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FUNCTORIALITY FOR THE CLASSICAL GROUPS

by J. W. COGDELL, H. H. KIM, I. I. PIATETSKI-SHAPIRO, and F. SHAHIDI⋆

Functoriality is one of the most central questions in the theory of automor-

phic forms and representations [1,2,35,36]. Locally and globally, it is a manifesta-

tion of Langlands’ formulation of a non-abelian class field theory. Now known as

the Langlands correspondence, this formulation of class field theory can be viewed

as giving an arithmetic parameterization of local or automorphic representations

in terms of admissible homomorphisms of (an appropriate analogue) of the Weil-

Deligne group into the Langlands dual group or L-group. When this conjectural

parameterization is combined with natural homomorphisms of the L-groups it pre-

dicts a transfer or lifting of local or automorphic representations of two reductive

algebraic groups. As a purely automorphic expression of a global non-abelian class

field theory, global functoriality is inherently an arithmetic process.

In this paper we establish global functoriality from the split classical groups

Gn = SO2n+1, SO2n, or Sp2n to an appropriate general linear group GLN, associated

to the natural embedding of L-groups, for globally generic cuspidal representations

π of Gn(A) over a number field k. We had previously presented functoriality for

the case Gn = SO2n+1 in [6], but were limited at that time by a lack of suit-

able local tools in the other cases. The present paper is by no means a simple

generalization of [6]. There were serious local problems to be overcome in the

development of the tools that now allow us to cover all three series of classical

groups simultaneously and that will be applicable to other cases of functoriality in

the future. In addition, we have completely determined the associated local im-

ages of functoriality and as a result are able to present several new applications

of functoriality, including both global results concerning the Ramanujan conjecture

for the classical groups and various applications to the local representation theory

of the classical groups.

There are several approaches to the question of functoriality: the trace for-

mula, the relative trace formula, and the Converse Theorem. In this work we use

the Converse Theorem, which is an L-function method. The Converse Theorem

itself states that if one has an irreducible admissible representation Π ≃ ⊗′
Πv

of GLN(A), then Π is in fact automorphic if sufficiently many of its twisted

L-functions L(s,Π × τ), with τ cuspidal automorphic representations of smaller

GLm(A), are nice [7,9]. As a vehicle for establishing functoriality from cuspidal

representations π = ⊗π ′
v of some Gn(A) to an automorphic representation of
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GLN(A), there are three main steps. The first is to construct a candidate lift

Π = ⊗′
Πv. This is done by locally lifting each local component representation πv

of Gn(kv) to Πv of GLN(kv) in such a way that twisted local L- and ε-factors are

matched. At the archimedean places and the finite places where πv is unramified

we may accomplish this local lift by using the local Langlands correspondence, i.e.,

the local arithmetic Langlands classification. At the remaining finite set of places

where πv is ramified we must finesse the lack of a local Langlands correspondence

by using the stability of the local γ -factor under highly ramified twists. This highly

ramified twist has the effect of “washing out” any subtle local properties of the

representation and gives a matching of local representations πv of Gn(kv) and Πv

of GLN(kv) for which the twisted local L- and ε-factors match after this highly

ramified twist. We used this method in [6], however the key new ingredient here

is a uniform method of expressing the local γ -factor as the Mellin transform of

a Bessel function in fairly wide generality which is applicable in all of our cases

as well as many more [55]. With this new general result in hand, the necessary

stability result then follows from the asymptotic properties of the Bessel functions

as in [8]. With this, we can finally lift πv locally to Πv at all places and form

a candidate lift Π = ⊗′
Πv such that L(s,Π × τ) = L(s, π × τ) for all τ in a suit-

able twisting set. The second step is to then control the analytic properties of the

twisted L-functions L(s, π × τ) on the classical groups. As in our previous work,

we control these L-functions through the Fourier coefficients of Eisenstein series –

the Langlands-Shahidi method. Once we know that the L(s, π × τ), and hence

L(s,Π × τ), are nice for a suitable twisting set of τ , we may move to the third

main step, which is the application of the Converse Theorem for GLN to the

representation Π. This then gives global functoriality from any of the Gn to the

appropriate GLN (Theorem 1.1).
Assuming the existence of global functoriality, the result which we establish

here, Ginzburg, Rallis, and Soudry had previously used their descent technique to

characterize the image of global functoriality for globally generic representations of

the split classical groups [56]. In particular, they show the image of global functori-

ality consists of isobaric sums of certain self-dual cuspidal representations of GLd(A)

satisfying an appropriate L-function criterion (Theorems 7.1 and 7.2). Using the

rigidity of isobaric representations afforded by the strong multiplicity one theorem

for isobaric representations of GLN(A) [21], this implies that there is in fact no

ambiguity in our global functorial lift coming from our use of the highly ramified

twist and we are able to then compute explicitly the compatible local functorial

lifts of the various series of generic representations of Gn(kv). For the case of

Gn = SO2n+1 this was done in [30] and we follow that general method here, but

again giving a uniform treatment for all split classical groups. For generic super-

cuspidal representations πv we show that their lift is a local isobaric sum of certain

self-dual supercuspidal representations of general linear groups, again satisfying the
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appropriate L-function condition (Theorem 7.3). With the local supercuspidal lift

in hand, one can then use the classification of local generic discrete series repre-

sentations for the classical groups [24,25,39,40,43] to compute the explicit form

of their lifts (Proposition 7.3), and in turn work one’s way up the classification to

obtain explicit lifts of generic tempered representations (Proposition 7.4) and finally

of arbitrary generic representations (Proposition 7.5). Finally we are able to re-

fine these local results to compute the local factors of our global functorial lift Π

(Theorem 7.4) with a second application of the Converse Theorem. This explicit

knowledge of the local functorial lifts is crucial to our applications.
Let us note that in the case Gn = SO2n+1 Jiang and Soudry [26,27] were

able to combine our global functoriality with the local descent to S̃p2n and then

the theta correspondence to prove a Local Converse Theorem for SO2n+1 over a

p-adic field. This allowed them to prove the injectivity of the local functorial lifts

as we have defined them here and establish the local Langlands correspondence

for SO2n+1. Once the local descent is available in the other cases, we would expect

similar results to follow. However, for the other classical groups the Local Converse

Theorem will be more subtle since the torus does not act transitively on the set of

generic characters. This will lead to more than one generic representation in each

local L-packet, distinguished by their character of genericity. For a clean statement

one may need to pass to similitude groups.
The global application we present is indeed of an arithmetic nature and

concerns the Ramanujan conjecture for generic representations of the split clas-

sical groups. In the late 1970’s, when the first counterexamples to the general-

ized Ramanujan conjecture for reductive groups were found for Sp4 and U3 [18],

the Ramanujan conjecture for a general reductive group G(A) was refined and

conjectured to hold for generic cuspidal representations of quasi-split reductive

groups [18,45,50]. On the other hand, Langlands, in Section 3 of [35], sug-

gests that the Ramanujan conjecture should hold for cuspidal representations of

quasi-split groups which functorially lift to isobaric representations of GLN(A) (cf.

the Remark at the end of Section 10 here). This is the case for the globally

generic representations of our classical groups Gn(A) as we have noted above.

Thus, with either formulation, we would expect that if π ≃ ⊗′πv is a generic cus-

pidal automorphic representation of Gn(A) then each local component πv should

be tempered. This is widely believed to hold for GLN. The best current general

bounds towards Ramanujan for GLN(A) over a number field are those of Luo,

Rudnick, and Sarnak [37]. Via functoriality we are able to link the Ramanu-

jan conjecture for globally generic representations of the split classical groups to

the Ramanujan conjecture for cuspidal representations of GLN (Theorem 10.1).

In particular, we show that the Ramanujan conjecture for these groups, in its

strong form giving temperedness at all places, would follow from the Ramanujan

conjecture for GLN (Corollary 10.2), at least for globally generic cuspidal rep-
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resentations, and any bounds towards Ramanujan for GLN, such as the Luo–

Rudnick–Sarnak bounds, lead to similar bounds for the classical groups (Corol-

lary 10.1). We note that once our results on functoriality are extended to the case

of global function fields, which is primarily a matter of understanding the theory

of L-functions for the classical groups over a global function field, then the Ra-

manujan conjecture for these groups over a global function field would become

a theorem, thanks to Lafforgue’s proof of the Ramanujan conjecture for GLN

over a global function field [33]. We hope to return to this extension in future

papers.

Even though functoriality is inherently arithmetic, many of its applications are

to the local representation theory of the groups Gn. These results seem difficult to

establish locally on the classical groups themselves, but are rather straightforward

applications of functoriality. The first local application presented in this paper is

a proof of Mœglin’s conjecture on the “dimension relation” for generic discrete

series representations πv of p-adic split classical groups of Gn(kv) [38]. This rela-

tion essentially states that the sum of the sizes of the Jordan blocks associated to

πv is equal to the dimension of the natural representation of the L-group of Gn,

which is itself equal to the rank N of the general linear group GLN to which

πv functorially lifts (Theorem 8.1). Our second application is to establishing of the

basic properties of the conductor of a generic representation πv of Gn(kv). The

conductor is the exponent f (πv) occurring in the local ε-factor ε(s, πv, ψv). We

show, as is known to be the case for general linear groups [19], that f (πv) is

a non-negative integer and f (πv) = 0 iff πv is unramified (Theorem 9.1). E. Lapid

has informed us that this should in turn have applications to the relative trace for-

mula. Finally, we turn to one local application which in turn is expected to have

global arithmetic applications. Using our bounds towards Ramanujan we show that

the local normalized intertwining operators N(s, π ′
v ×πv) with πv a local component

of a globally generic cuspidal representation π of Gn(A) and π ′
v a generic repre-

sentation of GLm(kv), are holomorphic and non-vanishing for Re(s) ≥ 0 (Theo-

rem 11.1). For Gn = SO2n+1 this was done in [29]. This local result is neces-

sary for the understanding of the global residual spectrum of the classical groups

Gn(A) [29].
While this project has been in the works for several years, the finalization

of the proof of functoriality and the formulation of most of the applications took

place while three of the authors were participants in the Thematic Program on

Automorphic Forms held at the Fields Institute for Research in the Mathematical

Sciences in the spring of 2003. We would like to thank the Fields Institute for

providing us with a wonderful working environment. We would also like to thank

D. Ban, C. Jantzen, G. Muíc, and M. Tadíc for helpful discussions on the classi-

fication of generic discrete series representations. Finally, we thank the referee for

several pertinent comments and corrections.
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1. Functoriality for classical groups

Let k be a number field and let A = Ak be its ring of adeles. We fix a non-trivial

continuous additive character ψ of A which is trivial on the principal adeles k.

We will let Gn denote a split classical group of rank n defined over k. More

specifically, we will consider the following three cases.

(i) Odd orthogonal groups. In this case Gn = SO2n+1, the split special orthogonal

group in 2n + 1 variables defined over k. For definiteness, we will take Gn as the con-

nected component of the isometry group of the form Φ2n+1 =




1
. .

.

1


. The con-

nected component of the Langlands dual group of Gn is LG
0

n = Sp2n(C).

(ii) Even orthogonal groups. In this case Gn = SO2n, the split special orthogonal

group in 2n variables defined over k. We will again take Gn as the connected compon-

ent of the isometry group of the form Φ2n =




1
. .

.

1


. The connected component

of the Langlands dual group of Gn is LG
0

n = SO2n(C).

(iii) Symplectic groups. In this case Gn = Sp2n, the symplectic group in 2n variables

defined over k. For definiteness, we will take Gn as the isometry group of the alternat-

ing form J2n =

(
0 Φn

−Φn 0

)
. The connected component of the Langlands dual group

of Gn is LG
0

n = SO2n+1(C).

In these realizations we can take the standard Borel subgroup of Gn to be rep-

resented by upper triangular matrices. We will denote this Borel subgroup by Bn and

its unipotent radical by Un. The abelianization of Un is a direct sum of copies of k

and we may use ψ to define a non-degenerate character of Un(A) which is trivial on

Un(k). By abuse of notation we continue to call this character ψ.
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In each of these cases there is a general linear group GLN such that LG
0

n em-

beds naturally in GLN(C) = LGL
0

N. Since both Gn and GLN are split, this embedding

completely determines an L-homomorphism ι : LGn →֒ LGLN by extending ι to be

the identity on the Weil group. By Langlands’ principle of functoriality [1,2,5], as-

sociated to these L-homomorphisms there should be a transfer or lift of automorphic

representations from Gn(A) to GLN(A) as in the following table.

Gn
LG

0

n ι : LG
0

n ֒→
LGL

0

N
LGL

0

N GLN

SO2n+1 Sp2n(C) Sp2n(C) ֒→ GL2n(C) GL2n(C) GL2n

SO2n SO2n(C) SO2n(C) ֒→ GL2n(C) GL2n(C) GL2n

Sp2n SO2n+1(C) SO2n+1(C) ֒→ GL2n+1(C) GL2n+1(C) GL2n+1

To be more precise, let π = ⊗′πv be an irreducible automorphic representation

of Gn(A).

For v a finite place of k where πv is unramified the representation πv of Gn(kv) is

completely determined by its Satake parameter, a semi-simple conjugacy class [tv] in
LG0

n [2,47]. [tv] then determines a semi-simple conjugacy class [ι(tv)] in LGL
0

N. An un-

ramified irreducible admissible representation Πv of GLN(kv) is called the local functorial

lift of πv if its associated semi-simple conjugacy class in LGL
0

N is [ι(tv)], or equivalently,

L(s,Πv) = det(I − tvq
−s
v )−1 = L(s, πv).

If v is an archimedean place, then by the arithmetic Langlands classification πv

is determined by an admissible homomorphism ϕv : Wv −→ LG
0

n where Wv is the local

Weil group of kv [2,34]. The composition ι◦ϕv is an admissible homomorphism of Wv

into LGL
0

N and hence determines a representation Πv of GLN(kv) such that L(s,Πv) =

L(s, πv). This is again the local functorial lift of πv.

An irreducible automorphic representation Π = ⊗′
Πv of GLN(A) is called

a functorial lift of π if for every archimedean place v and for almost all non-archi-

medean places v for which πv is unramified we have that Πv is a local functorial lift

of πv. In particular this entails an equality of (partial) Langlands L-functions LS(s,Π)

=
∏

v/∈S L(s,Πv) =
∏

v/∈S L(s, πv) = LS(s, π). (We had previously referred to this lift

as a weak lift, but there is nothing weak about it. This definition of a functorial lift is

consistent with the formulations in [1,5,36].)

Let π be an irreducible cuspidal representation of Gn(A). We say that π is glob-

ally generic if there is a cusp form ϕ ∈ Vπ such that ϕ has a non-vanishing ψ-Fourier

coefficient along Un, i.e., such that∫

Un(k)\Un(A)

ϕ(ug)ψ−1(u) du �= 0.
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Cuspidal automorphic representations of GLn are always globally generic in this sense.

For cuspidal automorphic representations of the classical groups this is a condition. In

general the notion of being globally generic may depend on the choice of splitting

of the group. However, as is shown in the Appendix to this paper, given a π which is

globally generic with respect to some splitting there is always an “outer twist” which is

globally generic with respect to a fixed splitting. This outer twist provides an abstract

isomorphism between globally generic cuspidal representations and will not effect the

L- or ε-factors nor the notion of the functorial lift. Hence we lose no generality in

considering cuspidal representations that are globally generic with respect to our fixed

splitting.

The principle result that we will prove in this paper is the following.

Theorem 1.1. — Let k be a number field and let π be an irreducible globally generic cuspidal

automorphic representation of Gn(A). Then π has a functorial lift to GLN(A).

The low dimensional cases of this theorem, that is, when n = 1, are already

well understood. As we will need them in the later sections of this paper, let us review

them briefly here.

(i) Odd orthogonal groups. When n = 1 the split SO3 ≃ PGL2. The associated

lifting from PGL2 to GL2 simply takes a representation π of PGL2(A) and views it as

a representation Π of GL2(A) having trivial central character.

(ii) Even orthogonal groups. When n = 1 the split SO2 ≃ Gm ≃ GL1. The natural

embedding of L-groups then embeds GL1 in GL2 as a split rank one torus. The asso-

ciated lifting then takes a character µ of A× ≃ GL1(A) to the appropriate constituent

of the induced representation Ind(µ ⊗ µ−1), namely the isobaric sum Π = µ⊞ µ−1

which takes the local Langlands quotient at each place if there is reducibility [35]. Let

us note that if we take a character µ of A× and let πµ be the corresponding repre-

sentation of SO2(A) then the standard L-function of πµ is the degree two L-function

associated to the standard embedding of L-groups discussed above, so indeed we have

L(s, πµ) = L(s, µ)L(s, µ−1) = L(s, µ ⊞ µ−1), with similar equalities locally. In what

follows, we will make recourse to the work of Mœglin and Tadíc on local discrete se-

ries representations [39,40]. In keeping with their conventions, we will adopt the con-

vention that SO2(kv), for a p-adic local field kv, has no supercuspidal representations,

nor discrete series representations.

(iii) Symplectic groups. When n = 1 then Sp2 ≃ SL2 and this functoriality is also

well understood. The map on dual groups is then PGL2(C) ≃ SO3(C) →֒ GL3(C),

which is the adjoint representation of PGL2(C). Thus if π is a generic cuspidal repre-

sentation of Sp2(A) ≃ SL2(A) then its functorial lift Π to GL3(A) is the adjoint square

lifting of Gelbart and Jacquet [11].

Thus we will concentrate primarily on the cases where n ≥ 2.
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The preparations for and proof of Theorem 1.1 when n ≥ 2 will take place over

the next five sections. Note that the case of Gn = SO2n+1 is completely contained in

our previous paper [6], but we include it here to provide a uniform treatment of all

classical groups.

2. The Converse Theorem

In order to effect the functorial lifting from Gn to GLN we will use the Converse

Theorem for GLN as we did in [6]. We give the formulation here.

Let us fix a finite set S of finite places of k. For each integer m, let

A0(m) = {τ | τ is a cuspidal representation of GLm(A)}

A
S

0 (m) = {τ ∈ A0(m) | τv is unramified for all v ∈ S}.

We set

T (N − 1) =

N−1∐

m=1

A0(m) and T
S(N − 1) =

N−1∐

m=1

A
S

0 (m).

If η is a continuous character of k×\A×, let us set

T (S; η) = T
S(N − 1) ⊗ η = {τ = τ ′ ⊗ η : τ ′ ∈ T

S(N − 1)}.

Theorem 2.1 (Converse Theorem). — Let Π = ⊗′
Πv be an irreducible admissible rep-

resentation of GLN(A) whose central character ωΠ is invariant under k× and whose L-function

L(s,Π) =
∏

v L(s,Πv) is absolutely convergent in some right half plane. Let S be a finite set of

finite places of k and let η be a continuous character of k×\A×. Suppose that for every τ ∈ T (S; η)

the L-function L(s,Π × τ) is nice, that is, satisfies

1. L(s,Π × τ) and L(s, Π̃ × τ̃ ) extend to entire functions of s ∈ C,

2. L(s,Π × τ) and L(s, Π̃ × τ̃ ) are bounded in vertical strips, and

3. L(s,Π × τ) satisfies the functional equation

L(s,Π × τ) = ε(s,Π × τ)L(1 − s, Π̃ × τ̃ ).

Then there exists an automorphic representation Π
′ of GLN(A) such that Πv ≃ Π

′
v for almost

all v. More precisely, Πv ≃ Π
′
v for all v /∈ S.

In the statement of the theorem, the twisted L- and ε-factors are defined by the

products

L(s,Π × τ) =
∏

v

L(s,Πv × τv) ε(s,Π × τ) =
∏

v

ε(s,Πv × τv, ψv)

of local factors as in [7,6].
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To motivate the next few sections, let us describe how we will apply this theo-

rem to the problem of Langlands lifting from Gn to GLN. We begin with our globally

generic cuspidal automorphic representation π = ⊗′πv of Gn(A). For each place v we

need to associate to πv an irreducible admissible representation Πv of GLN(kv) such

that for every τ ∈ T (S; η) we have

L(s, πv × τv) = L(s,Πv × τv)

ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

For archimedean places v and those non-archimedean v where πv is unramified, we

take Πv to be the local functorial lift of πv described above. For those places v where πv

is ramified, we will take for Πv an essentially arbitrary irreducible admissible generic

representation of GLN(kv) having trivial central character. However, we must choose

our finite set of places S of k such that S contains the places where πv is ramified and

choose our character η of k×\A× such that ηv is sufficiently highly ramified so that

L(s, πv ×ηv), L(s,Πv ×ηv), ε(s, πv ×ηv, ψv), and ε(s,Πv ×ηv, ψv) are all standard. This

will be possible by the result on the stability of the local γ -factors that we establish in

Section 4.

