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FUNCTORIALITY FOR THE EXTERIOR SQUARE OF GL4

AND THE SYMMETRIC FOURTH OF GL2

HENRY H. KIM, WITH APPENDIX 1 BY DINAKAR RAMAKRISHNAN,
AND APPENDIX 2 BY HENRY H. KIM AND PETER SARNAK

1. Introduction

Let ∧2 : GLn(C) −→ GLN (C), where N = n(n−1)
2 , be the map given by the

exterior square. Then Langlands’ functoriality predicts that there is a map from
cuspidal representations of GLn to automorphic representations of GLN , which
satisfies certain canonical properties. To explain, let F be a number field, and let
A be its ring of adeles. Let π =

⊗
v πv be a cuspidal (automorphic) representation

of GLn(A). In what follows, a cuspidal representation always means a unitary one.
Now by the local Langlands correspondence, ∧2πv is well defined as an irreducible
admissible representation of GLN (Fv) for all v (the work of Harris-Taylor [H-T] and
Henniart [He2] on p-adic places and of Langlands [La4] on archimedean places).
Let ∧2π =

⊗
v ∧2πv. It is an irreducible admissible representation of GLN (A).

Then Langlands’ functoriality in this case is equivalent to the fact that ∧2π is
automorphic.

Note that ∧2(GL2(C)) ' GL1(C) and in fact for a cuspidal representation π
of GL2(A), ∧2π = ωπ, the central character of π. Furthermore, ∧2(GL3(C)) '
GL3(C). In this case, given a cuspidal representation π of GL3(A), ∧2π = π̃ ⊗ ωπ,
where π̃ is the contragredient of π.

In this paper, we look at the case n = 4. Let π =
⊗

v πv be a cuspidal repre-
sentation of GL4(A). What we prove is weaker than the automorphy of ∧2π. We
prove (Theorem 5.3.1)

Theorem A. Let T be the set of places where v|2, 3 and πv is a supercuspidal
representation. Then there exists an automorphic representation Π of GL6(A) such
that Πv ' ∧2πv if v /∈ T . Moreover, Π is of the form Ind τ1 ⊗ · · · ⊗ τk, where the
τi’s are all cuspidal representations of GLni(A).

The reason why we have the exceptional places T , especially for v|2, is due to
the fact that supercuspidal representations of GL4(Fv) are very complicated when
v|2. We use the Langlands-Shahidi method and a converse theorem of Cogdell-
Piatetski-Shapiro to prove the above theorem (cf. [Co-PS1], [Ki-Sh2]). We expect
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140 HENRY H. KIM

many applications of this result. Among them, we mention two: First, we prove
the weak Ramanujan property of cuspidal representations of GL4(A) (Proposition
6.3; see Definition 3.6 for the notation).

Second, we prove the existence of the symmetric fourth lift of a cuspidal represen-
tation of GL2(A) as an automorphic representation of GL5(A). More precisely, let
GL2(C) −→ GLm+1(C) be the symmetric mth power (the m+ 1-dimensional irre-
ducible representation of GL2(C) on symmetric tensors of rank m). Let π =

⊗
v πv

be a cuspidal representation of GL2(A) with central character ωπ. By the local
Langlands correspondence, Symm(πv) is well defined for all v. Hence Langlands’
functoriality predicts that Symm(π) =

⊗
v Sym

m(πv) is an automorphic repre-
sentation of GLm+1(A). Gelbart and Jacquet [Ge-J] proved that Sym2(π) is an
automorphic representation of GL3(A). We proved in [Ki-Sh2] that Sym3(π) is
an automorphic representation of GL4(A) as a consequence of the functorial prod-
uct GL2 × GL3 −→ GL6, corresponding to the tensor product map GL2(C) ×
GL3(C) −→ GL6(C).

We prove (Theorem 7.3.2)

Theorem B. Sym4(π) is an automorphic representation of GL5(A). If Sym3(π)
is cuspidal, Sym4(π) is either cuspidal or induced from cuspidal representations of
GL2(A) and GL3(A).

Here we stress that there is no restriction on the places as opposed to the case
of the exterior square lift.

Theorem B is obtained by applying Theorem A to Sym3(π)⊗ω−1
π . For simplicity,

we write Am(π) = Symm(π) ⊗ ω−1
π . We prove that

∧2(A3(π)) = A4(π)� ωπ.

This implies that A4(π) is an automorphic representation of GL5(A), and so is
Sym4(π).

An immediate corollary is that we have a new estimate for Ramanujan and
Selberg’s conjectures using [Lu-R-Sa]. Namely, let π be a cuspidal representation
of GL2(A). Let πv be a local (finite or infinite) spherical component, given by
πv = Ind(| |s1vv , | |s2vv ). Then |Re(siv)| ≤ 3

26 . If F = Q and v = ∞, this condition
implies that λ1 ≥ 40

169 ≈ 0.237, where λ1 is the first positive eigenvalue for the
Laplace operator on the corresponding hyperbolic space.

In a joint work with Sarnak in Appendix 2 [Ki-Sa], by considering the twisted
symmetric square L-functions of the symmetric fourth (cf. [BDHI]), we improve
the bound further, at least over Q, namely, Re(sip) ≤ 7

64 . As for the first positive
eigenvalue for the Laplacian, we have λ1 ≥ 975

4096 ≈ 0.238.
In [Ki-Sh3], we determine exactly when A4(π) is cuspidal. We show that A4(π) is

not cuspidal and A3(π) is cuspidal if and only if there exists a non-trivial quadratic
character η such that A3(π) ' A3(π) ⊗ η, or equivalently, there exists a non-
trivial grössencharacter χ of E such that (Ad(π))E ' (Ad(π))E ⊗ χ, where E/F
is the quadratic extension, determined by η. We refer to that paper for many
applications of symmetric cube and symmetric fourth: The analytic continuation
and functional equations are proved for the 5th, 6th, 7th, 8th and 9th symmetric
power L-functions of cuspidal representations of GL2. It has immediate application
for Ramanujan and Selberg’s bounds and the Sato-Tate conjecture: Let πv be an
unramified local component of a cuspidal representation π =

⊗
v πv. Then it is
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EXTERIOR SQUARE AND SYMMETRIC FOURTH 141

shown that q−
1
9

v < |αv|, |βv| < q
1
9
v , where the Hecke conjugacy class of πv is given

by diag(αv, βv). Furthermore, if av = αv + βv, then for every ε > 0, there are sets
T+ and T− of positive lower (Dirichlet) density such that av > 1.68... − ε for all
v ∈ T+ and av < −1.68...+ ε for all v ∈ T−.

In [Ki5], we give an example of automorphic induction for a non-normal quintic
extension whose Galois closure is not solvable. In fact, the Galois group is A5, the
alternating group on five letters. The key observation, due to Ramakrishnan is that
the symmetric fourth of the 2-dimensional icosahedral representation is equivalent
to the 5-dimensional monomial representation of A5 (see [Bu]). It should be noted
that the only complete result for non-normal automorphic induction before this is
for non-normal cubic extension due to [J-PS-S2] as a consequence of the converse
theorem for GL3.

We now explain the content of this paper. In Section 2, we recall a converse
theorem of Cogdell and Piatetski-Shapiro and the definition of weak lift and strong
lift. In Section 3, we study the analytic properties of the automorphic L-functions
which we need for the converse theorem, namely, L(s, σ ⊗ π, ρm ⊗ ∧2ρ4), where σ
is a cuspidal representation of GLm(A), m = 1, 2, 3, 4, and π is a cuspidal repre-
sentation of GL4(A). The automorphic L-functions appear in the constant term of
the Eisenstein series coming from the split spin group Spin(2n) (the Dn−3 case in
[Sh3]). Hence we can apply the Langlands-Shahidi method [Ki1], [Ki2], [Ki-Sh2],
[Sh1]–[Sh3].

In Section 4, we first obtain a weak exterior square lift by applying the converse
theorem to ∧2π =

⊗
v ∧2πv, with S being a finite set of finite places, where πv is

unramified for v <∞ and v /∈ S. In this case, the situation is simpler because if σ ∈
T S(m) as in the statement of the converse theorem, one of σv or πv is in the principal
series for v <∞. Here one has to note the following: In the converse theorem, the
L-function L(s, σv×Πv) is the Rankin-Selberg L-function defined by either integral
representations [J-PS-S] or the Langlands-Shahidi method. They are the same, and
they are an Artin L-function due to the local Langlands correspondence. However,
the L-function L(s, σv⊗πv, ρm⊗∧2ρ4) is defined by the Langlands-Shahidi method
[Sh1] as a normalizing factor of intertwining operators which appear in the constant
term of the Eisenstein series. The equality of two L-functions which are defined
by completely different methods is not obvious at all. The same is true for ε-
factors. Indeed, a priori we do not know the equality when πv is a supercuspidal
representation, even if σv is a character of F×v . Hence we need to proceed in two
steps as in [Ra1], namely, first, we do the good case when none of πv is supercuspidal,
and then we do the general case, following Ramakrishnan’s idea of descent [Ra1].
It is based on the observation of Henniart [He1] that a supercuspidal representation
of GLn(Fv) becomes a principal series after a solvable base change. Here one needs
an extension of Proposition 3.6.1 of [Ra1] to isobaric automorphic representations
(from cuspidal automorphic representations). Appendix 1 provides the extension.
We may avoid using the descent method, hence Appendix 1 altogether, by using
the stability of γ-factors as in [CKPSS] (see Remark 4.1 for more detail). We hope
to pursue this in the future. Indeed, for the special case of the functoriality of
∧2(A3(π)), hence the symmetric fourth of GL2, we do not need it. (See Remark
7.2.)

The converse theorem only provides a weak lift Π which is equivalent to a sub-
quotient of Ind |det|r1τ1 ⊗ · · · ⊗ |det|rkτk, where the τi’s are (unitary) cuspidal
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142 HENRY H. KIM

representations of GLni and ri ∈ R. If π satisfies the weak Ramanujan property, it
immediately implies r1 = · · · = rk = 0. In general, we show that r1 = · · · = rk = 0
by comparing the Hecke conjugacy classes of ∧2π and Π.

In Section 5.1, we give a new proof of the existence of the functorial product
corresponding to the tensor product map GL2(C) × GL2(C) −→ GL4(C). It is
originally due to Ramakrishnan [Ra1]. However, we give a proof, based entirely on
the Langlands-Shahidi method. As a corollary, we obtain the Gelbart-Jacquet lift
Ad(π) [Ge-J] as an automorphic representation of GL3(A) for a cuspidal represen-
tation π of GL2(A) by showing that π � π̃ = Ad(π) � 1.

In Section 5.2, we construct all local lifts Πv in the sense of Definition 2.2 and
show that unless v|2, 3 and πv is a supercuspidal representation, Πv is in fact ∧2πv,
the one given by the local Langlands correspondence [H-T], [He2]. Here is how it
is done: Note that if v - 2, any supercuspidal representation of GL4(Fv) is induced,
i.e., corresponds to Ind(WFv ,WK , µ), where K/Fv is an extension of degree 4 (not
necessarily Galois) and µ is a character of K×. (This is the so-called tame case.
See, for example, [H, p. 179] for references.) Also thanks to Harris’ work [H],
we have automorphic induction for non-Galois extensions. Namely, there exists a
cuspidal representation π which corresponds to Ind(WF ,WE , χ), where Ew = K,
w|v, and χ is a grössencharacter of E such that χw = µ. Likewise, if v - 2, 3,
any supercuspidal representation σv of GLm(Fv), m = 1, 2, 3, 4, is induced. We
embed σv as a local component of a cuspidal representation using automorphic
induction. We can compare the functional equations of L(s, σ⊗ π, ρm ⊗∧2ρ4) and
the corresponding Artin L-function and obtain our assertion that the local lift we
constructed is equivalent to the one given by the local Langlands correspondence.
(If v|3, we need to twist by supercuspidal representations of GL3(Fv), where there
can be supercuspidal representations which are not induced. The global Langlands
correspondence is not available for them.)

In Section 5.3, by applying the converse theorem twice to Π =
⊗

v Πv with
S1 = {v1}, S2 = {v2}, where v1, v2 are any finite places, we prove that Π is an
automorphic representation of GL6(A).

In Section 7, we prove that if π is a cuspidal representation of GL2(A), then
A4(π) is an automorphic representation of GL5(A). Here we need to be careful
because of the exceptional places T in the discussion of the exterior square lift.
We first prove that there exists an automorphic representation Π of GL5(A) such
that Πv ' A4(πv) if v /∈ T . Next we show that this is true for v ∈ T . If v|3, any
supercuspidal representation of GL2(Fv) is monomial, and hence it can be embed-
ded into a monomial cuspidal representation of GL2(A). If v|2, any extraordinary
supercuspidal representation of GL2(Fv) is of tetrahedral type or octahedral type
(see [G-L, p. 121]). Hence in this case, the global Langlands correspondence is
available [La3], [Tu]. We can compare the functional equations of L(s, σ × A4(π))
and the corresponding Artin L-function and obtain our assertion.

Finally, we emphasize that for the functoriality of A4(π), we do not need the
full functoriality of the exterior square of GL4; first of all, one does not need the
comparison of Hecke conjugacy classes in Section 4.1, since A3(π) satisfies the weak
Ramanujan property. Secondly, one does not need the method of base change and
Ramakrishnan’s descent argument (hence Appendix 1), because we can prove the
equality of γ-factors for supercuspidal representations directly (see Remark 7.2 for
the details).
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2. Converse theorem

Throughout this paper, let F be a number field, and let A = AF be the ring of
adeles. We fix an additive character ψ =

⊗
v ψv of A/F . Let ρm be the standard

representation of GLm(C).
First recall a converse theorem from [Co-PS1].

Theorem 2.1 ([Co-PS1]). Suppose Π =
⊗

v Πv is an irreducible admissible rep-
resentation of GLn(A) such that ωΠ =

⊗
v ωΠv is a grössencharacter of F . Let S

be a finite set of finite places, and let T S(m) be a set of cuspidal representations
of GLm(A) that are unramified at all places v ∈ S. Suppose L(s, σ × Π) is nice
(i.e., entire, bounded in vertical strips and satisfies a functional equation) for all
cuspidal representations σ ∈ T S(m), m < n− 1. Then there exists an automorphic
representation Π′ of GLn(A) such that Πv ' Π′v for all v /∈ S.

Let π =
⊗

v πv be a cuspidal representation of GL4(A). In order to apply the
converse theorem, we need to do the following:

(1) For all v, find an irreducible representation Πv of GL6(Fv) such that

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv ×Πv, ψv),

L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) = L(s, σv ×Πv),

for all σv, where σ =
⊗

v σv ∈ T S(m), m = 1, 2, 3, 4.
(2) Prove the analytic continuation and functional equation of the L-functions

L(s, σ ⊗ π, ρm ⊗ ∧2ρ4).
(3) Prove that L(s, σ ⊗ π, ρm ⊗ ∧2ρ4) is entire for σ ∈ T S(m), m = 1, 2, 3, 4.
(4) Prove that L(s, σ⊗π, ρm⊗∧2ρ4) is bounded in vertical strips for σ ∈ T S(m),

m = 1, 2, 3, 4.
Recall the equalities:

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv)

= ε(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv)
L(1− s, σ̃v ⊗ π̃v, ρm ⊗ ∧2ρ4)
L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4)

,

γ(s, σv ×Πv, ψv) = ε(s, σv ×Πv, ψv)
L(1− s, σ̃v × Π̃v)
L(s, σv ×Πv)

.

Hence the equalities of γ and L-factors imply the equality of ε-factors.
The L-function L(s, σ⊗π, ρm⊗∧2ρ4) and the γ-factor γ(s, σv⊗πv, ρm⊗∧2ρ4, ψv)

are available from the Langlands-Shahidi method, by considering the split spin
group Spin(2n) with the maximal Levi subgroup M whose derived group is SLn−3×
SL4. We will study the analytic properties of the L-functions in the next section;
(2) is well known by Shahidi’s work [Sh3]; (4) is the result of [Ge-Sh]. We will
especially study (3); in general, the L-functions L(s, σ⊗ π, ρm ⊗∧2ρ4) may not be
entire. Our key idea is to apply the converse theorem to the twisting set T S(m)⊗χ,
where χv is highly ramified for v ∈ S. Then for σ ∈ T S(m) ⊗ χ, the L-function
L(s, σ⊗π, ρm⊗∧2ρ4) is entire. Observe that L(s, (σ⊗χ)×Π) = L(s, σ× (Π⊗χ)).
Hence applying the converse theorem with the twisting set T S(m)⊗χ is equivalent
to applying the converse theorem for Π ⊗ χ with the twisting set T S(m) (see
[Co-PS2]).

We will address problem (1) in Section 4. We have a natural candidate for Πv,
namely, ∧2πv, the one given by the local Langlands correspondence (see Section
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144 HENRY H. KIM

4 for the detail). However, proving the equalities in (1) is not so obvious due to
the fact that two L-functions on the left and on the right are defined in completely
different manners. The right-hand side is the Rankin-Selberg L-function [J-PS-S]
defined by either integral representations or the Langlands-Shahidi method, which
in turn is an Artin L-function due to the local Langlands correspondence. We
note that if Πv is not generic, then we write Πv as a Langlands quotient of an
induced representation Ξv, which is generic, and we define the γ- and L-factors
γ(s, σv ×Πv, ψv) = γ(s, σv × Ξv, ψv) and L(s, σv ×Πv) = L(s, σv × Ξv).

