FUNCTORS INVOLVING C.S.S. COMPLEXES

BY
DANIEL M. KAN()

1. Introduction. Using the theory of adjoint functors, developed in [4],
a procedure will be given by which functors and natural transformations
may be constructed which involve c.s.s. complexes. Several of the functors
and natural transformations obtained in this manner are well known. A
new such functor, HV(I', ), from chain complexes to c.s.s. abelian groups,
will be considered in more detail(?). It has the following properties

(a) The functor HV(I', ) sets up a one-to-one correspondence between
chain complexes which are zero in dimension <0 and c.s.s. abelian groups.

(b) For every chain complex K

H.(K) =~ m,(H"(T, K),

i.e. the homology groups of the chain complex K are isomorphic with the
homotopy groups of the c.s.s. group H"(T', K).

(¢) Let (m, n) be a chain complex which has the abelian group 7 in dimen-
sion 7 and 0 in the others. Then

HY(T, (m, n)) = K(x, n)

i.e. HV(T, (m, n)) is the Eilenberg-Macl.ane complex of = on level n.

Two other functors obtained by the procedure mentioned above will be
discussed in [5].

In an appendix we define for a c.s.s. complex K the c.s.s. free abelian
group FAK generated by it. This notion is closely related to the functor
HV(I', ). For every c.s.s. complex K

H,(K) = n,(FAK) n > 0.

There is a natural way of embedding K into FAK. This embedding map
f: K—FAK induces homomorphisms of the homotopy groups of K into the
homotopy groups of FAK and hence by the above isomorphism into the
homology groups of K. It will be shown that these homomorphisms are the
Hurewicz homomorphisms.

The definitions and results of [4] will be used freely.

2. A definition of c.s.s. complexes. For each integer =0 let [#] denote
the ordered set (0, - - -, n). By a monotone function a: [m]—[n] we mean a
function such that
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(1) The author is now at the Hebrew University in Jerusalem.
(®) This functor has also been found by A. Dold.
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a(l) = a(y) 0ZSi=j7=m.

Clearly the composition of two monotone functions is again a monotone func-
tion and for every integer #=0 the identity map €,: [#]—[#] is also mono-
tone. Hence the ordered sets [#] and the monotone functions a: [m]—[n]
form a (proper) category. Throughout this paper this category will be de-
noted by 0.

Let 9% be the category of sets. We recall that MY denotes the category of
contravariant functors V—9MN.

DEFINITION (2.1). A ¢.5.5. complex K is a contravariant functor K: U—9IN,
i.e. an object of the category 9. Similarly a c.s.s. map f: K—L is a natural
transformation from K to L, i.e. a map of the category V. The elements of
the set K [n] are called n-simplices of K.

The category of c.s.s. complexes and c.s.s. maps, i.e. the category MY,
will often be denoted by 8.

It is readily verified that Definition (2.1) is equivalent with that of
Eilenberg-Zilber [2; 3], except that the collection of the #-simplices of a c.s.s.
complex is required to be a set, i.e. an object of the category 9. Following
Eilenberg-Zilber we shall write oo instead of (Ka)o, where ¢ €K [#] and
a: [m]—[n] is a monotone function.

3. The general case. Let Z be a category which has direct limits [4,
Def. 9.1]. Then with every covariant functor Z: U—Z, i.e. object of the cate-
gory Zy [4, §7] we will associate two covariant functors

®Z:8— Z, HY(Z,):Z—$
where ®Z is a left adjoint of H"(Z, ) [4, Def. 3.1]. Conversely every pair of

covariant functors
S:8—Z, T:Z—8$§

where S is a left adjoint of 7" may (up to natural equivalences) be obtained
in this manner.

Because Z has direct limits, the embedding functor E4: Z—Z; has a left
adjoint [4, Th. 7.8]. Let limg: Z;—Z be an arbitrary but fixed such left
adjoint and let oy be an arbitrary but fixed natural equivalence aq: limg (Z2)
— E4(Z). Let the functor ®g: MY, Zy—Zg and the natural transformation

v H(mV Q4 Zv, Ed(z)) - H(mvy HV(ZVr Z))

be as defined in [4, §14]. Composition of the natural equivalence oz with the
functor ®, yields a natural equivalence

a; @4 H(limg (MY ® 4 Zy), Z) — HOM Q4 Zy, EiZ)).

