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Abstract. Time delays occur in many physical systems. In particular, when automatic control is used with structural or mechanical

systems, there exists a delay between measurement of the system state and corrective action. The concept of an equivalent

damping related to the delay feedback is proposed and the appropriate choice of the feedback gains and the time delay is

discussed from the viewpoint of vibration control. We investigate the fundamental resonance and subharmonic resonance of order

one-half of a harmonically oscillation under state feedback control with a time delay. By using the multiple scale perturbation

technique, the first order approximation of the resonances are derived and the effect of time delay on the resonances is investigated.

The fixed points correspond to a periodic motion for the starting system and we show the external excitation-response and

frequency-response curves. We analyze the effect of time delay and the other different parameters on these oscillations.

1. Introduction

The last decade has witnessed an increasing number of studies and applications of the active control of mechanical

ad structural vibrations in various fields. Superior as the active control is over the passive control in many aspects,

it involves more technical problems. One of the open problems is the complicated system dynamics induced by the

unavoidale time delays in controllers and actuators, especially in various analogue filters, hydraulic and pneumatic

actuators, where the time delays may give rise to the instability analysis of the controlled systems.

Nonlinear differential equations involving time delays have been studied in varies scientific fields, and some

publications on this topic are cited in reference [1,2]. Active control of the motion of structures has recently received

much attention (e.g, see reference [3,4]). Diekman et al. [5] performed a nonlinear analysis for determining Hopf

bifurcations in systems of autonomous differential equations, while Belair and Camptell [6] extended this work to the

case of multi-delayed differential equations. Palkovics and Venhovens [7] analyzed stability, Hopf bifurcations, and

chaotic motion in controlled wheel suspension systems. Stepan and Haller [8] considered quasi-periodic oscillations

in robot dynamics and Moiola et al. [9] dealt with the more general forced nonlinear system under delay control have

been investigated by Plaut and Hsieh [10] in the case of nonlinear structural vibrations with a time delay in damping.

Hu et al. [11] investigated the resonances of a harmonically forced Duffing oscillator with time delay state feedback.

Using the method of multiple scales [12,13], they demonstrated that appropriate choices of feedback gain and the

time delay are possible for a better vibration control. Asfar and Masoud [14] performed the control of parametric

resonance using a Lanchester-type damper and obtain sucessful vibration suppression and bifurcations control.

Thomsen [15] investigated a string with sliding-mass nonlinear absorber and showed that vibration suppression

is possible for moderate forcing amplitudes. Hover, the system exhibits modulated responses, for high forcing

amplitude or a large slider mass. Yabuno [16] proposed a control law based on linear velocity feedback and
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Fig. 1. External excitation-response curve for increasing the time delay τ .

linear and cubic velocity feedback. His studies demonstrated that nonlinear position feedback reduces the response

amplitude in the parametric excitation-response curve, while velocity feedback stabilizes the trivial solution in the

frequency-response curve. Masccari [17] studied the parametric resonance of van der pol oscillator under state

feedback control with time delay. Kouda and Mori [18] investigated the analysis of a ring of mutually coupled van

der pol oscillators with coupling delay. Kouda and Mori [18] investigated the analysis of a ring of mutually coupled

van der pol oscillators with coupling delay. Faria [19] investigated stability and bifurcation for a delayed predator

for a delayed predator-prey model and effect of diffusion. Liao and Chen [20] studied local stability, Hopf and

resonant codimension-two bifurcation in a harmonic oscillator with two time delays. Meng and Wei [21] analyzed

stability and bifurcation of mutual system with time delay. Yuan and Han [22] investigated bifurcation analysis of a

chemostat model with two distributed delays. Fofance and Ryba [23] investigated Parametric stability of nonlinear

time delay equations. El-Bassiouny and Abdelhafez [25] analyzed the predication of bifurcations for external and

parametric excited one-degree-of-freedom system with quadratic, cubic and quartic non-linearities. El-Bassiouny

and Eissa [26] studied the dynamics of a single-degree-of-freedom structure with quadratic, cubic and quartic non-

linearities to a harmonic resonance. Elhefnawy and El-Bassiouny [27] analyzed the non-linear stability and chaos

in electrohydrodynamics. El-Bassiouny [28] used the method of multiple scales to investigated principal parametric

resonances of nonlinear mechanical system with two-frequency and self-excitations. Elnaggar and El-Bassiouny [29]

studied harmonic, subharmonic, superharmonic, simultaneous sub/super-harmonic and combination resonances of

self-excited second order system to multi-frequency excitations. Elnaggar and El-Bassiouny [30] investigated

harmonic resonances of non-linear system of rods to a harmonic excitation. Maccari [31] analyzed Modulated

motion and infinite-period bifurcation for two nonlinearly coupled and parametrically excited van der Pol oscillators.

