center for σc(R) associated with maxinvσc(R).
♣

3.7.30. Resolution principle. (see also [ATW19] for (1), (2) and the second part of
(4)) Summarizing the above, the resolution process consists of the following:

Given a rational Rees algebra on a smooth X with SNC divisor E over a field
K of characteristic zero.

(1) The invariant invp(R) on X is semicontinuous. (Section 3.7.6)
(2) It attains its maximum maxinvX(R) at a certain unique center Aext(R) on

X . (Proposition 3.7.27)
(3) The invariant invp(σc(R)) on the full cobordant blow-upB → X atAext(R),

attains its maximum

maxinvX(R) = maxinvB(σc(R))

exactly at the center σc(Aext(R)) associated with the vertex Vert(B) =
V (σc(Aext)) of the full cobordant blow-up B → X .(Proposition 3.7.29(1))

(4) The invariant invp(.) drops on the cobordant blow-up

B+ = B r V (σc(Aext(R))) = B r Vert(B)



FUNCTORIAL RESOLUTION BY TORUS ACTIONS 59

after removing the vertex Vert(B), so that

maxinvX(R) > maxinvB+
(σc(R)).

(Proposition 3.7.29(2))

3.8. Properties of the invariant.

3.8.1. The invariant inv at the smooth points. Assume that Y is a smooth subvari-
ety of codimension k on a smooth variety X and is described at p ∈ Y by a partial
set of free local parameters Y = V (u1, . . . , uk) compatible with an SNC divisor E.
Then

A := OX [(u1, . . . , uk)t]

is a maximal IY - admissible center at p, with

invp(I) = (1, . . . , 1),

with k entries equal 1. Conversely, if invp(IY ) = (1, . . . , 1) is as above then there
exists a partial system of free local parameters u1, . . . , uk ∈ I compatible with E,
such that

OX [IY t] ⊆ OX [(u1, . . . , uk)t]int = OX [(u1, . . . , uk)t].

So IY = (u1, . . . , uk) is smooth generated by free coordinates and compatible with
E for Y having SNC with E at p ∈ X .

3.8.2. Torus action. If X admits a torus action and R is T -stable, then the maximal
admissible centers are canonical and unique and thus T -stable. One can run the
algorithm in Section 3.7.1 using seminvariant maximal contacts and seminvariant
derivations, with all intermediate Rees algebras Ri being T -stable. Thus one can
choose inductively semiinvariant coordinates of the maximal admissible centers.
These are the nested maximal contacts in the T -stable cotangent ideals T 1/ai(Ri).

Moreover, if additionally X admits a geometric quotient X/T with all orbits
of dimension dim(T ), then the number of semiinvariant coordinates in a T -stable
center at a given point cannot exceed dim(X/T ) = dim(X)−dim(T ), as it describes
a smooth T -stable subvariety of X of dimension at least dim(T ). Consequently the
set of values of invp(I) in the resolution process

X0 ← X1 ← X2 ← . . .

is contained in (Q+)k≥0, where

k = dim(X0) = . . . = dim(Xi)− dim(Gi
m).

3.8.3. The descending chain condition.

Lemma 3.8.4. The set Γ ⊂ (Q+)k≥0, of the possible values of invp(R) of the T -
stable Rees algebras on a smooth varieties X with action of torus T , and having
a geometric quotient X/T of dimension k, which are generated by the gradations

Raita
i

, for i = 1, . . . , s satisfies dcc.

Proof. Donote by a := lcm(a1, . . . , as)). We use induction on k. For k = 1, the
possible values of invp(R) = inv1

p(R) are contained in (1/a) · N+.
In general, we note that A is R-admissible if and only if Rat

a ⊂ A. Thus we
have

invp(R) = 1/a · (invp(Ra),

and the problem reduces to the ideals I = Ra on X .
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Now, for any ideal I on X we have

invp(I) = (inv1
p(I), invp(σc

H1
(Cx1t1/a1 (OX [(It)]|H1

)),

where the restricted coefficient ideal

C := Cx1t1/a1OX [(It)]|H1
) =

⊕
Ca/a1

· ta/a1

is generated at gradations

C1/a1
t1/a1 , . . . , C(a1−1)/a1

t(a1−1)/a1

on H1 with dim(H1/T ) < k. By the inductive assumption the set of values of
invp(C) satisfies dcc. Now since the set of values inv1

p(I) satisfies dcc condition we
conclude that the set of values invp(I) on X satisfies dcc.

Consequently the set of values of invp(R) in a resolution sequence also satisfies
dcc. ♣

3.8.5. Functoriality of the invariant. [ATW19]

Lemma 3.8.6. The invariant invp(R) and the maximal admissible center A are
functorial under smooth morphisms, field extensions, and group actions.

The functoriality of invp(R) and the maximal admissible centers A at p is a
consequence of the functoriality of the resolution algorithm in Section 3.7.1 and
functoriality of derivations, Rees algebras, coefficient ideals, and the maximal con-
tacts.

3.9. Final Conclusions.

3.9.1. Functorial Principalization. [ATW19] (in a non-SNC setting),
Let I be an ideal on X . We initiate the SNC resolution algorithm using cobor-

dant blow-ups σi : Xi+1 → Xi at the maximal Ii-admissible centers A(Ii) on
Xi, associated with the maximum maxinvXi(Ii) of invp(Ii) on Xi. They form a
sequence

X = X0
σ0← X1

σ1← . . .
σk−1

← Xk = X ′,

Here the ideal I0 := I, and Ii+1 := σc
i (Ii) is the controlled transform of Ii. Each

such blow-up reduces maxinvXi(Ii) so that

maxinvXi(Ii) > maxinvXi+1
(Ii+1),

where Xi+1 is the coborandant blow-ups Xi at the center A(Ii). By dcc property
this is a finite process which continues until the maximum value

maxinvXk
(σc(Ik)) = 0.

In this situation, the controlled transform

σc(I) := σc
k−1(Ii) ◦ . . . ◦ σ

c
1(I) = OX

of I becomes OX , and the full transform OX′ · I is locally the product of divisorial
components. Note that each cobordant blow-up Xi+1 → Xi inductively creates a
schemeXi+1 with an action of Ti+1 = Ti×Gm. Since all constructions are canonical
and functorial for smooth morphisms, the centers, the ideals Ii and the exceptional
divisors are automatically Ti-stable. This proves Theorem 1.11.2.
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3.9.2. Embedded Desingularization. [ATW19] In the process of embedded resolu-
tion of an irreducible subvariety Y ⊂ X of codimension k, we consider the princi-
palization of I = IY of Y on X . We execute the algorithm applying the cobordant
blow-ups at maximal I-admissible centers A = A(I). In this process, we use the
strict transforms of the ideal I = IY instead of the controlled transforms. We stop
the algorithm when the invariant

maxinvX(I) = (1, . . . , 1),

with k entries equal 1. In such a case, the associated maximal admissible center
with the invariant inv(A) = (1, . . . , 1) for the ideal IY ′ of the strict transform Y ′

of Y coincides with OX [IY ′t], and thus, by Section 3.8.1, the strict transform Y ′

of Y has SNC with the exceptional divisor, which is also SNC.
Alternatively one can use the controlled transforms of ideals instead of the strict

transforms in the process without changing the strategy. The process is slower and
some centers need not to be contained in the strict transform of Y .

Both procedures show the existence of the functorial embedded desingularization
by the smooth cobordant blow-ups as in Theorem 1.11.4. As a result, we obtain a
smooth subvariety Y ′ having SNC with an SNC exceptional divisor E′ on X ′, and
with the torus action.