The left-hand side is defined in the Langlands-Shahidi method [Sh1] as a nor-
malizing factor of intertwining operators which appear in the constant term of the
Eisenstein series. Proving (1) is equivalent to the fact that Shahidi’s L-functions
and γ-factors on the left are those of Artin factors. It is clearly true if σv ⊗ πv is
unramified. Shahidi has shown that (1) is true when v =∞ [Sh7].

Remark 2.1. Eventually we are going to prove in Section 5 that Πv on the right
side of (1) is generic in our case. However, Πv is not generic in general. For
example, if πv is given by the principal series IndGL4

B | | 14 ⊗| | 14 ⊗| |− 1
4 ⊗| |− 1

4 , then
Πv = ∧2πv is the unique quotient of IndGL6

B | | 12 ⊗ | |− 1
2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1, namely,

IndGL6
GL2×GL1×GL1×GL1×GL1

|det| ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1. Hence in the course of applying
the converse theorem, we need to deal with such non-generic representations on the
right side of (1). However, in the definition of Shahidi’s γ- and L-factors on the left
side of (1), we only deal with generic representations, since any local components
of a cuspidal representation of GLn(A) are generic. By a well-known result, any
generic representation of GLn(Fv) is always a full induced representation.

We were not able to prove (1) for Πv = ∧2πv when v|2, 3 and πv is a supercuspidal
representation of GL4(Fv). Hence we make the following definition.

Definition 2.2. Let π =
⊗

v πv be a cuspidal representation of GL4(A). We say
that an automorphic representation Π of GL6(A) is a strong exterior square lift of
π if for every v, Πv is a local lift of πv in the sense that

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv ×Πv, ψv),

L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) = L(s, σv ×Πv),

for all generic irreducible representations σv of GLm(Fv), 1 ≤ m ≤ 4.
If the above equality holds for almost all v, then Π is called weak lift of π.

In Section 4, we apply the converse theorem with S being a finite set of finite
places such that πv is unramified for v /∈ S, v < ∞. Then if πv is ramified, the
local components of the twisting representations at S are unramified and hence the
equalities in (1) become simpler. In this way, we first find a weak lift in Section 4
and use it to define all local lifts in Section 5 and to obtain the strong lift.

We record the following proposition which is very useful in proving (1).

Proposition 2.3 ([Sh4]). Let σ1v (σ2v, resp.) be an irreducible generic admissi-
ble representation of GLk(Fv) (GLl(Fv), resp.) with parametrization φi : WFv ×
SL2(C) −→ GLk(C) (GLl(C), resp.) by the local Langlands correspondence [H-T],
[He2]. Let L(s, φ1 ⊗ φ2) be the Artin L-function; let L1(s, σ1v × σ2v) be the
Rankin-Selberg L-function defined by integral representation [J-PS-S]; and let
L2(s, σ1v×σ2v) be the Langlands-Shahidi L-function defined as a normalizing factor
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EXTERIOR SQUARE AND SYMMETRIC FOURTH 145

for intertwining operators [Sh1]. Then we have the equality

L(s, φ1 ⊗ φ2) = L1(s, σ1v × σ2v) = L2(s, σ1v × σ2v).

We have similar equalities for γ- and ε-factors.

Proof. The equality L(s, φ1 ⊗ φ2) = L1(s, σ1v × σ2v) is the local Langlands corre-
spondence (the work of Harris-Taylor [H-T] and Henniart [He2] on p-adic places
and of Langlands [La4] on archimedean places). Similar equalities hold for γ- and
ε-factors.

The equality L1(s, σ1v × σ2v) = L2(s, σ1v × σ2v) is due to Shahidi ([Sh7] for
archimedean places and [Sh4, Theorem 5.1] for p-adic places; see [Sh6, p 282] for
the explanation of why the constant ωm2 (−1) disappears). Similar equalities hold
for γ- and ε-factors. �

For the sake of completeness, we recall how L- and ε-factors are defined from
the Langlands-Shahidi method [Sh1, Section 7]. Let G be a quasi-split reductive
group defined over a number field F . Let M be a maximal Levi subgroup. Let π
be a generic cuspidal representation of M(A). From the theory of local coefficients,
which come from intertwining operators, a γ-factor γ(s, πv, ri, ψv) is defined for
every generic irreducible admissible representation πv and certain finite-dimensional
representation ri’s. If πv is tempered, L(s, πv, ri) is defined to be

L(s, πv, ri) = Pπv,i(q
−s
v )−1,

where Pπv ,i is the unique polynomial satisfying Pπv,i(0) = 1 such that Pπv ,i(q−sv )
is the numerator of γ(s, πv, ri, ψv). We define the ε-factor using the identity
γ(s, πv, ri, ψv) = ε(s, πv, ri, ψv)

L(1−s,π̃v ,ri)
L(s,πv,ri)

. Hence if πv is tempered, then the γ-
factor canonically defines both the L-factor and the ε-factor. If πv is non-tempered,
write it as a Langlands quotient of an induced representation and we can write the
corresponding intertwining operator as a product of rank-one operators. For these
rank-one operators, there correspond γ- and L-factors and we define γ(s, πv, ψv)
and L(s, πv, ri) to be the product of these rank-one γ- and L-factors. We then
define ε-factor to satisfy the above relation.

Recall the multiplicativity of γ-factors (cf. [Sh7]). We suppress the subscript v
until the end of Section 2. Let π be an irreducible generic admissible representation
of M = M(F ). Suppose π ⊂ IndMMθNθ

σ ⊗ 1, where MθNθ, θ ⊂ ∆, is a parabolic
subgroup of M and σ is an irreducible generic admissible representation of Mθ.
Let θ′ = w(θ) ⊂ ∆ and fix a reduced decomposition w = wn−1 · · ·w1 of w as in
[Sh2, Lemma 2.1.1]. Then for each j, there exists a unique root αj ∈ ∆ such that
wj(αj) < 0. For each j, 2 ≤ j ≤ n − 1, let w̄j = wj−1 · · ·w1. Set w̄1 = 1. Also
let Ωj = θj ∪ {αj}, where θ1 = θ, θn = θ′, and θj+1 = wj(θj), 1 ≤ j ≤ n − 1.
Then the group MΩj contains MθjNθj as a maximal parabolic subgroup and wj(σ)
is a representation of Mθj . The L-group LMθ acts on Vi. Given an irreducible
constituent of this action, there exists a unique j, 1 ≤ j ≤ n − 1, which under wj
is equivalent to an irreducible constituent of the action of LMθj on the Lie algebra
of LNθj . We denote by i(j) the index of this subspace of the Lie algebra of LNθj .
Finally, let Si denote the set of all such j’s where Si, in general, is a proper subset
of 1 ≤ j ≤ n− 1.
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146 HENRY H. KIM

Proposition 2.4 ([Sh1, (3.13)] (multiplicativity of γ-factors)). For each j ∈ Si let
γ(s, wj(σ), ri(j), ψ) denote the corresponding factor. Then

γ(s, π, ri, ψ) =
∏
j∈Si

γ(s, wj(σ), ri(j) , ψ).

We follow the exposition in [Sh6, p. 280]. Let φ : WF × SL2(C) −→ LM
be the parametrization of π. Then φ factors through LMθ, i.e., there exists φ′ :
WF ×SL2(C) −→ LMθ such that φ = i◦φ′, where i : LMθ ↪→ LM . Let r′i = ri|LMθ

.
Then r′i =

⊕
j ri(j), and

γ(s, φ, ri, ψ) =
∏
j

γ(s, φ′, ri(j), ψ).

Given an irreducible component of ri|LMθ
, there exists a unique j, which under

wj makes this component equivalent to an irreducible constituent of the action of
LMθj on the Lie algebra of LNθj . Hence we have

Proposition 2.5. Let π, σ be as in Proposition 2.4. Suppose π is tempered and
γ(s, wj(σ), ri(j), ψ) is an Artin factors for each j ∈ Si, namely, γ(s, wj(σ), ri(j) , ψ)
= γ(s, φ′, ri(j), ψ) for each j. Then γ(s, π, ri, ψ) and L(s, π, ri) are also Artin fac-
tors.

Proof. Clear from the multiplicativity formulas. Since π is tempered, γ-factors
determine the L-factors uniquely. �

Because of Proposition 2.5, we are reduced to the supercuspidal case when verify-
ing that Shahidi’s γ- and L-factors are Artin factors. Later on, in many situations,
all the rank-one factors in Proposition 2.5 are the Rankin-Selberg γ- and L-factors
for GLn ×GLm, and by Proposition 2.3, they are Artin factors.

Next we have [Sh6, Theorem 5.2]

Proposition 2.6 (multiplicativity of L-factors). Suppose π, σ to be as in Proposi-
tion 2.4. Suppose π is tempered and σ is a discrete series. Suppose Conjecture 7.1
of [Sh1] is valid for every L(s, wj(σ), ri(j)), j ∈ Si. Then

L(s, π, ri) =
∏
j∈Si

L(s, wj(σ), ri(j)).

Now let π be a non-tempered irreducible generic admissible representation of
M = M(Fv). Then π is the unique quotient of an induced representation IndMMθNθ

σ
⊗ 1, where MθNθ, θ ⊂ ∆, is a parabolic subgroup of M and σ is an irreducible
generic quasi-tempered representation of Mθ. (In many cases when the standard
module conjecture is known, π = IndMMθNθ

(σ ⊗ 1).) Then by the definition of
L-factors,

Proposition 2.7. Let π, σ be as above. Then

L(s, π, ri) =
∏
j∈Si

L(s, wj(σ), ri(j)), γ(s, π, ri, ψ) =
∏
j∈Si

γ(s, wj(σ), ri(j) , ψ).

Remark 2.2. In the multiplicativity of γ-factors (Proposition 2.4), we realized π as
a subrepresentation of an induced representation. On the other hand, in the above,
π is realized as a quotient. However, this does not matter, since local coefficients
of two equivalent representations are the same.
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Remark 2.3. Even though it is not necessary, we remark that we can define
L(s, π, ri), even when π is non-generic as long as it has generic supercuspidal
support. Write π as the Langlands quotient of Ξ = IndMMθNθ

σ ⊗ 1. Just de-
fine γ(s, π, ri, ψ) = γ(s,Ξ, ri, ψ) using the formula in Proposition 2.4, and define
L(s, π, ri) using the formula in Proposition 2.5. These definitions agree with those
of the Rankin-Selberg γ- and L-factors in the sense of [J-PS-S] (see the paragraph
before Remark 2.1), and hence Proposition 2.3 holds without the genericity condi-
tion.

For example, let πv = µ ◦ det be a character of GL2(Fv), which is the Langlands
quotient of Indµ| | 12 ⊗ µ| |− 1

2 . Then the standard L-function L(s, πv) is obtained
by considering the induced representation IndGL3

GL2×GL1
πv|det|

s
2 ⊗ | |− s2 , which

is a quotient of IndGL3
B µ| | 12 + s

2 ⊗ µ| |− 1
2 + s

2 ⊗ | |− s2 . Hence γ(s, πv, ψv) =
γ(s + 1

2 , µ, ψv)γ(s − 1
2 , µ, ψv), and L(s, πv) = L(s + 1

2 , µ)L(s − 1
2 , µ) if µ is un-

ramified. On the other hand, if σv is the Steinberg representation, which is the
subrepresentation of Indµ| | 12 ⊗ µ| |− 1

2 , then γ(s, σv, ψv) = γ(s, πv, ψv). However,
by the definition of the L-factor, there is a cancellation, and L(s, σv) = L(s+ 1

2 , µ).

3. Analytic properties of the L-functions

Consider the Dn − 3 case in [Sh3], n = 4, 5, 6, 7: Let G = Spin(2n) be the split
spin group. It is, up to isomorphism, the unique simply-connected group of type
Dn. We can think of it as a two-fold covering group of SO(2n), namely, there is a
2 to 1 map φ : Spin(2n) −→ SO(2n). Let T be a maximal torus of G.

Let θ = {α1 = e1 − e2, ..., αn−4 = en−4 − en−3, αn−2 = en2 − en−1, αn−1 =
en−1−en, αn = en−1 +en} = ∆−{αn−3}. Let T ⊂Mθ = M be the Levi subgroup
of G generated by θ, and let P = MN be the corresponding standard parabolic
subgroup of G. Let A be the connected component of the center of M:

A = (
⋂
α∈θ

ker α)0

=


{Hα1(t)Hα2(t2) · · ·Hαn−3(tn−3)Hαn−2(tn−3)Hαn−1(t

n−3
2 )Hαn(t

n−3
2 ) : t∈F ∗},

for n odd,

{Hα1(t2)Hα2(t4) · · ·Hαn−3(t2(n−3))Hαn−2(t2(n−3))Hαn−1(tn−3)Hαn(tn−3) : t∈F ∗},
for n even.

Since G is simply connected, the derived group MD of M is simply connected, and
hence MD ' SLn−3 × SL4. Then

A∩MD =


{Hα1(t)Hα2(t2) · · ·Hαn−4(tn−4)Hαn−1(t

n−3
2 )Hαn(t

n−3
2 ) : tn−3 = 1},

for n odd,

{Hα1(t2)Hα2(t4) · · ·Hαn−4(t2(n−4))Hαn−1(tn−3)Hαn(tn−3) : t2(n−3) = 1},
for n even.

We identify A with GL1. Then

M ' (GL1 × SLn−3 × SL4)/(A ∩MD).

We define a map f̄ : A×MD −→ GL1 ×GL1 × SLn−3 × SL4 by

f̄ : (a(t), x, y) 7−→
{

(t, t
n−3

2 , x, y), for n odd,
(t2, tn−3, x, y), for n even,
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which induces a map
f : M −→ GLn−3 ×GL4.

Under the identification MD ' SLn−3× SL4, Hα1(t)Hα2(t2) · · ·Hαn−4(tn−4) is an
element in SLn−3, and Hαn−1(t)Hαn−2(t2)Hαn(t) is an element in SL4. Using this,
it is easy to see that

f(Hαn−3(t)) = (diag(1, ..., 1, t), diag(1, 1, t, t)).

We note that it is independent of the choices of the roots of unity which show up.
Let σ, π be cuspidal representations ofGLn−3(A), GL4(A) with central characters

ω1, ω2, resp. Let Σ be a cuspidal representation of M(A), induced by f and σ, π.
(More precisely,1 we need to proceed in the following way: M(A)A∗ is co-compact
in GLn−3(A)×GL4(A), where A∗ is embedded as the center of, say, the first factor.
Consequently σ ⊗ π|f(M), M = M(A), decomposes to a direct sum of irreducible
cuspidal representations of M . Let Σ be any irreducible constituent of this direct
sum. As we shall see, its choice is irrelevant.)

The central character of Σ is

ωΣ =

{
ω1ω

n−3
2

2 , for n odd,
ω2

1ω
n−3
2 , for n even.

Now suppose σv, πv are unramified representations, given by

σv = π(µ1, ..., µn−3), πv = π(ν1, ν2, ν3, ν4).

Let Σv be the unramified representation of M(Fv), given by σv, πv’s. Then Σv is
induced from the character χ of the torus. We have

χ ◦Hα1(t) = µ1µ
−1
2 (t), . . . , χ ◦Hαn−4(t) = µn−4µ

−1
n−3(t),

χ ◦Hαn−1(t) = ν1ν
−1
2 (t), χ ◦Hαn−2(t) = ν2ν

−1
3 (t), χ ◦Hαn(t) = ν3ν

−1
4 (t),

χ(a(t)) = ωΣv(t).

Since f(Hαn−3(t)) = (diag(1, ..., 1, t), diag(1, 1, t, t)), we have

χ ◦Hαn−3(t) = µn−3ν3ν4.

Hence, we see that, for almost all v,

L(s,Σv, r1) = L(s, σv ⊗ πv, ρn−3 ⊗ ∧2ρ4),

L(s,Σv, r2) = L(s, σv,∧2 ⊗ ω2v).

For ramified places, let L(s,Σv, r1) and L(s,Σv, r2) be the ones defined in [Sh1,
Section 7]. Observe that in particular, if v =∞, then L(s, πv, ri) is the correspond-
ing Artin L-function (cf. [Sh7]) in each case.

Let I(s,Σv) be the induced representation, and let N(s,Σv, w0) be the normal-
ized local intertwining operator [Ki1, (2.1)]:

A(s,Σv, w0) =
L(s,Σv, r1)L(2s,Σv, r2)

L(1 + s,Σv, r1)L(1 + 2s,Σv, r2)
N(s,Σv, w0)

ε(s,Σv, r1, ψv)ε(2s,Σv, r2, ψv)
,

where A(s,Σv, w0) is the unnormalized intertwining operator. In [Ki4], we showed
that N(s,Σv, w0) is holomorphic and non-zero for Re(s) ≥ 1

2 for all v. For the sake
of completeness, we give a proof.