El-Bassiouny and Eissa [32] investigated resonance of non-linear systems subjected to multiparametrically excited

structures. El-Bassiouny [33] analyzed the effect of non-linmearities in elastomeric material dampers on torsional

oscillation control. Bi [34] studied the dynamical analysis of two coupled parametrically excited Van der pol

oscillators.

The objective of this paper is to analyze the dynamics of a non-autonomous delay system. As the first study, a

harmonically forced oscillation under linear time delay control is considered. This system serves as the simplest

model for various controlled nonlinear systems, e.g., active vehicle suspension systems when the nonlinearity in

tires is taken into acount [5]. The system motion is described by a second order nonlinear differential equation

m
d2X(t̄)

dt̄2
+ c

dX(t̄)

dt̄
+ KX(t̄) + k1X

2(t̄) + µk2X
3(t̄) = ūX(t̄ − τ̄) + v̄

dX(t̄ − τ̄ )

dt̄
+ F cosωt (1)
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Fig. 2. External excitation-response curve for increasing the damping factor ζ .

where m > 0, k1 > 0, k2 > 0, and 0 < τ̄ � 2Π
ω

. By using the following dimensionless time and new parameters

t =

√

k

m
t̄, τ =

√

k

m
τ̄ , u =

ū

2k
, v =

v̄

2
√

mk
,

(2)

ζ =
c

2
√

mk
, f =

F

k
, λ = ω

√

m

k

Equation (1) can be written as

d2X(t)

dt2
+ 2ζ

dX(t)

dt
+ X(t) + γX2(t) + µX3(t) = 2uX(t− τ) + 2v

dX(t − τ)

dt
+ f cosλt (3)

In the following sections, the fundamental resonance and subharmonic resonance of order one-half of a harmoni-

cally oscillation under state feedback control with a time delay will be studied by using the multiple scale perturbation

technique

2. Fundamental resonance

2.1. Steady-state resonance

To investigate the fundamental resonance of the delay controlled system Eq. (3) by using the multiple scale

perturbation technique, we confine the study to the case of small damping, week nonlinearities, week feedbak and

soft excitation. That is

ζ = O(ε), γ = O(ε), µ = O(ε),

f = O(1), u = O(ε), v = O(ε), (4)

λ − 1 = εσ, σ = O(ε)

where ε � 1and σ is the detuning parameter. Rewrite Eq. (3) as

d2X(t)

dt2
+ X(t) = −2ζ

dX(t)

dt̄
− γX2(t) − µX3(t) + 2uX(t− τ) + 2v

dX(t − τ)

dt
+ f cos(1 + εσ)t (5)
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Fig. 3. External excitation-response curve for decreasing the damping factor ζ .

We assume a two scale expansion of the solution

X(t) = X0(T0, T1) + X1(T0, T1) + O(ε2) (6)

where Tn = εnt. In terms of T0 and T1, the time derivative become

d

dt
= D0 + εD1 + O(ε2)

(7)
d2

dt2
= D2

0 + 2εD0D1 + O(ε2)

where Dn = ∂
∂Tn

. Inserting Eqs (6) and (7) into Eq. (5) and equating the coefficients of same power of ε, we obtain

a set of linear partial differential equations

D2
0X0(T0, T1) + X0(T0, T1) = f cos(T0 + σT1 (8)

D2
0X1(T0, T1) + X1(T0, T1) = −2D0D1X0(T0, T1) − 2ζD0X0(T0, T1) − γX2

0 (T0, T1) − µX3
0 (T0, T1)

(9)
+2uX0(T0 − τ, T1) + 2vD0X0(T0 − τ, T1

The general solution of Eq. (8) can be expressed as

X0(T0, T1) = A(T1) exp(iT0) + G exp{i(T0 + σT1) + cc (10)

where G = f
2(1−λ2) and cc denotes the complex conjugate of the preceding terms. Substituting Eq. (10) into Eq. (9),

we obtain

D2
0X1(T0, T1) + X1(T0, T1) = −2i (D1A + ζA) exp(iT0) − γ(A2 exp(2iT0) + 2ĀG exp{(λ − 1)T0}