Each consecutive cobordant blow-up Xi+1 → Xi will create inductively a variety
Xi+1 with an action of Ti+1 = Ti × Gm. Since all the constructions are canonical
and functorial for smooth morphisms, the centers and subvariety Yi ⊂ Xi are
automatically Ti-stable. On the level of the geometric quotients, we obtain the
sequence of weighted blow-ups

X = X0
σ0← X1/T1

σ1/T1← . . .
σk−1/Tk−1

← Xk/Tk = X ′/T,

of varieties with quotient singularities such that the subvariety Y ′/T of X ′/T ad-
mits quotient singularities. When considering stack-theoretic quotients [Xi/Ti], we
obtain smooth stacks with a smooth substack [Y ′/T ] ⊂ [X ′/T ] having SNC with
the exceptional divisors. A similar process without exceptional SNC divisor was
considered in [ATW19].

3.9.3. Nonembedded SNC Resolution. The nonembedded resolution is a consequnce
of the embedded resolution using local embeddings and the functoriality properties.
It will have SNC exceptional divisor.

We associate with a variety Y over K, initially without any divisors, a modified

invariant ĩnvp(Y ) in the following way. We locally embed Y into a smooth variety
X . Any two such embeddings Y ⊂ X1 and Y ⊂ X2 into smooth varieties of the
same dimension are étale equivalent. If dim(X1) +m = dim(X2), and m ≥ 0 then
the induced embeddings Y ⊆ X1 ⊆ Am

X1
and Y ⊂ X2 are ’etale equivalent. Here

the embedding

X1 ⊆ Am
X1

= Spec(OX [x1, . . . , xm])

is defined by V (x1, . . . , xm).
For any local embeddings Y ⊂ X1 = V (x1, . . . , xm) ⊂ Am

X1
and Y ⊂ X2 with

dim(X1) + m = dim(X2) we get that (x1, . . . , xm) is partial maximal contact in

gradation t. Then passing to the completion ÔX,p the maximal admissibility con-
dition

ÔX,p · RY = ÔX,p[(x1, . . . , xm)t, RY |X1
] ⊂ ÔX,p · A := ÔX,p[x1t, . . . xkt

1/ak ],
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with (x1, . . . , xm) ⊂ x1 is equivalent to the maximal admissibility RY |X1
⊂ AY |X1

,
and thus

invp(RY,Am
X1

) = (1, . . . , 1, invp(RY |X1
) =

= (1, . . . , 1, invp(IY,X1
).

Moreover, by functoriality, we have

invp(IY,X2
) = invp(IY,Am

X1

) = (1, . . . , 1, invp(IY,X1
)),

For a closed embedding Y ⊂ X into a smooth X of dimension n, and p ∈ Y ,

let invp(IY ) = inv(b1, . . . , bk). We define the invariant ĩnvp(Y ) on Y to be the
equivalence class of the sequences (b1, . . . , bk)n, marked by n = dim(X), where
Y ⊂ X and invp(IY ) = (b1, . . . , bk), with the equivalence relation

(b1, . . . , bk)n ≃ (1, . . . , 1, b1, . . . , bk)n+m,

where m is the number of ones in front of b1. By the above the invariant is inde-
pendent of embeddings and functorial for smooth morphisms.

One can compare two equivalence classes lexicographically, as before, by fixing
their representatives with the same marking n.

We shall use the following

Lemma 3.9.4. Let Y ⊂ X1, and Y ⊂ X2 be two different embeddings. For a
point p ∈ Y consider two maximal admissible centers at p: A1 for IY,X1

on X1

and A2 for IY,X1
. Denote by B1+ → X1, and B2+ → X2 the cobordant blow-ups

respectively at A1 and A2, Then

A1|Y = A2|Y ,

and consequently the restrictions of the cobordant blow-ups B1+ → X1, and B2+ →
X2 to the strict transforms of Y coincide with the cobordant blow-up BY + → Y of
A1|Y = A2|Y on Y .

Proof. We can embed further X1 and X2 into an affine space AN in such a way
that the induced embeddings of Y to AN coincide (see for intance [W lo05, Lemma
2.5.3]). This reduces the situation to the embedding X1 ⊂ X2 = AN .

Now IY,X1
= IY,X2|X1

, and similarly A1 = A2|X1
implying A1|Y = A2|Y on

Y . Consequently the morphism on the strict transforms σc(Y ) → Y on X1 or X2

coincides, by Lemma 5.1.5, with the cobordant blow-up of A1|Y = A2|Y .
♣

We shall run the embedded algorithm using the centers associated with max ĩnv
on Y . It locally corresponds to the center Aext associated with maxinv(IY ) for a
certain embedding Y ⊂ X .

Consider an open affine cover of Y by Y j admitting closed embeddings Y j ⊂ Xj

into smooth varieties Xj. Let IY j be the corresponding ideal on Xj . We can
assume that all Xj are of the same dimension. Let

Y :=
∐

Yj →֒ X :=
∐

Xj

be the induced embedding of disjoint unions. Consider the natural étale projection
Y → Y .

Now we shall run the embedded desingularization with the strict transforms for
Y →֒ X, that the sequence of maximal IY i

-admissible centers Ai:

X = X0
σ0← X1

σ1← . . .
σk−1

← Xk = X
′
,
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with ideals IY i
being the strict transform of IY i−1

, which induces the sequence of

the strict transforms

Y = Y 0Y

σ
1Y← Y 1

σ
1Y← . . .

σk−1Y
← Y k = Y

′
,

The latter is the sequence of the cobordant blow-ups with the induced centers
Ai|Y 1

. By functoriality and Lemma 3.9.4, it descends to the sequence of the induced

cobordant blow-ups

Y = Y0
σ0Y← Y1

σ1Y← . . .
σk−1Y
← Yk = Y ′,

on Y . Then, max ĩnv drops to the minimal value (1, 1, . . . , 1)n on Y
′

and on Y ′,
where n is the dimension of the ambient variety X , and the number of ones is equal
to the codimension of the smooth subvariety Y ⊂ X.

The exceptional SNC divisor on a local ambient space X
′

is compatible with a

smooth subvariety Y
′
. Consequently, its restriction to Y

′
defines an SNC-exceptional

divisor on Y
′

and determines a functorial nonembedded SNC resolution of Y , while
its descent determines a functorial nonembedded SNC resolution of Y . This com-
pletes the proof of Theorem 1.11.7. A similar non-SNC resolution was considered
in [ATW19] ,

4. Free characteristic resolution of almost homogenous

singularities

4.1. The weighted normal bundles to the centers.

4.1.1. Weighted normal bundle. Let X be a regular scheme.

Let J be a Q-ideal locally written as J = (u
1/w1

1 , . . . , u
1/wk

k ), and let AJ =
OX [t−1, u1t

w1 , . . . , ukt
wk ]int be the associated Rees algebra. Once can consider the

filtration

{(J a)X}a∈Z≥0
= {AJ ,a}a∈Z≥0

of OX . Then grJ (OX) is a sheaf of graded OX/JX = OV (J )-modules on V (J ),
which is locally on X , isomorphic to the graded ring

grJ (OX) = OX/JX ⊕ (JX/J
2
X)t⊕ . . .⊕ (J i

X/J
i+1)Xt

i ⊕ . . . =

= (OX ⊕ (JX)t⊕ . . .⊕ (J i
X/t

i ⊕ . . .) / (JX ⊕ . . .⊕ (J i
X)ti−1 ⊕ . . . =

= AJ [t−1]/(t−1AJ [t−1]) = Aext
J /(t−1Aext

J ) = OB/(t
−1 · OB) =

= OX [t−1, u1t
w1 , . . . , ukt

wk ]/(t−1) = OV (J )[u1t
w1 , . . . , ukt

wk ],

where ui is in wi gradation. We shall call the corresponding scheme the weighted
normal bundle at the center J , and denote it by

NJ (X) := Spec(grJ (OX)).

Remark 4.1.2. A similar idea was considered independently in [QR22].
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4.1.3. The ideal of the initial forms. With any function f ∈ OX,p, regular at p ∈
V (J ), such that f ∈ ((J a)X r (J a+1)X), for a certain a ∈ N one can associate the
unique homogenous element- the initial form

in(f) ∈ ((J a)X/(J
a+1)X)ta ⊂ grJ (OX).