Now consider the restricted tensor product Π = ⊗′
Πv. This is an irreducible

representation of GLN(A). With the choices above we have

L(s, π × τ) = L(s,Π × τ)

ε(s, π × τ) = ε(s,Π × τ)

for Re(s) ≫ 0 and all τ ∈ T (S; η). This is our candidate lift.

The theory of L-functions for Gn × GLm, which we address in the next sec-

tion, will then guarantee that the twisted L-functions L(s, π × τ) are nice for all τ ∈

T (S; η). Then the L(s,Π × τ) will also be nice and Π satisfies the hypotheses of the

Converse Theorem. Hence there exists an irreducible automorphic representation Π
′

of GLN(A) such that Πv ≃ Π
′
v for all archimedean v and almost all finite v where πv

is unramified. Hence Π
′ is a functorial lift of π.

3. L-functions for Gn × GLm

Let π be a globally generic cuspidal representation of Gn(A). For τ a cuspidal

representation of GLm(A) we will let L(s, π × τ) be the completed L-function as de-

fined in [51] via the theory of Eisenstein series. The local factors are then defined via

the arithmetic Langlands classification for the archimedean places, through the Satake

parameters for the finite unramified places, as given by the poles of the associated

γ -factors (or local coefficients) if πv and τv are tempered, by analytic extension if πv
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and τv are quasi-tempered, and via the representation theoretic Langlands classifica-

tion otherwise.

The global theory of these twisted L-functions is now quite well understood.

Theorem 3.1. — Let S be a non-empty set of finite places of k. Let η be a character of

k×\A× such that, for some v ∈ S, the square η2
v is ramified. Then for all τ ∈ T (S; η) the

L-function L(s, π × τ) is nice, that is,

1. L(s, π × τ) is an entire function of s,

2. L(s, π × τ) is bounded in vertical strips of finite width, and

3. we have the functional equation

L(s, π × τ) = ε(s, π × τ)L(1 − s, π̃ × τ̃ ).

Proof. — (1) In the case of Gn = SO2n+1 we explicitly established this in [6]. In all

cases this now follows from the more general Proposition 2.1 of [32]. Note that in view

of the results of Muíc [44] and of [4], the necessary result on normalized intertwining

operators, Assumption 1.1 of [32], usually referred to as Assumption A [28], is valid

in all cases as proved in [28,31]. Note that this is the only part of the theorem where

the twisting by η is needed.

(2) The boundedness in vertical strips of these L-functions is known in wide gen-

erality, which includes the cases of interest to us. It follows from Corollary 4.5 of [12]

and is valid for all τ ∈ T (N − 1), provided one removes neighborhoods of the finite

number of possible poles of the L-function.

(3) The functional equation is also known in wide generality and is a conse-

quence of Theorem 7.7 of [51]. It is again valid for all τ ∈ T (N − 1). ⊓⊔

In order to mediate between the result as stated and the references for its proof,

let us recall how these twisted L-functions are obtained from the theory of Eisenstein

series.

Given our classical group Gn and a general linear group GLm with m ≥ 1 let

Gm+n be the classical group of the same type as Gn, but of rank m + n. Then if we let

M = GLm ×Gn then M is a Levi subgroup of a standard maximal parabolic subgroup

P = Pm,n ⊂ Gm+n. Let d = m + n and let N = Nm,n be the unipotent radical of P.

Let A×,1 denote the group of ideles of norm 1. Fix a subgroup A+ ⊂ A× such

that A+ ≃ R×
+ and A× = A×,1 × A+. It suffices to assume that τ is unitary and its

central character is a character of k×\A× which is trivial on A+. Any cuspidal rep-

resentation τ of GLr(A) can be written as τ ≃ τ ′ ⊗ | det |s′ , where τ ′ is unitary with

central character trivial on A+, and then L(s, π × τ) = L(s + s′, π × τ ′). Note that if

τ ∈ T (S; η), then so is τ ′. Hence we may assume that τ is unitary.

With π and τ as in the theorem, then σ = τ̃ ⊗ π is a unitary globally generic

representation of M(A). As such, we can form the induced representation

I(s, σ) = Ind
Gd (A)

P(A) (| det |sτ̃ ⊗ π).
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If α is the simple root associated to the maximal parabolic subgroup P and we let, as

usual, α̃ = ρP/〈ρP, α〉 then as in [51]

I(s, σ) = Ind
Gd (A)

P(A) (e〈sα̃,HP〉σ).

Since the adjoint action r of LM on the Lie algebra Ln of LN has two irreducible

constituents in general, that is, r = r1 ⊕ r2, then the L-functions which naturally arise

in the theory of intertwining operators and Eisenstein series for these representations

will be a product L(s, σ, r1)L(2s, σ, r2) where

L(s, σ, r1) = L(s, π × τ),

the L-function of interest, and a second L-function, namely

L(2s, σ, r2) = L(2s, τ, Sym2) if Gn = SO2n+1,

and if m ≥ 2 and Gn = Sp2n or Gn = SO2n, then

L(2s, σ, r2) = L(2s, τ,∧2).

In these later two cases, if m = 1, then r = r1 is irreducible.

4. Stability of γ -factors for Gn × GL1

This section is devoted to the formulation and proof of the stability of the local

γ -factors for generic representations of the split classical groups. This result is neces-

sary for defining a suitable local lift at the non-archimedean places where we do not

have the local Langlands conjecture at our disposal. Following the ideas of [8] our

method will be first to express the γ -factor as the Mellin transform of a certain par-

tial Bessel function. This has been done in our cases as well as others in [55]. Then

we will analyze the asymptotics of the Bessel functions as in [8] to obtain the stability.

A more complete exposition and extensions to quasi-split groups will soon be available

in [10].

For this section, let k denote a non-archimedean local field of characteristic zero.

Let π be a generic irreducible admissible representation of Gn(k) and let η be a con-

tinuous character of GL1(k) ≃ k×. Let ψ be a fixed non-trivial additive character of k.

Let γ(s, π ×η,ψ) be the associated γ -factor as defined in Theorem 3.5 of [51]. These

are defined inductively through the local coefficients of the local induced representa-

tions analogous to those given above. They are related to the local L- and ε-factors

by

γ(s, π × η,ψ) =
ε(s, π × η,ψ)L(1 − s, π̃ × η−1)

L(s, π × η)
.
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The main result of this section is the following.

Theorem 4.1. — Let π1 and π2 be two irreducible admissible generic representations of

Gn(k). Then for every sufficiently highly ramified character η of k× we have

γ(s, π1 × η,ψ) = γ(s, π2 × η,ψ).

For the case of Gn = SO2n+1 this is [8].

4.1. Preliminaries on Bessel functions. — Let us review the basic definitions from

Section 3 of [8]. Note that, as their proofs show, the results in Section 3 of [8] are

valid for any Chevalley group over k, not just SO2n+1. In this paper we specialize them

to the split classical groups.

Fix G = Gn and recall that B = Bn is the standard upper triangular Borel sub-

group of G, T = Tn the standard maximal split torus of B, i.e., the diagonal matrices

in Gn, and U = Un is its unipotent radical. Let Φ
+ be the set of positive roots defin-

ing U and let ∆ denote the associated simple roots. Let W be the Weyl group of G.

Then W ≃ N(T)/T and for each w ∈ W we choose a representative in N(T), which

by abuse of notation we will continue to call w. To be specific, for what follows it will

be necessary to choose the representatives as in Section 2 of [55] (see Section 4.2 be-

low). For α ∈ Φ
+ let Uα denote the one parameter root subgroup corresponding to

α [57]. For any w ∈ W let us set

U−
w =

∐

α>0
wα<0

Uα and U+
w = w−1Bw ∩ U

so that U = U+
w U−

w .

Recall that we say that w ∈ W supports a Bessel function if for every α ∈ ∆ such

that wα > 0 we have that wα ∈ ∆. If we let w0 denote the long Weyl element of W

then this is equivalent to w0w being the long Weyl element of the Levi subgroup Mw

of some standard parabolic subgroup Pw ⊃ B. In this case, U−
w is the unipotent radical

of Pw. Let Aw denote the center of Mw. Then

Aw = {t ∈ T | wα(t) = 1 for all α ∈ ∆ with wα > 0}.

Suppose that w ∈ W is such that w supports a Bessel function and the only

w′ ∈ W with w′ ≤ w in the Bruhat order which support a Bessel function are w itself

and the identity e. This is equivalent to Pw being a maximal parabolic subgroup. Let

α = αw be the simple root associated to Pw. There is an injection α∨ from k× into

Aw such that α(α∨(t)) = t for all t ∈ k× and, setting A0
w = α∨(k×), we have the
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decomposition Aw = ZA0
w, where Z = ZG is the (finite) center of G. (See, for example,

the remarks after Assumption 5.1 in [55].)

Now let π be an irreducible admissible generic representation of G(k). Let

v ∈ Vπ be such that the associated Whittaker function Wv ∈ W (π,ψ) satisfies

Wv(e) = 1. Then if w ∈ W supports a Bessel function, and is a minimal non-trivial

such with respect to the Bruhat order, we may formally define the associated Bessel

function as the function on A0
w ≃ k× defined by

Jπ,w(a) =

∫

U−
w (k)

Wv(awu)ψ−1(u) du.

Since the arguments of Section 4 of [8] again only depended on G being a Chevalley

group, then by the Corollary to Proposition 4.2 we know that Jπ,w exists and is inde-

pendent of the choice of v ∈ Vπ used to define it. This function is hard to work with.

As a substitute, for every compact open subgroup Y ⊂ U−
w (k) we define the partial

Bessel function jπ,w,v,Y(a) by

jπ,w,v,Y(a) =

∫

Y

Wv(awy)ψ−1( y) dy.

In the case where π and w are fixed, we will simply write jπ,w,v,Y = jv,Y.

4.2. An integral representation for γ(s, π × η,ψ). — Our proof of the stability of

the γ -factor is based upon expressing the γ -factor as the Mellin transform of one of

our Bessel functions.

Proposition 4.1. — Let π be a generic representation of Gn(k) and η a non-trivial character

of k× such that η2 is ramified. Then for each classical group Gn there exists a Weyl element w which

supports a Bessel function and is minimal, non-trivial with this property, an elementary factor g(s, η),

and a rational number δ such that for every sufficiently large open compact subset Y ⊂ U−
w (k),

setting jv,Y = jπ,w,v,Y, we have

γ(s, π × η,ψ)−1 = g(s, η)

∫

k×

jv,Y(a)η(a)|a|s−n+δ d×a.

The data for each classical group is as follows.

(i) If Gn = SO2n+1, then the Weyl element is w =




1

−I2n−1

1


. The elementary

factor is simply g(s, η) = η(−1)n+1 and δ = 1/2.
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(ii) If Gn = SO2n, then the Weyl element is w =




1

−K2n−2

1


 where

K2n−2 =




1
. . .

1

0 1

1 0

1
. . .

1




.

The elementary factor is g(s, η) = η(−1)n+1γ(2s, η2, ψ)−1 and δ = 1.

(iii) If Gn = Sp2n, then the Weyl element is w =




−1

−I2n−2

1


. The elemen-

tary factor is again g(s, η) = η(−1)n+1γ(2s, η2, ψ)−1 and now δ = 0.

In all cases, a = diag(a, 1, ..., 1, a−1) ∈ A0
w.

This proposition is essentially Corollary 1.2 of [55]. To obtain it in this form,

we must relate the Bessel functions of [55] to the ones we have defined here. While

this is essentially an exercise, it will be useful to have it written down.

4.2.1. Corrections to [55]. — We begin with some minor corrections to [55].

In that paper the relevant Weyl elements w0 were miscalculated. This results in the

following corrections (in the notation of that paper).

(i) In the case GL1 × SO2n+1 ⊂ SO2n+3 the relevant Weyl element w0 given in

(4.19) is replaced by

w0 =




(−1)n

−I2n+1

(−1)n


 .

This change only effects the elementary factor g(s, η) in a minor way. It will change

formula (7.12) to

C(s,η ⊗ σ)−1 = η(−1)n+1γ(2s, η2, ψ)−1 ×

×

∫

F×

jṽ,N0







h

I2n−1

h−1







1

−I2n−1

1





η(h)|h|s−n+1/2 d×h

with a similar change of η(−1) to η(−1)n+1 in formulas (1.5) and (1.6).
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(ii) In the case GL1 × SO2n ⊂ SO2n+2 the relevant Weyl element w0 given in

(4.43) is replaced by

w0 =




(−1)n

−K2n

(−1)n


 .

The source of the error is an incorrect multiplication in (4.43). This change only ef-

fects the elementary factor g(s, η) in a minor way. It will change formula (7.13) to

C(s,η ⊗ σ)−1 = η(−1)n+1γ(2s, η2, ψ)−1 ×

×

∫

F×

jṽ,N0







h

I2n−2

h−1







1

−K2n−2

1





 η(h)|h|s−n+1 d×h

with a similar change of η(−1) to η(−1)n+1 in formulas (1.5) and (1.7).

(iii) In the case GL1×Sp2n ⊂ Sp2n+2 the relevant Weyl element w0 given in (4.56)

is replaced by

w0 =




(−1)n+1

−I2n

(−1)n


 .

The source of the error is an incorrect multiplication in (4.56). This change only ef-

fects the elementary factor g(s, η) in a minor way. It will change formula (7.26) to

C(s,η ⊗ σ)−1 = η(−1)n+1γ(2s, η2, ψ)−1 ×

×

∫

F×

jṽ,N0







h

I2n−2

h−1







−1

−I2n−2

1





 η(h)|h|s−n d×h

with a similar change of η(−1) to η(−1)n+1 in formulas (1.5) and (1.7).

4.2.2. A comparison of Bessel functions. — For this section, let us use j̃ to de-

note any of the Bessel functions occurring in [55]. Our goal is to express the Bessel

functions j̃ṽ,N0
(ṁ) occurring in Corollary 1.2 of [55] in terms of those we have defined

here.

(i) Let Gn = SOm with m = 2n + 1 or 2n. In Gn+1 consider the standard (upper

triangular) maximal parabolic subgroup Pn+1 = Mn+1Nn+1 with Levi subgroup Mn+1 =

M ≃ GL1 × Gn. In our geometric model, this would be the stabilizer of the isotropic

line through (0, ..., 0, 1). The unipotent radical then takes the form

Nn+1(k) =



n(t) =




1 t − 1

2
〈t, t〉

Im −t∗

1


∣∣t ∈ km





where 〈t, t〉 = tΦm
tt and t∗ is the adjoint of t with respect to this form.
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Let π be our generic representation of Gn(k). Then in the expression for j̃ṽ,N0
(ṁ)

from Corollary 1.2 of [55] we have that

ṁ =




h

Im−2

h−1


 w = hw ∈ Gn ⊂ Mn+1

where w is as in our integral representation and ṽ ∈ W (π,ψ) with Wṽ(e) = 1. Here

N0 ⊂ N(k) is a (suitable) open compact subgroup of the opposite unipotent subgroup

N to N = Nn+1. In fact, the formulas hold for any such choice of ṽ and sufficiently

large N0 (see Theorem 6.2 of [55]).

We now turn to the Bessel function itself as given in Theorem 6.2 of [55]. First

j̃ṽ,N0
(ṁ) = j̃ṽ,N0

(ṁ, y0) with y0 ∈ k× satisfying ordk( y0) = −cond(ψ) − cond(η2). Then

the Bessel function is given by (6.26) of [55], which we can write as

j̃ṽ,N0
(ṁ, y0) =∫

UM,ṅ\UM

Wṽ(ṁu−1)ϕ(uα∨( y0)
−1α∨(ẋα)ṅα

∨(ẋα)
−1α∨( y0)u

−1)ψ(u) du.

Here α∨ : k× → ZG\ZM, ẋα ∈ k× a specified choice, and ϕ is the characteristic func-

tion of N0. Throughout, ṅ is a specific Z0
MUM-orbit representative in N and ṁ and ṅ

are related by w−1
0 ṅ = ṁṅ′ṅ ∈ Mn+1Nn+1Nn+1.

Let us first consider the domain of integration. By Proposition 4.4 or Proposition

4.8 of [55] we have that

UM,ṅ = U′
M,ṁ = {u ∈ UM | ṁuṁ−1 ∈ UM and ψ(ṁuṁ−1) = ψ(u)}.

In our situation, UM = Un ⊂ Gn and ṁ = hw. Then ṁuṁ−1 ∈ Un iff wuw−1 ∈ h−1Unh =

Un, that is, u ∈ U+

w−1 = U+
w . Since h acts trivially on U+

w we see that UM,ṅ = U+
w so

that we can take UM,ṅ\UM ≃ U+
w \Un to be U−

w , which we note depends only upon w.

Next we turn to the effect of the cutoff characteristic function ϕ. Taking u ∈ U−
w

we see that the actual domain of integration is determined by the condition

uα∨( y0)
−1α∨(ẋα)ṅα

∨(ẋα)
−1α∨( y0)u

−1 ∈ N0.

A priori, this condition depends on ṅ which is related to ṁ and hence h. In fact, as

we shall see, this is not the case. First note that this condition is equivalent to

uα∨(ẋα)ṅα
∨(ẋα)

−1u−1 ∈ α∨( y0)N0α
∨( y0)

−1.

But α∨( y0)N0α
∨( y0)

−1 is another compact open subgroup of the same type, so we

may ignore this in our situation. As in (7.1) of [55] we write

w−1
0 ṅ(t) = ṁṅ′ṅ( y) where ṅ( y) =




1

y Im

− 1

2
y∗y −y∗ 1
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with y ∈ km written as a column vector. Now according to section 7 of [55] in our situ-

ation we have t = (1, 0, ..., 0, h) and ẋα = h−1. Then y∗ = 2〈t, t〉−1t = (h−1, 0, ..., 0, 1)

and

α∨(ẋα)ṅ( y)α∨(ẋα)
−1 = α∨(h−1)ṅ( y)α∨(h) = ṅ( y′)

where y′ = t(−h, 0, ..., 0,−1). So the condition on the cutoff of our domain of inte-

gration is that

uṅ(t(−h, 0, ..., 0,−1))u−1 ∈ N0.

For certitude, let us take N0 to be defined as

N0 =



n( y) =




1

y Im

− 1

2
y∗y −y∗ 1


∣∣ yi ∈ p−Mi





for some sufficiently large integer vector M = (M1, ..., Mm). As M increases, these

exhaust N. Now recall that u ∈ U−
w and this means that we can write

u = u(x) =




1 x − 1

2
x∗x

Im−2 −x∗

1


 with x ∈ km−2

which we view as embedded in M via u ∈ Un ≃ UM ⊂ M. Then in general un( y)u−1 =

n(uy) with uy ∈ km. In our situation y = t(−h, 0, ..., 0,−1) and so u(x)y =t ( 1

2
x∗x − h,

tx∗,−1). Thus our domain of integration is over Y ⊂ U−
w (k) defined by the conditions

Y =

{
u = u(x) | xi ∈ p−Mm−i with h ≡

1

2
x∗x (mod p−M1)

}
.

To rid ourselves of the remaining dependence on h we enlarge N0, which we are

allowed to do. By choosing M1 sufficiently large, which may depend on h and M2,

..., Mm−1, we obtain a domain of integration

Y =
{
u = u(x) | xi ∈ p−Mm−i, 1 ≤ i ≤ m − 2

}

which is now independent of h and with this choice of Y and M1 we have

j̃ṽ,N0
(hw) = jπ,ṽ,w,Y(h) = jṽ,Y(h).

(ii) In the symplectic case Gn = Sp2n we must use the Bessel function j̃ ′
ṽ,N0

(ṁ) =

j̃ ′
ṽ,N0

(ṁ, y0) = j̃ṽ,N0
(ṁH, y0) as in (7.24) and (7.25) of [55]. Here H is the matrix

H =




1 0 h

I2n−2 0

1


 ∈ UM ≃ Un.
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Its effect in computing the Bessel function is to replace ṅ by HṅH−1. But by (7.27)

of [55] this matrix is represented by

HṅH−1 =




1

y1 I2n

Y1 y′
1 1




with y′
1 = t(−h−1, 0, ..., 0, 1). Comparing this with our formula for ṅ( y) above in the

orthogonal case we see that the same analysis will go through. So in this case we also

have j̃ ′
ṽ,N0

(hw) = jṽ,Y(h) for any sufficiently large open compact Y ⊂ U−
w (k).