+2AĀ)−µ(A3 exp(3iT1) + 3A2Ā exp(iT0)) + 2AĀG exp{i(T0 + σT1)
(11)

+ĀG2 exp{i(T0 + 2σT0) + 2iuA exp(iT0) exp(−iτ) + 2ivA exp(iT0)

exp(−iτ) + cc

Then eliminating the secular terms from Eq. (11) yields

−2i (D1A+ζA)−3µA2Ā−2µAĀG exp(iσT1)−µĀG2(2iσT1)+2iuA exp(−iτ)+2ivA exp(−iτ)=0 (12)
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Fig. 4. External excitation-response curve for decreasing the detuming parameter σ.

It is convenient to put A in the polar form

A =
1

2
r(T1) exp{iβ(T1)} (13)

where r and β are the amplitude and phase. Substituting Eq. (13) into Eq. (12) and separating the real and imaginary

parts, we obtain a set of autonomous differential equations that govern the amplitude r(T 1) and the phase β(T1)

D1r = −ζr − 1

2
µr2G sin φ − 1

2
µrG2 sin 2φ − ur sin τ + vr cos τ (14)

rD1β =
3

8
µr3 +

1

2
µr2G cosφ − 1

2
µrG2 cos 2φ − ur cos τ − vr sin τ (15)

where

φ = σT1 − β(T1) (16)

From Eqs (14) and (15), we get a set of algebraic equations for amplitude rand phase φ of the steady-state

fundamental resonance

(ζ + u sin τ − v cos τ ) r = −1

2
µrG (r sinφ + G sin 2φ) (17)

(σ + ur cos τ + vr sin τ ) r − 3

8
µr3 = −1

2
µrG (r cosφ − G cos 2φ) (18)

Equations (17) and (18) show that there are two possibilities: r = 0 or r �= 0. When r �= 0, Eqs (17) and (18)

become

(ζ + u sin τ − v cos τ ) = −1

2
µG (r sin φ + G sin 2φ) (19)

(σ + ur cos τ + vr sin τ ) − 3

8
µr2 = −1

2
µG (r cosφ − G cos 2φ) (20)

whereby we have the frequency response relation between r and σ

(ζ + u sin τ − v cos τ )
2
+

(

(σ + ur cos τ + vr sin τ) − 3

8
µr2

)2

=
1

4
µ2G2

(

r2 − G2
)

(21)
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Fig. 5. External excitation-response curve for increasing the coefficient of cubic term µ.

The first approximation for the fundamental resonance reads

X(t) = r cos(λt − φ) +
f

1 − λ2
cosλt + O(ε) (22)

2.2. Stability analysis

To determine the stability of the trivial solutions, one investigates the solutions of linearized form of Eq. (12); that

is

−2i (D1A + ζA) − µĀG2(2iσT1) + 2iuA exp(−iτ) + 2ivA exp(−iτ) = 0 (23)

Letting

A = (Br + iBi) exp(iσT1) (24)

in Eq. (23) where Br and Bi are real, and separating real and imaginary parts, one obtains

B′

i + (ζ + u sin τ − v cos τ ) Bi =

(

σ − 1

2
µG2 + u cos τ + v sin τ

)

Br = 0 (25)

B′

r + (ζ + u sin τ − v cos τ )Br −
(

σ +
1

2
µG2 + u cos τ + v sin τ

)

Bi = 0 (26)

Equations (25) and (26) admit solutions of the form

(Br, Bi) = (c1, c2) exp(isT1) (27)

where c1 and c2 are arbitrary constants and

s2 + 2m1s + m2
1 + m2m3 = 0 (28)

where
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Fig. 6. External excitation-response curve for decreasing the coefficient of cubic term µ.

Fig. 7. Frequency-response curve for increasing the time delay τ .

m1 = (ζ + u sin τ − v cos τ )

m2 =

(

σ − 1

2
µG2 + u cos τ + v sin τ

)

(29)

m3 =

(

σ +
1

2
µG2 + u cos τ + v sin τ

)

From the Routh-Hurwitz criterion the steady-state vibration is asymptotically stable if and only if the following

inequalities hold simultaneously

m1 > 0
(30)

(m2
1 + m2m3) > 0
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Fig. 8. Frequency-response curve for decreasing the damping factor ζ .