Similarly, we associate with an ideal sheaf I, the filtration Ia := I ∩ (J a)X , where
a ∈ N, and its ideal of the initial forms on NJ (X):

in(I) =
⊕

a∈Z≥0

(Ia/(Ia+1)ta =
⊕

a∈Z≥0

(Ia + (J a+1)X)/(J a+1)Xt
a ⊂ grJ (OX).

4.1.4. The weighted normal bundle and the exceptional divisor. The computations
above imply the following extension of a classical result of Huneke-Swanson on
extended Rees algebras and smooth blow-ups [HS06, Definition 5.1.5].

Lemma 4.1.5. Let X be a regular scheme and σ : B → X be the full cobordant
blow-up of the center J . Then the exceptional divisor VB(t−1) is isomorphic to
NJ (X):

VB(t−1) = SpecX(OB/(t
−1)) ≃ NJ (X)

♣

4.1.6. The strict transform and the ideal of the initial form. We will need the above
identification in the context of the strict transforms of the ideals.

Lemma 4.1.7. With the previous assumptions and notation. Let I ⊂ OX be an
ideal sheaf on X. Let σs(I) ⊂ OB be the strict transform of I. Then the natural
isomorphism OB/(t

−1)→ grJ (OX) takes σs(I)|V (t−1) to in(I).

Proof. Let f ∈ I such that f ∈ (J a)X r (J a+1)X . Then the strict transform
σs(f) = taf ∈ (J a)Xt

a ⊂ OB, and its reduction modulo t−1 is in OB/(t
−1 · OB) =

grJ (OX) in the gradation

(J a)Xt
a/(t−1OB ∩ OXt

a) = ((J a)X/(J
a+1)X) · ta,

and naturally and bijectively corresponds to in(f) ∈ (J a)X/(J a+1)Xt
a ⊂ grJ (OX).

♣

4.1.8. Weighted normal cone. One can extend the construction of the weighted
normal bundle of a center J on a regular scheme to the weighted normal cone at
any Rees algebra R =

⊕
i∈Z≥0

Rat
a ⊂ OX [t] on any noetherian scheme X . Consider

the associated gradation

grR(OX) =
⊕

a∈Z≥0

((Ra)X/(Ra+1)X)ta = R/(R ∩ t−1R).

Then by the weighted normal cone of X at R we shall mean

CR(X) := SpecV (R)(grR(OX))

Definition 4.1.9. Let X be a regular scheme, and Y ⊂ X be an integral, closed
subscheme with an ideal sheaf IY . Let J be a center on X with V (J ) ⊂ Y . Denote
by

RJ ,Y := OY · AJ = OY (OX [J t]X)

the induced Rees algebra on Y . Then by the weighted normal cone of Y at V (J )
we mean

CJ (Y ) := SpecV (J )(CRJ ,Y (Y )) = SpecV (R)(grRJ ,Y
(OY )).
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Lemma 4.1.10. With the above notation and assumptions

CJ (Y ) = SpecV (R)(grRJ ,Y
(OY ))

is the closed subscheme of the weighted normal bundle NJ (X) which is defined by
in(IY ) ⊂ grJ (OX).

Proof. Consider the surjective morphism of sheaves φ : AJ → RJ ,Y . Its kernel is
generated by (IY · OX [t]) ∩ AJ . So

RJ ,Y ≃
⊕ (J a)X
IY ∩ (J a)X

· ta.

The morphism φ defines the surjective morphism

grJ (OX) =
⊕

(J a)X/(J
a+1)Xt

a → grR(OY ) =
⊕ (J a)X

(J a+1)X + (IY ∩ (J a)X)
·ta.

Its kernel is exactly

in(IY ) =
⊕ ((IY ∩ (J a)X) + (J a+1)X

(J a+1)X
· ta.

♣

Remark 4.1.11. Assume that X is a variety over an algebraically closed field
K and B is the cobordant blow-up of a center J . It follows from Lemmas 4.1.5,
4.1.7, that when considering the natural projection π : B → A1 = Spec(K[t−1] we
obtain the deformation of the X = π−1(a), where a 6= 0 to the the normal weighted
cone NJ (X) = π−1(0) = VB(t−1). Its restriction to πC : C := V (σs(I)) → A1

determines the deformation of Y to the normal weighted cone CJ (Y ), with Y =
π−1
C (a) for a 6= 0 and CJ (Y ) = π−1

C (0) = VC(t−1). This observation was made by
Quek and Rydh in [QR22].

4.2. Almost homogenous singularities and their resolution. For any ideal
I on a regular scheme X let

Sing(V (I)) := Sing(SpecX(OX/IY ))

denote the singular locus of the scheme SpecX(OX/IY ).

Definition 4.2.1. Let X be a regular scheme. Let Y ⊂ X be an integral closed
subscheme with an ideal sheaf IY . We say that a regular subscheme Z ⊂ Y is an
almost homogenous singularity of Y if

(1) The singular locus of Y is Sing(Y ) = Z.
(2) There is a center J on X , such that V (J ) = Z, and

Sing(CJ (Y )) = V (in(J )) = Z ⊆ NJ (X).

Theorem 4.2.2. Let X be a regular scheme. Let Y ⊂ X be an integral closed
subscheme. Let Z ⊂ Y be an almost homogenous singularity of Y for a center J .
Let NJ (X) be the weighted normal bundle of X at J , and CJ (Y ) ⊂ NJ (X) be
the weighted normal cone of Y at J . Assume that either X is universally catenary
or the codimension of each component of CJ (Y ) r Z in NJ (X) is equal to the
codimension of Y in X.

Then the cobordant blow-up B+ → X defines a cobordant resolution of Y . That
is, the strict transform Y ′ of Y is a regular subscheme of B+ of the codimension
equal to the codimension of Y in X.



66 J. W LODARCZYK

Proof. The problem is local onX . Thus we can assume that J = (u
1/w1

1 , . . . , u
1/wk

k )
and the full cobordant blow-up of J is given by

σ : B = Spec(OX [t−1, tw1 u1, . . . , t
wkuk]→ X.

Assume that X is universally catenary, and thus B is catenary. Let d be the
codimension of Y in X . Then for the morphism σ− : B− = X × Gm → X , the
inverse image σ−1

− (Y ) is irreducible of codimension d. So it is its closure Y ′ :=

σ−1(Y ), which is the strict transform of Y :

codimB(Y ′) = d

Note that by the definition of the strict transform, t−1 is not a zero divisor of
OB/IY ′ . Then, by the Krull Hauptidealsatz, we have that each component of
Y ′ ∩ V (t−1) is of codimension 1 in Y ′, and the codimension d + 1 in B. We
conclude that each component of Y ′ ∩ V (t−1) is of codimension d in V (t−1).

Note that Sing(Y ′) r V (t−1) = Sing(Y ′) ∩B− is contained in

VB−(u1, . . . , uk) = VB−(u1t
w1 , . . . , ukt

wk) = VB−(u′1, . . . , u
′
k),

where u′i = uit
wi . On the other hand, by the assumption,

Sing(in(CJ (Y )) ⊂ V (u1t
w1 , . . . , unt

wn)

so via isomorphism from and Lemma 4.1.7 we obtain

Sing(Y ′ ∩ VB(t−1)) ⊂ VB(u′1, . . . , u
′
n) ∩ VB(t−1).