Composition of the natural equivalences @;®4 and ¥ yields the natural
equivalence (see [4, Th. 14.1])

B: H(limg (MY @4 Zy), Z) — H(MY, HY (Zy, Z)).
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It follows that 8 is completely determined by the choice of limq and «a; a different
choice of limg and oy changes B by a unique natural equivalence [4, Theorem
(4.4%].

Now denote by

QR:WM,Zy > Z

the composite functor limg ®4: MY, Zy—Z and write § instead of 9MY. Then
B is a natural equivalence

B: HS ® Zy, Z) — H(8, H"(Zv, Z)).

Hence, given the functor lims: Z;—Z and the natural equivalence ag: limy;— Ey4,
we may associate with every object ZE Zy
(i) the covariant functor

H(Z,):Zz—$§

which is the right adjoint of
(ii) the covariant functor

®Z: 8> Z

under
(ili) the natural equivalence

B:=p8,2Z,Z): HS ® =, Z) — H(S, H'(Z, 7)),
(iv) the natural transformation induced by Bx
kz: E(8) > HY(Z,8 @ 2)
satisfying the relation
Bzf = HY(Z, f) o kzK
for every object KES$ and ZEZ and every map f: KQZ—ZCZ [4, Lemma

6.2], and
(v) the natural transformation induced by 83"

pz: H'(Z, Z) ® = — E(Z)
satisfying the relation
-1
BE g = ;I.}:ZO 4 ®=

for every object KES and ZEZ and every map g: K—HV(Z, Z)ES [4,
Lemma 6.2*].

When no confusion can arise the subscript £ will be omitted in Bz, k=
and us.

By a suitable choice of the category Z and the object ZE Zy the above
functors and natural transformations reduce to well known ones.

That every pair of covariant functors S: §—Z and T': Z—$§ where Sis a
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left adjoint of T may (up to natural equivalences) be obtained in the above

manner can be seen as follows. Consider the identity functor E: U—U as an

object of the category Uy. Then the lifted functor H": Uy, V—>M" induces a
functor HV(E, ): V—8(M"=8§). Let Z: V—Z be the composite functor

HV(E,) S

© — 8 > Z.

Then it is readily verified, using the fact that S is a left adjoint of T, that
there exists a natural equivalence 7: H"(Z, )—T and hence [4, Th. (3.2%)]
implies the existence of a natural equivalence ¢: S—®Z.

REMARK. The results of this section also hold if U is replaced by any
other proper category U and 8§ by V.

4, Topological spaces. Let @ be the category of topological spaces and
and continuous maps

ProposITION (4.1). The category @ has direct limits.

Proof. Let U be a proper category and let K: 14— @ be a covariant functor-
Denote by B the set of all pairs (U, x) where U€A is an object and x&EKU
a point. Define a relation (U, x)~(U’, x’) if there exists a map u: U—-U'CU
such that (Ku)x=x'. This relation ~ induces an equivalence relation on B.
Let A be the set of all equivalence classes and for every object UESU let

ku: KU — A

be the function which assigns to a point x€KU the equivalence class of
(U, x). Introduce a topology in 4 by defining a subset M C 4 open if for every
object UCU

k5 (M O ky(KD))
is open in K U. It is now easily verified that
A =lim K

where the map k: K—Ey4 is given by kU =*ky for every object U& . This
completes the proof.

It should be noted (see [4, Remark 7.9]) that in the proof of Proposition
4.1 not merely the existence of a direct limit is established but that a pro-
cedure is given by which simultaneously for all pairs (U, K), where U is a
proper category and K:U—@ a covariant functor, an object 4 and a map
k: K—EyA can be found such that 4 =lim, K. Let the functor

lim=Qs— @
d

and the natural equivalence

ot H(limg (Q4), @) — H(Gq, E4Q))
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be the unique ones induced by the above procedure of assigning to every pair
(U, K) an object 4 and a map k: K—EyA (see [4, Theorem 9.5]).

Define an object ZE€ @y as follows. For each integer =0, Z[x] is an
euclidean n-simplex with ordered vertices A,, + - -, A,; for each map «: [m]
—[n], Za: Z[m]—>Z[n] is the simplicial map defined by (Za)A;=A. for
all0g15m.