Fig. 9. Frequency-response curve for increasing the coefficient of external excitation f .

To analyze the stability of the non-trivial solutions, we linearize Eqs (14) and (15) at (r̂, φ̂) with respect to r and φ

D1∆r = −
[

ζ + µGr̂ sin φ̂ +
1

2
µG2 sin 2φ̂ + u cos τ − v sin τ

]

∆r

(31)

−
[

1

2
µGr̂2 cos φ̂ − µrG2r̂ sin 2φ̂

]

∆φ

D1∆r = −
[

σ

r̂
− 9

8
µr̂ − µrG cos φ̂ +

1

2
µG2 cos 2φ̂ +

u

r̂
cos τ +

v

r̂
sin τ

]

∆r

(32)

+

[

1

2
µGr̂ sin φ̂ − µG2 sin 2φ̂

]

∆φ
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Fig. 10. Frequency-response curve for decreasing the coefficient of external excitation f .

Fig. 11. Frequency-response curve for increasing the coefficient of cubic term µ.

Equations (28) and (29) are linear equations with constants coefficients, and as such, posses a non-trivial solution

proportional to exp(ΛT1) if, and only if, the Λ’s are the eigenvalues of the determinant of the coefficient matrix. If

the real parts of all two Λ’s are negative then the solution is considered stable.

3. Principal resonance of order one-half

3.1. Steady-state resonance

To study the principal harmonic resonance of order one-half of the controlled system, we confine ourselves to the

case of
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Fig. 12. Frequency-response curve for increasing the coefficient of cubic term µ.

Fig. 13. External excitation-response curve for increasing the time delay τ .

ζ = O(ε), γ = O(ε), µ = O(ε),

f = O(1), u = O(ε), v = O(ε), (33)

λ − 2 = εσ, σ = O(ε)

Then, we rewrite Eq. (3) as

d2X(t)

dt2
+ X(t) = −2ζ

dX(t)

dt̄
− γX2(t) − µX3(t) + 2uX(t− τ)

(34)

+2v
dX(t− τ)

dt
+ f cos(2T0 + σT1)

Inserting Eqs (6) and (7) into Eq. (34) and equating the coefficients of like power of ε 0 and ε, we obtain
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Fig. 14. External excitation-response curve for increasing the damping factor ζ.

Fig. 15. External excitation-response curve for decreasing the damping factor ζ .

D2
0X0(T0, T1) + X0(T0, T1) = f cos(2T0 + σT1) (35)

D2
0X1(T0, T1) + X1(T0, T1) = −2D0D1X0(T0, T1) − 2ζD0X0(T0, T1) − γX2

0 (T0, T1)
(36)

−µX3
0 (T0, T1) + 2uX0(T0 − τ, T1) + 2vD0X0(T0 − τ, T1)

Solving Eq. (35) for X0(T0, T1), we have

X0(T0, T1) = A(T1) exp(iT0) + G exp{i(2T0 + σT1) + cc (37)

Inserting Eq. (37) into Eq. (36) yields
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Fig. 16. External excitation-response curve for decreasing the coefficient of quadratic term γ.

Fig. 17. External excitation-response curve for increasing the detuning parameter σ.

D2
0X1(T0, T1) + X1(T0, T1) = −2i (D1A + ζA) exp(iT0) − γ(A2 exp(2iT0) + 2AĀ + 2ĀG exp

{i(T0 + σT0)) − µ(A3 exp(3iT0) + 3µA2Ā exp(iT0)) (38)

+2iuA exp(iT0) exp(−iτ) + 2ivA exp(iT0) exp(−iτ) + cc

The secular term of Eq. (11) vanishes if and only if

−2i (D1A + ζA) − 3µA2Ā − 2γĀG exp(iσT1) + 2iuA exp(−iτ) + 2ivA exp(−iτ) = 0 (39)

Substituting Eq. (13) into Eq. (39) and separating the real and imaginary parts, we obtain the autonomous

differential equations that govern the amplitude r(T1) and the phase β(T1)
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Fig. 18. External excitation-response curve for decreasing the detuning parameter σ.

Fig. 19. Frequency-response curve for increasing the time delay τ .