Then, by the assumption on codimension for any point p ∈ (Y ′ ∩ V (t−1)) r
V (u′1, . . . , u

′
n), we can find parameters v1, . . . vd ∈ (OB/t

−1) · IY ′ at p which van-
ish on Y ′ ∩ V (t−1). But these parameters come from local parameters in IY ′

on B at p. So they define a regular subscheme Y ′′ of B of codimension d, con-
taining locally Y ′. Thus Y ′′ locally coincides with Y ′ which must be regular at
p ∈ V (t−1)rVB(u′1, . . . , u

′
n). Consequently Sing(Y ′) is contained in VB(u′1, . . . , u

′
n),

and Y ′ is a regular subscheme of B+ = B r VB(u′1, . . . , u
′
n) of codimension d.

♣

As a corollary from Theorem 4.2.2, we obtain the following:

Theorem 4.2.3. Let X be a smooth scheme over a field K of any characteristic.
Let Y ⊂ X be a closed integral subscheme of X admitting an almost homogenous
singularity Z ⊂ Y . There is a resolution of Y at Z, that is, a projective birational
morphism φ : Y res → Y from a smooth variety Y res with the exceptional locus
Z ⊂ Y , such that φ−1(Z) is an SNC divisor on Y ′.

Proof. Take the cobordant resolution B+ → X from Theorem 4.2.2. By Corollary
5.2.9, the geometric quotient B+/Gm is locally toric, and thus it can be canonically
resolved by the combinatorial method of [W lo20, Theorem 7.17.1]. This produces
the projective birational resolution Y ′ → Y of Y such that the inverse image of the
singular point is an SNC divisor.

♣

A typical situation where the theorem can be applied is an isolated singularity.

Example 4.2.4. In Example 3.2.2 with the singularity

f = xc11 + . . .+ xcnn
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we can assume that the characteristic of the field is nonzero and the singular locus is

the origin V (x1, . . . , xn). Then the the cobordant blow-up of J = (x
1/w1

1 , . . . , x
1/wn
n )

with w1c1 = . . . = wncn resolves the singularity. The same is still valid if

inJ (f) = xc11 + . . .+ xcnn ,

and we assume that both Sing(V (inJ (f)) and Sing(V (f)) is the origin.

Example 4.2.5. Consider the mixed characteristic hypersurface Y in X = A2
Z
r

V (k), where k ∈ Z, defined by

f = xp + pp + yk ∈ Z[1/k][x, y],

with p 6 |k. Taking the derivative of the ideal (f) over Z[1/k] we get

D(f) = (xp + pp + yk, pxp−1, kyk−1)

we see that Sing(f) ⊆ V (xp + pp + yk, pxp−1, kyk−1) = V (x, y, p). Thus Y := V (f)
has an isolated singularity V (x, y, p). After the coordinate change x′ := x + p we
get the equation:

f = x′
p
− p · px′

p−1
+ . . .+ p · pp−1x′ + yk

Consider the center

J := ((x′)1/w1 , p1/w2 , y1/w3)

with the integral weights satisfying

pw1 = pw2 + w1 = kw3.

We obtain the initial form

in f = x′
p

+ ppx′ + yk ∈ Zp[x′tw1 , ptw2 , ztw3 ].

Here x′, p, y correspond to the graded elements x′tw1 , ptw2 , ztw3 . Taking derivatives
over Zp with respect to the free variables x′, p, y on Zp[x′, p, z] we obtain

D(in f) = (x′
p

+ ppx′ + yk, pp, kyk−1).

This implies that

Sing(in(f)) ⊂ V (x′
p

+ ppx′ + yk, pp, kyk−1) = V (x′, y, p) = V (J ).

Thus f defines an almost homogenous singularity for J and can be resolved by a
single cobordant blow-up of J .

Observe that the seemingly natural center J1 = (x1/k, p1/k, y1/p) does not define
an almost homogenous singularity (for J1), and the corresponding cobordant blow-
up does not resolve singularity. In such a case

in(f) = xp + pp + yk = (x + p)p + zk ∈ Zp[x, y, p],

whence Sing(in(f)) = V (x + p, z) ) V (J1). This also motivates the coordinate
change above.
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4.3. Partial resolution by the invariants. The method can be linked to differ-
ent invariants and is related to the characteristic zero method.

For any ideal I on a regular scheme X , and an integer d let

supp(I, d) := {p ∈ X | ordp(I) ≤ d}.

Theorem 4.3.1. Let I be an ideal on a regular scheme X. Let d be any natural
integer. Assume that there exists a center J such that

(1) supp(I, d) = V (J ) ⊂ X, and
(2) supp(in(I), d) = V (J ) ⊂ CJ(X).

Then for the cobordant blow-up σ+ : B+ → X of J , we have:

ordB+
(σs(I)) < d

Proof. Let J = (x
1/w1

1 , . . . , x
1/wk

k ) be the center. If q ∈ V (t−1) r V (x′1, . . . , x
′
k),

then

ordq(σ
s(I) ≤ ordq(σs(I)|V (t−1)) = ordq(in(I)) < d.

If q ∈ BrV (t−1)rV (x′1, . . . , x
′
k) = B−rV (x′1, . . . , x

′
k) = (XrV (J ))×Gm, then

since σ(q) ∈ X r V (J ) we conclude that

ordq(σs(I)) = ordσ(q)(I) < d.

♣

4.4. Resolution principle in any characteristic. In practice, one can replace
”ord” with a different type of invariants satisfying the properties used in the proof
of the above lemma, like some modifications of the Hilbert-Samuel function or inv
and invE for smooth schemes in characteristic zero or certain schemes in positive
or mixed characteristic. One can link it to a more general principle:

Let σ : B → X be a full cobordant blow-up of a center J . Let Y ⊂ X be a
closed subscheme. Let D = VB(t−1) be the exceptional divisor of π.

• The behavior of the strict transform σs(Y ) at the part of the vertex Vert(B)r
D of B is controlled by the behavior of Y at V (J ).
• The behavior of the strict transform σs(Y ) at the part of the vertex Vert(B)∩
D is to a great extent controlled by the weighted normal cone CJ (Y ) to
the center V (J ).

Example 4.4.1. Let k be a field of characteristic p > 2. Let Y ⊂ X = Spec k[x, y, z]
be a closed subscheme defined by

f = xp + ypz + zk + xp−1y2 + xp+1yz,

of order p > 2 with p 6 |k(k − 1), k ≥ 2p+ 1. Computing D2(f) we obtain that

supp(f, 3) = V (D2(f)) = V (x, y, z).

Then by solving the equations for the weights

pw1 = pw2 + w3 = kw3

we obtain that the initial form with respect to J = (x1/w1 , y1/w3 , z1/w3) is given
by

in(f) = xp + ypz + zk.

Then by the similar argument as before

supp(in(f), 3) = V (x, y, z) = V (J ) ⊂ CJ (X)
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The cobordant blow-up at J decreases the maximal order to 2, and the equation
can be solved by further cobordant blow-ups.

Observe that if one considers ”characteristic zero” center J1 := (x
1

p+1 , y
1
p , z

1
p )

associated with maximal admissible Rees center OX [xt1/p, yt1/(p+1), z1/(p+1))] then
in(f) = xp + ypz, and

supp(in(f), 3) = V (x, y) 6= V (J1)

In fact the full cobordant blow-up B′
+ → X of J1 transforms f into

xp + ypz + t(p+1)−kzk + t1−pxp−1y2 + t−3p−1xp+1yz

On B+ = BrV (x, y, z) in the chart BrV (z), the maximal order does not decrease:

maxordB+
(σs(f)) = p.

4.5. Homogenous subschemes. Let V be a regular scheme and

X := An
V = SpecV (OV [x1, . . . , xn]))

be an affine space over V . Let J = (x
1/w1

1 , . . . , x
1/wk

k ) be a center on X . The
center J defines the gradation on OV [x1, . . . , xn] via the isomorphism xi 7→ twixi
for i ≤ k, xi 7→ xi:

φ : OV [x1, . . . , xn]→ OV [tw1x1, . . . , t
wkxk, xk+1, . . . , xn]

It takes the monomial xα = xa1

1 · . . . ·x
an
n ∈ J

a1w1+...+akwk

X to ta1w1+...+akwk ·xα.