The following then can readily be verified by comparison with the usual
definitions.

ProposITION (4.2). For every topological space X
HY(Z, X)
is its simplicial singular complex (see [2]).
PROPOSITION (4.3). For every c.s.s. complex K
K®Z2

is its geometrical realization (by a CW-complex of which the n-cells are in one-
to-one correspondence with the nondegenerate simplices of K; (see [6]).

The existence of the (natural) equivalence
B: HK ® Z, X) — H(K, H"(Z, X))

expresses the fact that for every object K €8 and X €@ there exists a one-to-
one correspondence between the continuous maps K ®Z-—X and the c.s.s.
maps K—HY(Z, X).

ProPOSITION (4.4). For every c.s.s. complex K
kK: K— H"(Z,K ® %)

is the (natural) embedding of K into the simplicial singular complex of its geo-
metrical realization (see [6]).

ProPosSITION (4.5). For every topological space X
pX: H'(Z,X) Q32— X

is the (natural) map of the geometrical realization of the simplicial singular com-
plex of X onto X (see [6]).

For a locally compact space YEG define another object Zy € Gy by
Ey[n] = 2[”] X Y; (zy)a = Za X iy

where X denotes the cartesian product. As for every two topological spaces
X and Z there exists a (natural) equivalence

HZ X Y, X) ~ H(Z, X¥)
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where XY denotes the function space with the compact open topology, it
follows immediately that
PROPOSITION (4.6). For every topological space X
H"(Zy, X) = HY(Z, X7).

Similarly because the operation of “taking the direct limit” commutes
with “taking the cartesian product with Y” it follows that

ProrosiTiON (4.7). For every c.s.s. complex K
K®Zy=(K®2)XYV.

5. C.s.s. complexes.

ProrositioN (5.1). The category § has direct limats.

Proof. This follows immediately from [4, Corollary 12.2] and the follow-
ing proposition.
ProrosITION (5.2). The category I has direct limits.

Proof. Omit all mention of topology from the proof of Proposition 4.1.

Define an object AES$y as follows. Consider the identity functor E: U—0
as an object of the category Uy and define, using the lifted functor HV: Uy,
V—-mY

Aln] = HY(E, [n]);  Aa = HY(E, ).

Thus A [n] is the standard n-simplex (this is K [z ] in the notation of Eilenberg-
Zilber, see [2; 3]).

The functors associated with the object AESy are, up to a natural equiva-
lence, the identity. For every n-simplex a of a c.s.s. complex K let ¢,: A[n] oK
denote the unique map such that ¢,a=ca for all «€A[xn]. It then follows
easily from the uniqueness of the map ¢, that

ProrosiTiON (5.3). The function
¢K: K — H"(A, K)

given by
(¢K)o = ¢, cEK

is an isomorphism. 1T'his isomorphism is natural.
Similarly it can be shown:
PROPOSITION (5.4). The map
(¢K): K ® A=K

is a (natural) tsomorphism.
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For a c.s.s. complex L define another object AL&Sy by
Apln] = Aln] X L, (AL)a = Aa X i,

where X denotes the cartesian product. Then Proposition 5.4 together with
the fact that “taking the direct limit” commutes with “taking the cartesian
product with L” yields

ProPoSITION (5.5). For every c.s.s. complex K
K® AL =KX L.

For L, M &S define the function complex ML by
ML = HV(AL, M).

“Taking the cartesian product” is thus a left adjoint of “taking the function
complex.” In fact we have

ProPOSITION (5.6). Let K, L and MES. Then there exists o (natural)
equivalence

MEXL ~ (ML)E,

The functors associated with still another choice of an object of Sy will
be considered in [S].

6. Chain complexes. Let G be the category of chain complexes and chain
maps.

ProPOSITION (6.1). The category 0G has direct limats.
In order to prove this we need
PRroPOSITION (6.2). The category G of abelian groups has direct limats.

Proof of Proposition (6.2). Let U be a proper category and let K:u—¢g
be a covariant functor. Let 4 be the abelian group generated by the pairs
(U, x) where UE€U is an object and x CK U an element, with the following
relations: for every object UE€U and every two elements x, y&C KU

(U, %) +(U,3) = U, x+y)
and for every map u: U—U'E€U and every element x& KU
(U, x) = (U, (Ku)x).