1Thanks are due to Prof. Shahidi who pointed this out.
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Proposition 3.1. The normalized local intertwining operators N(s,Σv, w0) are
holomorphic and non-zero for Re(s) ≥ 1

2 for all v.

Proof. We proceed as in [Ki2, Proposition 3.4]. If Σv is tempered, then the unnor-
malized operators are holomorphic and non-zero for Re(s) > 0. We only need to
verify Conjecture 7.1 of [Sh1], namely, L(s,Σv, ri) is holomorphic for Re(s) > 0:
for archimedean places, L(s,Σv, ri) is an Artin L-function, and hence our assertion
follows. For p-adic places, by the multiplicativity of L-factors (Proposition 2.6),
L(s,Σv, ri) is a product of rank-one L-functions for discrete series. The rank-one
factors are Rankin-Selberg L-functions for GLk × GLl, and the cases Dn − 2 and
Dn − 3. The first two cases are well known ([Sh1, Proposition 7.2]). The Dn − 3
case is a result of [As].

If Σv is non-tempered, we write I(s,Σv) as in [Ki1, p. 841],

I(s,Σv) = I(sα̃+ Λ0, π0) = Ind
G(Fv)
M0(Fv)N0(Fv) π0 ⊗ q〈sα̃+Λ0, HP0 ( )〉,

where π0 is a tempered representation of M0(Fv) and P0 = M0N0 is another
parabolic subgroup of G. We can identify the normalized operator N(s,Σv, w0)
with the normalized operator N(sα̃ + Λ0, π0, w0), which is a product of rank-one
operators attached to tempered representations (cf. [Zh, Proposition 1]).

Here α̃ = e1 + · · · + en−3; Λ0 = r1e1 + r2e2 + · · · + (−r2)en−4 + (−r1)en−3 +
(r′1 + r′2)en−2 + (r′1 − r′2)en−1, where 1

2 > r1 ≥ · · · ≥ r[n−3
2 ] ≥ 0, 1

2 > r′1 ≥ r′2 ≥ 0.
Here ri = 0 if π1v is tempered. The same is true for π2v. Hence

sα̃+ Λ0 = (s+ r1)e1 + · · ·+ (s− r1)en−3 + (r′1 + r′2)en−2 + (r′1 − r′2)en−1.

All the rank-one operators are operators attached to tempered representations
of a parabolic subgroup whose Levi subgroup has a derived group isomorphic to
SLk × SLl inside a group whose derived group is SLk+l, unless r′1 = r′2 6= 0,
in which case the rank-one operator is for Dk − 2. It is the case when π′2 =
Ind |det|r′ρ⊗ |det|−r′ρ, where ρ is a tempered representation of GL2.

In the first case, the operators are restrictions to SLk+l of corresponding stan-
dard operators for GLk+l. By [M-W2, Proposition I.10] one knows that these rank-
one operators are holomorphic for Re(s) > −1. Hence by identifying roots of G with
respect to a parabolic subgroup with those of G with respect to the maximal torus,
it is enough to check Re(〈sα̃+ Λ0, β

∨〉) > −1 for all positive roots β if Re(s) ≥ 1
2 .

We observed that the least value of Re(〈sα̃+Λ0, β
∨〉) is Re(s)−r1−(r′1 +r′2) which

is larger than −1, if Re(s) ≥ 1
2 .

Now suppose we are in the exceptional case, namely, π′2 = Ind |det|r′ρ⊗|det|−r′ρ,
where ρ is a tempered representation of GL2. Then by direct computation, we see
that N(sα̃+ Λ0, π0, w̃) is a product of the following three operators:
N(sα̃′ + Λ′0, π1v ⊗ ρ⊗ ρ, w′0),
N((s− 2r′)α̃′ + Λ′0, π1v ⊗ ωρ, w′0), and
N((s+ 2r′)α̃′ + Λ′0, π1v ⊗ ωρ, w′0),

where sα̃′ + Λ′0 = (s + r1)e1 + · · · + (s − r1)en−3 and ωρ is the central character
of ρ. The first operator is the operator for Dk − 2 and it is in the corresponding
positive Weyl chamber and is holomorphic for Re(s) ≥ 1

2 ([Ki1, Lemma 2.4]). The
last two operators are the operators for GLk ×GL1. Since Re(s− 2r′− r1) > −1 if
Re(s) ≥ 1

2 , they are holomorphic. Consequently, N(sα̃+Λ0, π0, w̃0) is holomorphic
for Re(s) ≥ 1

2 . By Zhang’s lemma (cf. [Ki2, Lemma 1.7], [Zh]), it is non-zero as
well. �
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We recall some general results in the next two propositions. Let G be a quasi-
split group defined over a number field F , and let P = MN be a maximal parabolic
subgroup over F . Let Σ be a cuspidal representation of M(A).

Proposition 3.2 (Langlands [La2, Lemma 7.5] or [Ki1, Proposition 2.1]). Unless
w0Σ ' Σ, the global intertwining operator M(s,Σ, w0) is holomorphic for Re(s) ≥
0.

Proposition 3.3 ([Ki1, Lemma 2.3]). If w0Σ � Σ,
∏m
i=1 LS(1 + is,Σ, ri) has no

zeros for Re(s) > 0.

Remark 3.1. Since the Eisenstein series E(s, f, g, P ) is holomorphic for Re(s) = 0,
we see that

∏m
i=1 LS(1 + is,Σ, ri) has no zeros for Re(s) = 0 either. Since the local

L-functions L(s,Σv, ri) have no zeros, the completed L-function
∏m
i=1 L(1+is,Σ, ri)

has no zeros for Re(s) ≥ 0.

Let S be a finite set of finite places where πv is unramified if v <∞ and v /∈ S.
Fix χ be a grössencharacter of F such that χv is highly ramified for at least one
v ∈ S. Let Σχ be the cuspidal representation of M(A), induced by the map
f : M −→ GLn−3 ×GL4 and σ ⊗ χ, π. Then the central character of Σχ is

ωΣχ =

{
ω1χ

mω
n−3

2
2 , for n odd,

ω2
1χ

2mωn−3
2 , for n even.

Note that w0(ωΣχ) = ω−1
Σχ

. Hence if χv is highly ramified (say, χ24
v is ramified),

then
w0(ωΣχ) 6= ωΣχ ,

for m = 1, 2, 3, 4. Therefore,
w0(Σχ) 6' Σχ,

for m = 1, 2, 3, 4. Hence by Propositions 3.1 and 3.2,

Proposition 3.4. Let χ be as above. Then for all cuspidal representations σ ∈
T S(m), m = 1, 2, 3, 4, L(s, (σ ⊗ χ)⊗ π, ρm ⊗ ∧2ρ4) is entire.

Proof. For simplicity, we denote σ ⊗ χ by σ. Then w0(Σ) 6' Σ, where Σ is the
cuspidal representation of M(A), induced by the map f : M −→ GLn−3×GL4 and
σ, π.

We proceed as in [Ki-Sh, Proposition 3.8]. From [Ki2, (1.2)], we have

M(s,Σ, w0) =
L(s,Σ, r1)L(2s,Σ, r2)

L(1 + s,Σ, r1)L(1 + 2s,Σ, r2)ε(s,Σ, r1)ε(2s,Σ, r2)
N(s,Σ, w0).

By Proposition 3.3, M(s,Σ, w0) is holomorphic for Re(s) > 0. By Proposition 3.1,
N(s,Σ, w0) is non-zero for Re(s) ≥ 1

2 . Hence L(s,Σ,r1)L(2s,Σ,r2)
L(1+s,Σ,r1)L(1+2s,Σ,r2) is holomor-

phic for Re(s) ≥ 1
2 . Starting with Re(s) large where both L-functions converge

absolutely, one can argue inductively that L(s,Σ, r1)L(2s,Σ, r2) is holomorphic for
Re(s) ≥ 1

2 . We only need to prove that L(s,Σ, r2) has no zeros for Re(s) ≥ 1.
Then by the functional equation, we conclude that L(s,Σ, r1) is entire.

Note that L(s,Σ, r2) = L(s, σ,∧2 ⊗ ω2). So if m = 1, 2, it is well known. If
m = 3, note that L(s, σ,∧2 ⊗ ω2) = L(s, σ̃ ⊗ ω1ω2). Hence it has no zeros for
Re(s) ≥ 1. If m = 4, apply Proposition 3.3 to the D4 − 3 case, in which case
only one L-function, namely, L(s, σ,∧2⊗ω2), shows up in the constant term of the
Eisenstein series. Hence it has no zeros for Re(s) ≥ 1. �
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The following theorem was proved in [Ge-Sh] by assuming Proposition 3.1.

Theorem 3.5 ([Ge-Sh]). Let χ be as above. Then for all cuspidal representations
σ ∈ T S(m), m = 1, 2, 3, 4, L(s, (σ⊗χ)⊗π, ρm⊗∧2ρ4) is bounded in vertical strips.

Recall the weak Ramanujan property of automorphic representations of GLn(A):
Let π =

⊗
πv be an automorphic representation of GLn(A). Let πv be unramified

for v /∈ S, where S is a finite set of places, including all archimedean places.
Suppose, for each v /∈ S, the Hecke conjugacy class attached to πv is given by
diag(α1v, ..., αnv).

Definition 3.6. We say that π satisfies the weak Ramanujan property if given
ε > 0,

maxi{|αiv|, |α−1
iv |} ≤ qεv,

for v /∈ T , where T is a set of density zero.

If π =
⊗

v πv is a cuspidal representation of GLn(A), we can formulate this in
the following way. In this case, since πv is generic and unitary, if v /∈ S, πv is given
by ([Ta]) πv = Indµ1| |r1 ⊗ · · · ⊗ µk| |rk ⊗ ν1 ⊗ · · · ⊗ νl ⊗ µk| |−rk ⊗ · · · ⊗ µ1| |−r1 ,
where 0 < rk ≤ · · · ≤ r1 <

1
2 , and the µi’s, νj ’s are unramified unitary characters

of F×v . Then π satisfies the weak Ramanujan property if given ε > 0, the set of
places where r1 > ε has density zero.

Proposition 3.7. (Unitary) cuspidal representations of GL2(A), GL3(A) satisfy
the weak Ramanujan property.

Proof. Let av = u1q
r1 + · · ·+ ukq

rk + b1 + · · ·+ bl + u1q
−r1 + · · ·+ ukq

−rk , where
ui = µi($) and bj = νj($). Let ε > 0. Then by Lemma 3.1 of [Ra2], the set of
places where |av| ≥ qε has density zero.

We first look at GL2. Then av = u1q
r1 +u1q

−r1 . Note that |u1q
−r1 | ≤ 1. Hence

|av| ≥ qr1 − 1. Hence our result follows.
For GL3, we have av = u1q

r1 +b+u1q
−r1 . Then |av| ≥ qr1−2. Hence our result

follows again. �

The following proposition is not relevant to our purpose. However, we state it
here in order to show the importance of the weak Ramanujan property.

Proposition 3.8. Let σ be a cuspidal representation of GLm(A), m = 1, 2, 3, and
let π be a cuspidal representation of GL4(A) which satisfies the weak Ramanujan
property. Then the L-function L(s, σ⊗π, ρm⊗∧2ρ4) is holomorphic for Re(s) > 1.

Proof. By the weak Ramanujan property, we can find a place v where σv, πv are
unramified and I(s,Σv) is irreducible for Re(s) > 1 (see [Ki2, Theorem 3.1]). Hence
it cannot be unitary. By applying [Ki2, Observation 1.3], we see that M(s,Σ, w0)
is holomorphic for Re(s) > 1. By arguing inductively as in Proposition 3.4, and
noting that L(s,Σ, r2) has no zeros for Re(s) ≥ 1 (see the proof of Proposition 3.4),
we conclude that L(s, σ ⊗ π, ρm ⊗ ∧2ρ4) is holomorphic for Re(s) > 1. �

Proposition 3.9 ([J-S, Theorem 1, Section 8]). Let χ be any grössencharacter, and
let π be a (unitary) cuspidal representation of GL4(A). Then a partial L-function
LS(s, χ⊗ π, ρ1 ⊗∧2ρ4) is holomorphic for Re(s) > 1. It has a pole at s = 1 if and
only if χ2ωπ = 1 and a certain period integral is not zero.
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Proof. In [J-S, Theorem 1, Section 8], that LS(s, χ⊗ π, ρ1 ⊗ ∧2ρ4) is holomorphic
for Re(s) > 1 is not stated explicitly. However, the global integral I(s, χ, φ,Φ)
is holomorphic for Re(s) > 1 since the singularities of the integral are those of
the Eisenstein series, which are absolutely convergent for Re(s) > 1 (see p. 179 of
[J-S]). �

4. Exterior square lift; weak lift

Let π =
⊗

v πv be a cuspidal automorphic representation of GL4(A). Let φv :
WFv × SL2(C) −→ GL4(C) be the parametrization of πv for each v, given by the
local Langlands correspondence [H-T], [He2], [La4]. Then we obtain a map ∧2 ◦φv :
WFv × SL2(C) −→ GL6(C). Let ∧2πv be the irreducible admissible representation
attached to ∧2 ◦ φv by the local Langlands correspondence. It is obvious that if
πv is an unramified representation, given by πv = IndGL4

B η1 ⊗ η2 ⊗ η3 ⊗ η4, where
the ηi’s are unramified quasi-characters of F×v , then ∧2πv is the unique unramified
subquotient of the principal series IndGL6

B η1η2 ⊗ η1η3 ⊗ η1η4 ⊗ η2η3 ⊗ η2η4 ⊗ η3η4.
Then ∧2π =

⊗
v ∧2πv is an irreducible admissible representation of GL6(A). In

this section we apply the converse theorem (Theorem 2.1) to ∧2π with S being a
finite set of finite places, where πv is unramified for v < ∞ and v /∈ S. We obtain
a weak lift of π, namely, we prove that there exists an automorphic representation
Π′ =

⊗
v Π′v such that Π′v ' ∧2πv for v /∈ S.

In Section 5, we construct all local lifts Πv in the sense of Definition 2.2, using
weak lifts, with the property that Πv ' ∧2πv, if v /∈ T , where T is the set of
places such that v|2, 3 and πv is a supercuspidal representation of GL4(Fv). We
apply the converse theorem again, to conclude that Π =

⊗
v Πv is an automorphic

representation of GL6(A).
First we show

Proposition 4.1. Let σ ∈ T S(m) ⊗ χ for a grössencharacter χ. Then for v /∈ S,
L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) and γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) are Artin factors, i.e.,

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv × ∧2πv, ψv),

L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) = L(s, σv × ∧2πv).

Proof. When v = ∞, this follows from the result of [Sh7]. Suppose v < ∞. Then
by the assumption, πv is unramified for v /∈ S. Since πv is also generic, we can
write it as πv = IndGL4

B η1 ⊗ η2 ⊗ η3 ⊗ η4, where the ηi’s are unramified quasi-
characters of F×v . Then by the multiplicativity of γ-factors (cf. Proposition 2.4)
and by the definition of L-factors (cf. Proposition 2.5), γ(s, σv⊗πv, ρm⊗∧2ρ4, ψv)
and L(s, σv ⊗ πv, ρm⊗∧2ρ4) are products of γ(s, σv ⊗ ηiηj , ψv) and L(s, σv ⊗ ηiηj)
for 1 ≤ i < j ≤ 4, resp. By Theorem 3.1 and Theorem 9.5 of [J-PS-S], the same
multiplicativity formulas hold for the right-hand side. Shahidi (Proposition 2.3)
has shown that in the case of GLk ×GLl, his L- and γ-factors are those of Artin.
Our assertion follows. �

It would be useful to have the above identity for all v ∈ S. However, it is not
even known that Shahidi’s exterior square L-function L(s, πv,∧2ρ4) is an Artin
L-function when πv is a supercuspidal representation. But we have

Proposition 4.2. Let σ ∈ T S(m) ⊗ χ for a grössencharacter χ, and suppose
that for v ∈ S, πv is not supercuspidal. Then L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) and
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γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) are Artin factors, i.e.,

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv × ∧2πv, ψv),

L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) = L(s, σv × ∧2πv).

Proof. Since v ∈ S, σv is in the principal series. Since σv is unramified and generic,
we can write it as σv = IndGLmB η1 ⊗ · · · ⊗ ηm, where the ηi’s are unramified quasi-
characters of F×v . Then by the multiplicativity of γ-factors (Proposition 2.4) and
by the definition of L-factors (Proposition 2.5), γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) and
L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) are products of γ(s, πv,∧2 ⊗ ηi, ψv) and L(s, πv,∧2 ⊗ ηi)
for 1 ≤ i ≤ m, resp. By Theorem 3.1 and Theorem 9.5 of [J-PS-S], the same
multiplicativity formulas hold for the right-hand side.