Let f ∈ J a
XrJ a+1

X be a homogenous element in OX = OV [x1, . . . , xn] of grading
a. Then

φ(f) = taf ∈ OV [tw1x1, . . . , t
wkxk, xk+1, . . . , xn].

The latter can be interpreted as the strict transform of f inside of the cobordant
algebra OB = OX [t−1, tw1x1, . . . , t

wkxk].

Definition 4.5.1. With the above notation and assumption any subscheme of
X defined by a homogenous ideal I will be called a homogenous subscheme with
respect to the center J .

This leads to a simple but useful result.

Lemma 4.5.2. With the assumption and notation above. Let I ⊂ OV [x1, . . . , xn]
be a homogenous ideal with respect to J . Let σ : B → X be the cobordant blow-up
of J , and π : Y := X × A1 → X be the standard projection. Then

B = Spec(OX [t−1, tw1x1, . . . , t
wkxk] = Spec(OV [t−1, tw1x1, . . . , t

wkxk, xk+1, . . . , xn]

Thus there exists an isomorphism

B ≃ Y = X × A1

over V , defined by

B = Spec(OV [t−1, tw1x1, . . . , t
wkxk, xk+1, . . . , xn]→ Y = Spec(OV [x1, . . . , xn, y])

which takes

• xi 7→ twixi for i ≤ k,
• xi 7→ xi, i > k
• y 7→ t−1,
• OY · I to the strict transform ideal σs

B(I)
• V (x1, . . . , xn) to the vertex V of B
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♣

Example 4.5.3. The lemma explains the transformation of the singularity

f = xc11 + . . .+ xckk ,

from Example 3.2.2 which is taken to

σc(f) = σs(f) = (x′1)c1 + . . .+ (x′k)ck .

Example 4.5.4. The following example is due to Narasimhman [Nar83]. Let

f = x2 + yz3 + zw3 + y7w ∈ k[x, y, z, w],

where k is a field of characteristic 2. Its singular locus Sing(f) coincides with

supp(f, 2) = V (D(f)) = V (f, Y, Z,W ),

where

Y := Dy(f) = z3 + y6w, Z := Dz(f) = yz2 + w3, W := Dw(f) = zw2 + y7.

Note that F := f + yY + zZ = x2 + yz3 is again binomial. Hence Sing(f) =
V (F, Y, Z,W ) is binomial, so it is a (non-normal) toric subvariety of A4 of dimension
1. One can compute that it coincides with the image t 7→ (t32, t7, t19, t15).

Observe that the subscheme V (f) is homogenous with respect to the center

J := (x1/32, y1/7, z1/19, t1/15).

Thus, by Lemma 4.5.2, the cobordant blow-up of J transforms X into B ≃ X×A1
k

with the same equation f describing σs(f). Then B+ = B r V (x, y, z, w). The
singular locus of σs(f) on B+ is simply the product

{(t32, t7, t19, t15) | t 6= 0} × A1.

The functions Y , Z, and W are semiinvariant on B. Moreover Dz(Y ) = z2,
Dw(Z) = w2, and Dy(W ) = y6 are invertible on an open subset Byzw = B r
V (yzw). On the other hand Dy(Y ) = Dz(Z) = Dw(W ) ≡ 0. Thus any two of
Y, Z,W form a partial system of local parameters on Byzw. Furthermore the set
Byzw contains

Sing(σs(f)) ∩B+ = V (σs(f), Y, Z,W ) ∩B+ = V (σs(f), Y, Z,W ) r V (x, y, z, w),

as yzw is invertible on {(t32, t7, t19, t15) | t 6= 0} × A1. In addition we can write on
Byzw:

σs(f) = x2 +
1

z2
Y Z +

y6w4

z2
= X2 +

1

z2
Y Z,

where X := x+ y3w2

z , z is a unit, and X,Y, Z form a partial system of local parame-
ters. The subscheme VB+

(σs(f)) is almost homogenous on Bxyz ⊂ B+ with respect
to the Gm-stable smooth center described as J1 := (X,Y, Z) on Bxyz ⊂ B+. In
fact, J1 is an ordinary ideal defining a smooth locus Sing(σs(f)). The cobordant
(or the ordinary) blow-up of J1 determines a cobordant resolution. Further ap-
plying locally toric resolution of [W lo20, Theorem 7.17.1] resolves the singularity
functorially with SNC exceptional divisor.

Alternatively, the singularity can be resolved using the characteristic zero invari-
ant ”inv,” but the process is longer and requires three cobordant blow-ups.
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Remark 4.5.5. The Narasinhman example shows that the maximal contact, or
even any regular hypersurface containing equimultiple locus, that is the subset of
the points with the equal multiplicity of a function does not exist. In characteristic
zero such property follows immediately from the definition of maximal contact
u ∈ Da−1(I) at a point p, where ordp(I) = a. In our setting it is a consequence
of Lemma 3.6.24(1). The equimultiple locus supp(f, 2) = Sing(f) has embedding
dimension 4 and cannot be embedded into a smooth hypersurface. In fact one can
show that the invariant ”inv” in positive characteristic is not upper semicontinuous,
and its locus does not have good properties.

4.5.6. Cobordant blow-ups vs blow-ups at smooth centers. In the cobordant resolu-
tion of the Narasinhman example, the second cobordant blow-up was at the smooth
center (X,Y, Z) with weights equal to 1. In general, we have:

Lemma 4.5.7. Let X be a regular scheme. Let B+ → X be a cobordant blow-up
of J , locally given by J = (u1, . . . , uk) with weights 1. Let BlJ (X) → X be the
ordinary blow-ups of the smooth center J . Then the induced quotient morphsim

B+ → B+/Gm ≃ BlJ (X)

is a locally trivial Gm-bundle.

Proof. The problem is local on X . Then B = SpecX(OX [t−1, u1t, . . . , ukt]), and
B+ is covered by Buitw = B r V (uit) = SpecX(OX [t−1, u1t, . . . , ukt, (uit)

−1]), and

Buit/Gm = SpecX(OX [
u1t

uit
, . . . ,

ukt

uit
]) = SpecX(OX [

u1

ui
, . . . ,

uk
ui

]).

Thus the induced morphism B+/Gm → X is a weighted blow-up which coincides
with the standard blow-up of J . Since we have that t−1 = (uit)

−1ui, we can write

OBuit
= OX [

u1

ui
, . . . ,

uk
ui

])[t−1, uit, (uit)
−1] = OX [

u1

ui
, . . . ,

uk
ui

])[uit, (uit)
−1].

Thus locally B+ ≃ (BlJ )×Gm. ♣

5. Appendix

5.1. Cobordant blow-ups of Rees algebras and generalized weighted cen-

ters.

5.1.1. Generalized cobordant blow-ups.

Definition 5.1.2. Let R =
⊕

i∈Z≥0
Rat

a ⊂ OX [t] be any Rees algebra on a Noe-

therian scheme Y , and let R[t−1] be an extended algebra of R. Then the full
cobordant blow-up of R is given by B := SpecX(R[t−1]) → X . The cobordant
blow-up is simply B+ := B r V (R).

5.1.3. Generalized centers. We generalize the centers accordingly.

Definition 5.1.4. A Rees center on a Noetherian scheme X is an extended Rees
algebra Aext it can be locally presented as Aext = OX [t−w, t1/a1f1, . . . , t

1/akfk],
where V (f1, . . . , fk) is a regular subscheme of X .

The following is a simple consequence of the definition:
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Lemma 5.1.5. If f : X → Y is a morphism of Noetherian schemes, and RY is
a Rees algebra on Y then RX = OX · RY is the induced Rees algebra on X. Let
BY → Y and BX → X denote the full cobordant blow-ups of Y at RY and X at RX

respectively. Then there are induced morphisms fB : BX → BY , fB+
: BX+ → BY +

commuting with cobordant blow-ups to X and Y . Furtheremore, if X → Y is a
closed immersion, then BX → BY and fB+

: BX+ → BY + are so.