It follows from the first kind of relations that for every object U&U the
function ky: KU—A given by kyx= (U, x) is a homomorphism. Straightfor-
ward computation now yields that

A4 =lim K

where the map k: K—FEyA is given by 2U = ky for every object U&U.
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Proof of Proposition (6.1). Let Z be the category of which the objects are
the integers and which contains one map m—n for each pair of integers
(m, n) with m <n. It then follows from Proposition (6.2) and [4], Corollary
(12.2) that the category G# has direct limits. Clearly 3G may be considered
as a full subcategory of % and dG; as a full subcategory of gf. It is easily seen
that a functor lims: GZ—GZ maps any object of 3G, into 8G. Hence the category
9SG has direct limits.

Define an object I'€dGy by

I'[zn] = CyAln], Ta = CyAa

where Cy: 809G is the normalized chain functor (see [2]). Of the two adjoint
functors associated with T' one, ®T, is, up to a natural equivalence, the
normalized chain functor Cy; the other functor HV(I", ), will be investigated
in the remainder of this paper.

ProposITION (6.3). There exists a natural equivalence
¢:8$Q® T — Cu(S).

Proof. Let K €8 be an object. Define a map f: K ® I'—E,CyK by f([n], o)
= Cn¢, for every n-simplex ¢ €K, where ¢,: A[n]—K is the unique map such
that ¢p,a=ca for all e€A[n]. Let ¢c: KQT—CyK be the unique map such
that f=Esc o Mg(K ®41'), where A\y: E(0Gq) —Eq lim, (0G4) is the natural trans-
formation induced by the natural equivalence aq: lima (8Gq) = Ea(3G). Straight-
forward computation then yields that ¢ is an isomorphism. Naturality now
follows easily.

7. Some definitions and lemmas. We shall now state several definitions
and lemmas which will be needed in the sequel. For proofs, see [7].

For every pair of integers (k, n) with 0<k=n let &: [n—1]—[n] be the
monotone function given by

&) = i i< B
(1) =1+ 1 1=k
and let #*: [#]—[n—1] be given by
() =1 i S k;
PG) =i — 1 i> k.

DEFINITION (7.1). A c.s.s. complex K is said to satis{y the extension con-
dition if for every pair of integers (k, n) with 0 £k =<# and for every n (n—1)-
simplices a9, * -+, Ok—1, Ok41, * * +, 0, &K such that g,6/1=0¢;e for 7<j and
é#k;fj, there exists an n-simplex ¢ €K such that oe*=¢; for 1=0, - - -,
koo, n

Denote by Sz the full subcategory of § generated by the c.s.s. complexes
which satisfy the extension condition.
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DEeFINITION (7.2). Two n-simplices ¢ and 7 of a c.s.s. complex K are called
homotopic (notation g~7) if

(i) their faces coincide, i.e. ge* =g¢* for all 7,

(ii) there exists an (n+1)-simplex p&EK such that
V]

pe’ = o,
pel = 1,
peitl = gein® = 7ein? 0<i=n.

LemMA (7.3). If KESg, then ~ is an equivalence relation on the simplices
of K.

DEerFINITION (7.4). Let KESE and let ¢ €K be a 0-simplex. For every
integer 20 a group 7.(K; ¢), the nth homotopy group of K rel. ¢ will be de-
fined as follows. Consider the collection Z of the n-simplices ¢ €K such that

oet = ¢ - - - g2 0i=Zn

The equivalence relation ~ divides 2 into classes. These classes a, b, etc.
will be the elements of 7m.(K; ¢). Now let ¢ &a and 7&b be arbitrary repre-
sentatives of the classes ¢ and b. Because K &Sy there exists an (n-+1)-

simplex p& K such that
0

pe’ = o,
pe’ =T,
pet = ¢nt - - - g1 2<iZ=n+1.

The sum a5 of the classes @ and b then is defined as the class of the #-simplex
pel. It can be shown that 7,(K; ¢) so defined is a group and is independent
of the different choices made in its definition.