D1r = −ζr − γrG sin φ − ur sin τ + vr cos τ (40)

rD1β =
3

8
µr3 + γrG cosφ − ur cos τ − vr sin τ (41)

where

φ(T1) = σT1 − 2β(T1) (42)

From Eqs (40) and (41), we get a set of algebraic equations for amplitude r and phase φ of the steady-state
principal resonance of order one-half

(ζ + u sin τ − v cos τ ) r = −γrG sin φ (43)
(

1

2
σ + u cos τ + v sin τ

)

r − 3

8
µr3 = γrG cosφ (44)
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Fig. 20. Frequency-response curve for increasing the damping factor ζ .

Fig. 21. Frequency-response curve for decreasing the damping factor ζ .

Equations (43) and (44) show that there are two possibilities: r = 0 (trivial solution) or r �= 0 (non-trivial

solution). When r �= 0, we have

(ζ + u sin τ − v cos τ ) = −1

2
γG sin φ (45)

(

1

2
σ + ur cos τ + vr sin τ

)

− 3

8
µr2 =

1

2
γG cosφ (46)

whereby we derive the frequency response relation between r and σ, and that between φ and σ

(ζ + u sin τ − v cos τ )
2
+

(

1

2
σ + u cos τ + v sin τ − 3

8
µr2

)2

− γ2G2 = 0 (47)

tan φ +
ζ + u sin τ − v cos τ

1
2σ + u cos τ + v sin τ − 3

8µr2
= 0 (48)
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Fig. 22. Frequency-response curve for decreasing the coefficient of quadratic term γ.

Fig. 23. Frequency-response curve for increasing the coefficient of external excitation f .

Then, the first-order approximation for the steady-state principal harmonic resonance of order one-half is given

by

X(t) = r cos(
λt − φ

2
) +

f

1 − λ2
cosλt + O(ε) (49)

3.2. Stability analysis

To determine the stability of the steady state subharmonic resonance, we linearize Eqs (40) and (41) at (r̂, φ̂) with

respect to r and φ

D1∆r =
[

−ζ − γG sin φ̂ − u sin τ + v cos τ
]

∆r −
(

γGr̂ cos φ̂
)

∆φ (50)

D1∆r =

[

σ

r̂
− 9

4
µr̂ − 2γG

r̂
cos φ̂ +

2u

r̂
cos τ +

2v

r̂
sin τ

]

∆r + 2
(

γG cos 2φ̂
)

∆φ (51)
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Fig. 24. Frequency-response curve for decreasing the coefficient of external excitation f .

The stability of a particular fixed point with respect to an infinitesimal disturbance proportional to exp(ΛT 1) is

determined by the eigenvalues of the Jacobian matrix of the right hand of Eqs (50) and (51). A given fixed point is

stable if and only if the real parts of all eigenvalues are less than or equal to zero. Note that the stability of the trivial

solutions in this case is determined by using Eqs (50) and (51) when µ = 0.

4. Numerical results and discussion

The analytical analysis are represented graphically by using numerical method. The frequency Eqs (21) and (47)

are nonlinear algebraic equation in the amplitude (r). These equations are solved by using bisection method. The

numerical results are plotted in a group of Figs 1–24, which represent the variation of the response amplitude (r) with

the coefficient of external excitation f in Figs 1–6 for the first case and Figs 13–18 for the second case and represent

variation of the amplitude (r) with the detuning parameter σ in Figs 7–12 for the first case and Figs 19–24 for the

second case. The stability of a fixed-point solution is studied by examination of the eigenvalues of the Jacobian

matrix of Eqs (14) and (15) for fundamental resonance and Eqs (40) and (41) equations for subharmonic resonance

evaluated at the fixed point of interest. If all the eigenvalues have negative real parts, then the fixed point is expected

to settle to it. These solutions are called stable nodes and denoted by solid lines in the frequency-response curves

of Fig. 1 through 28. If a pure-real eigenvalue becomes positive, the fixed point loses stability and the motion is

expected to diverge from it. These unstable solutions are called saddles and are denoted by dotted lines in Fig. 1

through 28. Thus, stable and unstable non-trivial solutions may be represented on the response curves by solid and

dotted lines respectively.