Proof. The morphism f : X → Y determines the homomorphism of graded sheaves
RY → f∗RX , so that for any open subset U ⊂ X and V ⊂ Y such that f(U) ⊆ V ,
we have the induced graded homomorphisms RY (V ) → RX(U) which gives rise
to BX → BY taking the vertex VX to the vertex VY . If f is a closed immersion
then X can be thought as a closed subscheme of Y and we get the induced sur-
jective homomorphism of graded OY -modules RY → RX which defines the closed
immersions fB : BX → BY , fB+

: BX+ → BY +. ♣

5.1.6. The maximal admissible centers on the subscheme are regular.

Lemma 5.1.7. Let X be a smooth variety over a field k of characteristic zero,
and E be an SNC divisor on X. Let Y ⊂ X be a reduced closed subscheme of a
X which is not locally contained in the divisor E, and let IY be its ideal on X.
Let Aext be a maximal IY -admissible center locally at a point p ∈ Y of the form
Aext = OX [t−w, t1/a1u1t

1/ak , . . . , t1/akuk]. Then

OY · A
ext = OY [t−w, t1/a1f1t

1/ak , . . . , t1/akfk],

for fi := ui|Y , is a Rees center on Y .

Proof. By definition IY t ⊂ A
ext. So

Y = V (IY ) = V (OX [IY t]) ⊇ V (Aext) = V (u1, . . . , uk)

Consequently

V (f1, . . . , fk) = V (u1, . . . , uk)|Y = V (u1, . . . , uk)

is regular on Y .
♣

5.2. Geometric quotient and cobordant blow-ups. In this section, we review
some standard properties of the torus actions, usually stated over algebraically
closed fields, and extended here to noetherian schemes.

Definition 5.2.1. Let a torus T = Gl
m, where Gm = Spec(Z[t, t−1]) act on a

scheme X . We say that an action of a torus T on scheme X is relatively affine if
for any point p ∈ X admits an open T -stable affine neighborhood U of p.

Let π : X → Y be an invariant morphism of schemes. We say that an action of
a torus T on scheme X is relatively affine over Y if for any point p ∈ X there is an
open T -stable affine neighborhood U of p, mapping to an open affine neighborhood
of V of q = π(q) ∈ Y , and a T -equivariant closed immersion

φU : U →֒ V ×An ×Gr
m,

with the diagonal action of T on An × Gr
m, and commuting with the invariant

morphisms
If additionally, X admits geometric quotient, and U , and V can be chosen so

that V ×An×Gr
m admits geometric quotient then we say that T admits relatively

affine geometric quotient over Y .



FUNCTORIAL RESOLUTION BY TORUS ACTIONS 73

We shall need a well known fact for the action of the torus on any affine schemes.

Lemma 5.2.2. Let X be an scheme with a relatively affine action of torus T , with
the group of characters χ(T ). Then OX admits a natural grading and

OX =
⊕

α∈χ(T )

(OX)α,

where T acts on O(X)α by the character tα.

Proof. We can reduce the situation to the case of affine X . The natural grading on
O(X), and thus on the sheaf OX is given by the coaction

ρ : O(X)→ O(X)⊗ Z[T ],

where Z[T ] = Z[t±1 , . . . , t
±
m]. For any f ∈ O(X), ρ(f) =

∑
cαt

α, where cα ∈ O(X).
Moreover it follows from the associativity

(idO(X) ⊗ µ) ◦ ρ = (ρ× idZ[T ]) ◦ ρ

where
µ : Z[T ]→ Z[T ]⊗ Z[T ], µ(t) = tt′

is defined by the group multiplication, such that
∑

cα(tt′)α =
∑

ρ(cα)(t′)α,

and hence ρ(cα) = cαt
α. From existence of the identity map 1T : Z[t±1 , . . . , t

±
m]→ Z,

such that
(1T ⊗ idO(X)) ◦ ρ = idO(X)

we deduce that

f = (1T ⊗ idO(X)) ◦ ρ(f) = (1T ⊗ idO(X))(
∑

cαt
α) =

∑
cα.

Thus any element decomposes into a finite sum of the homogenous elements cα of
grading α, and

O(X) =
⊕
O(X)α,

where T acts on O(X)α by the character tα. ♣

Definition 5.2.3. Let X be a scheme with with a relatively affine action of torus
T . By a T -stable ideal we mean a homogenous ideal I of OX =

⊕
α(OX)α.

Definition 5.2.4. Let X be a normal scheme with a relatively affine action of
torus T . A Q-ideal J on a normal scheme is said to be T -stable if is of the form
J = I1/n, where I is a T -stable ideal.

Lemma 5.2.5. Let J be a T -stable center on a regular scheme X with a relatively
affine action of T , and a T -stable SNC divisor E. Then one can write locally

the center J as J = (x
1/w1

1 , . . . , x
1/wk

k ), where x1, . . . , xk is a partial system of
semiinvariant local parameters.

Proof. We can assume that J has the form J = (x
1/w1

1 , . . . , x
1/wk

k ) at a point
p ∈ X . Write x1 ∈ (J w1)X as the sum of homogenous components x1 =

∑
cα. We

conclude that ordp(cα) = 1 for some x′1 := cα ∈ (J w1)X . So, by Lemma 3.1.29, one
can replace x1 with a semiinvariant x′1 in the presentation of J . By the induction
on dimension, we assume that J|V (x′

1
) = ((x′2)1/w2 , . . . , (x′k)1/wk) is represented

by semiinvariant local parameters on V (x′1). Moreover, there is a surjection of
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graded rings OX → OV (x′
1
) = OX/V (x′1). Then x′i can be lifted to the homogenous

elements in OX . Set

J ′ := ((x′1)1/w1 , . . . , (x′k)1/wk) = (x′1)1/w1 + ((x′2)1/w2 , . . . , (x′k)1/wk).

Note that such a presentation is independent of the liftings of the elements x′i,
i ≥ 2 on V (x′1) to U . Then J|V (x′

1
) = J ′

|V (x′
1
), and their saturated powers

((J|V (x′
1
))

a))sat = ((J ′
|V (x′

1
))

a)sat for sufficiently divisible a are equal as ideals. Then

in the completion

ÔX,p = x′1 · ÔX,p ⊕ ÔX,p/(x
′
1)

both ideals are equal so

Ĵ a := (x′1)a/w1 + ((J|V (x′
1
))

a))sat = (x′1)a/w1 + ((J ′
|V (x′

1
))

a))sat = Ĵ ′a.

This implies that J a = J ′a as ideals and J = J ′ as Q-ideals. ♣

Lemma 5.2.6. Let I0 be an ideal on a regular scheme X0, and X → X0 be a
scheme obtained from X0 by a sequence of l cobordant blow-ups of regular (possibly
reducible) weighted centers T -stable for the induced torus actions, and I = σs(I)
be its controlled transform. Then X is a regular scheme with the relatively affine
action of torus T = Gl

m over X0 and X admits a relatively affine geometric quotient
X → X/T of T over X0. Moreover σs(I) is a T -stable ideal on X.

Proof. We use the induction on l. Let X → X0 be a sequence of l − 1 equivariant
cobordant blow-ups, and let B+ → X be the cobordant blow-up of a T -stable center
J . Let π : X → X/T l−1 be a T -invariant morphism defined by the geometric
quotient. Then B and B+ admit an action of T l := T l−1 × Gm, and πσ+ : B+ →
X/T is T l-invariant. In order to show that there exists a geometric quotient B+/T

l

it suffices to show that it exists for σ−1
+ π−1(Vα) for open affine cover Vα of X/T .

By the induction we can assume that each open affine U := π−1(Vα) admits a
T l−1-equivariant embedding.