4.2.3. Proof of Proposition 4.1. — With the identifications above, the fact that we

have the integral representation of Proposition 4.1 is simply a restatement of Corol-

lary 1.2 of [55]. To have the Proposition as stated, we must check that each Weyl

element w that occurs both supports a Bessel function and is minimal non-trivial with

this property. This is easy enough to check using the criterion in terms of parabolic

subgroups from Proposition 3.2 of [8] mentioned above. ⊓⊔

Note that in the case of Gn = SO2n+1 this integral representation is the same as

that of Proposition 4.1 of [8] which was derived from Soudry’s integral representation.

4.3. Asymptotics of Bessel functions. — In this section we investigate the asymp-

totics of the Bessel functions jv,Y(a) defined above.

We will follow the development presented for SO2n+1 in [8]. The paper [8] was

written for SO2n+1 because that was the only case in which there was an integral rep-

resentation for the γ -factor in terms of Bessel functions. This integral representation

was presented in Section 2 of [8] and that section is specific to SO2n+1. Section 3

and the first parts of Section 4 of [8] rely only on results about Chevalley groups

from, say, Steinberg’s notes on Chevalley groups [57] and hence remain valid for any

of our groups Gn. The remainder of Section 4 and Section 5 up through Proposi-

tion 5.1 of [8] are more or less formal and rely only on standard facts about the

Bruhat decomposition, the Bruhat order, and the fact that the Weyl element w oc-

curring in jv,Y(a) has the property that w supports a Bessel function and that the only

Weyl elements w′ with w′ ≤ w which support a Bessel function are w itself and the

identity e. These facts remain true for our w as noted above, so the results of these

sections of [8] remain valid in all our present cases. In particular, quoting Proposition

5.1 of [8] we have the following.

Proposition 4.2. — There exists a vector v′
π ∈ Vπ and a compact neighborhood BK1 of

the identity e in B\Gn such that if χ1 is the characteristic function of BK1, we have that for all

sufficiently large compact open Y ⊂ U−
w (k)

jv,Y(a) =

∫

Y

Wv(awy)χ1(awy)ψ−1( y) dy + Wv′π
(a).
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From this point on the situation is slightly different from that in [8] because in

the cases Gn = SO2n and Gn = Sp2n the groups have non-trivial finite centers. Still

following [8], for each simple root α let t �→ uα(t) be the associated one parameter

subgroup of U. For any positive integer M let

U(M) = 〈uα(t) | α ∈ ∆; |t| ≤ qM〉.

This is a compact open subgroup of U(k) and as M grows these exhaust U. For any

v ∈ Vπ let us set

vM =
1

Vol(U(M))

∫

U(M)

ψ−1(u)π(u)v du.

Since (π, Vπ) is smooth this is actually a finite sum and so vM ∈ Vπ .

Then as noted in [8] as long as Y is sufficiently large relative to M we may

choose v′
π and K1 in Proposition 4.2 such that K1 ⊂ Stab(vM) and we have

∫

Y

Wv(awy)χ1(awy)ψ−1( y) dy =

∫

Y

WvM
(awy)χ1(awy)ψ−1( y) dy.

Consider this latter integral. If we write awy = utk1 with u ∈ U(k), t ∈ T(k),

and k1 ∈ K1, so that utk1 ∈ BK1, then since K1 ⊂ Stab(vM) we have WvM
(awy) =

ψ(u)WvM
(t). As shown in Lemma 4.1 of [8] the support of WvM

on the torus T is

contained in the set

TM = {t ∈ T(k) | α(t) ∈ 1 + pM for all simple α}.

For M′ a positive integer, let us set T1
M′ = {t ∈ T(k) | t ≡ I (mod pM′

)}.

Lemma 4.1. — For M sufficiently large, TM ⊂ Z · T1
M′ where Z is the center of Gn and

M′ = M − ord(2).

Proof. — Let us consider the case of Gn = SO2n. The others are handled accord-

ingly. With our basis, we can write an element t of the torus as t = diag(t1, ..., tn, t−1
n

..., t−1
1 ). The simple roots are then αi(t) = ti/ti+1 for i = 1, ..., n−1 and αn(t) = tn−1tn.

If t ∈ TM then αn−1(t) ∈ 1 + pM and αn(t) ∈ 1 + pM implies their ratio lies in there as

well, that is, t2
n ∈ 1 + pM.

In general, if t2 ∈ 1+pM then t is a unit satisfying t2 −1 ≡ 0 (mod pM). Letting

P(X) = X2 − 1 we have that ord(P′(t)) = ord(2) and the roots of P(X) = 0 in O

are ±1. Thus, say by Corollary 1 of Theorem 2 in ch.III, §4, no.4 of [3], we know

t ≡ ±1 (mod pM′

) where M′ = M − ord(2).

Thus tn ∈ ±1 + pM′

. Then since αn−1(t) = tn−1/tn ∈ 1 + pM ⊂ 1 + pM′

we have

that tn−1 ∈ ±1 + pM′

and that the sign of tn and tn−1 must be the same. Continuing

with the rest of the roots in this manner, we find that ±t ∈ T1
M′ and we are done since

Z = {±1}. ⊓⊔
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Hence if t ∈ TM we can further write t = zt1 with z ∈ Z and t1 ∈ T1
M′ . It is easy

to check that for t ∈ TM we have Wv(t) = WvM
(t), so that if we choose M from the

beginning so that T1
M′ ⊂ T ∩ Stab(v) then we see that WvM

(t) = Wv(t) = Wv(zt1) =

ωπ(z)Wv(t
1) = ωπ(z).

So, in our integral, we see that WvM
(awy)χ1(awy) �= 0 iff awy ∈ UTMK1 or

y ∈ (aw)−1UTMK1. If we write this decomposition as awy = utk1 = u(awy)z(awy)t1k1,

then we find ∫

Y

Wv(awy)χ1(awy)ψ−1( y) dy =

∫

Y∩(aw)−1UTMK1

ψ(u(awy))ψ−1( y)ωπ(z(awy)) dy.

Then our previous proposition can now be written as follows.

Proposition 4.3. — Fix v ∈ Vπ such that Wv(e) = 1 and choose M sufficiently large so

that T1
M′ ⊂ T ∩ Stab(v). There exists a vector v′

π ∈ Vπ and a compact open subgroup K1 such

that for Y ⊂ U−
w (k) sufficiently large we have

jv,Y(a) =

∫

Y∩(aw)−1UTMK1

ψ(u(awy))ψ−1( y)ωπ(z(awy)) dy + Wv′π
(a).

This proposition gives us the asymptotics of jv,Y(a) in the following sense. The

function Wv′π
is a smooth Whittaker function and hence vanishes for a large and ex-

hibits the standard asymptotics of the Whittaker function as a goes to zero. Thus the

integral expression contains all asymptotics of the Bessel function as a gets large. Even

though this integral is a complicated exponential sum, it only depends on π through

its central character ωπ .

4.4. Stability of γ -functions depending on the central character. — As an immediate

consequence of Proposition 4.3 we obtain the following stability result.

Proposition 4.4. — Let π1 and π2 be two irreducible admissible generic representations of

Gn(k) having the same central character. Then for every sufficiently highly ramified character η of k×

we have

γ(s, π1 × η,ψ) = γ(s, π2 × η,ψ).

Proof. — Let vi ∈ Vπi
be chosen such that for each we have Wvi

(e) = 1. Choose

a large integer M such that T1
M′ ⊂ T ∩ Stab(vi). Let K0 be a compact open subgroup

of Gn such that K0 ⊂ Stab(v1) ∩ Stab(v2). Then in Proposition 4.3 we may take

K1 =
⋂

u∈U(M)

u−1K0u
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as in Section 6 of [8], that is, we can take K1 to be the same for π1 and π2. Then by

Proposition 4.3 there exist vectors v′
πi

∈ Vπi
such that

jvi ,Y(a) =

∫

Y∩(aw)−1UTMK1

ψ(u(awy))ψ−1( y)ωπi
(z(awy)) dy + Wv′πi

(a).

Since the central characters of π1 and π2 agree, we have

jv1,Y(a) − jv2,Y(a) = Wv′π1
(a) − Wv′π2

(a).

If we now turn to Proposition 4.1 we find that as long as η2 is ramified we have

γ(s, π1 × η,ψ)−1−γ(s, π2 × η,ψ)−1

= g(s, η)

∫

k×

( jv1,Y(a) − jv2,Y(a))η(a)|a|s−n+δ d×a

= g(s, η)

∫

k×

(Wv′π1
(a) − Wv′π2

(a))η(a)|a|s−n+δ d×a.

But the Whittaker functions are smooth. So for Re(s) ≫ 0 and η sufficiently highly

ramified we have
∫

k×

Wv′πi
(a)η(a)|a|s−n+δ d×a ≡ 0.

Thus for Re(s) ≫ 0 we have

γ(s, π1 × η,ψ)−1 − γ(s, π2 × η,ψ)−1 ≡ 0

and then by the principle of analytic continuation this must be true for all s. Thus

γ(s, π1 × η,ψ) = γ(s, π2 × η,ψ)

and we are done. ⊓⊔

4.5. Computation of the stable forms. — To complete the proof of Theorem 4.1,

as well as for application in the proof of Theorem 1.1, we will compute an explicit for-

mula for the stable form of the γ -factor. In order to do this, let π1 be any irreducible

admissible generic representation of Gn(k) with central character ω. Take µ1, ..., µn to

be n characters of k×. Then µ1 ⊗· · ·⊗µn defines a character of Tn(k) and we assume

that upon restriction to the center Zn ⊂ Tn(k) this character agrees with the central

character ω of π1. Then if we let π2 = Ind
Gn(k)
Bn(k)

(µ1 ⊗· · ·⊗µn) then for an appropriate

choice of the µi (in “general position”) this representation will be irreducible admis-

sible generic and have central character ω. Thus for all sufficiently highly ramified η

we have

γ(s, π1 × η,ψ) = γ(s, π2 × η,ψ).
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We can explicitly compute the right hand side of this formula. By first using the mul-

tiplicativity of the γ -factor [52] we obtain

γ(s, π2 × η,ψ) =

n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)

if Gn = SO2n+1 or Gn = SO2n, while if Gn = Sp2n we obtain

γ(s, π2 × η,ψ) = γ(s, η,ψ)

n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)
.

This computes the stable form of γ -factor in terms of abelian γ -factors.

Proposition 4.5. — Let π be any irreducible admissible generic representation of Gn(k) with

central character ω and let µ1, ..., µn be any choice of characters of k× in general position such that

µ1 ⊗· · ·⊗µn agrees with ω upon restriction to the center. Then for every sufficiently highly ramified

character η we have

γ(s,π × η,ψ)

=





n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)

Gn = SO2n+1, SO2n

γ(s, η,ψ)

n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)

Gn = Sp2n

.

4.6. Proof of Theorem 4.1. — To complete the proof of Theorem 4.1 it will

suffice to show that the stable form of the γ -factor computed in Proposition 4.5 is

actually independent of the central character ω. There is an elementary reason for

this (see the comments at the end of this section), but a reason which is particularly

adapted to our application is the following.

First take Gn to be SO2n+1 or SO2n. Then in either case the standard embedding

of the L-groups predicts a functoriality to GLN with N = 2n. In either of these cases,

let Π be the induced representation of GLN(k) induced from these same characters,

that is,

Π = Ind
GLN(k)

BN(k)

(
µ1 ⊗ · · · ⊗ µn ⊗ µ−1

n ⊗ · · · ⊗ µ−1
1

)
.

Then Π is a generic representation of GLN(k) having trivial central character and by

multiplicativity of the γ -factors for GLN [20] we also have

γ(s,Π × η,ψ) =

n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)
.
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Thus

γ(s, π × η,ψ) = γ(s,Π × η,ψ).

On the other hand, by the stability of γ -factors for GLN [23] we know that the sta-

ble form of the γ -factor on GLN depends only on the central character. Since Π has

trivial central character no matter the central character ω of π, we see that the stable

form of the γ -factor for Gn is independent of the central character. This establishes

Theorem 4.1 in these cases.

The case of Gn = Sp2n is similar. Take π an irreducible admissible generic rep-

resentation of Sp2n(k) and take characters µ1, ...µn so that for sufficiently ramified η

we have

γ(s, π × η,ψ) = γ(s, η,ψ)

n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)
.

Now the functorial lift should be to GL2n+1, so we take Π to be the generic represen-

tation of GL2n+1(k) with trivial central character given by

Π = Ind
GL2n+1(k)

B2n+1(k)

(
µ1 ⊗ · · · ⊗ µn ⊗ 1 ⊗ µ−1

n ⊗ · · · ⊗ µ−1
1

)
.

Then multiplicativity of γ -factors for GLN [20] gives

γ(s,Π × η,ψ) = γ(s, η,ψ)

n∏

j=1

γ(s, µjη,ψ)γ
(
s, µ−1

j η,ψ
)

as well, so that

γ(s, π × η,ψ) = γ(s,Π × η,ψ)

for all sufficiently highly ramified η. But again the stable form of the γ factor for GLN

depends only on the central character of Π [23], which is trivial no matter what the

central character of π. Thus the stable form of γ(s, π × η,ψ) is independent of the

central character of π as well. This completes the proof of Theorem 4.1 in this case

as well. ⊓⊔

We end this section with two corollaries of our stability results. The first is

a corollary of Proposition 4.5 combined with Theorem 4.1 and the following obser-

vations. In the notation of Proposition 4.5, for η sufficiently highly ramified, each µiη

will also be highly ramified, so that L(s, µjη) ≡ 1. Then γ(s, µjη,ψ) = ε(s, µjη,ψ).

Similarly, by [54] as soon as η is sufficiently highly ramified we have L(s, π × η) ≡ 1,

so that γ(s, π × η,ψ) = ε(s, π × η,ψ) as well. Thus we obtain the stability of local

ε-factors as well as their stable form.
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Corollary 4.1. — Let π be an irreducible admissible generic representation of Gn(k) and let

µ1, ..., µn be characters of k× in general position. Then for every sufficiently ramified character η

we have

ε(s,π × η,ψ)

=





n∏

j=1

ε(s, µjη,ψ)ε
(
s, µ−1

j η,ψ
)

Gn = SO2n+1, SO2n

ε(s, η,ψ)

n∏

j=1

ε(s, µjη,ψ)ε
(
s, µ−1

j η,ψ
)

Gn = Sp2n

.

Our second corollary combines the proof of Theorem 4.1 with the above obser-

vations on the stability of the local L-factors, both for Gn and GLN.

Corollary 4.2. — Let π be an irreducible admissible generic representation of Gn(k). Let

Π be any irreducible admissible representation of GLN(k) with trivial central character ( N as in

Theorem 1.1). Then for all sufficiently ramified characters η of k× we have

L(s, π × η) ≡ 1 ≡ L(s,Π × η) and ε(s, π × η,ψ) = ε(s,Π × η,ψ).

As was pointed out by the referee, the formulas in Proposition 4.5 and Corol-

lary 4.1 can be simplified as follows. As we noted above, for highly ramified characters,

there is no difference in the γ -factors and the ε-factors. The ε-factors for characters of

k× can then be computed via Gauss sums. As long as η is sufficiently highly ramified

with respect to µ we have that there exists cη such that ε(s, µη,ψ) = µ(cη)ε(s, η,ψ).

Thus under these conditions we have

ε(s, µη,ψ)ε(s, µ−1η,ψ) = ε(s, η,ψ)2

which then leads to

γ(s, π × η,ψ) = γ(s, η,ψ)N

in Proposition 4.5 in all cases and

ε(s, π × η,ψ) = ε(s, η,ψ)N

in Corollary 4.1 in all cases, where the natural functoriality is from Gn to GLN. In the

case of Proposition 4.5 this formula provides the elementary proof of the independence

of the stable form from the central character of π alluded to above. We chose to leave

our original proof since it then leads naturally to Corollary 4.2. These formulas for the

stable form can then be obtained after the fact by using stability and then taking π

to be induced from trivial characters (again as was pointed out by the referee).
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5. The candidate lift

We now return to k denoting a number field. Let π = ⊗′πv be a globally generic

cuspidal representation of Gn(A). In this section we will construct our candidate Π =

⊗′
Πv for the functorial lift of π as an irreducible admissible representation of GLN(A).

We will construct Π by constructing each local component, or local lift, Πv. There will

be three cases: (i) the archimedean lift, (ii) the non-archimedean unramified lift, and

finally (iii) the non-archimedean ramified lift.

5.1. The archimedean lift. — Let v be an archimedean place of k. By the arith-

metic Langlands classification [34,2], πv is parameterized by an admissible homo-

morphism φv : Wkv
→ LG0

n where Wkv
is the Weil group of kv. By composing with

ι : LGn(C) →֒ GLN(C) we have an admissible homomorphism Φv = ι ◦ φv : Wkv
−→

GLN(C) and this defines an irreducible admissible representation Πv of GLN(kv).

LGn
��ι LGLN

πv �� �� Πv.

Wkv

XX

φv

���������������

EE

Φv

����������������

Then Πv is the local functorial lift of πv. We take Πv as our local lift of πv.

The local archimedean L- and ε-factors defined via the theory of Eisenstein se-

ries that we are using are the same as the Artin factors defined through the arithmetic

Langlands classification [49]. Since the embedding ι : LGn(C) →֒ GLN(C) is the stan-

dard representation of the L-group of Gn(kv) then by the definition of the local L- and

ε-factors given in [2] we have

L(s, πv) = L(s, ι ◦ φv) = L(s,Πv)

and

ε(s, πv, ψv) = ε(s, ι ◦ φv, ψv) = ε(s,Πv, ψv)

where in both instances the middle factor is the local Artin-Weil L- and ε-factor at-

tached to representations of the Weil group as in [59].

If τv is an irreducible admissible representation of GLm(kv) then it is in turn pa-

rameterized by an admissible homomorphism φ′
v : Wkv

−→ GLm(C). Then the tensor
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product homomorphism (ι ◦ φv) ⊗ φ′
v : Wkv

−→ GLmN(C) is admissible and again we

have by definition

L(s, πv × τv) = L(s, (ι ◦ φv) ⊗ φ′
v) = L(s,Πv × τv)

and

ε(s, πv × τv, ψv) = ε(s, (ι ◦ φv) ⊗ φ′
v, ψv) = ε(s,Πv × τv, ψv).

This then gives the following matching of the twisted local L- and ε-factors.

Proposition 5.1. — Let v be an archimedean place of k and let πv be an irreducible admis-

sible generic representation of Gn(kv), Πv its local functorial lift to GLN(kv), and τv an irreducible

admissible generic representation of GLm(kv). Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

5.2. The non-archimedean unramified lift. — Now let v be an non-archimedean

place of k and assume that πv is an unramified representation. By the unramified arith-

metic Langlands classification or the Satake classification [2,47], πv is parameterized

by an unramified admissible homomorphism φv : Wkv
→ LG0

n where Wkv
is the Weil

group of kv. By composing with ι : LGn(C) →֒ GLN(C) we have an unramified admis-

sible homomorphism Φv = ι ◦ φv : Wkv
−→ GLN(C) and this defines an irreducible

admissible representation Πv of GLN(kv) [15,17].

LGn
��ι LGLN

πv �� �� Πv.

Wkv

XX

φv

���������������

EE

Φv

����������������

Then Πv is again the local functorial lift of πv and we take it as our local lift.

More specifically, any irreducible admissible generic unramified representation

πv of Gn(kv) occurs as a subrepresentation of an induced representation from n un-

ramified characters µ1,v, ..., µn,v, that is

πv ⊂ Ind
Gn(kv)

Bn(kv)
(µ1,v ⊗ · · · ⊗ µn,v).

If we normalize the local class field theory isomorphism so that a geometric Frobenius

Fv corresponds to the uniformizer ̟v of kv, then since πv is unramified it is determined
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by and determines the semi-simple conjugacy class, its Satake class, associated to the

diagonal matrix

φv(Fv) = diag
(
µ1,v(̟), ..., µn,v(̟v), µn,v(̟v)

−1, ..., µ1,v(̟v)
−1

)

in the cases Gn = SO2n+1, SO2n and to

φv(Fv) = diag
(
µ1,v(̟), ..., µn,v(̟v), 1, µn,v(̟v)

−1, ..., µ1,v(̟v)
−1

)

in the case Gn = Sp2n.