Figures 1–6 show the external excitation-response curve for the variation of the parameters τ, ζ, σ, and µ in

the case of fundamental resonance and these figures represented the variation of the response amplitude (r) with

the coefficient of external excitation f . Figure 1, represent the variation of the time delay τ . As τ = 0, the

amplitude r has two semi-ovals which are opened from the upper and symmetric about f = 0. The left semi-oval has

stable and unstable solutions. As f increases with negative values, left semi-oval loses stability via a saddle-node

bifurcation at f = 0.4. Also the right semi-oval has stable solutions. As f increases with negative values, left

semi-oval loses stability via a saddle-node bifurcation at f = 0.44. Also the right semi-oval has stable solutions.

When the time delay τ is increased further, there exists a contraction in the two semi-ovals and the zone of definition

is decreased. For further increasing of the time delay τ up to 2, the amplitude r has symmetric two oval about

f = 0 with decreasing in the zone of definition and the left oval has two bifurcation points and the right oval has

stable solutions. Figures 2 and 3 represent the variation of increasing and decreasing the damping factor ζ. For

increasing damping factor ζ respectively, the two semi-oval are moved to the upper with increasing magnitudes. The
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regions of stability and definition are decreased and each left semi-ovals has one saddle-node bifurcation, Fig. 2.

In Fig. 3, we note that the response amplitude does not affected with decreasing the damping factor ζ respectively

and the region of stability is decreased. When f increases with negative values, left semi-oval loses stability via a

saddle-node bifurcation at f = 0.3 and the right semi-oval has stable solutions. Figure 4 represents the variation

of increasing the detuning parameter σ. When σ is increased, we observed that the two symmetric semi-oval are

moved to the down and have decreased magnitudes respectively. As f increases with negative values, left semi-oval

loses stability via a saddle-node bifurcation and the right semi-oval has stable solutions. For further decreasing

of σ up to 0.1, the response amplitude (r) has two symmetric ovals with decreased magnitudes and the region of

multivalued is increased. The left oval has two saddle-node bifurcations and the right oval has stable solutions. For

increasing the coefficient of cubic term µ, the response amplitude r has two symmetric ovals and have decreasing

magnitudes and each oval intersect the semi-oval in two points. The left oval has two saddle-node bifurcations and

the right oval has stable solutions. As µ increases further up to 30, the two ovals are contraction and moved to

the down with decreasing magnitudes and the regions of definition and multivalued are decreased. The left oval

has two saddle-node bifurcations and the right oval has stable solutions, Fig. 5. When the coefficient of cubic term

µ is decreasing respectively, we note that the two symmetric semi-ovals are moved to the upper with increasing

magnitudes and the region of definition is decreased, As f increases with negative values, we observe that each left

semi-ovals loses stability via a saddle-node bifurcation and each right semi-oval has stable solutions. Figure 6.

Figures 7–12 show the frequency-response curve for the variation of the parameters τ, ζ, f, and µ in the case

of fundamental resonance and these figures represent the variation of the amplitude (r) with the detuning parameter

σ. Figure 7, represents the variation of the time delay τ . When τ = 0, the response amplitude r has multivalued

continuous curve represented by semi-oval. The solutions are stable. For further increasing of τ respectively (i.e. τ

take the values 0.78, 1, and 1.5), we note that the semi-oval is contraction respectively and the lower and the upper

branches of the semi-oval have increased and decreased magnitudes respectively. The zone of definition is decreased

respectively. Figure 7. For decreasing the damping factor ζ respectively, we observed that the response amplitude

r does not affected and the solutions are stable, Fig. 8. Figures 9 and 10 represent the variation of increasing the

coefficient of external excitation f. As f increasing respectively. The response amplitude r moves to the upper and

has stable single-valued curve. When f is increased further, the single-valued curve moved to the upper and the

region of definition is decreased, Fig. 9. As f increases, the semi-oval is contraction and the zones of definition

and multivalued are decreased, Fig. 10. When coefficient of cubic term µis increased respectively, the semi-oval

is contraction and moved to the down and the regions of multi-valued and definition are decreased, Fig. 11. For

decreasing the coefficient of cubic term µ respectively, the multivalued is decreased and the zones of stability and

definition are increased respectively, Fig. 12.

Figures 13–18 show the external excitation-response curves for the variation of the parameters τ, ζ, γ, and σ in

the case of subharmonic resonance and these figures represented the variation of the response amplitude (r) with the

coefficient of external excitation f . Figure 13, represent the variation of the time delay τ . As τ = 0, the response

amplitude r has two single-valued curves which are symmetric about f = 0 and the solutions are unstable. When

the time delay τ is increased further up to 0.78, the two single-valued curves have decreased unstable magnitudes.