Hence it is enough to prove the equalities when σv = η is a character of F×v .
Note that πv is generic. By a well-known result, it is a full induced representation.
Since π is not supercuspidal, by the multiplicativity of γ-factors and L-factors (cf.
Propositions 2.4 and 2.5), γ(s, σv ⊗πv, ρm⊗∧2ρ4, ψv) and L(s, σv⊗πv, ρm⊗∧2ρ4)
are products of γ- and L-factors for GLk ×GLl. We have the same multiplicativ-
ity formula for the right-hand side. By Proposition 2.3, we have the equality of
Langlands-Shahidi L-functions and those of Artin for GLk×GLl. Hence our result
follows. �

Later in Lemma 5.2.1, we will extend the above result to any generic irreducible
representation σv. In light of the above proposition, we need to proceed in two steps
as in [Ra1], namely, first, we do the good case when none of πv is supercuspidal,
and then we do the general case, following Ramakrishnan’s idea of descent [Ra1].
It is based on the observation of Henniart [He1] that a supercuspidal representation
of GLn(Fv) becomes a principal series after a solvable base change.

Remark 4.1. In actuality, in establishing a weak lift, we do not need the local Lang-
lands correspondence. At bad places S, we take the candidate Πv to be arbitrary,
except that the central character of Πv is the same as ∧2πv, namely, ω3

πv . Then
we would apply the stability of γ-factors by using highly ramified characters as
in [CKPSS]. Namely, given two irreducible admissible representations π1v, π2v of
GL4(Fv), γ(s, π1v,∧2⊗χv) = γ(s, π2v,∧2⊗χv) for every highly ramified character
χv. We hope to be able to prove this in the future. Once it is done, we may avoid
using the descent argument, and hence Appendix 1 altogether.

Once we obtain a weak lift, we will construct Πv for v ∈ S in Section 5.2 such
that the equalities of γ- and L-factors in Definition 2.2 hold.

4.1 Lift in the good case. Let π =
⊗

v πv be a cuspidal representation of
GL4(A). Following [Ra1], we say π is good if none of πv is supercuspidal.

Theorem 4.1.1. Suppose π is good. Then there exists a weak exterior square
lift Π =

⊗
v Πv of π, i.e., Πv ' ∧2πv for almost all v. It is an automorphic

representation of GL6(A) of the form Ind τ1 ⊗ · · · ⊗ τk, where τi is a cuspidal
representation of GLni(A).

In the notation of [J-S3], Ind τ1 ⊗ · · · ⊗ τk = τ1 � · · · � τk. The proof of this
theorem will occupy this subsection.

Choose χ so that Proposition 3.4 and Theorem 3.5 hold. Then by Propositions
4.1 and 4.2, we can apply the converse theorem (Theorem 2.1) to ∧2π and S, where
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S is a finite set of finite places such that πv is unramified for v /∈ S, v < ∞. We
obtain that ∧2π⊗χ is quasi-automorphic, and hence ∧2π is as well, i.e., there exists
an automorphic representation Π =

⊗
v Πv of GL6(A) such that Πv ' ∧2πv for all

v /∈ S.
By the classification of automorphic representations of GLn [J-S3], Π is equiva-

lent to a subquotient of

(4.1) Ind |det|r1τ1 ⊗ · · · ⊗ |det|rkτk,
where τi is a (unitary) cuspidal representation of GLni(A) and ri ∈ R. Note that for
almost all places, Πv is the unique unramified subquotient of Ξv = Ind |det|r1τ1v ⊗
· · · ⊗ |det|rkτkv. Hence the Hecke conjugacy class of Πv is the same as that of Ξv.
Note also that the central character of Π is ωΠ = ω3

π. In particular, it is unitary.
Hence n1r1 + · · ·+ nkrk = 0. We want to show that all the ri’s are zero.

The following proposition illustrates the importance of the weak Ramanujan
property. We may use it instead of Proposition 4.1.6 in Section 7 since the sym-
metric cube of a cuspidal representation of GL2 satisfies the weak Ramanujan
property.

Proposition 4.1.2. Suppose π satisfies the weak Ramanujan property. Then r1 =
· · · = rk = 0.

Proof. By the assumption, Π also satisfies the weak Ramanujan property. Suppose
the ri’s are not all zero. From the relation n1r1 + · · · + nkrk = 0, it follows that
there is an i such that ri > 0. But then this contradicts the weak Ramanujan
property with ε = ri. �

We will show r1 = · · · = rk = 0, without assuming the weak Ramanujan property
of π. First we have

Lemma 4.1.3 ([Ra2, Lemma 3.1]). Let π =
⊗

v πv be a cuspidal representation
of GL4(A). Let πv be an unramified component with the trace av, i.e., av = α1 +
α2 +α3 +α4, where the Hecke conjugacy class of πv is given by diag(α1, α2, α3, α4).
Then given ε > 0, the set of places where |av| ≥ qεv has density zero.

Note that at a place where πv is non-tempered, the trace av has one of the three
forms below. Here u1, u2, u3 are complex numbers with absolute value one. We
suppress the dependence of all the factors on v for simplicity of notation, except
av.

S1; av = u1q
a + u2q

a + u1q
−a + u2q

−a, where 0 < a < 1
2 ;

S2; av = u1q
a + u2 + u3 + u1q

−a, where 0 < a < 1
2 ;

S3; av = u1q
a1 + u2q

a2 + u1q
−a1 + u2q

−a2 , where 0 < a2 < a1 <
1
2 .

Lemma 4.1.4. Given ε > 0, the set of places a > ε in S2 has density zero.

Proof. Just note that since q−a < 1, |av| > qa − 3. Use Lemma 4.1.3. �
Now we have

Lemma 4.1.5. In (4.1), if ri 6= 0, then ni = 1.

Proof. If πv is unramified, the Hecke conjugacy class of ∧2πv is given by one of the
following forms:

S1 : diag(u1u2q
2a, u1u2, u

2
1, u

2
2, u1u2, u1u2q

−2a),
S2 : diag(u1u2q

a, u1u3q
a, u2

1, u2u3, u1u2q
−a, u1u3q

−a),
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S3 : diag(u1u2q
a1+a2 , u1u2q

a1−a2 , u2
1, u

2
2, u1u2q

−a1+a2 , u1u2q
−a1−a2),

S0 : diag(u1u2, u1u3, u1u4, u2u3, u2u4, u3u4),

where the ui’s are complex numbers with absolute value one and πv is tempered
for v ∈ S0.

Suppose r1 6= 0. We will show that n1 = 1:
Suppose n1 = 5. Then n2 = 1. By checking case by case, we see that the Hecke

conjugacy class of Πv can never be of the above form.
Suppose n1 = 4, n2 = 2. Then r2 = −2r1. By [Ra2, Theorem A], τ2v is tempered

for a set T of lower density at least 9
10 . Since the Hecke conjugacy class of Πv should

be one of the above forms, they should be, for v ∈ T , of the form in S2 above:

diag(u1u2q
2r1 , u1u3q

2r1 , u2
1, u2u3, u1u2q

−2r1 , u1u3q
−2r1).

In this case Πv = ∧2πv, where the Hecke conjugacy class of πv is given by

diag(u1q
2r1 , u2, u3, u1q

−2r1).

Note that r1 is fixed and the Hecke conjugacy class of πv is given by the above
form for all v ∈ T . This contradicts Lemma 4.1.4. The same proof works for
n1 = 4, n2 = n3 = 1.

Suppose n1 = 3. Since cuspidal representations of GL2, GL3 satisfy the weak
Ramanujan property, by taking ε < |r1|, we can see that the Hecke conjugacy class
of Πv can never be of the above form for ∧2πv.

Suppose n1 = 2. By [Ra2, Theorem A], τ1v is tempered for a set T of lower
density at least 9

10 . Then we see that the Hecke conjugacy class of Πv should be of
the form

diag(u1u2q
r1 , u1u3q

r1 , u2
1, u2u3, u1u2q

−r1 , u1u3q
−r1).

In this case Πv = ∧2πv, where the Hecke conjugacy class of πv is given by

diag(u1q
r1 , u2, u3, u1q

−r1).

Note that r1 is fixed and the Hecke conjugacy class of πv is given by the above form
for all v ∈ T . This contradicts Lemma 4.1.4.

Hence if r1 6= 0, n1 = 1. The same is true for i > 1. �

Proposition 4.1.6. In (4.1), r1 = · · · = rk = 0.

Proof. Suppose not all of the ri’s are zero. Suppose r1 < 0 is smallest. Then by
Lemma 4.1.5, n1 = 1 and

LS(s, τ−1
1 ×Π) = LS(s, π,∧2ρ4 ⊗ τ−1

1 ) =
k∏
i=1

LS(s+ ri, τ
−1
1 × τi).

Here LS(s+ r1, τ
−1
1 × τ1) has a pole at s = 1− r1 and L(s+ ri, τ

−1
1 × τi) has no zero

at s = 1 − r1 > 1 for i = 2, ..., k. Hence LS(s, τ−1
1 × Π) has a pole at s = 1 − r1.

The same is true for LS(s, π,∧2ρ4 ⊗ τ−1
1 ). This contradicts Proposition 3.9. �

This finishes the proof of Theorem 4.1.1.
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4.2 Lift in the general case. In this subsection, since we are dealing with various
fields, we denote the ring of adeles of F by AF . We start with

Theorem 4.2.1 ([He1]). Let πv be a supercuspidal representation of GLn(Fv).
Then there exists a finite sequence of fields E0 = Fv ⊂ E1 ⊂ · · · ⊂ Er, with Ei+1

finite cyclic of prime degree over Ei, such that the representation Πv of GLn(Er)
obtained from πv by successive base changes from Ei to Ei+1 is no longer cuspidal.
In fact, we can choose Er to be Galois over Fv and Πv to be unramified principal
series Indχ⊗ · · · ⊗ χ, where χ is an unramified character of E×r . We define l(πv)
to be the minimal length r of Er/Fv such that the base change (πv)Er is in the
principal series.

Lemma 4.2.2 ([Ra1, Lemma 3.6.2]). Let π be a cuspidal representation of
GLn(AF ). Then there exist at most a finite number of grössencharacters χ such
that

π ' π ⊗ χ.

Our goal is to prove the following main theorem.

Theorem 4.2.3. Let π be a cuspidal representation of GL4(AF ). Then there exists
a weak exterior square lift Π of GL6(AF ). It is of the form τ1 � · · · � τk in the
notation of [J-S3], where τi is a (unitary) cuspidal representation of GLni(AF ).

Proof. We follow [Ra1] closely. We thank Prof. Ramakrishnan for his help. Let
S be a finite set of finite places such that πv is supercuspidal for v ∈ S. For each
v ∈ S, let l(πv) be as in Theorem 4.2.1, i.e., the minimal degree of all the solvable
extensions E(v)/Fv for which the base changes (πv)E(v) are in the principal series.
Let l(π) be the maximum of {l(πv)|v ∈ S}, and let S′ be the subset of S where this
maximum is attained. Further, for each v ∈ S′, let p(v) denote the maximum over
all E(v), of the degree, required to be a prime or 1, of the largest cyclic extension
K(v) of Fv, contained in E(v). Let p = p(π) be the maximum of p(v) over all
v ∈ S′, and let S′′ denote the subset of S′ where p(v) = p (and l(πv) = l(π)). Note
that p is a prime unless π is good over F , i.e., has no supercuspidal components, in
which case p = 1.

Now set r(π) = (l(π), p(π)). We will order these pairs as follows: (l, p) < (l′, p′)
if either l < l′, or l = l′ and p < p′. If r = r(π) = (0, 1), we are done. So we will
assume that r > (0, 1) and assume by induction that the theorem is proved (over
all number fields K) for all cuspidal representations π of GL4(AK) with r(π) < r.

Fix, at every place v ∈ S′′, a character χv of F×v , given by the class field theory
for the cyclic extension K(v)/Fv of degree p. Enumerate the set of finite places
where π is unramified as {v1, v2, ...}.

Fix an index j ≥ 1, and let S(j) = {vj}∪S′′. Let χvj denote the trivial character
of F×vj .

Now by the Grunwald-Wang theorem (see [A-T, Chap. 10, Theorem 5]), we can
find a grössencharacter χ(j) of order p whose local restrictions are given by χv for
every v ∈ S(j).

Let Kj be the p-extension of F attached to χ(j) by the class field theory. Note
that for each j ≥ 1, vj splits completely in Kj, but every place v ∈ S′′ is either
inert or ramifies in Kj. By throwing away finitely many indices, we can assume
that the Kj’s are all different: This is because one cannot choose a finite number of
p-extensions of F such that every vj splits in one of them; put another way, given
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any finite number of p-extensions of F , the Tchebotarev density theorem states
that the set of primes which are inert in each of these finite sets of p-extensions will
have positive density. On the other hand, the set {vj} has density 1.

Let πKj be the base change of π to Kj for each j. So by construction, for every
j ≥ 1, r(πKj ) < r.

Thus, by induction, Theorem 4.2.3 holds for πKj for each j. Note that if the
automorphic representation πKj is not cuspidal for some j, then p = 2 and π ' π⊗η,
where η is the quadratic character of F attached to the quadratic extension Kj/F
(see Proposition 2.3.1 of [Ra1]). Hence by Lemma 4.2.2, πKj is cuspidal for almost
all j, and, by throwing away finitely many indices, we can assume that πKj is
cuspidal for all j. Let Πj be a weak exterior square lift of πKj .

Recall the following descent criterion in [Ra1].

Proposition 4.2.4. Fix n, p ∈ N with p prime. Let F be a number field, let
{Kj|j ∈ N} be a family of cyclic extensions of F with [Kj : F ] = p, and for each
j ∈ N, let πj be a cuspidal automorphic representation of GLn(AKj ). Suppose that,
given j ∈ N,

(DC) (πj)KjKr ' (πr)KjKr ,

for almost all r ∈ N. Then there exists a unique cuspidal automorphic representa-
tion π of GLn(AF ) such that

(π)Kj ' πj ,
for all but a finite number of j.

Remark 4.2. In [Ra1], it is stated that (DC) holds for all j, r ∈ N. However, the
proof shows our condition suffices.

Appendix 1 extends the above proposition to isobaric automorphic representa-
tions, i.e., automorphic representations induced from cuspidal representations.

Proposition 4.2.5 (Appendix 1). The result in the above proposition holds when
the πj’s are isobaric automorphic representations.

Proof of Theorem 4.2.3 (contd.). Now we fix a pair (j, r) of indices and consider the
descent criterion (DC). Let w be a finite place where ((Πj)KjKr)w, ((Πr)KjKr)w and
KjKr are all unramified. Then, by construction, both of these local representations
correspond to the restriction (to the Weil group of (KjKr)w) of ∧2φv, where v
signifies the place of F below w. (Recall that φv is associated to πv.) Then

((Πj)KjKr)w ' ((Πr)KjKr)w.

Hence the strong multiplicity one theorem gives (DC). Thus by applying Proposi-
tion 4.2.5, we obtain a unique automorphic descent Π on GL6(AF ) such that, for
all but a finite number of indices,

ΠKj ' Πj .

Finally, by construction, each (unramified) finite place vj splits completely in Kj;
let wj be a divisor of vj in Kj . Let σv be a discrete series of GLm(Fv), m = 1, 2, 3, 4.
Then by the definition of base change, for almost all j,

L(s, σvj ×Πvj ) = L(s, (σKj )wj × (Πj)wj ) = L(s, (σKj )wj ⊗ (Πj)wj , ρm ⊗ ∧2ρ4)

= L(s, σvj ⊗ πvj , ρm ⊗ ∧2ρ4).
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Similarly for the ε-factors. Thus Π is a weak exterior square lift of π. This finishes
the proof of Theorem 4.2.3. �

5. Exterior square lift; strong lift

5.1 Functorial lift from GL2×GL2 to GL4. We give a new proof of the existence
of the functorial product, corresponding to the tensor product map GL2(C) ×
GL2(C) −→ GL4(C). It is originally due to Ramakrishnan [Ra1]. However, we
give a proof based entirely on the Langlands-Shahidi method. Also we need this in
the proof of Corollary 5.1.6

More precisely, let GL2(C) × GL2(C) −→ GL4(C) be the map given by the
tensor product. Let π1, π2 be cuspidal representations of GL2(A). Let φiv : WFv ×
SL2(C) −→ GL2(C) be the parametrization of πiv for i = 1, 2. Then we obtain
a map φ1v ⊗ φ2v : WFv × SL2(C) −→ GL4(C). Let π1v � π2v be the irreducible
admissible representation of GL4(Fv) attached to φ1v ⊗φ2v by the local Langlands
correspondence [H-T], [He2], [La4]. Let π1 � π2 =

⊗
v(π1v � π2v). Ramakrishnan

[Ra1] showed that π1�π2 is an automorphic representation of GL4(A), as predicted
by Langlands’ functoriality.

In this section, we prove the functoriality of such a tensor product entirely by the
Langlands-Shahidi method. Note that all the necessary analytic properties of the
triple product L-functions L(s, σ× π1× π2) were proved in [Ki-Sh], where π1, π2, σ
are cuspidal representations of GL2(A). We follow Section 4.1 closely. Let T be a
set of places where π1v, π2v are both supercuspidal representations. First we show

Lemma 5.1.1. If v /∈ T , then for all irreducible, generic representations σv of
GLm(Fv), m = 1, 2,

γ(s, σv × π1v × π2v, ψv) = γ(s, σv × (π1v � π2v), ψv),

L(s, σv × π1v × π2v) = L(s, σv × (π1v � π2v)).