Then the semi-simple conjugacy class in GLN(C) determining Πv is Φv(Fv) =

ι ◦ φv(Fv) whose Satake class is represented by the same diagonal matrix viewed as

an element of LGLN. Hence Πv is the unique unramified constituent of the induced

representation

Ξv = Ind
GL2n(k)

B2n(k)

(
µ1,v ⊗ · · · ⊗ µn,v ⊗ µ−1

n,v ⊗ · · · ⊗ µ−1
1,v

)

in the cases Gn = SO2n+1, SO2n and of

Ξv = Ind
GL2n+1(k)

B2n+1(k)

(
µ1,v ⊗ · · · ⊗ µn,v ⊗ 1v ⊗ µ−1

n,v ⊗ · · · ⊗ µ−1
1,v

)

in the case Gn = Sp2n. In terms of Langlands’ local isobaric sums, we have

Πv =

{
µ1,v ⊞ · · ·⊞ µn,v ⊞ µ−1

n,v ⊞ · · ·⊞ µ−1
1, Gn = SO2n+1, SO2n

µ1,v ⊞ · · ·⊞ µn,v ⊞ 1v ⊞ µ−1
n,v ⊞ · · ·⊞ µ−1

1,v Gn = Sp2n

.

We will again need to know that the twisted L- and ε-factors agree for πv and Πv.

Proposition 5.2. — Let v be a non-archimedean place of k and let πv be an irreducible

admissible generic unramified representation of Gn(kv). Let Πv be its functorial local lift to GLN(kv),

and τv an irreducible admissible generic representation of GLm(kv). Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof. — We will prove this by explicitly computing both sides in terms of the

above data.

On the general linear group side, either utilizing the local Langlands correspon-

dence for GLN over a p-adic field [15,17], as we did in the case of archimedean fields,

or directly utilizing the results of [20], specifically Theorem 3.1 and Theorem 9.5, it

is routine to compute that

L(s,Πv × τv) =

n∏

j=1

L(s, τv × µj,v)L
(
s, τv × µ−1

j,v

)

ε(s,Πv × τv, ψv) =

n∏

j=1

ε(s, τv × µj,v, ψv)ε
(
s, τv × µ−1

j,v , ψv

)
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in the cases Gn = SO2n+1, SO2n while

L(s,Πv × τv) = L(s, τv)

n∏

j=1

L(s, τv × µj,v)L
(
s, τv × µ−1

j,v

)

ε(s,Πv × τv, ψv) = ε(s, τv, ψv)

n∏

j=1

ε(s, τv × µj,v, ψv)ε
(
s, τv × µ−1

j,v , ψv

)

in the case of Gn = Sp2n.

For the unramified representation πv of the classical group Gn(kv) the argument

is as in [6]. First, by the multiplicativity of γ -factors [51,52] we have that

γ(s, πv × τv, ψv) =

n∏

j=1

γ(s, τv × µj,v, ψv)γ
(
s, τv × µ−1

j,v , ψv

)

in the cases Gn = SO2n+1, SO2n and that

γ(s, πv × τv, ψv) = γ(s, τv, ψv)

n∏

j=1

γ(s, τv × µj,v, ψv)γ
(
s, τv × µ−1

j,v , ψv

)

for Gn = Sp2n. Hence to obtain the factorization of the ε-factors it suffices to combine

this with the factorization of the L-factors.

To obtain the factorization of the L-functions we will use the definition of the L-

functions as in [51]. Since πv and τv are generic, then they are both full induced from

generic tempered representations in Langlands order. For the classical groups this is

Muíc (see Theorem 5.1 of [43] or Theorem 1.1 of [44]) while for the linear groups it

is Zelevinsky [61] or Jacquet and Shalika [22]. Thus we may write

πv ≃ Ind
Gn(kv)

Q(kv)

(
π ′

1,vν
a1 ⊗ · · · ⊗ π ′

r,vν
ar ⊗ π ′′

v

)

with each π ′
j,v tempered on some GLnj

(kv), ν the character ν(g) = | det(g)|v for g ∈

GLnj
(kv), π ′′

v tempered on Gn0
(kv), a1 > . . . > ar, and Q the standard parabolic with

Levi of the form GLn1
× · · · × GLnr

× Gn0
. Similarly

τv ≃ Ind
GLm(kv)

Q′(kv)

(
τ ′

1,vν
b1 ⊗ · · · ⊗ τ ′

t,vν
bt
)

with each τ ′
i,v tempered on some GLmi

(kv), b1 > · · · > bt, and Q′ the standard parabolic

with Levi GLm1
× · · · × GLmt

. Note that under our assumptions, each π ′
j,v is full in-

duced from unitary characters and π ′′
v is the unique irreducible generic unramified

subrepresentation of such. Then by definition ([51], Section 7)

L(s, πv × τv) =
∏

i, j

L
(
s + aj + bi, π

′
j,v × τ ′

i,v

)
L
(
s − aj + bi, π̃

′
j,v × τ ′

i,v

)
×

×
∏

i

L
(
s + bi, π

′′
v × τ ′

i,v

)
.
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Now consider the factors on the right hand side. Begin with the GLnj
× GLmi

factors. Since π ′
j,v is a full induced from unitary characters, say π ′

j,v ≃ Ind(µ
j

1,v ⊗ · · ·

⊗ µj
nj ,v

), and the fact that τ ′
i,v is tempered, then by either [20] or [52] we have

L
(
s, π ′

j,v × τ ′
i,v

)
=

∏

ℓ

L
(
s, µ

j

ℓ,v × τ ′
i,v

)
.

The results of [52] apply equally well to Gn0
× GLmi

and if we write π ′′
v ⊂ Ind(µ′′

1,v ⊗

· · · ⊗ µ′′
ℓ,v) with the µ′′

j,v unitary, then by Theorem 5.2 of [52] we have

L
(
s, π ′′

v × τ ′
i,v

)
=

ℓ∏

j=1

L
(
s, τ ′

i,v × µ′′
j,v

)
L
(
s, τ ′

i,v × µ′′
j,v

−1)

in the cases Gn = SO2n+1, SO2n and

L
(
s, π ′′

v × τ ′
i,v

)
= L

(
s, τ ′

i,v

) ℓ∏

j=1

L
(
s, τ ′

i,v × µ′′
j,v

)
L
(
s, τ ′

i,v × µ′′
j,v

−1)

for Gn = Sp2n. Note that Conjecture 5.1 of [52], which is a hypothesis of Theorem 5.2

there, is known in our case by Theorem 4.1 of [4].

We have now factored the L-functions for πv all the way down to the characters

occurring in its Satake class φv(Fv). If we now reconstruct these decompositions we

find

L(s, πv × τv) =

n∏

j=1

L(s, τv × µj,v)L
(
s, τv × µ−1

j,v

)

when Gn = SO2n+1, SO2n and

L(s, πv × τv) = L(s, τv)

n∏

j=1

L(s, τv × µj,v)L
(
s, τv × µ−1

j,v

)

for Gn = Sp2n. If we combine this with our factorization of the γ -factor above we

obtain

ε(s, πv × τv, ψv) =

n∏

j=1

ε(s, τv × µj,v, ψv)ε
(
s, τv × µ−1

j,v , ψv

)

for Gn = SO2n+1, SO2n and

ε(s, πv × τv, ψv) = ε(s, τv, ψv)

n∏

j=1

ε(s, τv × µj,v, ψv)ε
(
s, τv × µ−1

j,v , ψv

)

when Gn = Sp2n.

Comparing our expressions for L(s,Πv × τv) and L(s, πv × τv) as well as those

for the ε-factors, we obtain our result. ⊓⊔
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5.3. The non-archimedean ramified lift. — We are left with the case of a non-

archimedean place v of k where the local component πv of π is ramified. Now we do

not have the local Langlands correspondence to give us a natural local functorial lift.

Instead we will use the results of Section 4.

In this case, that is when πv is ramified, we take for our local lift any irreducible

admissible representation Πv of GLN(kv) having trivial central character. For simplicity

we will take Πv to be self-contragredient as well, but this is not essential. Given πv

and this Πv then by the results of Section 4, particularly Corollary 4.2, we know that

for every sufficiently highly ramified character ηv of GL1(kv) we have

L(s, πv × ηv) ≡ 1 ≡ L(s,Πv × ηv) and

ε(s, πv × ηv, ψv) = ε(s,Πv × ηv, ψv).

Thus the L- and ε-factors for πv and Πv agree when twisted by sufficiently ramified

representations of GL1(kv). There is a natural extension of this to GLm(kv) given in

the following proposition.

Proposition 5.3. — Let v be an non-archimedean place of k. Let πv be an irreducible ad-

missible generic representation of Gn(kv) and let Πv be an irreducible admissible representation of

GLN(kv) having trivial central character. Let τv be an irreducible admissible generic representation of

GLm(kv) of the form τv ≃ τ0,v ⊗ ηv with τ0,v unramified and ηv sufficiently ramified as above.

Then

L(s, πv × τv) = L(s,Πv × τv) and ε(s, πv × τv, ψv) = ε(s,Πv × τv, ψv).

Proof. — The proof of this proposition is similar to that of Proposition 5.2. Since

τ0,v is unramified and generic we can write it as a full induced representation from

characters [22]

τ0,v ≃ Ind
GLm(kv)

B′
m(kv)

(χ1,v ⊗ · · · ⊗ χm,v)

with each χi,v unramified. If we let χi,v(x) = |x|bi
v and let ν(x) = |x|v, then we may

write τv as

τv ≃ Ind
GLm(kv)

B′
m(kv)

(
ηvν

b1 ⊗ · · · ⊗ ηvν
bm
)
.

Arguing as in the proof of Proposition 5.2, but now factoring τv according to its

characters, we find

L(s, πv × τv) =

m∏

i=1

L(s + bi, πv × ηv)



FUNCTORIALITY FOR THE CLASSICAL GROUPS 193

and

ε(s, πv × τv, ψv) =

m∏

i=1

ε(s + bi, πv × ηv, ψv).

On the other hand, by the same results of [20] we also have

L(s,Πv × τv) =

m∏

i=1

L(s + bi,Πv × ηv)

and

ε(s,Πv × τv, ψv) =

m∏

i=1

ε(s + bi,Πv × ηv, ψv).

By Corollary 4.2 of Section 4 we see that after factoring the L- and ε-factors

for πv and Πv twisted by such τv the factors are term by term equal for ηv sufficiently

highly ramified. This establishes the proposition. ⊓⊔

5.4. The global candidate lift. — Return now to the global situation. Let π ≃

⊗′πv be a globally generic cuspidal representation of Gn(A). Let S be a finite set of

finite places such that for all non-archimedean places v /∈ S we have πv is unrami-

fied. For each v /∈ S let Πv be the local functorial lift of πv as in Section 5.1 or 5.2.

For the places v ∈ S we take Πv to be any irreducible admissible self-contragredient

representation of GLN(kv) having trivial central character as in Section 5.3. Then the

restricted tensor product Π ≃ ⊗′
Πv is an irreducible admissible self-contragredient

representation of GLN(A) having trivial central character. This is our candidate lift.

For each place v ∈ S choose a sufficiently highly ramified character ηv so that

Proposition 5.3 is valid. Let η be any idele class character of GL1(A) which has local

component ηv at those v ∈ S. Then combining Propositions 5.1–5.3 we obtain the

following result on our candidate lift.

Proposition 5.4. — Let π be a globally generic cuspidal representation of Gn(A) and let Π

be the candidate lift constructed above as a representation of GLN(A). Then for every representation

τ ∈ T (S; η) = T S(N − 1) ⊗ η we have

L(s, π × τ) = L(s,Π × τ) and ε(s, π × τ) = ε(s,Π × τ).

6. Global functoriality

Let us now prove Theorem 1.1. We begin with our globally generic cuspidal

representation of Gn(A). Decompose π ≃ ⊗′πv into its local components and let S be
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a non-empty set of non-archimedean places such that for all non-archimedean places

v /∈ S we have that πv is unramified.

Let Π ≃ ⊗′
Πv be the irreducible admissible representation of GLN(A) con-

structed in Section 5 as our candidate lift. By construction Π is self-contragredient,

has trivial central character, and is the local functorial lift of π at all places v /∈ S.

Choose η, an idele class character, such that its local components ηv are suffi-

ciently highly ramified at those v ∈ S so that Proposition 5.4 is valid. Furthermore,

since we have taken S non-empty, we may choose η so that for at least one place

v0 ∈ S we have that η2
v0

is also ramified. Then Theorem 3.1 is also valid. Fix this

character.

We are now ready to apply the Converse Theorem to Π. Consider any repre-

sentation τ ∈ T (S; η). By Proposition 5.4 we have that

L(s, π × τ) = L(s,Π × τ) and ε(s, π × τ) = ε(s,Π × τ).

On the other hand, by Theorem 3.1 we know that each L(s, π × τ) and hence

L(s,Π × τ) is nice. Thus Π satisfies the hypotheses of the Converse Theorem, Theo-

rem 2.1. Hence there is an automorphic representation Π
′ ≃ ⊗′

Π
′
v of GLN(A) such

that Π
′
v ≃ Πv for all v /∈ S. But for v /∈ S, by construction Πv is the local functorial lift

of πv. Hence Π
′ is a functorial lift of π as required in the statement of Theorem 1.1.

⊓⊔

7. The image of functoriality

In this section we would like to investigate the image of functoriality. Assuming

the existence of global functoriality, the global image has been analyzed in the papers

of Ginzburg, Rallis, and Soudry using their method of descent [13,56]. For complete-

ness, we recall their global results below. Related results in the case Gn = SO2n+1 can

be found in [29,30].

We then turn to what global functoriality implies about the local image of func-

toriality at the non-archimedean places, including those where the representation is

ramified. In the case of Gn = SO2n+1 this has been carried out by Jiang and Soudry

using functoriality plus the local descent [26,27], with related results obtained in [30]

without using the descent. In this paper we will follow the development of [30] since

the local descent has not been completed in the other cases. These local results are

needed for our applications in Sections 8–11, particularly our results towards Ramanu-

jan we present in Section 10.

7.1. The global image of functoriality. — From their method of descent of auto-

morphic representations from GLN(A) to the classical groups Gn(A) and its local ana-

logues, Ginzburg, Rallis, and Soudry were able to characterize the image of functori-

ality from generic representations before this was known to exist, that is, before our re-
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sult [13,56]. As the results are slightly different for Gn = SO2n+1 and Gn = SO2n, Sp2n

we will state them separately.

For the odd orthogonal group, the result takes the following form [13,56].

Theorem 7.1. — Let π be a globally generic cuspidal representation of Gn(A) =

SO2n+1(A). Then any functorial lift of π to an automorphic representation Π of GL2n(A) has

trivial central character and is of the form

Π = Ind(Π1 ⊗ · · · ⊗ Πd) = Π1 ⊞ · · ·⊞Πd,

where each Πi is a unitary self-dual cuspidal representation of GLNi
(A) such that the partial

L-function LT(s,Πi,Λ
2), for any sufficiently large finite set of places T containing all archimedean

places, has a pole at s = 1 and Πi �≃ Πj for i �= j. Moreover, any such Π is the functorial lift of

some π as above.

Note that the condition that LT(s,Πi,Λ
2) has a pole at s = 1 implies that

Ni = 2ni is even and each Πi has trivial central character. In particular, the cuspidal

image of functoriality consists of all self-dual cuspidal representations of GL2n(A) hav-

ing trivial central character and whose (partial) exterior square L-function has a pole

at s = 1; the non-cuspidal part of the image consists of all irreducible isobaric sums of

such. As observed in [13], those π which do not lift to cuspidal Π are in fact cuspidal

endoscopic lifts from products of smaller odd special orthogonal groups.

For the cases of SO2n and Sp2n the result is similar with the exterior square

L-function replaced by the symmetric square L-function [56].

Theorem 7.2. — Let π be a globally generic cuspidal representation of Gn(A) = SO2n(A),

n ≥ 2, or Gn(A) = Sp2n(A). Then any functorial lift of π to an automorphic representation Π

of GLN(A) has trivial central character and is of the form

Π = Ind(Π1 ⊗ · · · ⊗ Πd) = Π1 ⊞ · · ·⊞Πd,

where each Πi is a unitary self-dual cuspidal representation of GLNi
(A) such that the partial

L-function LT(s,Πi, Sym2), for any sufficiently large finite set of places T containing all archimedean

places, has a pole at s = 1 and Πi �≃ Πj for i �= j. Moreover, any such Π is the functorial lift of

some π as above.

There are two remarks to be made on this result. First, the cuspidal image of

functoriality from SO2n(A) consists of all self-dual cuspidal representations of GL2n(A)

having trivial central character and whose (partial) symmetric square L-function has

a pole at s = 1 and the functorial image from Sp2n(A) consists of the same type of

representations of GL2n+1(A). If the image is not cuspidal, then it consists of an iso-

baric sum of such representations which are then the functorial lifts from products of

smaller symplectic groups or even special orthogonal groups. However, since we lose
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the condition of trivial central character (except for the representation Π itself ) the Πi

could be functorial lifts from quasi-split even special orthogonal groups.

Let us remark for future use that in cases where one might not have the descent

method it may still be possible to prove that the image of functoriality is an isobaric

representation of GLN by using facts about the local unitary dual and the Langlands-

Shahidi method of analyzing L-functions. This type of argument can be found in [29,

30] where this method is used for the case of Gn = SO2n+1. Similar arguments work

for our other cases as well and have the potential of working in more general situa-

tions. Note that in all following applications, it is only the fact that the image is an

isobaric sum of unitary cuspidal representations that is necessary, so these results do

not rely on having a descent theory.

There are several facts about classical groups that can be deduced from the ex-

istence of the functorial lift to GLN combined with the characterization of the image.

One immediate consequence is that we have lost no information at the places where

we did not have a local functorial lift. This is possible since we have a strong multi-

plicity one result for isobaric representations of GLN(A) [21].

Corollary 7.1. — Let π be a globally generic cuspidal representation of Gn and let Π be

its functorial lift to GLN(A). Then Π is completely determined by requiring that Πv be the local

functorial lift of πv at almost all places v of k, that is, no global information is lost from those local

places where local functoriality is not known.

7.2. The local image of functoriality. — One type of consequence of global func-

toriality combined with the fact that the image is the isobaric sum of unitary cuspidal

representations is that we can fill in some facts about the local components of the lift

of globally generic cusp forms on classical groups. Since the local functorial lifts are

completely understood at the archimedean places, in this section we will always take

v to be a non-archimedean place of k.

We begin with the unramified local lift.

Proposition 7.1. — Let π ≃ ⊗′πv be a globally generic cuspidal representation of Gn(A).

Let v be a non-archimedean place of k at which πv is unramified. Then the unramified local functorial

lift Πv, as defined in Section 5.2, is generic. In particular the induced representation Ξv introduced

there is irreducible and equal to Πv.

Proof. — Since the global functorial lift Π of π is either cuspidal or a full induced

representation from cuspidals, Π is generic. Thus all of its local components are as

well. ⊓⊔

For the case of Gn = SO2n+1 this was proved by purely local methods in [6].

However for the other two cases this is not a purely local fact, but rather a conse-

quence of πv being a component of a globally generic cuspidal representation.
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At a general non-archimedean place v we have the following result towards es-

tablishing generic local functoriality at all places. It encompasses the above proposition

as well.

Proposition 7.2. — Let v be a non-archimedean place of k and let πv be an irreducible

admissible generic representation of Gn(kv) which appears as a local component of some globally

generic cuspidal representation. Then there exists a unique generic representation Πv of GLN(kv) such

that for every supercuspidal representation ρv of GLm(kv) we have

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv).

In particular, this is true for any irreducible generic supercuspidal representation πv. Moreover, if πv

is the component at v of a globally generic cuspidal representation π and Π the functorial lift of π

then, as the notation suggests, this Πv is the local component of Π at the place v.

Proof. — Take πv as the local component at v of the globally generic cuspidal

representation π. Let Π be the functorial lift of π to an automorphic representation

of GLN(A). Then Π, and hence each of its local components Πv, is generic.

We first show the existence of one such Πv. If πv is unramified, then the state-

ment follows from Proposition 5.2. In general, let ρv be as in the statement of the

proposition. Then by Proposition 5.1 of [51] there is a cuspidal representation ρ′ of

GLm(A) such that at the place v the local component of ρ′ is the given ρv and at

all other finite places w �= v we have ρ′
w is unramified. Let S be a finite set of finite

places such that πw is unramified for w /∈ S and let S′ = S − {v}. Let η be an idele

class character such that ηv is trivial and ηw is sufficiently highly ramified at w ∈ S′ so

that

γ
(
s, πw ×

(
ρ′

w ⊗ ηw

)
, ψw

)
= γ

(
s,Πw ×

(
ρ′

w ⊗ ηw

)
, ψw

)
(7.1)

as in the proof of Proposition 5.3.