φ : U
φ
→֒ W := U0 × An ×Gr

m

Furthermore the closed image φ(U) is generated by the seminvariant parameters
v1, . . . , vr ∈ Γ(W,OW ).

Also we can assume that the center on U is described as J = (x
1/w1

1 , . . . , x
1/wk

k ).
Consider the local presentation of B as in Section 2.5.2. Let us introduce the free
variables denoted by t−1, x′1, . . . , x

′
n with the action

Spec(OU [t−1, x′1, . . . , x
′
k]) r V (x′1, . . . , x

′
k) = U × (Ak+1 r V (x′1, . . . , x

′
k)),

with the action of Gm on Ak+1 = Spec(Z[t−1, x′1, . . . , x
′
k])), given by

(t−1 · t−1, tw1x′1, . . . , t
wkx′1),

Then BU := σ−1(U) is a closed subscheme of U × (Ak+1 r V (x′1, . . . , x
′
k)):

(BU )+ = Spec(OU [t−1, x′1, . . . , x
′
k]) r V (x′1, . . . , x

′
k))/(t−wix′i − xi).

We consider the action of T l−1 on (t−1, x′1, . . . , x
′
k) as on the corresponding elements

of B, so the action of T l−1 on t−1 is trivial and the action of T l−1 on x′i is the same
as on twixi.
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Then for (BU )xi = D(xi) = W r V (xi) ⊂ (BU )+ we obtain the T l-equivariant
closed embedding:

(BU )i ⊂ Spec(OU [t−1, x′1, . . . , x
′
k, (x

′
i)

−1]) = U × Ak ×Gm →֒ U0 × An+k ×Gr+1
m ,

such that U0 × An+k ×Gr+1
m admits geometric quotient of the group action of T l.

♣

Proposition 5.2.7. Let Y be a regular affine scheme. Let T act on An × Gl
m

diagonally so that the geometric quotient exists. Let Z be a closed T -stable regular
subscheme of W := Y ×An×Gl

m defined by a partial system of semiinvariant local
parameters.

Then for any point p ∈ Z there is an open affine T -stable neigbourhood U ⊂ Z
of p, over an open affine V ⊂ Y , and a T -equivariant closed immersion

U
φ
→֒WU := W = V ×Ga

m × (As
k ×Gb

m)

for some a, b, s, and the induced fiber square diagram :

UZ
φ
→֒ W = V ×Ga

m × (As
k ×Gb

m)
π
→ As

k ×Gb
m

πX ↓ ↓ πA ↓

UZ/T
φ/T
→֒ W/Z = (V ×Ga

m)×Xσ
π/T
→ Xσ = (As

k ×Gb
m)/T

.

(1) T acts trivially on the factor Ga
m.

(2) T acts diagonally on the factor As ×Gb
m, admits a geometric quotient of a

diagonal action of T , and the action has finite stabilizers.
(3) φ, and φ/T are closed immersions, with their closed images φ(U), and

φU/T (U/T ) is defined by the system of invariant parameters v1, . . . , vk ∈

(Γ(W,OW )T ), whose restrictions to

(π/T )−1(q0) = (V ×Ga
m)× Spec(k(q0))

also define regular parameters.

Proof. Let x1, . . . , xs, for s ≤ n be the coordinates on As which are noinvertible at
p on

W0 = Y × An ×Gl
m = Y × As × An−s ×Gl

m,

and ys+1, . . . , yn+l−s are the coordinates on An−s ×Gl
m which are invertible at p.

We can replace W with the open subset W0 = Y ×As×Gc
m, where c := n−s+ l,

and Z with U := Z ∩W0

First, we show:

Lemma 5.2.8. There is an open T -stable neighborhood U of any point p and a
fiber square:

U
φ
→֒ WU := (V ×Ar ×Gd

m)
πU ↓ πW ↓

U/T = Spec(O(U)T )
φ/T
→֒ WU/T := V × (Ar ×Gs

m)/T

,

for some d, r ∈ N, where φ, and φ/T are closed immersions, with their closed
images φ(U), and φU/T (U/T ) is defined by the system of invariant parameters

v1, . . . , vk ∈ (Γ(W,OW )T ), whose restrictions to V × {0} × Gd
m also define regular

parameters.
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Proof. By the assumptions the image U ⊂ W0, is described locally by a partial
system of semiinvariant parameters v1, . . . , vt.

Write any semiinvariant parameter vj as

vj =
∑

cjβy
β,+

∑

α6=0

cjαβx
αyβ = vj0 + wj

0

where cjαβ ∈ O(Y ), vj0 :=
∑
cjβy

β , and wj
0 :=

∑
α6=0 c

j
αβx

αyβ, with all monomials
semiinvariant of the same weight. We will modify the sets of local parameters using
the induction on j.

Assume that v1, . . . , vj−1 is the set of first j−1 local parameters, which are invari-
ant and such that their images in

mp

(x1,...,xs)+m2
p

are linearly independent. Consider

two cases.
Case 1. vj0 6∈ (v1, . . . , vj−1) + (x1, . . . , xs) +m2

p.

Then multiplying vj by the inverse y−β for some β occuring in vj0 we reduce
the situation to the invariant parameter v′j := y−βvj on U0 × As × Gd

m, such that

v1, . . . , vj are invariant with their images in
mp

(x1,...,xs)+m2
p

are linearly independent.

Case 2. vj0 ∈ (v1, . . . , vj−1) + (x1, . . . , xs) +m2
p.

Then at least one cjαβx
αyβ ∈ (x1, . . . , xs) is a parameter at p. Thus xα = xi and

ujαβ := cjαβy
β is invertible at p, and cjαβ is such.

So, after replacing U with Ucj
αβ

, and clearing the unit v′j = (ujαβ)−1vj we can

assume that the semiinvariant parameter v′j is of the form v′j = xi + hj , where

hi :=
∑
aαβx

αyβ. We can write

v′j = xi + hj = xi(1 +
∑

bαβx
αyβ) + h′j = gxi + h′j ,

where h′j :=
∑
dαβx

αyβ, where all xα do not depend upon xi, and

g := 1 +
∑

bαβx
αyβ

is invariant invertible at p. Further shrinking U to Ug and introducing new invertible
variable yr+1 on Gm we obtain the induced T -equivariant embedding

φ : Ug →֒ W ′ = W ×Gm = V × As ×Gr+1
m

such that yr+1 7→ g. This also introduces the additional invariant local parameter
v′′j := yr+1 − g, such that

• v1, . . . , vj−1, v
′′
j , v

′
j , vj+1, . . . , vr is a system of local parameters describing

φ(U) on W ′.
• v1, . . . , vj−1, v

′′
j are invariant with their images in mp/(x1, . . . , xs) +m2

p are
linearly independent.

Then v′j can be written modulo v′′j as

v′j = yr+1xi + hi ∼ xi + h′j · y
−1
r+1

Consider a T l-equivariant automorphism of W ′ taking xi + h′j · y
−1
r+1 7→ xi, and

xj 7→ xj . Thus, after the coordinate change one can assume that the parameter
v′j = yr+1xj . This induces the embedding: into

φ′ : Ug →֒W ′′ := V (xi) = U0 × As−1 ×Gr+1
m ,

and proves Lemma 5.2.8. ♣
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Let φ : U →֒WU := (V ×Ar ×Gd
m) be the closed T -equivariant embedding as in

Lemma 5.2.8, whose image is defined by the invariant parameters v1, . . . , vk such
that their restrictions to closed subscheme V ×{0}×Gd

m also define the parameters.
Consider the splitting Gd

m = Ga
m × Gb

m, where Ga
m = (Gd

m)T is the maximal
subtorus, such that T acts trivially on Ga

m, and transitively on Gb
m. Denote by

y1, . . . , ya the coordinates in Ga
m , and by z1, . . . , zb the coordinates in Gb

m.
Let

π : W := V × As
k ×Gd

m = V ×Ga
m × (As

k ×Gb
m)→ As

k ×Gb
m.

be the natural projection. Denote by q ∈ As
k × Gb

m the image q = π(p), and by
p0 ∈W/T the image of p under the quotient W →W/T .