Proof. By assumption, in the multiplicativity of γ-factors and L-factors (cf. Propo-
sitions 2.4 and 2.5), all rank-one γ- and L-factors are for GLk ×GLl and, in that
case, Shahidi (Proposition 2.3) has shown that his γ-factors are Artin factors. Hence
by Proposition 2.6, the left-hand sides are Artin factors. Thus we have the equali-
ties. �

Now let S = T if T is not empty. If T is empty, then let S = {v}, where
v is any finite place. Note that for σ ∈ T S(m), σv is in the principal series for
v ∈ S. Hence, in the multiplicativity of γ-factors and L-factors (cf. Propositions
2.4 and 2.5), all rank-one γ- and L-factors are for GLk ×GLl, namely, the product
of the form γ(s, π1v × (π2v ⊗χv), ψv) and L(s, π1v × (π2v ⊗χv)), resp. In that case,
Shahidi (Proposition 2.3) has shown that his γ-factors are Artin factors. Hence
the equalities in Lemma 5.1.1 hold. We apply the converse theorem (Theorem 2.1)
to π1 � π2 =

⊗
v(π1v � π2v) with S, and obtain an automorphic representation

Π =
⊗

v Πv of GL4(A) such that Πv ' π1v � π2v for all v /∈ S.

Proposition 5.1.2. Π is of the form

Π = τ1 � · · ·� τk,
in the notation of [J-S3], where τi is a (unitary) cuspidal representation of GLni(A).
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Proof. By the classification of automorphic representations of GLn(A) [J-S3], Π is
equivalent to a subquotient of

Ind |det|r1τ1 ⊗ · · · ⊗ |det|rkτk,
where τi is a unitary cuspidal representation of GLni(A) and ri ∈ R. Note that for
almost all v, Πv is the unique unramified subquotient of Ξv = Ind |det|r1τ1v⊗· · ·⊗
|det|rkτkv. The Hecke conjugacy class of Πv is that of Ξv.

Let π1v, π2v be unramified local components with the Hecke conjugacy classes
given by diag(α1v, β1v), diag(α2v, β2v), resp. Then the Hecke conjugacy class of Πv

is given by
diag(α1vα2v, α1vβ2v, α2vβ1v, α2vβ2v).

By Proposition 3.7, π1, π2 satisfy the weak Ramanujan property, and so does Π.
We can show r1 = · · · = rk = 0 in the same way as in Proposition 4.1.2. �

Proposition 5.1.3. Suppose v ∈ T , i.e., π1v, π2v are both supercuspidal represen-
tations. Then there exists an irreducible admissible representation Πv which is a
local lift of π1v ⊗ π2v, in the sense that

γ(s, σv × π1v × π2v, ψv) = γ(s, σv ×Πv, ψv),

L(s, σv × π1v × π2v) = L(s, σv × Πv),

for all generic irreducible representations σv of GLm(Fv), m = 1, 2. Moreover, Πv

is tempered.

Proof. Let π1v⊗π2v be a supercuspidal representation of GL2(Fv)×GL2(Fv). Let
π1 ⊗ π2 =

⊗
w(π1w ⊗ π2w) be a cuspidal automorphic representation of GL2(A)×

GL2(A) such that π1w ⊗ π2w is unramified for all w < ∞ and w 6= v (Proposition
5.1 of [Sh1]).

Let Π be a weak lift of π1⊗π2 as in Proposition 5.1.2 such that Πw ' π1w�π2w

for w 6= v. (We use a similar definition of weak lift as in Definition 2.2.) We note
that Πv is irreducible, unitary, and generic.

Claim: Πv is a local lift of π1v ⊗ π2v.
By the multiplicativity of γ- and L-factors (cf. Propositions 2.4 and 2.5), it

is enough to show this claim for discrete series σv. Then we can find a cuspidal
representation σ whose local component at v is σv [Ro].

Consider the two L-functions L(s, σ × π1 × π2) and L(s, σ ×Π). Both have the
functional equations:

L(s, σ × π1 × π2) = ε(s, σ × π1 × π2)L(1− s, σ̃ × π̃1 × π̃2),

L(s, σ ×Π) = ε(s, σ ×Π)L(1− s, σ̃ × Π̃).

Since π1w, π2w,Πw are unramified for w 6= v, w < ∞, it follows that Πw is the lift
of π1w ⊗ π2w for all w 6= v. Hence

L(s, σw×π1w×π2w) = L(s, σw×Πw), ε(s, σw×π1w×π2w, ψw) = ε(s, σw×Πw, ψw),

for all w 6= v. The functional equations above can be written in the form

γ(s, σv × π1v × π2v, ψv) =
∏
w 6=v

L(s, σw × π1w × π2w)
ε(s, σw × π1w × π2w, ψw)L(1− s, σ̃w × π̃1wπ̃2w)

,

γ(s, σv ×Πv, ψv) =
∏
w 6=v

L(s, σw ×Πw)
ε(s, σw ×Πw, ψw)L(1− s, σ̃w × Π̃w)

.
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Hence
γ(s, σv × π1v × π2v, ψv) = γ(s, σv ×Πv, ψv).

In order to show that the equality of γ-factors implies the equality of L-factors,
we need a little care, since we do not know, a priori, that Πv is tempered. As we
remarked earlier, Πv is irreducible, unitary, and generic. Hence it is of the form
Ind τ1| det |s1⊗· · ·⊗τ`| det |s`⊗τ`+1⊗· · ·⊗τ`+u⊗τ`| det |−s`⊗· · ·⊗τ1| det |−s1 , where
the τi’s are discrete series representations of smaller GL’s and 0 < sl ≤ · · · ≤ s1 <

1
2

(cf. [Ta]).
For σv in the discrete series of GLn(Fv), n = 1, 2, the L-function L(s, σv ×Πv)

is equal to ∏̀
k=1

L(s− sk, σv × τk)L(s+ sk, σv × τk)
u∏
j=1

L(s, σv × τ`+j).

Using the strict inequalities 0 < sk < 1/2 and the holomorphy of each L(s, σv× τk)
for Re s > 0, it is easy to see that as a function of q−sv , L(s, σv × Πv)−1 has the
same zeros as γ(s, σv ×Πv, ψv) and therefore the equality

L(s, σv × π1v × π2v) = L(s, σv ×Πv)

follows from the equality of γ-factors, since πiv and σv are tempered (cf. Section 7
of [Sh1]).

The temperedness of Πv follows easily from the above equality of L-factors by
comparing poles of both sides. More precisely, let Πv be of the above form, and
suppose sl > 0. Then take σv = τ̃l:

L(s, τ̃l × π1v × π2v) =
∏̀
k=1

L(s− sk, τ̃l × τk)L(s+ sk, τ̃l × τk)
u∏
j=1

L(s, τ̃l × τ`+j).

The left-hand side has no poles for Re(s) > 0 ([Sh1, Proposition 7.2], see also
[Ki-Sh, Proposition 3.2]); but the right-hand side has a pole at Re(s) = sl > 0. �

Proposition 5.1.4. For v ∈ T ,

γ(s, σv ×Πv, ψv) = γ(s, σv × (π1v � π2v), ψv) = γ(s, σv × π1v × π2v, ψv),

for any generic representation σv of GLm(Fv), m = 1, 2.

Remark. By the local converse theorem due to Chen [Ch] (cf. [Co-PS1]), the above
equality implies that Πv ' π1v � π2v for v ∈ T . However, we do not need the local
converse theorem. The equivalence will be a consequence of Proposition 5.1.5.

Proof. We follow [Ra1, Proposition 4.3.1]. By the multiplicativity of γ-factors, we
only need to show that

γ(s, σv ×Πv, ψv) = γ(s, σv × (π1v � π2v), ψv),

for any supercuspidal representation σv of GLm(Fv), m= 1, 2. We show this for
the case m=2. Since we need a local-global argument, in order to avoid confusion,
we use the following setup: Let k be a non-archimedean local field of characteristic
zero. Let ηi, i = 1, 2, 3, be supercuspidal representations of GL2(k) with corre-
sponding parametrization τi : Wk −→ GL2(C). Since any representation τ of Wk

is of the form τ ′ ⊗ | |u, where τ ′ is a representation of Gal(k̄/k), we can think of
τi as a representation of Gal(k̄/k), i.e., τi : Gal(k̄/k) −→ GL2(C). Note that τi
has a solvable image, i.e., a representation of icosahedral type does not occur over
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a local field (see, for example, [G-L, p. 121]). As in [Ra1, Proposition 4.3.1], we
can find a number field F with k = Fv and irreducible 2-dimensional representa-
tions σi of Gal(F̄ /F ) with solvable image such that σiv =τi. The global Langlands
correspondence is available for those representations with solvable image [La3],
[Tu], and hence we can find corresponding cuspidal representations πi of GL2(AF )
such that πiv = ηi. We compare the functional equations of L(s, π1 × π2 × π3)
and L(s, σ1 ⊗ σ2 ⊗ σ3). Even though we do not know the holomorphy of
L(s, σ1 ⊗ σ2 ⊗ σ3), the functional equation is known and it suffices for our pur-
pose. Since L(s, π1w × π2w × π3w) = L(s, σ1w ⊗ σ2w ⊗ σ3w) for unramified places,
we have an equality∏

u∈S
γ(s, π1u × π2u × π3u, ψu) =

∏
u∈S

γ(s, σ1u ⊗ σ2u ⊗ σ3u, ψu),

where S is a finite set of finite places containing T and the πiw ’s are unramified for
w /∈ S. Now we use the idea of using highly ramified characters (see, for example,
[He3, Theorem 4.1]). Note that by Lemma 5.1.1 and Proposition 5.1.3, there exists
a representation Πu such that

γ(s, π1u × π2u × π3u, ψu) = γ(s,Πu × π3u, ψu),

for each u ∈ S. Also we have

γ(s, σ1u ⊗ σ2u ⊗ σ3u, ψu) = γ(s, (π1u � π2u)× π3u, ψu).

Hence by [J-S2], for every highly ramified character χ, γ(s,Πu× (π3u⊗χ), ψu) and
γ(s, (π1u � π2u) × (π3u ⊗ χ), ψu) are independent of the πiv ’s. Namely, for every
highly ramified character χ,

γ(s, π1u × π2u × (π3u ⊗ χ), ψu) = γ(s, σ1u ⊗ σ2u ⊗ (σ3u ⊗ χ), ψu).

Now choose a grössencharacter µ which is highly ramified at all the ramified places
except v, in which place it is trivial. Comparing the functional equations of
L(s, π1 × π2 × (π3 ⊗ µ)) and L(s, σ1 ⊗ σ2 ⊗ (σ3 ⊗ µ)), we obtain

γ(s, π1v × π2v × π3v, ψv) = γ(s, σ1v ⊗ σ2v ⊗ σ3v, ψv).

�
The temperedness of Πv would follow also from Proposition 5.1.4, by noting that

if φiv : WFv × SL2(C) −→ GL2(C) is the parametrization of πiv , i = 1, 2, then πiv
is tempered if and only if the image φiv(WFv ) is bounded (see, for example, [Ku,
Lemma 5.2.1]). In that case, it is obvious that (φ1v⊗φ2v)(WFv ) is bounded. Hence
π1v � π2v is tempered.

Proposition 5.1.5. Let π1, π2 be two cuspidal representations of GL2(A). Then
π1�π2 is an automorphic representation of GL4(A). It is of the form τ1� · · ·� τk,
where the τi’s are cuspidal representations of GLni(A).

Proof. Pick two finite places v1, v2, where πiv1 , πiv2 , i = 1, 2, are unramified. Let
Si = {vi}, i = 1, 2. We apply the converse theorem twice to π1�π2 =

⊗
v π1v�π2v

with S1 and S2, and find two automorphic representations Π1,Π2 of GL4(A) such
that Π1v ' π1v �π2v for v 6= v1, and Π2v ' π1v � π2v for v 6= v2. Hence Π1v ' Π2v

for all v 6= v1, v2. Note that Π1,Π2 are of the form τ1 � · · · � τk, where the τi’s
are (unitary) cuspidal representations of GL by Proposition 5.1.2. By the strong
multiplicity one theorem [J-S3], Π1 ' Π2, in particular, Π1vi ' Π2vi ' π1v � π2v

for all v. �
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Corollary 5.1.6. Let π1v, π2v be supercuspidal representations of GL2(Fv). Let σv
be a supercuspidal representation of GLn(Fv). Then

γ(s, σv × π1v × π2v, ψv) = γ(s, σv × (π1v � π2v), ψv).

Proof. Consider the Dn+1 − 2 case in [Sh1]. Then we obtain the triple L-function
L(s, σv×π1v×π2v). Let σ, π1, π2 be cuspidal representations ofGLn(AF ), GL2(AF ),
GL2(AF ), resp., whose local components at v are σv, π1v, π2v and unramified for
all other finite places. Let Π = π1�π2. Consider two L-functions L(s, σ×π1×π2)
and L(s, σ × Π). Comparing the functional equations as in Proposition 5.1.3, we
have the equality

γ(s, σv × π1v × π2v, ψv) = γ(s, σv ×Πv, ψv).

�

Let π =
⊗

v πv be a cuspidal representation of GL2(A) with central character
ωπ. By the local Langlands correspondence, Sym2(πv) is well defined for all v. Let
Sym2(π) =

⊗
v Sym

2(πv). Gelbart and Jacquet [Ge-J] proved that Sym2(π) is
an automorphic representation of GL3(A). Here we can prove it as a corollary to
Proposition 5.1.5.

Corollary 5.1.7 ([Ge-J]). π�π = Sym2(π)�ωπ. Hence Sym2(π) is an automor-
phic representation of GL3(A). It is cuspidal if and only if it is not monomial.

Proof. By Proposition 5.1.5, π � π is an automorphic representation of GL4(A).
But L(s, π × (π ⊗ ω−1

π )) has a pole at s = 1. Hence π � π = σ � ωπ for some
automorphic representation σ of GL3(A). It is easy to see that σv ' Sym2(πv) for
all v. Hence our result follows.

In order to prove the second assertion, we use the identity

L(s, π × (π ⊗ χ)) = L(s, Sym2(π) ⊗ χ)L(s, ωπχ),

where χ is a grössencharacter. Note that L(s, π × (π ⊗ χ)) has a pole at s = 1 if
and only if π⊗χ ' π̃, namely, π⊗ (ωπχ) ' π. Hence L(s, Sym2(π)⊗χ) has a pole
at s = 1 if and only if π ⊗ (ωπχ) ' π and ωπχ 6= 1, namely, π is monomial. �

5.2 Local lifts from GL4 to GL6. Let π =
⊗

v πv be a cuspidal representation
of GL4(A). In this section, we construct a local exterior square lift Πv for each πv
in the sense of Definition 2.2, i.e.,

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv ×Πv, ψv),

L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) = L(s, σv ×Πv),

for all generic irreducible representations σv of GLm(Fv), 1 ≤ m ≤ 4.
First we show, by extending Proposition 4.2, that if πv is not supercuspidal, then

∧2πv is the local exterior square lift of πv in the above sense. Namely,

Lemma 5.2.1. Suppose πv is not supercuspidal. Then

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv × (∧2πv), ψv),

L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) = L(s, σv × (∧2πv)),

for all generic irreducible representations σv of GLm(Fv), 1 ≤ m ≤ 4.
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Proof. By assumption, in the multiplicativity of γ- and L-factors (cf. Propositions
2.4 and 2.5), all rank-one γ- and L-factors are either for GLk ×GLl, or for Dn− 2,
n = 4, 5, 6. For GLk×GLl, Shahidi (Proposition 2.3) showed that his γ-factors are
Artin factors and the Dn − 2 case follows from Corollary 5.1.6. Our result follows
from Proposition 2.6. �

As an example of a local lift, we show

Lemma 5.2.2. Suppose πv is a discrete series, given as the unique subrepresenta-
tion of Ind |det| 12 ρ⊗|det|− 1

2 ρ, where ρ is a supercuspidal representation of GL2(Fv).
Then the lift ∧2πv is given by

∧2πv = Sym2ρ� σ,

where Sym2ρ is the symmetric square lift of ρ and σ is a discrete series of GL3(Fv),
given as the unique subrepresentation of Ind | |ωρ ⊗ ωρ ⊗ | |−1ωρ.

Proof. Note the identity ∧2(τ1�τ2) = (τ1�τ2)�ωτ1�ωτ2 for irreducible representa-
tions τ1, τ2 of GL2(Fv). Hence ∧2πv is a subrepresentation of (ρ�ρ)�| |ωρ�| |−1ωρ.
Note that ρ� ρ = Sym2ρ� ωρ. By [Sh5, Proposition 8.1],

L(s, πv,∧2) = L(s, ρ, Sym2)L(s+ 1, ωρ),

and note that L(s, σ) = L(s+ 1, ωρ). Hence our result follows. �

We now show that a supercuspidal representation of GL4(Fv) has a local exterior
square lift to GL6(Fv). Let πv be a supercuspidal representation of GL4(Fv). Let
π =

⊗
w πw be a cuspidal automorphic representation of GL4(A) such that πw is

unramified for all w <∞ and w 6= v (Proposition 5.1 of [Sh1]).
By Theorem 4.2.3, there exists a weak exterior square lift Π of π such that

Πw ' ∧2πw for w /∈ S′, where S′ is a finite set of finite places, containing v. We
remark that Πv is irreducible, unitary, and generic.