Let ρ = ρ′ ⊗ η. Note that, since ηv is trivial, the local component of ρ at v is

still our given ρv. We have the global functional equations

L(s, π × ρ) = ε(s, π × ρ)L(1 − s, π̃ × ρ̃)

and

L(s,Π × ρ) = ε(s,Π × ρ)L(1 − s, Π̃ × ρ̃)

which we can write in the form

γ(s, πv × ρv, ψv)

=

(
∏

w∈S′

γ(s, πw × ρw, ψw)−1

)
LS(s, π × ρ)

εS(s, π × ρ,ψ)LS(1 − s, π̃ × ρ̃)
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and

γ(s,Πv × ρv, ψv)

=

(∏

w∈S′

γ(s,Πw × ρw, ψw)−1

)
LS(s,Π × ρ)

εS(s,Π × ρ,ψ)LS(1 − s, Π̃ × ρ̃)
.

By Propositions 5.1 and 5.2 we have that

LS(s, π × ρ)

εS(s, π × ρ,ψ)LS(1 − s, π̃ × ρ̃)
=

LS(s,Π × ρ)

εS(s,Π × ρ,ψ)LS(1 − s, Π̃ × ρ̃)
,

while for w ∈ S′ we have γ(s, πw × ρw, ψw) = γ(s,Πw × ρw, ψw) by (7.1). Hence

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv).

This shows the existence of such Πv. The uniqueness follows from the “local

converse theorem for GLN”, that is, a generic admissible irreducible representation of

GLN(kv) is uniquely determined by its γ -factor with twists by supercuspidal represen-

tations of all smaller rank general linear groups, as in the Remark after the Corollary

of Theorem 1.1 of Henniart [16].

If πv is a generic supercuspidal representation of Gn(kv) then by Proposition 5.1

of [51] it occurs as the local component of a globally generic cuspidal representation

of Gn(A), hence the above reasoning applies.

The final statement of the proposition has in fact been shown in the begin-

ning part of the proof since we took for π an arbitrary global cuspidal representation

of Gn(A) with local component πv and arrived at the uniquely defined local generic

lift Πv. ⊓⊔

We will refer to Πv as the local functorial lift of πv. This terminology agrees with

the usual one at those places v /∈ S. As was shown in [27] this is completely justifiable

in the case of SO2n+1.

This result for Gn = SO2n+1 was one of the ingredients of Jiang and Soudry’s

proof of a “local converse theorem” for SO2n+1 which in turn was a key ingredient in

their analysis of local functoriality and the local Langlands correspondence for generic

representations of SO2n+1(kv) for a p-adic place v [26,27]. Hopefully, once the details

of the local descent theory are worked out for SO2n and Sp2n this proposition will play

a similarly useful role.

However, even without the full strength of the descent, we can still say much

about the local image of our functorial lift. We will follow the method of [30] where

similar results were proved for Gn = SO2n+1. We begin with the following lemma.

Lemma 7.1. — Let πv be a local component of the globally generic cuspidal representation π.

Assume that πv is tempered. Then the local functorial lift Πv is also tempered.
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Proof. — We are assuming that

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

for every supercuspidal representation ρv of GLm(kv).

We first extend this to twisting by discrete series representations of GLm(kv). If

σv is a discrete series, then σv can be realized as the irreducible quotient δ(ρv, t) of the

induced representation

Ξv = Ind
(
ρvν

− t−1
2 ⊗ · · · ⊗ ρvν

t−1
2

)

associated to the segment

∆ =
[
ρvν

− t−1
2 , ρvν

t−1
2

]
=

{
ρvν

− t−1
2 , ρvν

− t−1
2 +1, ..., ρvν

t−1
2

}

as in [61] where ρv is a supercuspidal representation of an appropriate general linear

group and t is a positive integer. Then using the multiplicativity of γ -factors on both

sides [52,20] we have

γ(s, πv × σv, ψv) =

t−1∏

j=0

γ

(
s +

t − 1

2
− j, πv × ρv, ψv

)

=

t−1∏

j=0

γ

(
s +

t − 1

2
− j,Πv × ρv, ψv

)

= γ(s,Πv × σv, ψv).

We next claim that for any discrete series representation σv of GLm(kv) we have

L(s, πv × σv) = L(s,Πv × σv).

Since πv and σv are both tempered, then by definition [51] L(s, πv × σv)
−1 is the nor-

malized polynomial part of the numerator of γ(s, πv × σv, ψv). Since we have equal-

ity of the twisted γ -factors, our equality would follow from the similar statement for

L(s,Πv × σv).

Since Πv is generic and unitary then by the classification of unitary generic rep-

resentations of GLN(kv) [58] we can write

Πv = Ind
(
δ1,vν

r1 ⊗ · · · ⊗ δk,vν
rk ⊗ δk+1,v ⊗ · · · ⊗ δk+ℓ,v

⊗ δk,vν
−rk ⊗ · · · ⊗ δ1,vν

−r1
)
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with each δi,v a discrete series representation and 0 < rk ≤ · · · ≤ r1 < 1

2
. Again using

the multiplicativity of the γ -factors from [20] we have

γ(s,Πv × σv, ψv) =

k∏

j=1

γ(s + rj, δj,v × σv, ψv)γ(s − rj, δj,v × σv, ψv) ×

×

ℓ∏

i=1

γ(s, δk+i,v × σv, ψv).

By definition [20]

γ(s, δi,v × σv, ψv) =
ε(s, δi,v × σv, ψv)L(1 − s, δ̃i,v × σ̃v)

L(s, δi,v × σv)
.

Hence we see that the numerator of γ(s,Πv × σv, ψv) in the factorization is given, up

to a monomial factor coming from the ε-factors, by



k∏

j=1

L(s + rj, δj,v × σv, )L(s − rj, δj,v × σv)

ℓ∏

i=1

L(s, δk+i,v × σv)




−1

.

Since δi,v and σv are both unitary discrete series, L(s, δi,v × σv) has no poles in

Re(s) > 0 [20] and so this numerator can have zeros only in Re(s) < 1

2
since 0 <

rj < 1

2
.

Similarly the denominator of γ(s,Πv × σv, ψv) in the factorization is the poly-
nomial




k∏

j=1

L(1 − s − rj, δ̃j,v × σ̃v, )L(1 − s + rj, δ̃j,v × σ̃v)

ℓ∏

i=1

L(1 − s, δ̃k+i,v × σ̃v)




−1

and this can have zeros only in the region Re(1 − s) < 1

2
, that is, Re(s) > 1

2
.

Hence the numerator and denominator coming from the factorization of the γ -

factor are relatively prime. Consequently, from the equality of γ -factors we can con-

clude that

L(s, πv × σv)

=

k∏

j=1

L(s + rj, δj,v × σv, )L(s − rj, δj,v × σv)

ℓ∏

i=1

L(s, δk+i,v × σv).

On the other hand, by [20] we can compute that

L(s,Πv × σv)

=

k∏

j=1

L(s + rj, δj,v × σv, )L(s − rj, δj,v × σv)

ℓ∏

i=1

L(s, δk+i,v × σv)
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and hence

L(s, πv × σv) = L(s,Πv × σv)

as desired.

We can now prove that Πv is tempered. We write Πv as above and consider the

equality of twisted L-factors with σv = δ̃i,v with 1 ≤ i ≤ k. By Theorem 4.1 of [4],

since δi,v and πv are both tempered we know that L(s, πv × δ̃i,v) is holomorphic for

Re(s) > 0. On the other hand, as noted above we have the factorization

L(s,Πv × δ̃i,v)

=

k∏

j=1

L(s + rj, δj,v × δ̃i,v, )L(s − rj, δj,v × δ̃i,v)

ℓ∏

j=1

L(s, δk+j,v × δ̃i,v).

The term L(s − ri, δi,v × δ̃i,v) produces a pole at s = ri and since the local L-factors are

never zero, this persists to a pole of L(s,Πv × δ̃i,v) at s = ri > 0. This is a contradiction

unless no non-zero exponents occur in Πv, that is, k = 0 and

Πv = Ind(δ1,v ⊗ · · · ⊗ δℓ,v)

is a full induced representation from unitary discrete series, that is, is tempered. ⊓⊔

With this lemma in hand, it is easy to determine the structure of the local func-

torial lift of any supercuspidal representation of Gn(kv).

Theorem 7.3. — (a) Let πv be a supercuspidal representation of the group SO2n+1(kv) and

let Πv be its local functorial lift in the sense of Proposition 7.2. Then Πv is of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗ Πd,v)

where each Πi,v is an irreducible supercuspidal self-dual representation of some GL2ni
(kv) such that

L(s,Πi,v,∧
2) has a pole at s = 0 and Πi,v �≃ Πj,v for i �= j.

(b) Let πv be a supercuspidal representation of SO2n(kv), n ≥ 2, or Sp2n(kv) and let Πv be

its local functorial lift in the sense of Proposition 7.2. Then Πv is of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗ Πd,v)

where each Πi,v is an irreducible supercuspidal self-dual representation of some GLNi
(kv) such that

L(s,Πi,v, Sym2) has a pole at s = 0 and Πi,v �≃ Πj,v for i �= j.
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Proof. — As part (a) of this theorem was established in both [26] and [30], by es-

sentially the same method, we will restrict ourselves to part (b). The proof is essentially

the same as that of part (a).

Recall from the proof of Lemma 7.1 that we know the local functorial lift Πv is

tempered and of the form

Πv = Ind(δ1,v ⊗ · · · ⊗ δd,v)

with each δi,v discrete series. Furthermore, for any discrete series representation σv of

GLm(kv) we know that

L(s, πv × σv) = L(s,Πv × σv).

We now claim that each δi,v is in fact supercuspidal. We can realize δi,v as the irre-

ducible quotient δ(ρi,v, ti) of the induced representation

Ξi,v = Ind
(
ρi,vν

−
ti−1

2 ⊗ · · · ⊗ ρi,vν
ti−1

2

)

associated to the segment [ρi,vν
−

ti−1

2 , ρi,vν
ti−1

2 ] as in [61] where ρi,v is a supercuspidal

representation of an appropriate general linear group and ti is a positive integer. We

can then apply our equality of twisted L-factors with σv = δ̃i,v as follows.

From the general linear group side we know by [20] or [51] that

L(s,Πv × δ̃i,v) =

d∏

j=1

L(s, δj,v × δ̃i,v)

and that

L(s, δi,v × δ̃i,v) =

ti−1∏

k=0

L(s + k, ρi,v × ρ̃i,v).

Now L(s, ρi,v × ρ̃i,v) has a pole at s = 0 so that L(s + ti − 1, ρi,v × ρ̃i,v) has a pole

at s = −(ti − 1). Since local L-functions are never zero, this persists to give a pole of

L(s,Πv × δ̃i,v) at s = 1 − ti.

On the classical group side, from either [51] or the explicit computations in [31]

we have that

L(s, πv × δ̃i,v) = L
(
s + ti−1

2
, πv × ρ̃i,v

)

since πv is supercuspidal. Since L(s, πv × ρ̃i,v) can have poles only for Re(s) = 0, we

see that L(s, πv × δ̃i,v) can only have poles on the line Re(s) = − ti−1

2
.
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These locations of poles are inconsistent unless ti = 1, that is δi,v = ρi,v is super-

cuspidal. So now let us write

Πv = Ind(ρ1,v ⊗ · · · ⊗ ρd,v)

with each ρi,v supercuspidal.

To see that each ρi,v is self-dual, we consider the equality

L(s, πv × ρ̃i,v) = L(s,Πv × ρ̃i,v).

Then the right hand side has a pole at s = 0 as above. For the left hand side to have

a pole at s = 0 we must have that ρi,v is self-dual by [53]. Moreover, in this case, the

order of the pole on the left hand side is one while the order of the pole on the right

hand side is the number of j such that ρi,v ≃ ρj,v. Hence we see that each ρi,v is self

dual and ρi,v �≃ ρj,v if i �= j.

We finally come to the L-function condition. Recall we are in the case that Gn =

SO2n, n ≥ 2, or Sp2n. By the previous analysis, L(s, πv × ρi,v) has a pole at s = 0. On

the other hand in these situations [51] implies that the product

L(s, πv × ρi,v)L(2s, ρi,v,∧
2)

has a simple pole at s = 0. Since this pole is accounted for by L(s, πv × ρi,v) we can

conclude that L(s, ρi,v,∧
2) has no pole at s = 0. On the other hand, from [53] we

know that

L(s, ρi,v × ρi,v) = L(s, ρi,v, Sym2)L(s, ρi,v,∧
2).

Since the left hand side always has a pole at s = 0, in our cases this must come from

the symmetric square term, that is, L(s, ρi,v, Sym2) has a pole at s = 0. This completes

the proof of the theorem. ⊓⊔

In [26] Jiang and Soudry were able to then use the descent method to show

that in part (a) of the theorem the local functoriality taking πv to Πv is bijective and

that the description of Πv given determines the image completely, that is, the lift is

onto the set of Πv with these properties. We expect a similar result in part (b) when

the descent theory is completed.

To continue with our analysis of the local image of functoriality, we will need to

deal with generic representations πv of Gn(kv) which may or may not occur as com-

ponents of globally generic cusp forms. To this end, we make the following definition

independent of whether πv occurs as a component of a cuspidal representation.

Definition 7.1. — Let πv be an irreducible admissible generic representation of Gn(kv). We

will say that an irreducible admissible representation Πv of GLN(kv) is a local functorial lift

of πv if for every supercuspidal representation ρv of GLm(kv) we have

L(s, πv × ρv) = L(s,Πv × ρv) and ε(s, πv × ρv, ψv) = ε(s,Πv × ρv, ψv).
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Note that given the interrelations among L, γ , and ε, this definition could equiv-

alently be stated as

L(s, πv × ρv) = L(s,Πv × ρv) and γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

and this is the formulation that is easiest to work with. This definition is consistent

with the previous definitions given at the places where we can define a local functo-

rial lift via the local Langlands correspondence and is consistent with that given by the

image of global functoriality for components of globally generic cuspidal representa-

tions.

We would next like to compute the local functorial lift of a generic discrete series

representation πv of Gn(kv). We first recall some facts and notation from the represen-

tation theory of general linear groups [61], some of which we have used before. If ρ

is a supercuspidal representation of some GLd(kv) and a and b are in 1

2
Z with a ≥ b

and a − b ∈ Z, then ∆ = [νbρ, νaρ] = {νbρ, νb+1ρ, ..., νaρ} is referred to as a segment

and δ(∆) = δ([νbρ, νaρ]) denotes the unique irreducible quotient of the induced rep-

resentation

Ind(νbρ ⊗ · · · ⊗ νaρ).

Then δ([νbρ, νaρ]) is an essentially square integrable representation of the group

GLd(a−b+1)(kv). If a ∈ Z, a ≥ 1, and ρ is unitary supercuspidal we will let δ(ρ, a) =

δ([ν−
(a−1)

2 ρ, ν
(a−1)

2 ρ]). Then δ(ρ, a) is a unitary discrete series representation of GLda(kv).

If ρ is self-dual then so is δ(ρ, a).

Now recall from the classification of generic discrete series representations πv of

classical groups [24,25,39,40,42] that such πv can be realized as a subrepresentation

of an induced representation of the form

ξv = Ind
(
δ1 ⊗ · · · ⊗ δr ⊗ δ′

1 ⊗ · · · ⊗ δ′
ℓ ⊗ π0,v

)
(7.2)

where π0,v is a generic supercuspidal representation of a smaller classical group Gn0
(kv)

of the same type (possibly the trivial representation of G0(kv)),

δi = δ
([

ν−
(bi−1)

2 ρi, ν
(ai−1)

2 ρi

])

with ρi a self-dual supercuspidal representation of an appropriate GLdi
(kv) and ai >

bi > 0 integers of the same parity and

δ′
j = δ

([
νǫjρ′

j , ν
(a′

j
−1)

2 ρ′
j

])

with ρ′
j a self-dual supercuspidal representation of an appropriate GLd ′

j
(kv), a′

j > 0

an integer and ǫj = 1

2
if a′

j is even and ǫj = 1 if a′
j is odd. The representations
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ρ′
1, ..., ρ

′
ℓ are all distinct and we have that ρ′

j can occur only if the induced repre-

sentation Ind(ρ′
jν

s ⊗ π0,v) is reducible at s = 1

2
or s = 1 (but these conditions are not

sufficient). These reducibilities are discussed in [51]. The integer a′
j determining the

exponents will then be even if the reducibility point is s = 1

2
and it will be odd if the

reducibility point is s = 1. This last reducibility is equivalent to L(s, ρ′
j × π0,v) having

a pole at s = 0 [51].

Let us briefly indicate how we derive this from the work of Mœglin and

Tadíc [39,40]. More details can be found in Section 8 below. We will use freely the

terminology from these papers. Note that while the body of these papers deal with

the cases Gn = SO2n+1 and Gn = Sp2n, Section 16 of [40] discusses the extension of

these results to Gn = SO2n, with the convention that SO2(kv) does not have super-

cuspidal or discrete series representations. First we consider the Jordan blocks asso-

ciated to a generic supercuspidal representation π0,v of Gn(kv). We will let ρ denote

a self dual supercuspidal representation of an appropriate GLdρ
(kv). Combining Theo-

rem 8.1 of [51] and the definition of Jord(π0,v) [39,40] we can easily see that

Jord(π0,v) =
{
(ρ, 1)

∣∣Ind
(
ρνs ⊗ π0,v

)
is reducible at s = 1

}

and the set of extended Jordan blocks Jord ′(π0,v) is then

Jord ′(π0,v) = Jord(π0,v) ∪
{
(ρ, 0)

∣∣Ind
(
ρνs ⊗ π0,v

)
is reducible at s = 1

2

}
.

Note that once one assumes that Ind(ρνs ⊗ π0,v) reduces somewhere, then reduction

at s = 1/2 is equivalent to the L-function L(s, ρ, R) having a pole at s = 0, where

we have let R = Sym2 if Gn = SO2n+1 and R = ∧2 if Gn = SO2n or Sp2n [51,53].

Let us write Jord ′(π0,v) = {(ρ′
j , aj)}. If π+

v is a strongly positive generic discrete series

representation [39,40] and π0,v = π+
cusp is its partial cuspidal support, then π0,v must be

generic. Then by Proposition 4.1 of [39] or Section 7 of [40] we know that for each

(ρ′
j , aj) ∈ Jord ′(π0,v) there exist integers a′

j ≥ aj and of the same parity such that if we

let δ′
j = δ([ρ′

jν
(aj+1)

2 , ρ′
jν

(a′
j
−1)

2 ]), with δ′
j associated to empty segments omitted, then π+

v

is the unique irreducible subrepresentation of

ξ+
v = Ind

(
δ′

1 ⊗ · · · ⊗ δ′
ℓ ⊗ π0,v

)
.

This is in agreement with our characterization. Our characterization of a general

generic discrete series representation πv then follows inductively from Lemma 3.1 and

Section 4.2 of [39]. From there we see that there is a strongly positive discrete series

representation π+
v of a smaller classical group of the same type and a sequence of self-

dual supercuspidal representations ρi of GLdρi
(kv) and integers ai > bi > 0 of the same

parity such that if we let

δi = δ
([

ν−
(bi−1)

2 ρi, ν
(ai−1)

2 ρi

])
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then πv will occur as a subrepresentation of

ξ ′
v = Ind

(
δ1 ⊗ · · · ⊗ δr ⊗ π+

v

)
.

If πv is generic, then so must π+
v be and if we combine this with the characterization

above of generic strongly positive discrete series and use the transitivity of induction

we obtain our characterization. For Gn = SO2n+1 or Sp2n the characterization can also

be derived from Jantzen’s work [24,25].

Returning to our generic discrete series representation πv realized as a subrep-

resentation of (7.2), let Π0,v be the local functorial lift of π0,v as constructed in Theo-

rem 7.3. Then if we consider the induced representation of GLN(kv) defined by

Ξv = Ind
(
δ1 ⊗ · · · ⊗ δr ⊗ δ′

1 ⊗ · · · ⊗ δ′
ℓ

⊗ Π0,v ⊗ δ̃′
ℓ ⊗ · · · ⊗ δ̃′

1 ⊗ δ̃r ⊗ · · · ⊗ δ̃1

)(7.3)

then this induced representation has a unique generic constituent Πv [61].

Proposition 7.3. — Let πv be a generic discrete series representation of Gn(kv) realized as

a subrepresentation of (7.2). Then πv has a local functorial lift Πv to GLN(kv), given by the generic

constituent of (7.3), which is self-dual, generic, and tempered.

Proof. — For simplicity, let us rearrange the inducing data for ξv to write it in

the form

ξ ′
v = Ind

(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ π0,v

)

where each τi,v is a self-dual discrete series representation of an appropriate GLni
(kv),

rm ≤ · · · ≤ r1, and π0,v is our generic supercuspidal representation of an appropri-

ate smaller classical group Gn0
(kv) of the same type. Then if we consider the induced

representation of GLN(kv) defined by

Ξ
′
v = Ind

(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ Π0,v ⊗ τm,vν

−rm ⊗ · · · ⊗ τ1,vν
−r1

)
,

which is a rearrangement of the inducing data for Ξv, then this induced representation

has a unique generic subrepresentation which is Πv [61].