DEFINITION (7.5). Let 3C be the category of groups and homomorphisms.
The objects of the category 3V will be called c.s.s. groups and the maps of
Y ¢.s.s. homomorphisms. A c.s.s. group G thus is a c.s.s. complex such that

(i) G[n] is a group for each integer n20,

(ii) Ga: G[n]—G[m] is a homomorphism for every map a: [m]—[n]EV.
The objects of the category GV (G is the category of abelian groups) will be
called ¢.s.s. abelian groups.

The following results are due to J. C. Moore. (see [7]).

LEMMA (7.6). Every c.s.s. group satisfies the extension condition.

Let G be a c.s.s. group. For each integer # =0 define a subgroup G,CG[n]
by

G, = N kernel Gé'.

=1

Then ¢E€G,,1 implies 0e?EG,. Define a homomorphism d,41: Gor1—G, by
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6,,+1a ge®, i.e. dp11=Ge| Gny1. For each integer #<0 let G,=1 and let
Bnp: G,,+1—>G be the trivial homomorphism. It may be shown that for all »
image dn41 is a normal subgroup of kernel 8, i.e. G= {Gn, an} is a (not neces-
sary abelian) chain complex. Its homology groups are

H.(G) = kernel 5n/image Fny1.

Let G be a c.s.s. group and let e©G[0] be the identity. The homotopy
group m,(G; e) will often be denoted by m,(G). The group structure of G[0]
induces a group structure in mo(G) =7o(G; ), the set of the components of G
and we have

LEMMA (7.7). m,(G) = H,(G) for each integer n=0.
Let G be a c.s.s. group and let ¢&G[0]. For each n-simplex ¢ ©G denote
by ¢#o the n-simplex
d10 = algin® + - o).
Then clearly the function ¢# induces an isomorphism
ox: (G ¢) — T (G).

8. The functor HV(I', ). For every object 4 in 8G, the category of
(abelian) chain complexes, the c.s.s. complex HV(I', 4) may be converted
into a c.s.s. abelian group as follows. Let ¢, 7: I'[#]—4 be two n-simplices of
HV(T, A). Then the sum g+7:'[n]—4 is defined by

(c+ 7y =0v+ 17 v € I'[n].

For every chain map f: 4 —B the c.s.s. map HV(T, f): H'(I', A)—HV(T', B)
then becomes a c.s.s. homomorphism. Hence HY(I', ) may be regarded as a
functor
HY(T, ): 9§ —> G,
Let dG° be the full subcategory of G generated by the chain complexes
which are 0 in dimension <0, i.e. 4 EdGY if and only if 4;=0 for ¢1<0. Let

M:GV — 9Gg0

be the functor which assigns to every c.s.s. abelian group G the chain com-
plex MG=G and to every c.s.s. homomorphism f: G—H the chain map
Mf: G—H given by (Mf)o =fo for ¢ EG.

Roughly speaking, the functor H¥(I', ) sets up a one-to-one correspond-
ence between the objects and maps of 3G° and those of §¥. An exact formula-
tion of both halves of this statement is given in the following two theorems,
in which E denotes the identity functor.

THEOREM (8.1). There exists a natural equivalence

a: MHV(T, 9Q") — E(6gY).
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THEOREM (8.2). There exists a natural equivalence
b: E(G") — HY(T, M(G")).
Let A €98G and let A°C A be the subcomplex given by

An = A, n > 0,
0 -1

Ao = 60 (0),
[

A, =0 n < 0.

It is readily verified that
HY(T, A) = H"(T, AY)
and that the inclusion map j: A°—4 induces isomorphisms
Jxt Ho(4°) — Ha(4) nz 0.
Application of Theorem 8.1 and Lemma 7.7 now yields
CorOLLARY (8.3). Let AE3G. Then for every integer n =0
Jxos: ma(HY(T, A)) =~ Ha(4)

i.e. the nth homotopy group of the c.s.s. group HV(I', A) is isomorphic with the
nth homology group of the chain complex A.

Proof of Theorem (8.1). For each nondegenerate simplex aCA[n] let
Cwa be the corresponding generator of I'[z]. Let A €3G° be an object and let
G=H"(T, A). For each simplex o: I'[zn]—A4 &G, define an element ac © 4., by

ac = o(Crén),

where €,: [#]—[n] is the identity map, i.e. the only nondegenerate n-simplex
of A[n]. As the addition in G was induced by that of A it follows that the
function a: G,—A4, is a homomorphism for each .