Proposition 5.2.3. Πv is a local exterior square lift of πv. Moreover, Πv is tem-
pered.

Proof. By the multiplicativity of γ- and L-factors (cf. Propositions 2.4 and 2.5),
it is enough to show the identities in Definition 2.2 for discrete series σv. Then we
can find a cuspidal representation σ whose local component at v is σv [Ro].

Consider the two L-functions L(s, σ⊗ π, ρm⊗∧2ρ4) and L(s, σ×Π). Both have
the functional equations:

L(s, σ ⊗ π, ρm ⊗ ∧2ρ4) = ε(s, σ ⊗ π, ρm ⊗ ∧2ρ4)L(1− s, σ̃ ⊗ π̃, ρm ⊗ ∧2ρ4),

L(s, σ ×Π) = ε(s, σ ×Π)L(1− s, σ̃ × Π̃).

Since

L(s, σw ⊗ πw, ρm ⊗ ∧2ρ4) = L(s, σw ×Πw),

ε(s, σw ⊗ πw, ρm ⊗ ∧2ρ4, ψw) = ε(s, σw ×Πw, ψw),

for all w /∈ S′, we have∏
w∈S′

γ(s, σw ⊗ πw, ρm ⊗ ∧2ρ4, ψw) =
∏
w∈S′

γ(s, σw ×Πw, ψw).
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If w ∈ S′, w 6= v, πw is unramified. Hence γ(s, σw⊗πw, ρm⊗∧2ρ4, ψw) is a product
of γ-factors for GLk × GLl. Hence by the stability of γ-factors [J-S2], for every
highly ramified character χ,

γ(s, (σw ⊗ χ)⊗ πw, ρm ⊗ ∧2ρ4, ψw) = γ(s, (σw ⊗ χ)×Πw, ψw).

Hence by using a grössencharacter which is highly ramified at all the places in S′

except v, in which place it is trivial, we obtain (see the proof of Proposition 5.1.4)

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv ×Πv, ψv).

We proceed exactly in the same way as in the proof of Proposition 5.1.3 to show
that the equality of γ-factors implies the equality of L-factors.

The temperedness of Πv follows from the equality of L-factors as in Proposition
5.1.3, by noting that the holomorphy of L(s, σv ⊗ πv, ρm ⊗ ∧2ρ4) for Re(s) > 0
when σv is tempered is proved in [As]. �

Proposition 5.2.3 does not imply that Πv ' ∧2πv. Let T be the set of places
where v|2, 3 and πv is a supercuspidal representation. Then we can prove

Proposition 5.2.4. If v /∈ T ,

γ(s, σv ⊗ πv, ρm ⊗ ∧2ρ4, ψv) = γ(s, σv ×Πv, ψv),

for any supercuspidal representation σv of GLm(Fv), m = 1, 2, 3, 4.

Remark. By the local converse theorem due to Chen [Ch], the above equality implies
that Πv ' ∧2πv for v /∈ T . However we do not need it. The equivalence will be a
consequence of Theorem 5.3.1.

Proof. Suppose v - 2, 3 and πv is a supercuspidal representation. Since we need
the local-global argument, in order to avoid confusion, we use the following setup:
Let k be a non-archimedean local field of characteristic zero, and let η1, η2 be
supercuspidal representations of GLm(k),m = 1, 2, 3, 4, GL4(k), resp. Then since
v - 2, 3, η1, η2 are induced, i.e., η1 corresponds to τ1 = Ind(Wk,WK1 , µ1), where
K1/k is an extension of degree m (not necessarily Galois) and µ1 is a character of
K×1 , and η2 corresponds to τ2 = Ind(Wk,WK2 , µ2), where K2/k is an extension of
degree 4 (not necessarily Galois) and µ2 is a character of K×2 . Then we need to
prove

γ(s, η1 ⊗ η2, ρm ⊗ ∧2ρ4, ψ) = γ(s, τ1 ⊗ τ2, ρm ⊗ ∧2ρ4, ψ).
By [H, Section 4] (see [He2, p. 449]), we can find extensions of number fields E1/F
and E2/F , and grössencharacters χi of Ei, i = 1, 2, such that

(1) Fv = k, E1w = K1, E2w = K2, w|v, and χ1w = µ1, χ2w = µ2, and
(2) there exist cuspidal representations π1, π2 of GLm(AF ), GL4(AF ), corre-

sponding to τ1, τ2, resp., with π1v = η1, π2v = η2.
Now we proceed exactly as in the proof of Proposition 5.1.4: By comparing the

functional equations of L(s, π1 ⊗ π2, ρm ⊗∧2ρ4) and L(s, σ1 ⊗ σ2, ρm ⊗∧2ρ4), and
using a grössencharacter which is highly ramified at all the ramified places except
v, in which place it is trivial, we obtain

γ(s, π1v ⊗ π2v, ρm ⊗ ∧2ρ4ψv) = γ(s, σ1v ⊗ σ2v, ρm ⊗ ∧2ρ4, ψv).

�
By arguing as before (right after Proposition 5.1.4), Proposition 5.2.4 also implies

that if πv is tempered, then so is Πv for v /∈ T .
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Remark 5.1. If v|3, any supercuspidal representation of GL4(Fv) is induced. How-
ever, we need to twist by supercuspidal representations of GL3(Fv). There are
supercuspidal representations of GL3(Fv) which are not induced if v|3. Let k be a
non-archimedean local field with residual characteristic 3. Let η be a supercuspidal
representation of GL3(k) with a parametrization τ : Gal(k̄/k) −→ GL3(C). Then
surely we can find a number field F with Fv = k and a global irreducible repre-
sentation σ : Gal(F̄ /F ) −→ GL3(C) such that σv = τ . If we can find a cuspidal
representation π =

⊗
v πv of GL3(AF ) which corresponds to σ such that πv = η,

then our proof above goes through.

5.3 Strong exterior square lift from GL4 to GL6. Let π =
⊗

v πv be a
cuspidal representation of GL4(A). Let T be the set of places where v|2, 3 and πv is
a supercuspidal representation. Then, in Section 5.2, we constructed a local lift Πv

for each πv such that Πv ' ∧2πv for v /∈ T if we apply the local converse theorem
(as remarked before, we do not need the local converse theorem). Let Π′ =

⊗
v Π′v,

where Π′v = Πv if v ∈ T and Π′v = ∧2πv if v /∈ T . It is an irreducible admissible
representation of GL6(A). We prove

Theorem 5.3.1. Π′ is an automorphic representation of GL6(A), i.e., Π′ is the
strong exterior square lift of π. It is of the form Π′ = σ1 � · · ·� σk in the notation
of [J-S3], where the σi’s are (unitary) cuspidal representations of GLni(A).

Proof. Pick two finite places v1, v2, where πv1 , πv2 are unramified. Let Si = {vi},
i = 1, 2. We apply the converse theorem (Theorem 2.1) to Π′ =

⊗
v Π′v with S1 and

S2 and find two automorphic representations Π1,Π2 of GL6(A) such that Π1v ' Π′v
for v 6= v1, and Π2v ' Π′v for v 6= v2. Hence Π1v ' Π2v for all v 6= v1, v2. By
Theorem 4.2.3, Π1 and Π2 are of the form σ1� · · ·�σk, where the σi’s are (unitary)
cuspidal representations of GL. By the strong multiplicity one theorem, Π1 ' Π2,
in particular, Π1vi ' Π2vi ' Π′vi for i = 1, 2. �

6. Some applications

Proposition 6.1. Let σ be a cuspidal representation of GLm(A), and let π be a
cuspidal representation of GL4(A). Then L(s, σ ⊗ π, ρm ⊗ ∧2ρ4) is holomorphic
except possibly at s = 0, 1. If m > 6, it is entire. In particular, the exterior square
L-function L(s, π,∧2) is holomorphic except possibly at s = 0, 1.

Proof. Let Π be the strong exterior square lift of π in Theorem 5.3.1. It is given
by τ1 � · · ·� τk, where the τi’s are cuspidal representations of GLni(A). Then

L(s, σ ⊗ π, ρm ⊗ ∧2ρ4) = L(s, σ ×Π) =
k∏
i=1

L(s, σ × τi).

Our result follows easily from the well-known property of the Rankin-Selberg L-
functions of GLa ×GLb. �

Proposition 6.2. Let π be a cuspidal representation of GL4(A). Then the exterior
square L-function L(s, π,∧2) and the symmetric square L-function L(s, π, Sym2)
are both absolutely convergent for Re(s) > 1.
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Proof. Let Π be the strong exterior square lift of π as in Theorem 5.3.1. It is given
by τ1 � · · ·� τk, where the τi’s are cuspidal representations of GLni . Then

L(s, π,∧2) =
k∏
i=1

L(s, τi).

Our result follows easily from the well-known property of L-functions of GLn. The
result on the symmetric square L-functions follows immediately from the following
identity and the absolute convergence of L(s, π × π) for Re(s) > 1:

L(s, π × π) = L(s, π,∧2)L(s, π, Sym2).

�

Proposition 6.3. Let π be a cuspidal representation of GL4(A). Then π satisfies
the weak Ramanujan property.

Proof. Recall from the paragraph after Lemma 4.1.3 that the trace of a non-
tempered unramified component has one of the following three forms (here the
ui’s are complex numbers with absolute value one):

S1; av = u1q
a + u2q

a + u1q
−a + u2q

−a, where 0 < a < 1
2 ;

S2; av = u1q
a + u2 + u3 + u1q

−a, where 0 < a < 1
2 ;

S3; av = u1q
a1 + u2q

a2 + u1q
−a1 + u2q

−a2 , where 0 < a2 < a1 <
1
2 .

Fix ε > 0. Then inside S2, the set of places where |av| > qε has density zero. It
means the set of places where a > ε has density zero.

Suppose S1 has a subset S′ of positive density where qa > qε for v ∈ S′. Then
consider the lift ∧2π. For v ∈ S1, the trace of ∧2πv has the form

bv = u1u2q
2a + u2

1 + u1u2 + u2
2 + u1u2q

−2a.

Then |bv| > qε for v ∈ S′. This is a contradiction to [Ra2, Lemma 3.1].
Suppose S3 has a subset S′ of positive density where qa1 > qε for v ∈ S′. Then

consider the lift ∧2π. For v ∈ S3, the trace of ∧2πv has the form

bv = u1u2q
a1+a2 + u1u2q

a1−a2 + u2
1 + u2

2 + u1u2q
−a1+a2 + u1u2q

−a1−a2 .

Then |bv| > qε for v ∈ S′. This again contradicts Lemma 3.1 of [Ra2]. �

7. Symmetric fourth lift of GL2

Let Symm : GL2(C) −→ GLm+1(C) be the mth symmetric power representation
of GL2(C) on the space of symmetric tensors of rank m. Let π =

⊗
v πv be a cus-

pidal representation of GL2(A) with central character ωπ. By the local Langlands
correspondence [H-T], [He2], [La4], Symm(πv) is a well-defined representation of
GLm+1(Fv) for all v. Let ρv : WFv × SL2(C) −→ GL2(C) be the parametriza-
tion of πv. Then we have a map Symm(ρv) : WFv × SL2(C) −→ GLm+1(C).
Then Symm(πv) is the representation of GLm+1(Fv), corresponding to Symm(ρv).
Let Symm(π) =

⊗
v Sym

m(πv). It is an irreducible admissible representation
of GLm+1(A). Langlands’ functoriality predicts that Symm(π) =

⊗
v Sym

m(πv)
is an automorphic representation of GLm+1(A). It is convenient to introduce
Am(π) = Symm(π) ⊗ ω−1

π (Shahidi called it Adm(π)). If m = 2, A2(π) = Ad(π)
and it is the well-known Gelbart-Jacquet lift. If m = 3, recall
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Theorem 7.1 ([Ki-Sh2]). Let π be a cuspidal representation of GL2(A). Then
the symmetric cube Sym3(π) is an automorphic representation of GL4(A). It is
cuspidal unless either π is a monomial representation or Ad(π) ' Ad(π)⊗ η, for a
non-trivial grössencharacter η.

We are concerned with m = 4. We prove that A4(π) is an automorphic represen-
tation of GL5(A), using the exterior square lift from GL4 to GL6. More precisely,
we show that ∧2(A3(π)) = A4(π) � ωπ.

Let πv be an unramified component, and let the Hecke conjugacy class of πv be
given by diag(αv, βv). Then by direct calculation, we see that the Hecke conjugacy
class of ∧2(A3(πv)) is given by

diag(α3
vβ
−1
v , α2

v, αvβv, β
2
v , α
−1
v β3

v , αvβv).

Note that ωπv = αvβv and the Hecke conjugacy class of A4(πv) is given by

diag(α3
vβ
−1
v , α2

v, αvβv, β
2
v , α
−1
v β3

v).

We divide into three cases.

7.1 π is a monomial cuspidal representation. In this case, π ⊗ η ' π for a
non-trivial grössencharacter η. Then η2 = 1 and η determines a quadratic extension
E/F . According to [L-La], there is a grössencharacter χ of E such that π = π(χ),
where π(χ) is the automorphic representation whose local factor at v is the one
attached to the representation of the local Weil group induced from χv. Let χ′ be
the conjugate of χ by the action of the non-trivial element of the Galois group. The
Gelbart-Jacquet lift (adjoint square) of π is given by

Ad(π) = π(χχ′−1)� η.

Case 1. χχ′−1 factors through the norm, i.e., χχ′−1 = µ ◦NE/F for a grössen-
character µ of F . Then π(χχ′−1) is not cuspidal. In fact, π(χχ′−1) = µ � µη. In
this case, A3(π) = (µ⊗ π)� (µ⊗ π) and

A4(π) = (π � π)� ωπ = ωπ � ωπ � µωπ � ηωπ � µηωπ.

We used the fact that η, µ are quadratic grössencharacters.
Case 2. χχ′

−1 does not factor through the norm. In this case, π(χχ′−1) is a
cuspidal representation. Then A3(π) = π(χ2χ′

−1) � π (note here that χ2χ′
−1 can

factor through the norm, and in that case π(χ2χ′
−1) is not cuspidal) and

A4(π) = (π(χ2χ′
−1)� π)� ωπ = π(χ3χ′

−1)� π(χ2)� ωπ.

7.2 A3(π) is not cuspidal. This is the case when there exists a non-trivial
grössencharacter η such that Ad(π) ' Ad(π) ⊗ η. Note that η3 = 1. Then by
[Ki-Sh2], A3(π) = (π ⊗ η)� (π ⊗ η2). Hence

∧2(A3π) = Sym2(π) � ωπ � ωπη � ωπη2.

So

A4(π) = Sym2(π) � ωπη � ωπη2.
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7.3 A3(π) is cuspidal. This is the case when π is not monomial and Ad(π) 6'
Ad(π)⊗ η for any non-trivial grössencharacter η.

Consider τ = A3(π) and its strong exterior square lift Π(τ) as in Theorem 5.3.1.
It is an automorphic representation of GL6(A), unitarily induced from cuspidal
representations ofGLni(A), and Π(τ)v ' ∧2τv unless v|2, 3 and τv is a supercuspidal
representation.

Theorem 7.3.1. Let χ be a grössencharacter. Let S be a finite set of places,
including all archimedean places such that πv, χv are all unramified for v /∈ S.
Then LS(s, χ⊗Π(τ)) = LS(s, τ,∧2⊗χ) has a pole at s = 1 if and only if χ = ω−1

π .

Proof. Consider the equality

LS(s,Ad(π) × (Ad(π) ⊗ (ωπχ)))

= LS(s, ωπχ)LS(s,Ad(π) ⊗ (ωπχ))LS(s, π, Sym4 ⊗ (ω−1
π χ))

= LS(s,Ad(π) ⊗ (ωπχ))LS(s, τ,∧2 ⊗ χ).

Note that LS(s,Ad(π) ⊗ (ωπχ)) has no zero and no pole at s = 1. Therefore
LS(s,Ad(π) × (Ad(π) ⊗ (ωπχ))) has a pole at s = 1 if and only if LS(s, τ,∧2 ⊗ χ)
has a pole at s = 1.

Since Ad(π) 6' Ad(π) ⊗ η for any non-trivial grössencharacter η, it follows that
LS(s,Ad(π) × (Ad(π) ⊗ (ωπχ))) has a pole at s = 1 if and only if ωπχ = 1. �

Hence we have Π(τ) = Π � ωπ, where Π is an automorphic representation of
GL5(A). We have Π(τ)v ' ∧2(A3(πv)) = A4(πv) � ωπv for v /∈ T , where T is the
set of places such that v|2, 3 and A3(πv) is a supercuspidal representation. Hence
Πv ' A4(πv) for v /∈ T .

Theorem 7.3.2. For all v, Πv ' A4(πv). Hence A4(π) is an automorphic rep-
resentation of GL5(A). It is either cuspidal or unitarily induced from cuspidal
representations of GL2(A) and GL3(A).