We claim that Πv is a local functorial lift of πv, that is, we have

L(s, πv × ρv) = L(s,Πv × ρv) and γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv).

As we have used several times, from the multiplicativity of γ -factors as in [52] for the

classical group side and, for example [20], for the general linear group side, we have

γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

= γ(s,Π0,v × ρv, ψv)

m∏

i=1

γ(s ± ri, τi,v × ρv, ψv).
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To obtain the equality of L-functions, we will directly prove that Πv is tempered. Once

πv and Πv are both tempered, then the equality of the L-factors follows from the

equality of γ -factors by [51].

If we now return to Ξv as given by (7.3),

Ξv = Ind
(
δ1 ⊗ · · · ⊗ δr ⊗ δ′

1 ⊗ · · · ⊗ δ′
ℓ

⊗ Π0,v ⊗ δ̃′
ℓ ⊗ · · · ⊗ δ̃′

1 ⊗ δ̃r ⊗ · · · ⊗ δ̃1

)
,

then Πv is the unique generic constituent of Ξv and we can explicitly compute this

constituent using induction in stages.

First, consider the contribution of δi ⊗ δ̃i for indices 1 ≤ i ≤ r. Replacing δi

by its inducing data and then rearranging, we find that the induced representation of

GLdi(ai+bi)(kv) given by Ind(δi ⊗ δ̃i) is a quotient of the larger induced representation

Ξi,v = Ind
((

ρiν
−(bi−1)

2 ⊗ · · · ⊗ ρiν
(ai−1)

2

)
⊗

(
ρiν

−(ai−1)

2 ⊗ · · · ⊗ ρiν
(bi−1)

2

))

and hence a constituent of

Ind
((

ρiν
−(ai−1)

2 ⊗ · · · ⊗ ρiν
(ai−1)

2

)
⊗

(
ρiν

−(bi−1)

2 ⊗ · · · ⊗ ρiν
(bi−1)

2

))
.

The generic constituent of this induced representation is visibly the self-dual tempered

representation Ind(δ(ρi, ai) ⊗ δ(ρi, bi)). Hence in computing the generic constituent

of Ξv we may replace each δi ⊗ δ̃i by δ(ρi, ai) ⊗ δ(ρi, bi) in the inducing data.

Next consider the contribution of δ′
j ⊗ δ̃′

j when the associated integer a′
j deter-

mining the exponents is even. In this case, replacing δ′
j by its inducing data we see

that Ind(δ′
j ⊗ δ̃′

j) is a constituent of the larger induced representation

Ξ
′
j,v = Ind

(
ρ′

jν
−

(a′
j
−1)

2 ⊗ · · · ⊗ ρ′
jν

− 1
2 ⊗ ρ′

jν
1
2 ⊗ · · · ⊗ ρ′

jν
(a′

j
−1)

2

)

which has as its unique generic constituent the self-dual discrete series representation

given by δ(ρ′
j , a′

j). So for the purpose of computing the generic constituent of Ξv we

may replace δ′
j ⊗ δ̃′

j by δ(ρ′
j , a′

j) in the inducing data.

Finally let us consider the contribution of the δ′
j when the exponent a′

j is odd.

Recall that this is possible only if L(s, π0,v × ρ′
j ) = L(s,Π0,v × ρ′

j ) has a pole at s = 0.

By Theorem 7.3 we know that we can write

Π0,v ≃ Ind(Π1,v ⊗ · · · ⊗ Πd,v)

with each Πi,v a self-dual supercuspidal representation of an appropriate general linear

group GLdi
(kv) with the Πi,v distinct. But these Πi,v are then precisely the supercusp-

idal representations ρ′′ for which L(s,Π0,v × ρ′′) has a pole at s = 0. Hence if we let



208 J. W. COGDELL, H. H. KIM, I. I. PIATETSKI-SHAPIRO, F. SHAHIDI

ρ′′
j with j = 1, ..., ℓ′′ denote those ρ′

j with a′
j odd, then {ρ′′

1, ..., ρ
′′
ℓ′′} ⊂ {Π1,v, ...Πd,v}

and we can write

Π0,v = Ind
(
ρ′′

1 ⊗ · · · ⊗ ρ′′
ℓ′′ ⊗ Π

′
0,v

)

with Π
′
0,v the tensor product of the Πi,v which were not among the ρ′′

j . Now, for each

ρ′′
j , consider the contribution δ′′

j ⊗ ρ′′
j ⊗ δ̃′′

j to our generic constituent. If we replace

δ′′
j by its inducing data, we see that Ind(δ′′

j ⊗ ρ′′
j ⊗ δ̃′′

j ) is a constituent of the larger

induced representation

Ξ
′′
j,v = Ind

(
ρ′′

j ν
−

(a′′
j
−1)

2 ⊗ · · · ⊗ ρ′′
j ν

−1 ⊗ ρ′′
j ⊗ ρ′′

j ν ⊗ · · · ⊗ ρ′′
j ν

(a′′
j
−1)

2

)

and this representation has as its unique generic constituent the self dual discrete series

representation δ(ρ′′
j , a′′

j ) So in the inducing data for Ξv we may replace δ′′
j ⊗ ρ′′

j ⊗ δ̃′′
j

by δ(ρ′′
j , a′′

j ) and not effect the generic constituent.

If we put these all back together, we find that our Πv is now the unique generic

constituent of the induced representation

Ind
(
δ(ρ1, a1) ⊗ δ(ρ1, b1) ⊗ · · · ⊗ δ(ρr, ar) ⊗ δ(ρr, br) ⊗ δ

(
ρ′

1, a′
1

)

⊗ · · · ⊗ δ
(
ρ′

ℓ, a′
ℓ

)
⊗ Π

′
0,v

)
.

But this representation is induced from self-dual unitary discrete series and is hence

generic, tempered, self-dual, and irreducible. Thus this irreducible induced represen-

tation is precisely our local lift. It is a self-dual, generic, tempered representation of

GLN(kv). ⊓⊔

We would like to point out that the proof given for Proposition 2.6 of [30] is

incorrect and should be replaced by the preceding proof.

As a corollary, let us give the more precise form of the lift we obtained.

Corollary 7.2. — Let πv be a generic discrete series representation of Gn(kv) realized as

a subrepresentation of (7.2). Then πv has a local functorial lift Πv to GLN(kv) given by the irre-

ducible induced representation

Ind
(
δ(ρ1, a1) ⊗ δ(ρ1, b1) ⊗ · · · ⊗ δ(ρr, ar) ⊗ δ(ρr, br) ⊗ δ

(
ρ′

1, a′
1

)

⊗ · · · ⊗ δ
(
ρ′

ℓ, a′
ℓ

)
⊗ Π

′
0,v

)
.

We next consider a general generic tempered representation πv of the group

Gn(kv). Since πv is generic and tempered it is a direct summand of an induced repre-

sentation of the form

Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗ σ0,v)(7.4)
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where the δi,v are discrete series representations of appropriate GLni
(kv) for i = 1 ..., m

and σ0,v is a generic discrete series of Gn0
(kv) for a smaller classical group of the same

type. Now set Πv to be the induced representation of GLN(kv) given by

Πv = Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗ Π0,v ⊗ δ̃m,v ⊗ · · · ⊗ δ̃1,v)

where Π0,v is the local functorial lift of σ0,v defined in Proposition 7.3. This repre-

sentation is then irreducible, self-dual, generic, and tempered. Then arguing by the

multiplicativity of the local γ - and L-factors as before we have that

L(s, πv × ρv) = L(s,Πv × ρv) and γ(s, πv × ρv, ψv) = γ(s,Πv × ρv, ψv)

for all requisite supercuspidal ρv. Hence Πv is a local functorial lift of πv. Thus we

have established the following proposition.

Proposition 7.4. — Let πv be a generic tempered representation of the group Gn(kv) given as

a summand of (7.4). Then πv has a local functorial lift to a representation Πv of GLn(kv) given

by

Πv = Ind
(
δ1,v ⊗ · · · ⊗ δm,v ⊗ Π0,v ⊗ δ̃m,v ⊗ · · · ⊗ δ̃1,v

)
,

where Π0,v is the generic local functorial lift of σ0,v. The lift Πv is self-dual, generic, and tempered.

Finally, let πv be an arbitrary irreducible admissible generic representation of

Gn(kv). By the work of Muíc [44] on the standard module conjecture we know that

πv is a full induced representation of the form

πv ≃ Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ0,v

)
(7.5)

where each τi,v is a tempered representation of an appropriate GLni
(kv), the exponents

can be taken so that 0 < rm < · · · < r1, and τ0,v is a generic tempered representation of

a smaller classical group Gn0
(kv) of the same type, except in the case where Gn = SO2n,

τ0,v is the trivial representation of G0(kv) and nm = 1, in which case we must allow

πv ≃ Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm
)

(7.6)

with 0 ≤ |rm| < rm−1 < · · · < r1. (In particular, see Section 4 of [44] for the elaboration

of these cases.) Then on GLN(kv) we can either form the induced representation

Ξv = Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ Π0,v ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
(7.7)

where Π0,v is the local functorial lift of τ0,v as constructed in Proposition 7.4 if we are

in the situation (7.5) or

Ξv =

{
Ind

(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
if rm ≥ 0

Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τ̃m,vν
−rm ⊗ τm,vν

rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
if rm < 0

(7.8)
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in case (7.6). There is no reason for Ξv to be irreducible any more. However, with the

exponents arranged in the Langlands ordering, Ξv has a unique irreducible quotient,

which we denote by Πv.

Proposition 7.5. — If πv is an irreducible admissible generic representation of Gn(kv) given

by (7.5) (respectively (7.6)), then it has a local functorial lift Πv given by the unique irreducible

quotient of (7.7) (respectively (7.8)).

Proof. — Once again, we must show the equality of the twisted γ - and L- factors.

We will do this in the general case (7.5), the exceptional case (7.6) being handled in

the same manner. Hence assume πv is of the form (7.5).

By the multiplicativity of γ factors and L-factors for general linear groups (Theo-

rem 3.1 and Proposition 9.4 of [20]) we know that even for any tempered representa-

tion τ ′
v of GLm(kv) we have

γ
(
s,Πv × τ ′

v, ψv

)

= γ
(
s,Π0,v × τ ′

v, ψv

) m∏

j=1

γ
(
s + rj, τj,v × τ ′

v, ψv

)
γ
(
s − rj, τ̃j,v × τ ′

v, ψv

)

and

L
(
s,Πv × τ ′

v

)
= L

(
s,Π0,v × τ ′

v

) m∏

j=1

L
(
s + rj, τj,v × τ ′

v

)
L
(
s − rj, τ̃j,v × τ ′

v

)
.

On the classical group side, we still retain multiplicativity by Theorem 5.2 of [52]

(see also the discussion in Section 5 of [32] where the condition of being a subrepre-

sentation is removed) so that

γ
(
s, πv × τ ′

v, ψv

)

= γ
(
s, τ0,v × τ ′

v, ψv

) m∏

j=1

γ
(
s + rj, τj,v × τ ′

v, ψv

)
γ
(
s − rj, τ̃j,v × τ ′

v, ψv

)
.

Since the representation πv is no longer tempered, its L-function is defined through

the Langlands classification in [51] and so by definition

L
(
s, πv × τ ′

v

)
= L

(
s, τ0,v × τ ′

v

) m∏

j=1

L
(
s + rj, τj,v × τ ′

v

)
L
(
s − rj, τ̃j,v × τ ′

v

)
.

If we take τ ′
v = ρv to be supercuspidal, then by the previous proposition (or the

definition of being a local functorial lift) we have

L(s, τ0,v × ρv) = L(s,Π0,v × ρv) and

γ(s, τ0,v × ρv, ψv) = γ(s,Π0,v × ρv, ψv).

Hence indeed Πv is a local functorial lift of πv. ⊓⊔
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To proceed we will next show that control of supercuspidal twists as in the defin-

ition of local functorial lift is sufficient to control all generic twists.

Lemma 7.2. — Let πv be an irreducible admissible generic representation of Gn(kv) and

let Πv be the local functorial lift constructed in the previous proposition. Then for any irreducible

admissible generic representation π ′
v of GLm(kv) we have

L
(
s, πv × π ′

v

)
= L

(
s,Πv × π ′

v

)
and γ

(
s, πv × π ′

v, ψv

)
= γ

(
s,Πv × π ′

v, ψv

)
.

Proof. — The argument is as before, now using multiplicativity in the other vari-

able. Once again, we will present the argument in the general case where πv is given

by (7.5) and its lift Πv by (7.7). The exceptional case of (7.6) is handled accordingly.

Since π ′
v is generic, we can write πv as a full induced representation from either

tempered or discrete series [61]. We take

π ′
v ≃ Ind

(
τ ′

1,vν
b1 ⊗ · · · ⊗ τ ′

k,vν
bk
)

with each τ ′
j,v tempered and b1 > · · · > bk.

Again by Theorem 3.1 and Proposition 9.4 of [20] on the general linear side

we have

γ
(
s,Πv×π ′

v, ψv

)
=

k∏

i=1

[
γ
(
s + bi,Π0,v × τ ′

i,v, ψv

)
×

m∏

j=1

γ
(
s + bi + rj, τj,v × τ ′

i,v, ψv

)
γ
(
s + bi − rj, τ̃j,v × τ ′

i,v, ψv

)]

and

L
(
s,Πv × π ′

v

)
=

k∏

i=1

[
L
(
s + bi,Π0,v × τ ′

i,v

)
×

m∏

j=1

L
(
s + bi + rj, τj,v × τ ′

i,v

)
L
(
s + bi − rj, τ̃j,v × τ ′

i,v

)]
.

On the classical group side we obtain the similar factorizations for the same

reasons as in the previous proposition. This reduces us to showing that

γ
(
s, τ0,v × τ ′

v, ψv

)
= γ

(
s,Π0,v × τ ′

v, ψv

)
and

L
(
s, τ0,v × τ ′

v

)
= L

(
s,Π0,v × τ ′

v

)

for τ ′
v a tempered representation of GLm(kv) when Π0,v is the local functorial lift of

τ0,v as above. But now both τ0,v and Π0,v are tempered and we know the equality of
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the twisted γ - and L-factors when τ ′
v = ρv is supercuspidal. We then first write our

general tempered τ ′
v as

τ ′
v = Ind(δ1,v ⊗ · · · ⊗ δk,v)

with each δi,v discrete series and use multiplicativity once again to reduce to τ ′
v = δv

discrete series. Then for the discrete series we realize δv as δ(ρv, t), the generic quotient

of the induced representation

Ind
(
ρvν

− t−1
2 ⊗ · · · ⊗ ρvν

t−1
2

)

with ρv supercuspidal and t a positive integer as before. Using multiplicativity of γ -

factors as always gives

γ(s, τ0,v × δv, ψv) = γ(s,Π0,v × δv, ψv)

and by direct calculation as in [20] and [31] we have

L(s, τ0,v × δv) =

t−1∏

j=0

L

(
s +

t − 1

2
− j, τ0,v × ρv

)

=

t−1∏

j=0

L

(
s +

t − 1

2
− j,Π0,v × ρv

)

= L(s,Π0,v × δv).

This completes the proof of the lemma. ⊓⊔

We are now able to determine the image of local functoriality in general for

components of globally generic cuspidal representations.

Theorem 7.4. — Let

πv ≃ Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ0,v

)

be an irreducible generic representation of Gn(kv) as in (7.5) or (7.6). Suppose that πv is a local

component of a globally generic cuspidal representation π of Gn(A). Then its local functorial lift Πv

is self-dual, generic and has the form

Πv = Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ Π0,v ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1

)

with Π0,v the local functorial lift of τ0,v defined above if π is as in (7.5) and by

Πv =

{
Ind

(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
if rm ≥ 0

Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τ̃m,vν
−rm ⊗ τm,vν

rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
if rm < 0

if π is as in (7.6).
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Proof. — By definition, we know that Πv is the Langlands quotient of this in-

duced representation. Hence once we show that Πv is generic the induced represen-

tation will be irreducible and thus equal to Πv.

We will establish this by using the Converse Theorem once again. Let π =

⊗′πw. Let S be the set of finite places where π is ramified. For the w /∈ S we have

constructed a local functorial lift in Propositions 5.1 and 5.2. For the places w ∈ S,

which include v, we will take Πw to be the local functorial lift defined in Proposi-

tion 7.5. Then let Π = ⊗′
Πw. This is an irreducible admissible representation of

GLN(A) with trivial central character and is our candidate lift. Moreover, by Proposi-

tions 5.1 and 5.2 combined with Lemma 7.2 for the places in S we have that for all

cuspidal representations τ ∈ T (N − 1)

L(s, π × τ) = L(s,Π × τ) and ε(s, π × τ) = ε(s,Π × τ).

Now let T = {w0} be a singleton set containing one non-archimedean place, say

where πw0
is unramified. In particular, w0 �= v for our fixed place v. Let η any idele

class character which is sufficiently ramified at w0 so that Theorem 3.1 is true for all

τ ∈ T (T; η). Then L(s,Π × τ) is also nice for all τ ∈ T (T; η). Now applying the

Converse Theorem we find a global functorial lift Π
′ of π such that Π

′
w ≃ Πw for all

w �= w0, so that in particular Πv = Π
′
v. By Theorem 7.1 or Theorem 7.2 we know

that Π
′ and hence Π

′
v is generic. Hence Πv is generic. ⊓⊔

8. A conjecture of Mœglin

Let kv be a non-archimedean local field of characteristic 0, which we take to be

a local component of our number field k.

In the recent work on the characterization of discrete series representations of

the p-adic classical groups by Mœglin and Tadíc [39,40], to each discrete series rep-

resentation πv of Gn(kv) they have attached a triple

πv �→ ( Jord(πv), πcusp, ǫπv
)

where Jord(πv) is the set of Jordan blocks attached to πv, πcusp is the partial cuspidal

support of πv, a supercuspidal representation of a smaller classical group Gn0
(kv) of the

same type, and ǫπv
is a partially defined function ǫπv

: Jord(πv) → {±1}. We will be

most interested in the Jordan blocks. The set Jord(πv) consists of pairs (ρ, a) where ρ

is a self dual supercuspidal representation of some GLdρ
(kv) and a is a natural number.

By definition [39] a pair (ρ, a) ∈ Jord(πv) iff

1. ρ is self-dual,

2. the induced representation Ind(δ(ρ, a) ⊗ πv) of the group Gn+adρ
(kv) is irre-

ducible, and

3. a is even if L(s, ρ, R) has a pole at s = 0 and odd otherwise.
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As in [39,40], we have let R denote Sym2 if Gn = SO2n+1 and R = ∧2 if Gn = SO2n or

Sp2n and the L-functions L(s, ρ, R) are as in [53]. The partial cuspidal support πcusp

is the unique supercuspidal representation of a smaller classical group Gn0
(kv) such

that πv occurs as a subrepresentation of Ind(τv ⊗πcusp) for some convenient irreducible

representation τv of GLn−n0
(kv). The function ǫπv

will play no role for us so we will not

describe it.

Let N denote the rank of the general linear group to which the discrete series

representation πv of Gn(kv) should functorially lift. Motivated by the conjectural Lang-

lands correspondence and conjectures of Arthur, Mœglin has conjectured [38–40] that

one should have the dimension relation

∑

(ρ,a)∈Jord(πv)

adρ = N

relating the size of the Jordan blocks and the dimension of the natural representation

of the dual group LGn, which is N. One can find a discussion of this relation and its

motivation in the Introductions to [38] and [40], where it is noted that this equality

would follow from Arthur’s conjectures. In [38] Mœglin has established the inequal-

ity

∑

(ρ,a)∈Jord(πv)

adρ ≤ N

in general.

Given its relation with the local Langlands correspondence, and hence functo-

riality, it should not be surprising that as a first local consequence of the existence of

global functoriality for the classical groups Gn, particularly the construction of the local

lift of a generic discrete series representation πv in Proposition 7.3, we can establish

this conjecture for the case of generic discrete series representations of split classical

groups.

Theorem 8.1. — Let πv be a generic discrete series representation of some Gn(kv). Let N be

the rank of the general linear group to which πv functorially lifts. Then

∑

(ρ,a)∈Jord(πv)

adρ = N.