It follows from the definition of G, that a simplex ¢: T'[#n]—4 is in G, if
and only if e: T [n—1]—4 is the zero map for 50, i.e. ¢ maps all generators
of I'[n], with the possible exception of Cye, and Cye? into zero. Consequently

9n(a0) = 3n(7(Cren)) = 20 (= D(e(Cre?)

¢(Cne®) = (c€)(Creéna1)

(320) (Cxenms) = a(3u0),

i.e. the function a: G—A is a chain map. It also follows that o is completely

determined by o(Cye,) EA4,. Hence a: G—A is an isomorphism. Naturality

is easily verified.
The proof of Theorem (8.2) will be given in §11.

i
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Let X be a topological space. The homotopy groups of X are by definition
those of its simplicial singular complex K =H"(Z, X) (see §4), and the singu-
lar homology groups of X are the homology groups of the chain complex
CyxK. Let ¢ be a O-simplex of K, let

hy: m(K; ¢) = H,(CyK)
be the Hurewicz homomorphism and let
k: E(§) » H' (I, 8§ @ T')

be the natural transformation induced by the natural equivalence 3: QI
— HY(T", 3G). Then it can be shown that

ProposITION (8.4). Commutativity holds in the diagram
m(H"(T, K @ T), )
(kK)x ~ | ¥«
m.(H"(T, K ® T)
7.(K; ) =~ | a4
H,(K ®7T)
e = l Cx
-H,(CnK)

where ¢ = (kK)¢, 1.e. the map kK: K—H"(I', KQ®T') induces (up to an equiva-
lence) the Hurewicz homomorphisms.

9. The K(w, n). Let = be an abelian group and let #» be an integer =0.
Denote by (w, #) the chain complex with 7 in dimension %z and 0 in the others.

PropositioN (9.1). HY(I', (m, n)) =K(x, n), the Eilenberg-MacLane com-
plex of ™ on level n (see [1]).

Proof. A g-simplex of K (m, n) is an element of Z*(A[q], 7), i.e. a chain map
I'[g]—(w, n) and hence a g-simplex of HY(T, (w, n)) and conversely. It is
readily verified that this one-to-one correspondence commutes with all oper-
ators a.

Combination of Proposition (9.1) with Lemma (7.7) yields

COROLLARY (9.2). w.(K (7w, n)) =m; mi(K(x, n)) =0 for i%n.
Let K be a c.s.s. complex. Then combination of the equivalence
B: HK @ T, (x, n)) — H(K, H'(T, (x, n))
with the equivalence ¢: KQI'->CyK of Proposition 6.3 yield an equivalence
B H(CyK, (r, n)) — H(K, K(x, n))

which expresses the well known fact that the elements of Z*(K; ), i.e. the
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chain maps CyK-—(w, n) are in one-to-one correspondence with the c.s.s.
maps K—K(w, n).

10. Two lemmas. We shall now give two lemmas which will be needed in
the proof of Theorem (8.2).

Let G be a c.s.s. abelian group and let gy, - - -, ,&G[n—1] be such that
e 1=0,¢' for 0 <2<j. Let

$n = can",
¢ = ot — ¢t + grpy O0<k<n
and define an #z-simplex ¢ (o1, - « -, 0.) €EG[n] by
®(o1, - - -, 0a) = d1.
LEMMmA (10.1). ¢{oy, - - -+, 0.)€ =0, for 170.
LEmMa (10.2). Let 1€G[n—1]. Then
o(mpied, « - -, ™) = 1t for0=i=n—1.