Proof. If v - 2, it is well known (see, for example, [G-L]) that any supercuspidal
representation πv of GL2(Fv) is monomial, i.e., it corresponds to Ind(WFv ,WK , µ),
where K/Fv is quadratic and µ is a character of K×. Hence Ad(πv) is not super-
cuspidal. Therefore, if A3(πv) is supercuspidal, then v|2 and πv is an extraordinary
supercuspidal representation.

By the local converse theorem due to Chen [Ch] (cf. [Co-PS1]), we need to show
that, for every supercuspidal representation σv of GLm(Fv), m = 1, 2, 3,

γ(s, σv ×Πv, ψv) = γ(s, σv ×A4(πv), ψv).

We follow the proof of Proposition 5.1.4. As before, we use the following setup:
Let k be a non-archimedean local field of characteristic zero. Let η1, η2 be super-
cuspidal representations of GLm(k), GL2(k) with corresponding parametrizations
τ1 : Wk −→ GLm(C), τ2 : Wk −→ GL2(C), resp. We can think of τi as a represen-
tation of Gal(k̄/k). Since ∧2(A3(τ2)) ' A4(τ2) ⊕ det(τ2) and det(τ2) corresponds
to ωη2 , we need to show that

γ(s, η1 ⊗A3(η2), ρm ⊗ ∧2ρ4, ψ) = γ(s, τ1 ⊗A3(τ2), ρm ⊗ ∧2ρ4, ψ),

for m = 1, 2, 3. Since m = 1 is easy, we deal with m = 2, 3. First, m = 2. By
appealing to [P-Ra, Lemma 3, Section 4], we can find a number field F with k = Fv
and irreducible 2-dimensional representations σi of Gal(F̄ /F ) with solvable image
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such that σiv = τi and σiu are unramified for u|2, u 6= v. The global Langlands
correspondence is available for representations with solvable image [La3], [Tu], and
hence we can find corresponding cuspidal representations πi of GL2(AF ) such that
πiv = ηi. We compare the functional equations for L(s, π1 ⊗ A3(π2), ρ2 ⊗ ∧2ρ4)
and L(s, σ1 ⊗A3(σ2), ρ2 ⊗∧2ρ4). Even though we do not know the holomorphy of
L(s, σ1⊗A3(σ2), ρ2⊗∧2ρ4), the functional equation is known and it suffices for our
purpose. Since L(s, π1w⊗A3(π2w), ρ2⊗∧2ρ4) = L(s, σ1w⊗A3(σ2w), ρ2⊗∧2ρ4) for
unramified places, we have an equality∏
u∈S

γ(s, π1u ⊗A3(π2u), ρ2 ⊗ ∧2ρ4, ψu) =
∏
u∈S

γ(s, σ1u ⊗A3(σ2u), ρ2 ⊗ ∧2ρ4, ψu).

Note that the πiu’s are unramified if u|2, u 6= v. Also if u ∈ S, u - 2, then A3(π2u)
is not supercuspidal. Therefore, if u ∈ S, u 6= v, then A3(π2u) is not supercuspidal.
Hence by Lemma 5.2.1,

γ(s, π1u ⊗A3(π2u), ρ2 ⊗ ∧2ρ4, ψu) = γ(s, σ1u ⊗A3(σ2u), ρ2 ⊗ ∧2ρ4, ψu),

for each u ∈ S, u 6= v. Therefore,

γ(s, π1v ⊗A3(π2v), ρ2 ⊗ ∧2ρ4, ψv) = γ(s, σ1v ⊗A3(σ2v), ρ2 ⊗ ∧2ρ4, ψv).

Second, m = 3. Since v|2, η1 is induced from a character, i.e., it corresponds
to τ1 = Ind(Wk,WK , µ), where K/k is a cubic extension (not necessarily Galois
extension) and µ is a character of K×. We choose a cubic extension of number
fields E/F such that Fv = k,Ew = K,w|v and choose a grössencharacter χ of E
such that χw = µ. Let π1 be a cuspidal automorphic representation of GL3(AF )
corresponding to σ1 = Ind(WF ,WE , χ) (see [J-PS-S2] for the existence). Then in
the same way as above, we have

γ(s, π1v ⊗A3(π2v), ρ2 ⊗ ∧2ρ4, ψv) = γ(s, σ1v ⊗A3(σ2v), ρ2 ⊗ ∧2ρ4, ψv).

Hence Π ' A4(π) and A4(π) is an automorphic representation of GL5(AF ). By
Theorem 7.3.1, it is either cuspidal, or unitarily induced from cuspidal representa-
tions of GL2(A) and GL3(A). �

Remark 7.1. Suppose τ = A3(π) is cuspidal. Then by Theorem 7.3.2, A4(π) is not
cuspidal if and only if L(s, σ ⊗ τ, ρ2 ⊗ ∧2ρ4) has a pole at s = 1 for a cuspidal
representation σ of GL2(A). In a forthcoming paper [Ki-Sh3], we show that this
happens if and only if there exists a non-trivial quadratic character η such that
τ ' τ ⊗ η, or equivalently, there exists a non-trivial grössencharacter χ of E such
that (Ad(π))E ' (Ad(π))E ⊗χ, where E/F is the quadratic extension, determined
by η. In this case, A4(π) = σ1�σ2, where σ1 = π(χ−1)⊗ωπ and σ2 = Ad(π)⊗(ωπη).

Corollary 7.3.3. Let π be a cuspidal representation of GL2(A), and let πv be a
spherical local component (finite or infinite) given by πv = Ind(| |s1vv ⊗| |s2vv ). Then

|Re(siv)| ≤ 3
26
.

If F = Q, v =∞, this signifies

λ1 =
1
4

(1− s2) ≥ 40
169
≈ 0.237,

where s = 2Re(s1v) = −2Re(s2v) and λ1 is the first positive eigenvalue of the
Laplace operator on the corresponding hyperbolic space.
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Proof. The worst case is when A4(π) is a cuspidal representation of GL5(A). Sup-
pose πv is a non-tempered representation given by π(µ| |r, µ| |−r), where µ is a uni-
tary character of F×v and 0 < r < 1

2 . We apply the result of Luo-Rudnick-Sarnak
[Lu-R-Sa] to A4(π): It states that if Π =

⊗
v Πv is a cuspidal representation of

GLn(A), and if Πv is the spherical component given by IndGLn(Fv)
B(Fv) | |t1v⊗· · ·⊗| |tnv ,

tiv ∈ C, then |Re(tiv)| ≤ 1
2 −

1
n2+1 . In our case, n = 5, and we have

4r ≤ 1
2
− 1

52 + 1
=

12
26
.

�

Corollary 7.3.4. Let π be a cuspidal representation of GL2(A). Then the 4th
symmetric power L-function L(s, π, Sym4) is holomorphic except possibly for s =
0, 1. It has a pole at s = 1 if and only if π is monomial or π is of the tetrahedral
type, namely, π is not monomial and Sym2(π) ' Sym2(π) ⊗ η for η 6= 1.

Remark 7.2. We can give a simpler proof of the functoriality of ∧2(A3(π)), and
hence that of A4(π), without

(1) Section 4.1 about comparison of Hecke conjugacy classes, and
(2) Ramakrishnan’s idea of descent using the base change method (Section 4.2)

and hence Appendix 1.

They are needed for the general case of the functoriality of the exterior square
of GL4. The reason is that first A3(π) satisfies the weak Ramanujan property,
and hence we can just use Proposition 4.1.2. Secondly the reason we needed the
base change method was that we could not verify Proposition 4.2 in the case of
supercuspidal representations. But we now have a direct proof of the equality of
γ-functions by Theorem 7.3.2. Recall from Proposition 4.2 that we only need the
equality for m = 1. Since this is very crucial, we give an argument: Let k be a non-
archimedean local field of characteristic zero. Let η be supercuspidal representations
of GL2(k) with the corresponding parametrization τ : Wk −→ GL2(C). We can
think of τ as a representation of Gal(k̄/k). We need to show that

γ(s,A3(η),∧2ρ4 ⊗ χ, ψ) = γ(s,A3(τ),∧2ρ4 ⊗ χ, ψ),

for any character χ of k×, which we identify as a character of Gal(k̄/k). By appeal-
ing to [P-Ra, Lemma 3, Section 4], we can find a number field F with k = Fv and
irreducible 2-dimensional representations σ of Gal(F̄ /F ) with solvable image such
that σv = τ and σu is unramified for u|2, u 6= v. Let π be the cuspidal representa-
tion of GL2(AF ) such that πv = η, given by the global Langlands correspondence.
Take a grössencharacter µ such that µv = χ. By comparing the functional equa-
tions of L(s,A3(π),∧2ρ4⊗µ) and L(s,A3(σ),∧2ρ4⊗µ), we obtain the equality, by
noting that if u|2, u 6= v, πu is unramified.

Hence we can apply the converse theorem (Theorem 2.1) to A3(π) as in Section
4.1 and obtain a weak lift, and follow Section 5.2 to obtain the strong lift.
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Appendix 1:

A descent criterion for isobaric representations

By Dinakar Ramakrishnan

The object here is to prove the following extension (from cuspidal) to isobaric
automorphic representations of Proposition 3.6.1 of [Ra], which was itself an exten-
sion to GL(n) of Proposition 4.2 (for GL(2)) in [BR]. The argument is essentially
the same as in [Ra], but requires some delicate bookkeeping.

Proposition. Fix n, p ∈ N with p prime. Let F be a number field, let {Kj | j ∈ N}
be an infinite family of cyclic extensions of F with [Kj : F ] = p, and for each j ∈ N,
let πj be an isobaric automorphic representation of GL(n,AKj ). Suppose that, for
all j, r ∈ N, the base changes of πj , πr to the compositum KjKr satisfy

(DC) (πj)KjKr ' (πr)KjKr .

Then there exists a unique isobaric automorphic representation π of GL(n,AF )
such that

(π)Kj ' πj ,

for all but a finite number of j.

Proof. Recall that the set Isob of isobaric automorphic representations ofGL(n,AF )
for all n ≥ 1 admits a sum operation �, called the isobaric sum, such that

L(s, π � π′) = L(s, π)L(s, π′), ∀π, π′ ∈ Isob.

Moreover, given any isobaric automorphic representation π of GL(n,AF ) there exist
cuspidal automorphic representations π1, . . . , πd of GL(n1,AF ), . . ., GL(nd,AF ),
with n = n1 + · · ·+ nd, such that

(1) π ' π1 � · · ·� πd.
Here the cuspidal datum (π1, . . . , πd) is unique up to (isomorphism and) permu-
tation. We will say that π is of width d. For the basic properties of isobaric
representations see [La] and [JS].

Given any isobaric automorphic representation π of width d in the form (1) and
any d-tuple χ := (χ1, . . . , χd) of idele class characters of F , we define the χ-twist
of π to be

(2) π[χ] : = (π1 ⊗ χ1)� · · ·� (πd ⊗ χd).
If an isobaric automorphic representation π′ is isomorphic to π[χ] for some χ, we
will say that π′ is a twist of π. Moreover, if µ is an idele class character of F and
if m = (m(1), . . . ,m(d)) is a d-tuple of integers, we will set

µm : = (µm(1), . . . , µm(d)).

Now we need the following

Lemma. Let π = π1 � · · · � πd be an isobaric automorphic representation
of GL(n,AF ), where π1, . . . , πd are cuspidal automorphic representations of
GL(n1,AF ), . . ., GL(nd,AF ), n = n1 + · · · + nd. Then there exist at most a
finite number of d-tuples χ = (χ1, . . . , χd) of idele class characters such that

π ' π[χ].
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Proof of the Lemma. By the uniqueness of the isobaric sum decomposition of π into
cuspidals, there must be a permutation σ in Sd such that we have, for each i ≤ d,
an isomorphism

πi ' πσ(i) ⊗ χσ(i).

We must necessarily have ni = nσ(i) for each i. So the Lemma is a consequence of
the following

Sublemma. Let η, η′ be cuspidal automorphic representations of GL(m,AF ). Then
the set X of idele class characters µ such that

η ' η′ ⊗ µ
is finite.

Proof of the Sublemma. We may assume that X is non-empty, as there is nothing
to prove otherwise. Pick, and fix, any member, call it ν, of X . Put

Y = {µν−1 |µ ∈ X}.
Since X and Y have the same cardinality, it suffices to prove that Y is finite. We
claim that for any χ in Y ,

η ' η ⊗ χ.
Indeed, if χ = µν−1 with µ ∈ X , we have

η ' η′ ⊗ µ ' (η′ ⊗ ν)⊗ (µν−1) ' η ⊗ χ,
whence the claim.

Now the set Y , which parametrizes the self-twists of η, is finite by Lemma 3.6.2
of [Ra], and hence the Sublemma is proved; so is the Lemma. �

Proof of the Proposition (contd.). For each j, let θj be a generator of Gal(Kj/F ),
and let δj be a character of F cutting out Kj (by class field theory). Note that, for
each i ≥ 1, the pull back to Ki of δj by the norm map Ni from Ki to F cuts out
the compositum KiKj .

We will write, for each j,

(3) πj ' �d(j)
k=1π

k
j ,

with each πkj a cuspidal automorphic representation of GL(nk(j),AF ), with n =∑d(j)
k=1 nk(j).
We claim that

(4) πj ◦ θj ' πj (∀j).
For all j, r ≥ 1, let θj,r denote the automorphism ofKjKr such that (i) θj,r|Kj = θj ,
and (ii) θj,r|Kr = 1 (where 1 denotes the identity automorphism). It is easy to
see that the base change of πj ◦ θj to KjKr is simply (πj)KjKr ◦ θj,r. (For the
basic results on base change, see [AC]; for a quick summary see Proposition 2.3.1
of [Ra].) Applying (DC), we then have

(πj ◦ θj)KjKr ' (πr)KjKr ◦ θj,r ' (πr)KjKr ' (πj)KjKr ,

since θj,r is trivial on Kr. Since KjKr is a cyclic extension of Kj of prime degree,
we must have by Arthur-Clozel,

(5) πj ◦ θj ' πj [(δr ◦Nj)mr ],
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for some d(j)-tuple mr = (mr(1), . . . ,mr(d(j))) of integers in {0, 1, . . . , p− 1}. For
every fixed r ≥ 1, and for all k 6= r, we then have the self-twist identity

πj ' πj [(δr ◦Nj)mr ][(δk ◦Nj)−mk ].

Note that δr ◦Nj and δk ◦Nj must be distinct unless their ratio is a power of δj . So
the Lemma above forces mr to be the zero vector for all but a finite number of r.
The claimed identity now follows by taking r to be outside this exceptional finite
set.

As a result, by applying base change ([AC]; Proposition 2.3.1 of [Ra]) once again,
we see that there exists, for each j ≥ 1, an isobaric automorphic representation of
GL(n,AF ),

π(j) = �b(j)k=1 π(j)k,
with each π(j)k a cuspidal automorphic representation of GL(Nk(j),AF ) and

n =
b(j)∑
k=1

Nk(j),

such that

(6) πj ' (π(j))Kj .

Such a π(j) is of course unique only up to replacing it by π(j)[δaj ] for some d(j)-tuple
a = (a1, . . . , ab(j)) of integers in {0, 1, . . . , p− 1}. Clearly we have

b(j) ≤ d(j),

but equality need not hold.
It is important to note that, for any r 6= j, we have the following compatibility

for base change in (cyclic) stages:

(7) ((π(j))Kj )KjKr ' ((π(j))Kr )KjKr .

We see this as follows. Let v be a finite place of KjKr which is unramified for the
data. Denote by u (resp. w, resp. w′) the place of F (resp. Kj , resp. Kr) below v.
If σu denotes the representation of W ′Fu associated to π(j)u, then

res(Kj)w
(KjKr)v

(resFu(Kj)w
(σu)) ' res(Kr)w′

(KjKr)v
(resFu(Kr)′w

(σu)).

Then (2.3.0) of [Ra] implies the local identity (for all such v)

((π(j)u)(Kj)w)(KjKr)v ' ((π(j)u)(Kr)′w
)(KjKr)v .

The global isomorphism (7) follows by the strong multiplicity one theorem for
isobaric automorphic representations ([JS]).

We can then rewrite (DC) as saying, for all j, r ≥ 1,

(8) ((π(j))Kj )KjKr ' ((π(r))Kj )KjKr .

Consequently we must have, after renumbering, an equality of partitions (∀ (r, j)):

(N1(j), . . . , Nb(j)(j)) = (N1(r), . . . , Nb(r)(r))

of n. In particular, we have

(9) b : = b(j) = b(r) and Nk : = Nk(j) = Nk(r).

Moreover,

(10) (π(j))Kj ' (π(r))Kj [(δr ◦Nj)m(r,j)],
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for some b-tuple m(r, j) = (m(r, j)1, . . . ,m(r, j)b) of integers. We can replace π(r)
by π(r)[δ−m(r,j)

r ] and get

(11) (π(j))Kj ' (π(r))Kj .

Then, by replacing π(j) by a twist by δaj for a b-tuple a of integers, we can arrange
to have π(j) and π(r) be isomorphic. In sum, we have produced, for every pair
(j, r), a common descent, say π(j, r), of πj , πr, i.e., with

(12) π(j, r)Kj ' πj and π(j, r)Kr ' πr.