Proof. — Let us first suppose that πv = π0,v is generic supercuspidal. Then, as we

have noted in Section 7.2, in this case the Jordan blocks Jord(π0,v) can be characterized

as [39,40]

Jord(π0,v) = {(ρ, 1) | Ind(ρνs ⊗ π0,v) is reducible at s = 1}.
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On the other hand, by Theorem 7.3 we know that π0,v lifts functorially to

Π0,v ≃ Ind(Π1,v ⊗ · · · ⊗ Πd,v)

where each Πi,v is an irreducible supercuspidal self-dual representation of some

GLNi
(kv) and Πi,v �≃ Πj,v for i �= j. By Theorem 8.1 of [51] we know that

Ind(ρνs ⊗ π0,v) is reducible at s = 1 iff L(s, ρ × π0,v) has a pole at s = 0. But this last

is equivalent to

L(s, ρ × π0,v) = L(s, ρ × Π0,v) =

d∏

i=1

L(s, ρ × Πi,v)

having a pole at s = 0. Since local L-functions are never zero, this is the case iff

ρ = Πi,v for some i = 1, ..., d . Hence we see that

Jord(π0,v) = {(Πi,v, 1) | i = 1, ..., d}

so that

∑

(ρ,a)∈Jord(πv)

adρ =

d∑

i=1

Ni = N.

This establishes the theorem for generic supercuspidal representations.

Next we let πv = π+
v be a generic strongly positive discrete series representation

as in [39,40]. Then by Section 5.3 of [39] (see also Section 5 of [40]) we know that

the associated triple ( Jord(π+
v ), π+

cusp, ǫπ+
v
) is admissible of alternated type. Let π+

cusp =

π0,v, which must be generic if π+
v is. As in [39,40] and Section 7.2 above, the set of

extended Jordan blocks Jord ′(π0,v) is then

Jord ′(π0,v) = Jord(π0,v) ∪
{
(ρ, 0) | Ind(ρνs ⊗ π0,v) is reducible at s = 1

2

}

and once one assumes that Ind(ρνs ⊗ π0,v) reduces somewhere, then reduction at

s = 1/2 is equivalent to the L-function L(s, ρ, R) having a pole at s = 0 [51]. Let us

enumerate this set as Jord ′(π0,v) = {(ρ′
j , aj)}. Then by Section 2 of [40], particularly

formula (2-7), we know that Jord(π+
v ) is in bijection with Jord ′(π0,v), this bijection pre-

serves the supercuspidal representations ρ′
j occurring, and if we enumerate Jord(π+

v )

in accordance with Jord ′(π0,v) then Jord(π+
v ) = {(ρ′

j , a′
j)} where a′

j ≥ aj and of the

same parity. Then, as we observed in Section 7.2, Proposition 4.1 of [39] or Section 7

of [40] give that π+
v is the unique subrepresentation of

ξ+
v = Ind

(
δ′

1 ⊗ · · · ⊗ δ′
ℓ ⊗ π0,v

)
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where δ′
j = δ([ρ′

jν
(aj+1)

2 , ρ′
jν

(a′
j
−1)

2 ]), with δ′
j associated to empty segments omitted. Note

that the only way a segment [ρ′
jν

(aj+1)

2 , ρ′
jν

(a′
j
−1)

2 ] can be empty is if a′
j = aj = 1, since

by definition each a′
j ≥ 1 and aj ∈ {0, 1}. The local functorial lift Π

+
v of this rep-

resentation is then given in Proposition 7.3 or Corollary 7.2. From the statement of

Proposition 7.3 we know that Π
+
v is the generic constituent of

Ξ
+
v = Ind

(
δ′

1 ⊗ · · · ⊗ δ′
ℓ ⊗ Π0,v ⊗ δ̃′

ℓ ⊗ · · · ⊗ δ̃′
1

)
.

In the course of the proof of that proposition and the derivation of the form of Π
+
v

given in Corollary 7.2 we successively replaced parts of the induction data for Ξv

by associated discrete series representations. We now interpret these replacements in

terms of the Jordan blocks of π+
v . For the δ′

j associated to (ρ′
j , a′

j) with a′
j even, so that

part of Jord(π+
v ) corresponding to a pair (ρ′

j , 0) in Jord ′(π0,v), the factor δ′
j ⊗ δ̃′

j was

replaced by δ(ρ′
j , a′

j) in the inducing data for Ξv. For the remaining δ′
j , namely those

associated to (ρ′
j , a′

j) with a′
j odd and greater than one, then ρ′

j = Πi,v for one of the

factors Πi,v of the lift Π0,v of π0,v and then δ′
j ⊗ Πi,v ⊗ δ̃′

j was replaced by δ(ρ′
j , a′

j) in

the inducing data. Finally, we were left with those factors Πi,v = ρ′
j of Π0,v for which

the associated a′
j = 1 and these remain. Then as in Corollary 7.2 we have

Π
+
v = Ind

(
δ
(
ρ′

1, a′
1

)
⊗ · · · ⊗ δ(ρ′

ℓ, a′
ℓ) ⊗ Π

′
0,v

)

where Π
′
0,v is the tensor product of the Πi,v = ρ′

j with a′
j = 1, that is, corresponding

to the empty segments above. Thus

N =

ℓ∑

j=1

a′
jdρ′

j
+

∑

(ρ′
j ,1)∈Jord(πv)

dρ′
j

=
∑

(ρ′
j
,a′

j
)∈Jord(πv)

aj=0

a′
jdρ′

j
+

∑

(ρ′
j
,a′

j
)∈Jord(πv)

aj=1,a′
j >1

a′
jdρ′

j
+

∑

(ρ′
j ,1)∈Jord(πv)

dρ′
j

=
∑

(ρ′
j ,a

′
j )∈Jord(πv)

a′
jdρ′

j

and the theorem is true for strongly positive generic discrete series.

Finally, we take πv to be an arbitrary generic discrete series representation of

Gn(kv). Then, as in Section 7.2, using inductively Lemma 3.1 and Section 4.2 of [39]

we may realize πv as a subrepresentation of

ξv = Ind
(
δ1 ⊗ · · · ⊗ δr ⊗ π+

v

)
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with π+
v a generic strongly positive discrete series and

δi = δ
([

ν−
(bi−1)

2 ρi, ν
(ai−1)

2 ρi

])

for self-dual supercuspidal representations ρi of GLdρi
(kv) and integers ai > bi > 0 of

the same parity. Then by Proposition 4.2 of [39] we know that Jord(πv) is the union

of Jord(π+
v ) and the set {(ρi, ai), (ρi, bi)} and that these sets are disjoint. If we let Π

+
v

be the local functorial lift of π+
v discussed in the previous paragraph, then we can

interpret Corollary 7.2 as saying that the functorial lift of πv is given by

Πv = Ind
(
δ(ρ1, a1) ⊗ δ(ρ1, b1) ⊗ · · · ⊗ δ(ρr, ar) ⊗ δ(ρr, br) ⊗ Π

+
v

)
.

If Π
+
v is a representation of GLN+(kv) then we see that

N = N+ +

r∑

i=1

(ai + bi)dρi
= N+ +

∑

(ρ,a)∈Jord(πv)−Jord(π+
v )

adρ

and if we combine this with the result for generic strongly positive discrete series above

we obtain our statement in this case as well. ⊓⊔

9. The conductor of a generic representation

Let v be a non-archimedean place of k and let πv be a generic representation

of Gn(kv) for one of our classical groups. Let qv be the order of the residue field of kv.

We will assume that our local additive character ψv is normalized to have conductor

zero, that is, ψv is trivial on the integers Ov and non-trivial on ̟−1
v Ov.

Let us recall the basic structure of the local ε-factor of πv. In Section 3 of [51]

the basic local γ -factor

γ(s, πv, ψv) = γ(s, πv × 1v, ψv)

is defined (with 1v the trivial representation of GL1(kv)) and it is shown that

γ(s, πv, ψv)γ
(
1 − s, π̃v, ψ

−1
v

)
= 1.

The γ -factor and ε-factor are related by

γ(s, πv, ψv) =
ε(s, πv, ψv)L(1 − s, π̃v)

L(s, πv)

with ε(s, πv, ψv) a monomial in qs
v, as in Section 7 of [51], and we will also have that

ε(s, πv, ψv)ε
(
1 − s, π̃v, ψ

−1
v

)
= 1.
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Thus we may write

ε(s, πv, ψv) = ε
(

1

2
, πv, ψv

)
q
−f (πv)

(
s−

1

2

)
v

with f (πv) ∈ Z. The number ε( 1

2
, πv, ψv) is then called the local root number attached

to πv (and ψv) and either the exponent f (πv) or the exponential qf (πv)
v is called the

(arithmetic) conductor of πv. For our purposes, we will take the exponent f (πv) as the

conductor. If πv is unitary, then π̃v = πv and we have that the local root number

satisfies |ε( 1

2
, πv, ψv)| = 1. We could make similar definitions for the ε-factors of pairs

ε(s, πv × π ′
v, ψv) with π ′

v a generic representation of GLm(kv).

Of course, for representations of GLN(kv) there is an analogous definition of root

number and conductor [14,19]. One of the principle results of [19] is the following

(see Theorem 5.1 and Remark 5.4).

Theorem 9.1. — Let Πv be an irreducible admissible representation of GLN(kv). Then

f (Πv) is a non-negative integer, i.e., f (Πv) ≥ 0, and f (Πv) = 0 iff Πv is unramified.

For the case of generic Πv, in [19] they then go on to give a structural interpre-

tation of the integer f (Πv) in terms of the existence of vectors stable under appropriate

open compact subgroups of Hecke type. We will not pursue this finer result here, but

we will establish the following analogue of the basic facts on the conductor for the

classical groups Gn.

Theorem 9.2. — Let πv be an irreducible admissible generic representation of Gn(kv). Then

f (πv) ≥ 0 and f (πv) = 0 iff πv is unramified.

Proof. — In Section 7 we have attached to πv an irreducible admissible repre-

sentation Πv of GLN(kv) such that

ε(s, πv × ρv, ψv) = ε(s,Πv × ρv, ψv)

for all supercuspidal representations ρv of GLm(kv). In particular, for m = 1 and ρv = 1v

we have

ε(s, πv, ψv) = ε(s,Πv, ψv).

Thus for our local functorial lift Πv of πv we have the matching of both the conductors

f (πv) = f (Πv) and the root numbers ε( 1

2
, πv, ψv) = ε( 1

2
,Πv, ψv). In particular this

implies that f (πv) ≥ 0. Furthermore, by construction, if πv is unramified then so is Πv,

so that if πv is unramified we have f (πv) = 0.

We are left with showing that if πv is irreducible, admissible, generic and

f (πv) = 0, then πv is unramified. If f (πv) = 0 and Πv is the local functorial lift of πv

then f (Πv) = 0 and Πv must be unramified.
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First, suppose that πv is supercuspidal. In the low dimensional cases of SO3 ≃

PGL2 or Sp2 ≃ SL2 one can check directly using the description of the lift given in

Section 1 that the local functorial lifts can never be unramified. Thus we may assume

n ≥ 2. Then, by Theorem 7.3, Πv is of the form

Πv ≃ Ind(Π1,v ⊗ · · · ⊗ Πd,v)

with each Πi,v a supercuspidal representation of some GLNi
. The only way this could

be unramified is if d = N and each Πi,v were an unramified self-dual character. But

the πi,v are distinct and there are only two unramified self-dual characters. So this

would be possible only if N = 2. But since we are taking n ≥ 2 we always have

N ≥ 4. So the lift of a supercuspidal representation cannot be unramified.

Next, suppose that πv is a generic discrete series. Again, the low dimensional

cases can be handled individually given their description in Section 1, so we may as-

sume n ≥ 2. Then as in Proposition 7.3 we realize πv as a subrepresentation of an

induced representation of the form

ξv = Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ π0,v

)

where each τi,v is a self-dual discrete series representation of an appropriate GLni
(kv),

rm ≤ · · · ≤ r1, and π0,v is our generic supercuspidal representation of an appropriate

smaller classical group Gn0
(kv) of the same type. The local functorial lift Πv is then

the generic constituent of

Ξv = Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ Π0,v ⊗ τm,vν

−rm ⊗ · · · ⊗ τ1,vν
−r1

)

where Π0,v is the local functorial lift of π0,v. For Πv to be unramified, all of the in-

ducing data in Ξv must be unramified. By the above, Π0,v is never unramified. Hence

π0,v cannot be present and πv is a subrepresentation of

ξv = Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm
)
.

Then by Corollary 7.2 we know that Πv is a full induced of the form

Πv = Ind(δ(ρ1, t1) ⊗ · · · ⊗ δ(ρm, tm))

with each ρi a self-dual supercuspidal representations of appropriate GLdi
(kv). Again,

for this to be unramified, we must have each δ(ρi, ti) unramified. But this is possible

only if each ρi is a self-dual unramified character, that is ρi = 1 or ρi = νiπ/ log(qv),

and ti = 1. Irreducibility then forces Πv to be a representation of GL1(kv) or GL2(kv),

which as we have seen is impossible if n ≥ 2. Hence the local functorial lift of a generic

discrete series representation is never unramified.
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Now suppose that πv is a tempered generic representation of Gn(kv). Then as in

Proposition 7.4 we have that πv is the direct summand of an induced representation

of the form

Ind(δ1,v ⊗ · · · ⊗ δm,v ⊗ σ0,v)

where the δi,v are discrete series representations of appropriate GLni
(kv) for i = 1 ..., m

and σ0,v is a generic discrete series of Gn0
(kv) for a smaller classical group of the same

type. Then, as in that proposition, its local functorial lift is

Πv = Ind
(
δ1,v ⊗ · · · ⊗ δm,v ⊗ Π0,v ⊗ δ̃m,v ⊗ · · · ⊗ δ̃1,v

)

where Π0,v is the local functorial lift of σ0,v. If this is to be unramified, then all of its

inducing data must be unramified. In particular, by the previous analysis Π0,v cannot

be present since it is never unramified. Hence πv is a direct summand of

Ind(δ1,v ⊗ · · · ⊗ δm,v)

with the δi,v unramified. But again, the only unramified discrete series representations

of GLd(kv) are the unramified unitary characters of GL1(kv). Hence πv is unramified

and our theorem is true in this case.

In general, as in Proposition 7.5, we write an arbitrary irreducible admissible

generic representation of Gn(kv) in the form

πv ≃ Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ0,v

)

where each τi,v is a tempered representation of an appropriate GLni
(kv) and τ0,v is

a tempered representation of a smaller classical group Gn0
(kv) of the same type as in

(7.5) or (7.6). Then Πv is taken to be the unique irreducible quotient of

Ξv = Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ Π0,v ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1

)

where Π0,v is the local functorial lift of τ0,v if we are in the situation of (7.5) or

Ξv =

{
Ind

(
τ1,vν

r1 ⊗ · · · ⊗ τm,vν
rm ⊗ τ̃m,vν

−rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
if rm ≥ 0

Ind
(
τ1,vν

r1 ⊗ · · · ⊗ τ̃m,vν
−rm ⊗ τm,vν

rm ⊗ · · · ⊗ τ̃1,vν
−r1

)
if rm < 0

in case (7.6). Πv can be unramified only if Π0,v is unramified and all the τi,v are un-

ramified. But as we have shown above, if Π0,v is unramified, so is τ0,v, each tempered

representation τi,v with i ≥ 1 is a full induced from unitary discrete series, and for

τi,v to be unramified, each discrete series must also be unramified. But the only un-

ramified unitary discrete series are the unitary characters of GL1(kv). So for Πv to be

unramified, each τi,v must be induced from unramified unitary characters of GL1(kv).
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Then πv will a full induced representation from unramified representations, that is, πv

must be unramified.

Thus, in all cases, we have shown that if f (πv) = 0, then πv is unramified. This

completes the proof of the theorem. ⊓⊔

This result is expected to have applications to the relative trace formula (com-

munications with E. Lapid) among others.

10. The Ramanujan conjecture

We first recall the current formulation of the Ramanujan conjecture for generic

cuspidal representations of quasi-split groups as in [18], [45], or [50]. This conjecture

was made after the counter-examples to the more general conjecture were found [18].

We reiterate this conjecture formally here.

Conjecture 10.1. — Let G be a quasi-split reductive group over k. Then every globally

generic cuspidal representation π = ⊗′πv of G(A) satisfies the Ramanujan conjecture, that is, each

local component πv is tempered.

As a global consequence of functoriality, we obtain bounds towards Ramanujan

for globally generic cuspidal representations of our classical groups Gn by pulling back

the known bounds for GLN.

Let us formulate estimates towards Ramanujan in the following terms [46]. Let

Π = ⊗′
Πv be a unitary cuspidal representation of GLm(A). If v is any place of k then

Πv is a unitary generic representation of GLm(kv) and hence by [60,61] can be written

as a full induced

Πv ≃ Ind
(
Π1,vν

a1,v ⊗ · · · ⊗ Πt,vν
at,v

)

with a1,v > · · · > at,v and each Πi,v tempered. We will say that Π satisfies condition

H(θm) with θm ≥ 0 (allowing for the possibility that the bound is dependent on the

rank of the group) if for all places v the exponents in Πv satisfy

−θm ≤ ai,v ≤ θm.

By the classification of the unitary generic dual for GLm(kv) we have that trivially every

cuspidal Π satisfies H( 1

2
). The best result known for a general number field is that of

Luo, Rudnick, and Sarnak which states that any cuspidal representation Π of GLm(A)

satisfies H( 1

2
− 1

m2+1
). The Ramanujan conjecture is that all cuspidal Π satisfy condi-

tion H(0).
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Similarly, if Gn is any of our classical groups and π = ⊗′πv is a generic cuspidal

representation of Gn(A) then by [44] or [60] we know that at every place we have

that πv is also a full induced

πv ≃ Ind
(
τ1,vν

b1,v ⊗ · · · ⊗ τt,vν
bt,v ⊗ τ0,v

)

where each τi,v is a tempered representation of an appropriate GLni
(kv), and τ0,v is

a generic tempered representation of a smaller classical group Gn0
(kv) of the same

type as in (7.5) or (7.6). We will similarly say that π satisfies H(θn) if for all places

we have

−θn ≤ bi,v ≤ θn.

For these groups, the classification of the generic unitary dual gives the trivial estimate

of H(1).

Theorem 10.1. — Let π be a globally generic cuspidal representation of Gn(A) and let N

be the rank of the general linear group to which π functorially lifts. Suppose that for all m ≤ N we

know that cuspidal representations of GLm(A) satisfy condition H(θm) with θr ≥ θm for r > m.

Then π satisfies H(θN).

Proof. — Let Π be the functorial lift of π to GLN(A).

At the archimedean places, this follows from local functoriality since that is com-

pletely understood in terms of the arithmetic Langlands parameterization.

Let v be a non-archimedean place of k at which πv is unramified. Let us give

the argument in terms of Satake parameters at these places since this is more elemen-

tary and does not depend on the bulk of the work in Section 7.2. In the notation of

Section 5.2 the Satake class of πv is represented by

φv(Fv) = diag
(
µ1,v(̟), ..., µn,v(̟v), µn,v(̟v)

−1, ..., µ1,v(̟v)
−1

)

in the cases Gn = SO2n+1, SO2n or

φv(Fv) = diag
(
µ1,v(̟), ..., µn,v(̟v), 1, µn,v(̟v)

−1, ..., µ1,v(̟v)
−1

)

when Gn = Sp2n. Its Satake parameters are then the complex numbers αj,v = µi,v(̟v)
±1.

As noted in Section 5.3, the local component Πv of the functorial lift is represented

by the same class, viewed as a diagonal matrix in GLN(C) and hence has the same

Satake parameters.

If Π is unitary cuspidal, then by hypothesis the Satake parameters will satisfy

the bounds

q−θN

v ≤ |αj,v| ≤ qθN

v .

If Π is not cuspidal, but rather induced from unitary cuspidal representations Πi of

GLNi
(A) with Ni < N as in Theorems 7.1 or 7.2 then the Satake parameters of πv will
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be distributed among those of the Πi,v and hence satisfy the possibly better estimates

q−θN

v ≤ q
−θNi
v ≤ |αj,v| ≤ q

θNi
v ≤ qθN

v .

Hence πv satisfies H(θN).