Proof of Lemma (10.1). Clearly
Pn€” = ouq"Tle* = oy,
bre® = ot — Grp1€ntleE + prpiet = oy
If 1<k <4, then
¢k_1€i = o.k_lnk—Zei — ¢kek—1nk—2€i + ¢k€i
—_ a.k_lei—lnk—2 _ ¢keiek—1nk—2 + puet
— o,iek—-lnk—z — o 2 4 oy = oy

Hence ¢(0y, - - -, 0a)e' =16 =0 for 1540,
Proof of Lemma (10.2). If ¢;,1 =77" for some k, then
br = TN T — Prpaen* !+ dria
= rpidkpt=1 — ppickgt=1 4 ni = gt
Hence it suffices to show that ¢,,1 =779 {or all 2. Fori=n—1
¢n — Tnn—lennn—l = 7'7]"'—’.
Let
‘l/n——l — 7.en—-lnn—2’
Y = 1éfpt Tl — Yt uyr for0 <k <mn— 1.
Then for t<n—1

¢n . Tnie"n"_l —_ Tén——lnn—zni — an—lni

and if ¢r=yui_1n® for ¢+2 <k =<u, then
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Tniek—l.”k—2 — d)kelc—lnk—Z + ¢k
= (1 2* 3 — Yro1 P73 L )0t = Yi—am

I

br—1

Hence
Gir1 = Tn'etint — dupeeint + Gips
= ' = Yom'etipt + Yot = b
REMARK. In the proofs of the Lemmas (10.1) and (10.2) no use was made

of the fact that G is abelian. Hence both lemmas also hold in the nonabelian
case.

11. Proof of Theorem (8.2). Let G be a c.s.s. abelian group and let
H=H"T, G). For each integer =0 define a function b: G[n]—H[n] by

bo = alo dim ¢ = 0;
bo = a7 o — ¢(oe!, - - -, 0e®)) + ¢(b(aet), - -+, b(oe?)) dim ¢ > 0.

Clearly the function b: G[0]—H[0] is an isomorphism because a is so. Now
suppose it has already been proved that the functions b: G[:]—>H[] are iso-
morphisms for 7 <# and commute with all face and degeneracy operators in
dimension <, then it must be shown that b=G[n|—H|[x] is an isomorphism
and that b commutes with all face and degeneracy operators in dimension
=n.

That b: G[n]—H[n] is a homomorphism follows from the induction hy-
pothesis and the fact that the function ¢ only involves face and degeneracy
operators and therefore is additive.

We now first show that & commutes with all face operators in dimension
<n. It follows from LLemma (10.1) that for 75£0:

(bo')ei = a—l(a' - d)(a'el, T o-en))ei + ¢(b(ael)7 t b((fé”))éi
= g7 o€t — oet) + b(oe’) = b(oed).

Let ¢p1=¢ (¢!, - - -, 0e™). Then it follows from the definition of b that
(bp1)e® = ¢(b(ae"), - - -, blae™))e.
Thus (be1)€® is obtained from ge!, - - - , 0e” by application of the isomorphism

b: G[n—1]—H[n—1] and operators €' and 7. These operators can always be
rearranged in such a manner that first all operators €* are applied and then
all 7. As in this way only simplices in dimension <# are involved, these oper-
ators can now be commuted with the isomorphism & (by induction hypoth-
esis). Arranging the operators e* and 57 back again in their original order we

thus get
(b1)e® = b(op(ael, - - -, ge")e’) = b(¢1e").

Let y=c—¢(ae!, - - -, ge?). Then in view of LLemma 10.1 ¥e'=0 for 0.
Hence
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() = a7l (Y — p(el, - - -, Yer))e® + p(b(Yel), - - -, b(Yem))e

= a Y Ye® — 0) + 0 = g 1(Ye?
U — Gpete < -, o) + (b, - - b))
b(Ye®).

f

Hence
(bo)e® = (b(¥ + ¢1))e® = (b¥)e® + (bop1)e”
= b(Ye®) + b(91€%) = b((Y + ¢1)€?) = b(oe).

We now show that b commutes with all degeneracy operators in dimen-
sion Sn. Let 7€G[n—1], then in view of the induction hypothesis

b(ryie) = b(rei1y%) = (br)e Yyt = (br)y'e 1 <j—1;
b(ryte?) = br = (br)p'e i=7~1,7;
b(rpie?) = b(rem™1) = (br)eip™! = (br)n' 1> 7.

Consequently application of Lemma 10.2 yields for 0 £:<#n
brm) = a=ien’ = d(rwiet -+ -, i) + $(b(rwie), <+, brnie))
= a7 (' — %) + $((br)n'¢, - - -, (br)n'e™)) = (b7)n".