Fix non-zero vectors a, c in (Z/p)b, and consider the possible isomorphism

(13) π(j, r) ' π(j, r)[δaj ][δ−cr ].

We claim that this cannot happen outside a finite set Sa,c of pairs (j, r). To see this
fix a pair (i, `) and consider the relationship of π(i, `) to π(j, r). Since π(i, `) and
π(j, `) have the same base change to K`, they must differ by twisting by a b-tuple
power of δ`. Similarly, π(j, `) and π(j, r) differ by a twist as they have the same
base change to Kr. Put together, this shows that π(i, `) and π(j, r) are twists of
each other. Then (13) would imply that

(14) π(i, `) ' π(i, `)[δaj ][δ−cr ] ' π(i, `)[χa,−c],

where
χa,−c = (δa1

j δ
−c1
r , . . . , δabj δ

−cb
r ).

The claim now follows since, by the Lemma above, π(i, `) admits only a finite
number of self-twists, and since the b-tuples χa,−c are all distinct for distinct pairs
(j, r) (as a, c are fixed).

Now choose a pair (j, r) not belonging to Sa,c for any pair (a, c) of non-zero
vectors in (Z/p)b, and set

(15) π = π(j, r).

We assert that for all but a finite number of indices m,

(16) πKm ' πm.

It suffices to show that, for any large enough m, π = π(j, r) is isomorphic to either
π(j,m) or π(m, r). Suppose neither is satisfied. Then there exist non-zero vectors
a, c in (Z/p)b such that

π(j,m) ' π(j, r)[δaj ] and π(m, r) ' π(j, r)[δcr ].

We also have π(j,m) ' π(m, r)[δem], for some vector e in (Z/p)b. Putting these
together, we get the self-twisting identity

(17) π(j, r) ' π(j, r)[δaj ][δ−cr ][δ−em ].

By our choice of (j, r), e cannot be the zero vector. But for each non-zero e, the
set of indices m for which such an identity can hold is finite, again by the Lemma.
Hence we get a contradiction for large enough m, which implies that a or c should
be 0, giving the requisite contradiction. Thus π = π(j, r) must be isomorphic to
either π(j,m) or π(m, r) for large enough m. Since we have, by (12),

π(j,m)Km ' πm ' π(m, r)Km ,

the Proposition is now proved. �
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Appendix 2:

Refined estimates towards the Ramanujan and Selberg conjectures

By Henry H. Kim and Peter Sarnak

In this appendix we apply the main results of [Ki3] concerning the symmetric
fourth power of a GL2 cusp form together with the methods developed in [D-I] and
[L-R-S] to obtain slight improvements of the known bounds towards the Ramanujan
conjectures. While the main results of [Ki3] concern automorphic forms over a
general number field, the techniques in [D-I] and [L-R-S] are special to Q and hence
so are the results below.

Let π be an automorphic cusp form on GLn(Q)\GLn(AQ) and denote by
L(s, π, Sym2) its symmetric square L-function. For p a prime at which πp is unram-
ified, let diag(α1,p, ..., αn,p) be the corresponding Satake parameter and similarly
let diag(µ1,∞, ..., µn,∞) be the Satake parameter for π∞ (assuming the latter is
unramified). These are normalized so that the Ramanujan conjectures assert that
|αj,p| = 1 and Re(µj,∞) = 0.

Proposition 1. Let π be as above and assume that the series

L(s, π, Sym2) :=
∞∑
n=1

a(n)n−s

converges absolutely for Re(s) > 1. Then for p <∞ at which πp is unramified, we
have

| logp |αj,p|| ≤
1
2
− 1

n(n+1)
2 + 1

,

while if π∞ is unramified, we have

|Re(µj,∞)| ≤ 1
2
− 1

n(n+1)
2 + 1

.

Remarks. (1) This should be compared with the general number field bounds of
1
2 −

1
n2+1 established in [L-R-S2].

(2) The condition of absolute convergence is in fact satisfied for n ≤ 4. Hence
for n = 3 or 4, Proposition 1 gives the sharpest known bounds towards Ramanujan
(over Q). For n = 2 or 3, it is easy to see that the series converges absolutely.
For n = 3, as is shown in [R-S], this follows from the unitarity of πp and the
well-known fact that the Rankin-Selberg L-function L(s, π × π̃), whose coefficients
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are non-negative, is absolutely convergent in Re(s) > 1. For n = 4, the absolute
convergence is proved in Proposition 6.2 of [Ki3].

Our main application is for the case n = 5. Given a cusp form π on GL2, let
Π = Sym4(π). According to the results in Section 7 of [Ki3], Π is an automorphic
form on GL5. If it is not a cusp form, then as in [Ki-Sh] we may establish even
sharper bounds for αj,p, j = 1, 2, than the ones below (precisely with 7

64 replaced
by 1

10 ). So we assume that Π is a cusp form. Now Π = Sym4(π), so it is easily
seen that since L(s,Π× Π̃) is absolutely convergent, so is L(s,Π, Sym2). Applying
Proposition 1 to Π together with the relationship: the Satake parameters of Πp are

diag(α4
1,p, α

3
1,pα2,p, α

2
1,pα

2
2,p, α1,pα

3
2,p, α

4
2,p),

leads to:

Proposition 2. Let π be an automorphic cusp form on GL2/Q. If π is unramified
at p, then

| logp |αj,p|| ≤
7
64
, j = 1, 2.

If π∞ is unramified, then

|Re(µj,∞)| ≤ 7
64
, j = 1, 2.

These give slight improvements of the recent bound of 1
9 due to [Ki-Sh].

We can express the bounds for π∞ in terms of eigenvalues of the Laplacian (cf.
[Se]). Let λ1(Γ) be the smallest (non-zero) eigenvalue of the Laplacian on Γ\H,
where Γ is a congruence subgroup of SL2(Z). Then

λ1(Γ) ≥ 975
4096

≈ 0.238....

We turn to the proof of Proposition 1. We need some facts concerning the
analytic properties of L(s, π, Sym2) and its twists. Here π is a cusp form on GLn.

Proposition 3. If π is not self-contragredient, then the completed L-function (that
is, the degree n(n+1)

2 Euler product over all places including the archimedean ones)
Λ(s, π, Sym2) is entire and satisfies a functional equation

Λ(s, π, Sym2) = ε(s, π, Sym2)Λ(1 − s, π̃, Sym2).

Proof. The functional equation is due to [Sh2]. The holomorphy is due to [Ki1].
However, we sketch the proof here. The symmetric square L-functions arise by
considering M = GLn ⊂ G = SO2n+1. Let I(s, π) = IndGM π|det| s2 be the induced
representation attached to (M,π), and let E(s, π, fs) be the Eisenstein series at-
tached to fs ∈ I(s, π). Then the constant term of the Eisenstein series is given
by

fs +M(s, π, w0)fs,

where M(s, π, w0) is the global intertwining operator and we can write it as
M(s, π, w0) =

⊗
v A(s, πv, w0). We can normalize the local intertwining operator

(N(s, πv, w0) is equal to 1 for all but finitely many v)

A(s, πv, w0) =
L(s, πv, Sym2)

L(s+ 1, πv, Sym2)ε(s, πv, Sym2)
N(s, πv, w0).
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Hence

M(s, π, w0) =
Λ(s, π, Sym2)

Λ(s+ 1, π, Sym2)ε(s, π, Sym2)
⊗v N(s, πv, w0).

We showed [Ki1] that in the case of GLn ⊂ SO2n, for each v, N(s, πv, w0) is holo-
morphic and non-zero as an operator for Re(s) ≥ 1

2 (actually, for Re(s) ≥ 0). The
case of GLn ⊂ SO2n+1 is exactly the same. Since w0(π) = π̃, by Langlands’ lemma
([Ki1, Proposition 2.1]), if π is not self-contragredient, M(s, π, w0) is holomorphic
for Re(s) > 0. Hence Λ(s,π,Sym2)

Λ(s+1,π,Sym2) is holomorphic for Re(s) ≥ 1
2 . Now starting at

Re(s) > N , where Λ(s, π, Sym2) is absolutely convergent, and moving to the left,
we have that Λ(s, π, Sym2) is holomorphic for Re(s) ≥ 1

2 . Our result follows from
the functional equation. �

Let χ be a Dirichlet character of conductor q which we take to be prime and
large. We have

(1) L(s, π ⊗ χ, Sym2) = L(s, π, Sym2 ⊗ χ2).

Hence as long as χ is not one of at most two characters mod q, π ⊗ χ is not
self-contragredient, and we may apply Proposition 3.

For the analysis that follows, π is fixed and q → ∞, the dependence of a func-
tional equation of L(s, π, Sym2⊗χ2) on χ can be determined explicitly as in [L-R-S]
(note too that the set of twists, i.e., by χ2, also coincides with the twists used there).
In fact since χ2(−1) = 1, the archimedean factor satisfies

(2) L∞(s, π, Sym2 ⊗ χ2) = L∞(s, π, Sym2).

The ε-factor takes the form

(3) ε(s, π, Sym2 ⊗ χ2) = Ns
πχ

2(lπ)(W (χ2))
n(n+1)

2 q
n(n+1)

2 ( 1
2−s),

where W (χ2) is the “sign”of the Gauss sum (|W (χ2)| = 1) and Nπ and lπ are
integers depending only on π.

We proceed first with the proof of Proposition 1 for p finite. We follow the
method in [D-I] closely; see also [BDHI]. Fix a smooth function F supported in
(1

2 , 2) with F (1) = 1. For l a large integer and q a prime, q - l, consider

(4) S =
∑

χ mod q

χ2(l)
∑
m

a(m)χ2(m)F (
m

l
).

Inverting the order of summation gives

(5) S = (q − 1)
∑

m2≡l2(q)

a(m)F (
m

l
).

Here S can also be analyzed by appealing to L(s, π, Sym2 ⊗ χ2) and its functional
equation. For what follows we ignore the χ’s for which π⊗χ is self-contragredient.
Their contribution to S is negligible for our purposes. Set

(6) Sχ =
∑
m

a(m)χ2(m)F (
m

l
).

This can be expressed as

(7) Sχ =
1

2πi

∫
Re(s)=2

F̃ (s)lsL(s, π, Sym2 ⊗ χ2) ds,
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where F̃ (s) is the entire function of rapid decrease in |t| (s = σ + it) given by

(8) F̃ (s) =
∫ ∞

0

F (x)x−s dx.

In (7) we shift the contour to Re(s) = −2 and applying the functional equation
yields

(9)
Sχ =

1
2πi

∫
Re(s)=−2

F̃ (s)lsL(1− s, π̃, Sym2 ⊗ χ̄2)ε(s, π, Sym2 ⊗ χ2)

L∞(1− s, π̃, Sym2)/L∞(s, π, Sym2) ds.

Replacing s with −s and using (3) gives
(10)

Sχ =
χ2(lπ)W (χ2)

n(n+1)
2

2πi

∫
Re(s)=2

H(s)(lNπ)sq
n(n+1)

2 (s+ 1
2 )L(1+s, π̃, Sym2⊗χ2) ds,

where

(11) H(s) = F̃ (−s)L∞(1 + s, π̃, Sym2)/L∞(−s, π, Sym2).

By the local bounds on µj,∞ of [J-S], H(s) is analytic in Re(s) > 0 and is of rapid
decrease as |t| → ∞. Hence if F1(x) is given by

(12) F1(x) =
1

2πi

∫
Re(s)=2

H(s)x−s ds,

then F1(x) is bounded on [0,∞) and rapidly decreasing as x → ∞. Expanding
L(1 + s, π̃, Sym2 ⊗ χ2) in (10) yields

(13) Sχ = q
n(n+1)

4 χ2(lπ)W (χ2)
n(n+1)

2

∞∑
m=1

ā(m)χ2(m)
m

F1

(
Nπlm

q
n(n+1)

2

)
.

Hence
(14)

S =
∑
χ

χ2(l)Sχ = q
n(n+1)

4

∑
m

ā(m)
m

F1

(
Nπlm

q
n(n+1)

2

)∑
χ

χ2(lπ)(W (χ2))
n(n+1)

2 χ(m).

By Deligne’s estimates [De] for hyper Kloosterman sums, the sum over χ is O(q
1
2 ).

Hence

(15) |S| << q
1
2 +n(n+1)

4

∑
m

∣∣∣∣∣a(m)
m

F1

(
Nπlm

q
n(n+1)

2

)∣∣∣∣∣ .
Using the absolute convergence assumption gives that for any ε > 0

(16) |S| <<
ε
q

1
2 +n(n+1)

4 +ε.

Combining this with (5) gives

(q − 1)a(l) + (q − 1)
∑

m2≡l2(q)
m 6=l

a(m)F1(
m

l
) <<

ε
q

1
2 +n(n+1)

4 +ε.
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Summing this over primes q, Q ≤ q ≤ 2Q, gives, for ε > 0,

(17)

a(l)Q2−ε <<
ε
Q

3
2 +n(n+1)

4 +ε +Q
∑

Q≤q≤2Q

∑
m2≡l2(q)
m 6=l

|a(m)||F1(
m

l
)|

<< Q
3
2 +n(n+1)

4 +ε +Qlε
∑
m

|a(m)||F (
m

l
)| << Q

3
2 +n(n+1)

4 +ε + l1+εQ1+ε.

Hence

(18) |a(l)| <<
ε
Q−

1
2 +n(n+1)

4 +ε +
l1+ε

Q
.

Choosing Q = l
1

1
2 +n(n+1)

4 gives

(19) |a(l)| <<
ε
l
1− 1

1
2 +n(n+1)

4

+ε

.

Let p be as in Proposition 1. We have

(20)
∏

1≤i≤j≤n
(1 − αi,pαj,pX)−1 =

∞∑
ν=0

a(pν)Xν := R(X).

According to (19) with l = pν , we see from the series definition of R(X), that R(X)

is analytic for |X | < p
−
(

1− 1
1
2 +n(n+1)

4

)
. Hence from the factorization in (20) we have

for any 1 ≤ i ≤ j ≤ n,

(21) |αi,pαj,p| ≤ p
1− 1

1
2 +n(n+1)

4 .

Taking i = j yields

(22) |αi,p| ≤ p
1
2−

1

1+n(n+1)
2 .

Finally πp being unitary ensures that {αj,p}nj=1 = {α−1
j,p}nj=1. Hence (22) implies

that for 1 ≤ i ≤ n,

(23) p
− 1

2 + 1

1+n(n+1)
2 ≤ |αi,p| ≤ p

1
2−

1

1+n(n+1)
2 .

This completes the proof of Proposition 1 for p <∞.
We turn to the archimedean case in Proposition 1. Thus π is unramified at

infinity. The local L-factor of Λ(s, π, Sym2 ⊗ χ2) takes the form

(24) L∞(s, π, Sym2 ⊗ χ2) = L∞(s, π, Sym2) =
∏

1≤i≤j≤n
Γ
(
s− (µi,∞ + µj,∞)

2

)
.

We now proceed exactly as in [L-R-S]. From the global analytic properties of
Λ(s, π, Sym2 ⊗ χ2) (again we ignore the two possible χ’s mod q for which π ⊗ χ
might be self-contragredient), we conclude that if for some 1 ≤ i ≤ j ≤ n, we set

(25) β0 = µi,∞ + µj,∞,

then for any χ,

(26) L(β0, π, Sym
2 ⊗ χ2) = 0.
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Now following [L-R-S] working with L(s, π, Sym2⊗χ2) instead of L(s, π× (π̃⊗χ))
and using the absolute convergence assumption of Proposition 1, we obtain:

For any β with 0 < Re(β) < 1 and any ε > 0, we have for Q large

(27)
∑

Q≤q≤2Q

∑
χ(q)

L(β, π, Sym2⊗χ2) =
∑

Q≤q≤2Q

q+Oβ,ε(Q1+(
n(n+1)

2 +1
2 )(1−Re(β))).

Hence if Re(β) > 1 − 2

1+n(n+1)
2

we conclude that the first term on the right-hand

side of (27) dominates the error term. In particular in this circumstance, the left-
hand side of (27) is not zero. In particular, L(β, π, Sym2 ⊗ χ2) 6= 0 for some (in
fact many) χ. Together with (26), this implies that for β0 in (25),

(28) Re(β0) < 1− 2

1 + n(n+1)
2

.

In particular if β0 = 2µj,∞, 1 ≤ j ≤ n, this gives

(29) Re(µj,∞) ≤ 1
2
− 1

1 + n(n+1)
2

.

Again the unitarity of π∞ then ensures that for 1 ≤ j ≤ n,

(30) |Re(µj,∞)| ≤ 1
2
− 1

1 + n(n+1)
2

.

This completes the proof of the case p =∞ in Proposition 1.
To end we remark that the reason we don’t know how to extend Proposition 1

to the general number field is that the presence of units potentially restricts the set
of ray class characters χ (which have to be trivial on the units). In [L-R-S2] special
lacunary conductors q are used which suffice when dealing with the Rankin-Selberg
L-functions L(s, π× π̃) whose coefficients are non-negative. Since the conductor of
L(s, π × (π̃ ⊗ χ)) is qn

2
in place of q

n(n+1)
2 for the twists of the symmetric square

L-functions, one gets in general the weaker bound of 1
2 −

1
1+n2 in Proposition 1.
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