Any invariant parameter vj can be written as

vj =
∑

cjαβγx
αyβzγ ,

where cjαβγ ∈ O(V ). Then for any γ 6= 0 the action of T on zγ is not trivial. Hence
α 6= 0 as the action on xαzγ is trivial .

This shows that

vj =
∑

cjβy
β +

∑

α6=0

cjαβγx
αyβzγ

Thus the restriction of vj to the smooth fiber

Fq = π−1(q) ≃ V ×Gb
m × Spec(k(q)) ⊂ V × {0} ×Gd

m

determines the parameters on Fq defined by
∑
cjβy

β .

Let q0 ∈ As
k ×Gb

m/T be the image of q. The geometric quotient of W by T can
be written as

W/T = U0 ×Gb
m × (As

k ×Gb
m)/T = U0 ×Ga

m ×Xσ,

where

Xσ := (As
k ×Gb

m)/T

is a toric variety with the abelian quotient singularities.
The composition of morphisms

ψ : UZ
φ
→֒W = U0 ×Ga

m × (As
k ×Gb

m)
π
→ As

k ×Gb
m

induces

ψ/T : UZ/T
φ/T
→֒ W/T = U0 ×Ga

m ×Xσ
π/T
→ Xσ = (As

k ×Gb
m)/T,

for which the restrictions of v1, . . . , vk ∈ O(UZ/T ) = O(UZ)T at p0 to the fiber

(π/T )−1(q0) = (V ×Ga
m)× Spec(k(q0))

also define regular parameters.
♣

Corollary 5.2.9. Let X0 be a smooth variety over a field k. Let X be obtained by
a sequence of m cobordant blow-ups at smooth centers from Y , equivariant for the
induced torus actions. Let Z be a regular T -stable closed subscheme of X, where
Gm = Spec(k[t, t−1]), and T = Gm. Then the geometric quotient Z/T exists.
Moreover, locally there exists a smooth morphism

UZ/T → Xσ := (As
k ×Gb

m)/T,
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where UZ ⊂ Z is an open affine T -stable and Xσ is a toric variety over k with
abelian quotient singularities.

Proof. By Lemma 5.2.6, and Proposition 5.2.7, for any point p0 ∈ Z/T there is a
smooth morphism

π/T : W/T = (V ×Gb
m)×Xσ → Xσ,

and the closed immersion UZ/T →֒ W/T , with the image defined by the functions
v1, . . . , vr ∈ O(W )T = O(W/T ), and its restriction to the smooth fiber

(π/T )−1(q0) ≃ U0 ×Gb
m × Spec(k(q0))

determines a partial system of local parameters. Thus, by [Sta, Lemma 10.99.3.]
the morphism

ψ/T : UZ/T → Xσ := (As
k ×Gb

m)/T

is flat at p0, and, by Lemma [Sta, Lemma 29.34.14(2)], it is smooth at p0.
♣

Remark 5.2.10. The above result is not valid in the mixed characteristic. The
morphism π/T , which is a projection along regular scheme is not flat, in general,
and one needs to work with the presentation from Proposition 5.2.7 directly:

U/T
φ/T
→֒ V ×Xσ

π/T
→ Xσ,

where V is a regular scheme, φ/T is a closed embedding, and π/T is the projection.
Here the image φ/T (U/T ) is defined by local parameters at p0 ∈ φ/T (U/T ) whose
restriction to the regular fiber Fq0 = (π/T )−1(q0), where q0 = (π/T )(p0), are also
parameters.

5.3. Cobordant blow-ups in the logarithmic category. Let X be a loga-
rithmically regular scheme, with Zariski logarithmic structure (or a strict toroidal
variety) and assume that J has a more general form

J = (u
1/w1

1 , . . . , u
1/wk

k ,m
1/wk+1

1 , . . . ,m1/wk+r
r ),

where ui are free parameters and mi are monomials for the logarithmic structure
on X then the full cobordant blow-up B → X at J can be described as

B = Spec(OX [t−1, tw1x1, . . . , t
wkxk, t

wk+1m1, . . . , t
wk+rmr])int,

which is again a logarithmically regular scheme,(respectively strict toroidal variety).
By functoriality, the construction extends to any logarithmically regular schemes
(or toroidal varieties).

Initially, in the papers [ATW17], [ATW20], we considered the stack-theoretic

blow-ups of the centers of the form J = (u1, . . . , uk,m
1/wk+1

1 , . . . ,m
1/wk+r
r ), in the

context of Kummer étale topology on the logarithmic stacks. Then in [ATW19],
we developed the formalism of the stack-theoretic blow-ups of the weighted centers

of the form (u
1/w1

1 , . . . , u
1/wk

k ).
Soon after Quek in [Que20, Section 3.2] studied the stack-theoretic blow-ups of

the more general form

J = (u
1/w1

1 , . . . , u
1/wk

k ,m
1/wk+1

1 , . . . ,m1/wk+r
r ) = (u

1/w1

1 , . . . , u
1/wk

k , Q1/w)

in the context of logarithmic stacks and Kummer étale topology. Here Q is gener-

ated by m
w/wi

i for the corresponding w.
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Math., vol. 134, Birkhäuser, Basel, 1996, pp. 49–93. MR 1395176

[Mor96] Robert Morelli, The birational geometry of toric varieties, J. Algebraic Geom. 5
(1996), no. 4, 751–782. MR 1486987 (99b:14056)

[MP13] Michael McQuillan and Daniel Panazzolo, Almost étale resolution of foliations, J.
Differential Geom. 95 (2013), no. 2, 279–319. MR 3128985

[Nar83] R. Narasimhan, Monomial equimultiple curves in positive characteristic, Proc.
Amer. Math. Soc. 89 (1983), no. 3, 402–406. MR 715853

[Oda88] Tadao Oda, Convex bodies and algebraic geometry—toric varieties and applica-
tions. I, 1988, pp. 89–94. MR 966447

[Pan06] Daniel Panazzolo, Resolution of singularities of real-analytic vector fields in di-
mension three, Acta Math. 197 (2006), no. 2, 167–289. MR 2296055

[QR22] Ming Hao Quek and David Rydh, Weighted blow-ups, posted on March, 31,2022
on Rydh’s website, in preparation.

[Que20] Ming Hao Quek, Logarithmic resolution via weighted toroidal blowings up, arXiv
e-prints (2020), arXiv:2005.05939.

[Rei] Miles Reid, What is a flip?, Colloquium Talk, Univ. Of Utah, Dec , 1992.
[Reid02] Miles Reid, Graded rings and varieties in weighted projective space,

https://homepages.warwick.ac.uk/~masda/surf/more/grad.pdf, 2002.
[Rush07] David E.Rush, Rees valuations and asymptotic primes of rational powers in Noe-

therian rings and lattices, Journal of Algebra 308 (2007), 295-320
[Sat13] Matthew Satriano, Canonical Artin stacks over log smooth schemes, Math. Z.

274 (2013), no. 3-4, 779–804. MR 3078247
[Sta] The Stacks Project Authors, Stacks Project, http://stacks.math.columbia.edu.
[Tha94a] Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent.

Math. 117 (1994), no. 2, 317–353. MR 1273268
[Tha94b] , Toric quotients and flips, Topology, geometry and field theory, World Sci.

Publ., River Edge, NJ, 1994, pp. 193–213. MR 1312182

https://homepages.warwick.ac.uk/~masda/surf/more/grad.pdf
http://stacks.math.columbia.edu


FUNCTORIAL RESOLUTION BY TORUS ACTIONS 81

[Tha96] , Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3,
691–723. MR 1333296
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