In order to show that b: G[n]—H[n] is an isomorphism consider a simplex
0 CG[n] such that bo =0. Then (bo)e'=b(se’) =0. By the induction hypothe-
sis this implies ce?=0. Hence

O=ba=a_l(a—¢(0,---,0))+¢(0,-~-,0)=a'1¢r

and because ¢~! is an isomorphism this implies 0 =0 i.c. b: Gln]—H[n] is a
monomorphism. Now let 7&II[n] and let

oi = b7(red),  p = a(r — $(rel, - - -, 7en)).
Then
= a4+ ¢(bay, - - -, bon)
=a o+ ¢(o1, - -+, 00) — dlon, - -+, 0) + blbay, - - -, ba)
=b(p + ¢(or, - - -, 7)),

i.e. b: G[n]—II[n] is also an epimorphism and is thus an isomorphism.
Naturality of & is now easily verified.

APPENDIX

12. The c.s.s. free abelian group generated by a c.s.s. complex. Define a
functor

r4:8—-4v
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as follows. Let KE$ be an object. Then FAK [n] is the free abelian group
with a generator ¢ for each s ©K [#] and (FAK)a is the homomorphism given
by

((FAK)a)é = oa.

FAK is called the c.s.s. free abelian group generated by K. For each c.s.s. map
f: K—L a c.s.s. homomorphism FAf: FAK—FAL is defined by

(FAf)o = fo
The functor FA is closely related to the functors HV(I', ) and Cy (or
equivalently ®T'). The relation is expressed by the following theorem.

THEOREM (12.1). There exists a natural equivalence
d: FA(S) — HV(T, Cn(8)).
Proof. For each object K&$§ define a c.s.s. homomorphism
d: FAK — HY(T, CyK)
by
de = Cn¢.

where ¢,: A[#n]—K is the unique map such that ¢,a=ga for all a €A [n]. The
naturality of d then is obvious. It is also clear that d is an isomorphism in
dimension 0. Now suppose it has already been proved that d is an isomor-
phism in dimension <#n. Then it is sufficient to show that d is also an iso-
morphism in dimension n. Let D (resp. E) be the subgroup of FAK [n]
(resp. H(T'[n], CyK)) generated by the degenerate simplices. Then I.emma
(10.2) and the additivity of ¢ imply

p € D (resp. E) if and only if p = ¢(pe!, - - -, pe™).

Combining this with the fact that d is an isomorphism in dimension n—1 we
get that d: D—E is an isomorphism. It is easily seen that D is freely gener-
ated by those & for which o is degenerate. Consequently FAK [n]|=D+D,
where D is the free abelian group generated by elements & —¢(gel, - - -, Ge")
where ¢ is nondegenerate. Similarly we get H(I'[#], CxK) =E+a~'(CyK)n.
It now follows from

d(G — ¢(d¢', - - -, 5"))(Cyen) = (Cngo)(Cren) — d(@(de, - - -, 7€) (Cne™)
= Cyo 4+ 0 = Cno
where Cyo is the generator of CyK, corresponding with the nondegenerate
simplex ¢, that d: D—a~'(CyK), is also an isomorphism and so is therefore

d: FAK [n|—I(T'[n], CyK).
Iet X be a topological space, let K =IIV(Z, X) (see §4) and let pEK[0].
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Let again
hy: m(K; ¢) — Ha(CnK)
be the Hurewicz homomorphism. Consider the (natural) map
f:K— FAK
defined by fo = 7,0 € K.
ProrposiTioN (12.2). Commutativity holds in the diagram
T(FAK; ¢)
Jx ~ | ¢
m.(FAK)
(K @) ~ ld*
m.(HY(T, CyK))
i = | ax
H.(CxK)

t.e. the map f: K>FAK induces (up to a natural equivalence) the Hurewicz
homomor phisms.

Proof. Let vE7,(K; ¢), 20 and let ¢Ev. If Cyo is the corresponding
generator of CyK, then CyoEhswwE H,(CyK). Furthermore

Bifo =5 — &
d&’fa' = CN¢¢ - (d<7>)77° cr ﬂn—la
adgtfo = (Cngo)(Cnea) — ((dB)n° - - - 7 1)(Cwen)

= Cyoc — 0 = Cyo.
Hence
d*d*$*f* = hy.
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