For further increasing of the time delay τ up to 2, the single-valued curves have increasing magnitudes and there

exist stable and unstable solutions and both left and right branches have saddle-node bifurcations. Figures 14 and

15 represent the variation of increasing and decreasing the damping factor ζ. As ζ increases, the two branches

moves to the upper with increasing magnitudes and the zones of stability and definition are increasing and decreasing

respectively. As f increases with negative values, the left branch loses stability via a saddle-node bifurcation.

Also when f increases with positive values, the right branch loses stability via a saddle-node bifurcation. When ζ

increases further up to 6, the two single-valued curves moved to the upper with increasing stable magnitude. The

zone of definition is decreased and the zone of definition is decreased, Fig. 14. For decreasing ζ respectively, the

two single-valued curves do not affected and the solutions are unstable, Fig. 15. When the coefficient of quadratic

term γ is decreased respectively, the two curves move to the down with decreasing unstable magnitudes and the

region of definition is increased, Fig. 16. As the detuning parameter σ is increased respectively, the two symmetric

curves move to the upper with unstable increasing magnitudes respectively and the zones of definition are decreased

respectively, Fig. 17. For decreasing the detuning parameter σ respectively, we get the same variation as in Fig. 4

such that all the solutions are unstable, Fig. 18.
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Figures 19–24 show the frequency-response curve for the variation of the parameters τ, ζ, γ, and f in the case of

subharmonic resonance and these figures represent the variation of the amplitude (r) with the detuning parameter σ.

Figure 19, represent the variation of the time delay τ . When τ = 0, the response amplitude r has single-valued curve

which consisting of two branches. As σ increases from negative value (−10) respectively, we note that the response

amplitude r has decreased unstable magnitudes until it reach the value σ = 0 and as σ increases respectively, the

response amplitude r has increased unstable magnitudes respectively. When τ = 0.78, response amplitude r moves

to the upper with increased unstable magnitudes for the first branch in the interval [−10–2.5] and after this interval

it has decreased unstable magnitudes. For further increasing of the time delay τ up to 2, the response amplitude

rhas stable solutions through the interval [(−10)–(−5.5)] and after this interval the solutions are unstable. Figures 2

and 3, represent the variation of increasing and decreasing the damping factor ζ. When ζ is increased, the single-

valued curve moved to the upper with increasing magnitudes and as σ is increased from (−10), the single-valued

curve loses stability via a saddle-node bifurcation. When ζ increases further, the single-valued curve moved to the

upper with increasing stable magnitudes, Fig. 20. From Fig. 21, we observe that, the single-valued curve does not

affected by decreasing the factor ζ respectively and the solutions are unstable. As the coefficient of quadratic term

γ increases respectively, the single-valued curve moved to the upper with increasing unstable magnitudes and the

zone of definition is decreased respectively, Fig. 22. Figures 23 and 25 represent the variation of increasing the

coefficient of external excitation f. When f is increased respectively. the single-valued curve moved to the lower

with decreasing unstable magnitudes, Fig. 23. For increasing f respectively, we get the same variation as in Fig. 22,

Fig. 24.

5. Concluding remarks

The time delay in feedback control results in an infinite dimension for the controlled nonlinear system, and

increases dramatically the complexity of the numerical analysis for the system dynamics. The method of multiple

scales proves to be a powerful tool to gain insight into the fundamental and principal resonance of the system

has one-degree-of-freedom with weak nonlinearities and weak delay feedback. We have derived two-slow-flow

equations, governing the amplitude and phase of approximate long-time response of the oscillator. Determination

of various types of steady state motion is then reduced to solution of sets of algebraic equations. Condition for

existence of stable solution is determined. Solution of the frequency-response equation for the two cases shows the

following conclusions:

– The external excitation-response curves for the two cases are symmetric about f = 0.

– The external excitation-response curves does not affected by decreasing the damping factor.

– In the case of fundamental resonance, we note that the right branches have stable solutions.

– The frequency-response curves have stable solutions for the variation of the parameters τ, ζ, f and µ.

– The frequency- response curves for the two cases does not affected by decreasing the damping factor.
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