In general, a local component πv will be of the form

πv ≃ Ind
(
τ1,vν

b1,v ⊗ · · · ⊗ τt,vν
bt,v ⊗ τ0,v

)

where each τi,v is a tempered representation of an appropriate GLni
(kv) and τ0,v is

a generic tempered representation of a smaller classical group Gn0
(kv) of the same type

as in (7.5) or (7.6). Then as we have seen in Theorem 7.4

Πv = Ind
(
τ1,vν

b1,v ⊗ · · · ⊗ τt,vν
bt,v ⊗ Π0,v ⊗ τ̃t,vν

−bt,v ⊗ · · · ⊗ τ̃1,vν
−b1,v

)

with Π0,v the local functorial lift of τ0,v if π is as in (7.5) and by

Πv =

{
Ind

(
τ1,vν

b1,v ⊗ · · · ⊗ τt,vν
bt,v ⊗ τ̃t,vν

−bt,v ⊗ · · · ⊗ τ̃1,vν
−b1,v

)
if bt,v ≥ 0

Ind
(
τ1,vν

b1,v ⊗ · · · ⊗ τ̃t,vν
−bt,v ⊗ τt,vν

bt,v ⊗ · · · ⊗ τ̃1,vν
−b1,v

)
if bt,v < 0

if π is as in (7.6). By Proposition 7.4 we know Π0,v is tempered. If our global lift Π

is cuspidal, then by condition H(θN) we have

−θN ≤ bi,v ≤ θN

and hence πv satisfies H(θN) at this place. If instead Π is of the form Π = Π1⊞ · · ·⊞

Πd as in Theorem 7.1 or 7.2 with Πi a unitary cuspidal representation of GLNi
(A)

with Ni < N then as the exponents distribute out they will each satisfy a possibly better

bound

−θN ≤ −θNi
≤ bj,v ≤ θNi

≤ θN.

Hence we have that πv satisfies H(θN) at these places as well. ⊓⊔

If we combine this result with the Ramanujan bounds of Luo, Rudnick, and Sar-

nak for the general linear groups mentioned above, we obtain non-trivial Ramanujan

bounds for generic cuspidal representations of the classical groups.

Corollary 10.1. — Let π be a globally generic cuspidal representation of Gn(A) and let

N be the rank of the general linear group to which π functorially lifts. Then π satisfies condition

H( 1

2
− 1

N2+1
).
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For the case of Gn = SO2n+1 bounds just better than H( 1

2
), having expo-

nents strictly less than 1

2
, were established in the course of proving Proposition 4.1

of [29].

Of a general nature, we can now state, for the first time, that the Ramanujan

conjecture for generic cuspidal representations of the classical groups follows from the

Ramanujan conjecture for general linear groups, which is widely held to be true.

Corollary 10.2. — If the Ramanujan conjecture holds for all cuspidal representations of

GLm(A) for all m, that is, every cuspidal representation of GLm(A) satisfies condition H(0), then

it holds for all globally generic cuspidal representations of the classical groups Gn(A).

Of course, from our proof it is clear that to have Ramanujan for Gn it suffices

to know it for GLm with all m ≤ N.

Remark. — Our work seems to shed light on what form a general Ramanu-

jan conjecture for these groups should take in terms of functoriality. As suggested

by Langlands [35], those cuspidal representations of Gn(A) which defy Ramanujan

should not functorially lift to any isobaric representation of GLN(A) and in particu-

lar not lift to any unitary isobaric one, by which is meant an isobaric sum of unitary

cuspidal representations. If the lift is unitary isobaric, then by the Ramanujan con-

jecture for GLN(A) the lift would be tempered. Since conjecturally the tempered rep-

resentations should be characterized, locally and globally, by the boundedness of the

image of the associated arithmetic Langlands parameters, then the temperedness of

the lift would imply the temperedness of the original representation. One could also

give an argument of this type using Arthur’s parameters and their connection with

temperedness. This would then verify Langlands suggestion. On the other hand, as-

suming the conjecture on global genericity of tempered L-packets and the Ramanu-

jan conjecture for GLN, then, from the fact that generic cuspidal lifts are unitary iso-

baric (our Theorem 1.1 and Theorems 7.1 and 7.2), one can easily verify the converse.

Note that in these arguments it is crucial that the map of L-groups under considera-

tion is an embedding; more pathological L-homomorphisms could easily allow more

pathological behavior under functoriality. Consequently, it seems reasonable to con-

jecture that a cuspidal representation of Gn(A) is tempered if and only if its conjec-

tural lift to GLN(A), associated to the natural embedding of the L-groups, is unitary

isobaric. We would like to emphasize that the condition for cuspidal temperedness is

that the lift is unitary isobaric, rather than tempered isobaric; so, for example, if one

replaced Gn by GLN and used the identity L-homomorphism then this would become

the standard Ramanujan conjecture for GLN itself. On the other hand, the residual

representations of the classical groups Gn(A) should lift to residual representations on

GLN(A) and these should then account for those isobaric images that are not unitary

isobaric.
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11. Normalized local intertwining operators

We finish with one local result that follows from our bounds towards Ramanu-

jan. We expect this result to have many applications, particularly in the study of the

residual spectrum of classical groups.

Once again, let v be a non-archimedean place of k. Let πv be an irreducible

admissible unitary generic representation of Gn(kv) and let π ′
v be an irreducible ad-

missible unitary generic representation of GLm(kv). As in Section 3, let Gm+n be the

classical group of the same type as Gn but of rank m + n and let P be the standard

parabolic subgroup with Levi subgroup M = GLm×Gn. Then σv = π ′
v ⊗πv is a unitary

generic representation of M(kv) and we may form the induced representation

I(s, σv) = I(s, π ′
v ⊗ πv) = Ind

Gm+n(kv)

P(kv)

(
| det |sπ ′

v ⊗ πv

)
.

Associated to this induced representation is a normalized intertwining operator

N(s, σv, w) = N(s, π ′
v ⊗πv, w) as in [51]. (For the case of Gn = SO2n+1 see [6] or [29].)

Theorem 11.1. — Suppose that πv is a local component of a globally generic cuspidal rep-

resentation π of Gn(A). Then for any irreducible admissible unitary generic representation π ′
v of

GLm(kv) the normalized intertwining operator N(s, π ′
v × πv, w) is holomorphic and non-zero for

Re(s) ≥ 0.

For the case of Gn = SO2n+1 this result is Proposition 4.1 of [29]. However,

for the argument there to be complete, the lemma below is also needed. It should be

pointed out that the lemma is independent of whether the representations involved

occur as components of generic cuspidal representations or not.

Lemma 11.1. — Let τ ′
v and τv be irreducible generic tempered representations of GLm(kv)

and Gn(kv), respectively. Then the normalized intertwining operator N(s, τ ′
v ⊗ τv, w) is holomorphic

and non-zero in the region Re(s) > −1/2.

Proof. — We follow the method of Lemma 4.3 of [31]. For simplicity we will

drop the dependence of the normalized intertwining operators on the Weyl elements

w since these elements play no role in the argument.

In general it is known that for tempered representations N(s, τ ′
v ⊗τv) is holomor-

phic and non-zero for Re(s) ≥ 0 in all our cases (see Lemma 4.2 in [31] for example).

To extend this holomorphy and non-vanishing to Re(s) > −1/2, we first reduce to

discrete series representations by writing

τ ′
v = Ind

(
δ′

1,v ⊗ · · · ⊗ δ′
k,v

)
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with each δ′
i,v a unitary discrete series of appropriate smaller general linear groups and

realizing τv as a direct summand of an induced representation of the form

Ind(δ1,v ⊗ · · · ⊗ δr,v ⊗ σ0,v)

with each δi,v a unitary discrete series representation of a general linear group for

i = 1, ..., r and σ0,v a generic unitary discrete series representation of a smaller classi-

cal group of the same type. Then the normalized intertwining operator N(s, τ ′
v ⊗ τv)

will factor into a product of rank one normalized intertwining operators of the form

N(s, δ′
i,v ⊗ δj,v) and N(s, δ′

i,v ⊗ σ0,v) [48]. Again, by [41] each N(s, δ′
i,v ⊗ δj,v) with j ≥ 1

is holomorphic and non-vanishing for Re(s) > −1. This reduces us to controlling nor-

malized intertwining operators of the form N(s, δ′
v ⊗σv) for δ′

v a unitary discrete series

representation of some GLm(kv) and σv a unitary generic discrete series of a classical

group Gn(kv). Again, we know holomorphy and non-vanishing for Re(s) ≥ 0 and we

are interested in pushing this to Re(s) > −1/2.

For normalized intertwining operators associated to generic unitary discrete se-

ries we use the classification of these representations to reduce to supercuspidal repre-

sentations. To this end, we again realize δ′
v as δ′

v = δ(ρ′
v, t), now realized as the generic

subrepresentation of the induced representation of the form

Ξ
′
v = Ind

(
ρ′

vν
t−1

2 ⊗ · · · ⊗ ρ′
vν

− t−1
2

)

with ρ′
v a unitary supercuspidal representation of a smaller general linear group and t

a positive integer [61]. Similarly, by [40] we can realize σv as a subrepresentation of

Ξv = Ind
(
ρ1,vν

a1
2 ⊗ · · · ⊗ ρr,vν

ar
2 ⊗ ρ0,v

)

where each ρi,v with i ≥ 1 is a supercuspidal representation of a general linear group,

the ai are positive integers, and ρ0,v is a generic supercuspidal representation of

a smaller classical group of the same type. Then by transitivity of induction, the in-

duced representation I(s, δ′
v⊗σv) is a subrepresentation of I(s,Ξ′

v⊗Ξv) and N(s, δ′
v⊗σv)

is obtained as the restriction of N(s,Ξ′
v ⊗ Ξv) to I(s, δ′

v ⊗ σv). So it suffices to under-

stand N(s,Ξ′
v ⊗ Ξv). The normalized intertwining operator N(s,Ξ′

v ⊗ Ξv) may have

poles or zeros in Re(s) ≥ 0, but by the above result these will not occur when we re-

strict to I(s, δ′
v ⊗ σv). What we will be interested in is whether N(s,Ξ′

v ⊗ Ξv) can have

any poles or zeros in the region −1/2 < Re(s) < 0.

This normalized intertwining operator once again factors into rank one normal-

ized intertwining operators of the form N(2s + t − 1 − j, ρ′
v ⊗ρ′

v) with j = 1, ..., 2t − 3,

of the form N(s + t−1

2
± ai

2
− j, ρ′

v ⊗ ρi,v) with 0 ≤ j ≤ t − 1 and i = 1, ..., r, or of the

form N(s + t−1

2
− j, ρ′

v ⊗ ρ0,v) with j = 0, ..., t − 1. For the supercuspidal normalized

intertwining operators we know that each N(s, ρ′
v ⊗ ρi,v), 0 ≤ i ≤ r, is holomorphic
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except possibly on the lines Re(s) = −1 and Re(s) = −1/2 by Lemma 4.1 of [31].

Since all of our normalized intertwining operators are evaluated at either s + b

2
with

integer b or 2s + c with integer c, we see that none of these has a pole in the region

−1/2 < Re(s) < 0.

Reconstructing our representations, we see that each N(s, δ′
v ⊗ σv) with δ′

v and

σv unitary generic discrete series have no poles in the region Re(s) > −1/2 and then

the same is true for our N(s, τ ′
v ⊗ τv) with τv and τ ′

v unitary tempered representations.

Once we have holomorphy, non-vanishing follows from Zhang’s Lemma (Theo-

rem 3 of [62], see also Lemma 4.7 of [31]). This then completes the lemma. ⊓⊔

We now turn to the proof of our theorem.

Proof. — Since πv is a unitary generic representation then, as we have done sev-

eral times, we can write it as

πv ≃ Ind
(
τ1,vν

a1 ⊗ · · · ⊗ τm,vν
am ⊗ τ0,v

)

where each τi,v is a tempered representation of an appropriate GLni
(kv) and τ0,v is

a generic tempered representation of a smaller classical group Gn0
(kv) of the same type

as in (7.5) or (7.6). Since πv is a local component of a globally generic cuspidal repre-

sentation we know from Corollary 10.1 that the exponents satisfy the bounds

0 ≤ |am| < am−1 < · · · < a1 ≤
1

2
−

1

N2 + 1
<

1

2
.

Similarly for π ′
v we have from the classification of unitary generic representation

of GLm(kv) [58] that

π ′
v = Ind

(
τ ′

1,vν
b1 ⊗ · · · ⊗ τ ′

d,vν
bd ⊗ τ ′

0,v ⊗ τ ′
d,vν

−bd ⊗ · · · ⊗ τ ′
1,vν

−b1
)

with each τ ′
i,v a tempered representation of an appropriate smaller general linear group

and such that the exponents satisfy

0 < bd < · · · < b1 <
1

2
.

The induced representation to which N(s, π ′
v ⊗πv, w) is associated is I(s, π ′

v ⊗πv)

and if we replace π ′
v and πv by their realizations as induced representations and use

transitivity of induction we see that the normalized intertwining operator N(s, π ′
v ⊗

πv, w) = N(s, π ′
v ⊗ πv) will factor into a product of rank one normalized intertwining

operators of one of the forms N(s ± ai ± bj, τ
′
j,v ⊗ τ ′

i,v), N(2s ± bi ± bj, τ
′
i,v ⊗ τj,v) or

N(s±bj, τ
′
j,v ⊗τ0,v) [48]. Again we have dropped the dependence on the Weyl elements

since they do not effect the argument.
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The rank one normalized intertwining operators of the form N(s, τ ′
j,v ⊗πi,v) with

i > 0 are holomorphic for Re(s) > −1 [41]. With our bounds on the exponents this

implies that each operator N(s ± ai ± bj, τ
′
j,v ⊗ τi,v) is holomorphic for Re(s) ≥ 0. Sim-

ilarly, each operator N(2s ± bi ± bj, τ
′
i,v ⊗ τ ′

j,v) is holomorphic for Re(2s) ≥ 0, i.e.,

Re(s) ≥ 0. Since we now know from our lemma that each N(s, τ ′
j,v ⊗ τ0,v) is holo-

morphic for Re(s) > −1/2 we see that each N(s ± bj, τ
′
j,v ⊗ τ0,v) is holomorphic for

Re(s) ≥ 0 as desired.

Thus N(s, π ′ ⊗ π, w) is holomorphic for Re(s) ≥ 0 and so by Zhang’s Lemma

again (Theorem 3 of [62]) it is non-vanishing there as well. ⊓⊔

A. Appendix

The following appendix addresses the issue of non-degeneracy of cuspidal repre-

sentations with respect to different characters. This is relevant here since neither SO2n

nor Sp2n is of adjoint type. For future use, we will present the argument in a more

general context than the rest of the current paper.

We let k be a number field as before, A its ring of adeles, and ψ = ⊗vψv be

a non-trivial character of k\A. Let Γ = Gal(k/k).

Let G be a quasisplit connected reductive algebraic group over k. We fix a k-

Borel subgroup B = TU with T a maximal torus and U its unipotent radical. Let P =

MN be a maximal parabolic subgroup of G with the Levi decomposition satisfying

N ⊂ U and T ⊂ M.

If ∆
′ denotes the set of (non–restricted) simple roots of T in U, let {Xα′}α′∈∆′ be

a Γ-invariant set of root vectors, giving what we will call in short a k-splitting. Then

{Xα′}α′∈∆′ is a kv-splitting for each completion kv of k. It then defines a character χv of

U(kv) by

χv

( ∏

α∈∆′

exp(xα′,vXα′)
)

= ψv

( ∑

α′∈∆′

xα′,v

)
.(A.1)

We understand that if Xβ′ = σ(Xα′), α′, β′ ∈ ∆, then xβ′,v = σ(xα′,v), σ ∈ Γ. Let

χ = ⊗vχv be the corresponding non–degenerate character of U(k)\U(A). We use χ

to also denote its restriction to UM(A) = U(A) ∩ M(A).

Denote by r =
m⊕

i=1

ri, as usual (cf. [51]), the adjoint action of LM on Ln, the Lie

algebra of LN.

Let π = ⊗vπv be a globally χ-generic cuspidal representation of M(A). The

machinery of our method [51] then defines a global L-function L(s, π, ri) and a global

ε-factor ε(s, π, ri) for each i, 1 ≤ i ≤ m, such that

L(s, π, ri) = ε(s, π, ri)L(1 − s, π̃, ri).(A.2)
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The purpose of this appendix is to show that the choice of the k-splitting has

no effect on ε(s, π, ri) and L(s, π, ri). More precisely, we will show that if one changes

the splitting and accordingly π, the same ε(s, π, ri) and L(s, π, ri) are obtained.

We start with the following well–known lemma.

Lemma A.1. — Let ZG be the center of G. Assume H1(ZG) = {1}. Then T(k) acts

transitively on the set of generic characters of U(k)\U(A).

Proof. — Assume χ is defined by

χ
( ∏

α′∈∆′

exp(xα′Xα′)
)

= ψ
( ∑

α′∈∆′

κα′xα′

)
,(A.3)

where κα′ = κσ(α′) ∈ k× for all α′ ∈ ∆
′ and σ ∈ Γ, since χ is a generic character of

U(k)\U(A).

Choose t ∈ T(k) such that α′(t) = κα′ for all α′ ∈ ∆
′. Then σ(α′(t)) = α′(t).

Moreover κσ−1(α′) = σ−1(α′(σ(t))) implies α′(σ(t)) = α′(t). Thus

α′(t−1σ(t)) = α′(t)−1α′(σ(t)) = 1

for all α′ ∈ ∆
′ and therefore σ �→ t−1σ(t) defines a class in H1(ZG) = {1}. Choose

z ∈ ZG such that t−1σ(t) = zσ(z)−1. Then α′(tz) = κα′ for all α′ ∈ ∆
′ and tz ∈ T(k).

The lemma is now complete. ⊓⊔

By Proposition 5.4 of [55], we embed G into G̃ sharing the same derived group

as G and satisfying H1(ZG̃) = {1}. Let B̃ = T̃U be a k-Borel subgroup of G̃ containing

B and moreover assume T̃ ⊃ T. Observe that T = B ∩ T̃. Then T̃(k) acts transitively

on generic characters of U(k)\U(A). Observe that T̃(k) normalizes M and M(k) as

well as M(A), since as k-groups, T̃ = TZG̃.

Given a cusp form φ ∈ Vπ in the space of π and t ∈ T̃(k), define φt by φt(m) =

φ(t−1mt), m ∈ M(A). Then φt is a cusp form which is χt-generic (globally), where

χt(u) = χ(t−1ut), u ∈ U(A). Let πt(m) = π(t−1mt). Then the representation πt on

the space Vπ = {φ} of π is equivalent to the right regular action of M(A) on the

space

{φt|φ ∈ Vπ}.

Moreover, if πt = ⊗vπt,v, then πt,v = πv,t for each v, where πv,t = πv(t
−1mt).

Given f in the space of

I(s, π) = Ind
G(A)

P(A) (π ⊗ exp〈sα̃, HM( )〉),
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define ft(g) = f (t−1gt). The set of all such ft comprises the space of I(s, πt). Finally

I(s, πt) = ⊗vI(s, πv,t).

The general machinery of our method then leads to the functional equation

L(s, πt, ri) = ε(s, πt, ri)L(1 − s, π̃t, ri)(A.4)

for each i, 1 ≤ i ≤ m.

The local L-functions L(s, πt,v, ri,v) are defined by means of intertwining oper-

ators and local coefficients [51,49]. In fact, if σ is an irreducible supercuspidal χv-

generic representation of M(kv), then L(s, σ, ri,v) and L(s, σt, ri,v) are determined in-

ductively precisely by poles of local standard intertwining operators such as A(s, σ)

and A(s, σt) acting on I(s, σ) and I(s, σt), respectively. Moreover, if we use the defin-

ition

A(s, σ)f (g) =

∫

N(Fv)

f (ng)d n,(A.5)

where N = w−1
0 Nw0, then

A(s, σt)ft = (dn/d(t−1nt))(A(s, σ)f )t.(A.6)

Thus

L(s, σ, ri,v) = L(s, σt, ri,v).(A.7)

The equality (A.7) of L-functions for a general σ follows from the inductive

definition of L-functions by means of local coefficients and Langlands classification

(cf. [51]).

Comparing functional equations (A.2) and (A.4) one gets

ε(s, πt, ri) = ε(s, π, ri)(A.8)

for every i, 1 ≤ i ≤ m.

From this discussion it now follows that to define and study global ε-factors, for

example their stability, it is enough to take π which is generic with respect to the most

convenient splitting.



FUNCTORIALITY FOR THE CLASSICAL GROUPS 231

REFERENCES

1. J. ARTHUR, The principle of functoriality, Bull. Am. Math. Soc., 40 (2002), 39–53.

2. A. BOREL, Automorphic L-functions, Proc. Symp. Pure Math., 33, part 2 (1979), 27–61.
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Math., 33, part 2 (1979), 205–246.

36. R. P. LANGLANDS, Where stands functoriality today, Proc. Symp. Pure Math., 61 (1997), 457–471.

37. W. LUO, Z. RUDNICK, and P. SARNAK, On the generalized Ramanujan conjecture for GL(n), Proc. Symp. Pure
Math., 66, part 2 (1999), 301–310.
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