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Abstract

In high-dimensional regression, we attempt to estimate a parameter vector β0 ∈ Rp from
n . p observations {(yi,xi)}i≤n where xi ∈ Rp is a vector of predictors and yi is a response
variable. A well-established approach uses convex regularizers to promote specific structures
(e.g. sparsity) of the estimate β̂, while allowing for practical algorithms. Theoretical analysis
implies that convex penalization schemes have nearly optimal estimation properties in certain
settings. However, in general the gaps between statistically optimal estimation (with unbounded
computational resources) and convex methods are poorly understood.

We show that when the statistican has very simple structural information about the distribu-
tion of the entries of β0, a large gap frequently exists between the best performance achieved by
any convex regularizer satisfying a mild technical condition and either (i) the optimal statistical
error or (ii) the statistical error achieved by optimal approximate message passing algorithms.
Remarkably, a gap occurs at high enough signal-to-noise ratio if and only if the distribution of
the coordinates of β0 is not log-concave. These conclusions follow from an analysis of standard
Gaussian designs. Our lower bounds are expected to be generally tight, and we prove tightness
under certain conditions.
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1 Introduction

Consider the classical linear regression model

y = Xβ0 +w, (1.1)

where X ∈ Rn×p. The statistician observes y and X but not β0 or w, and she seeks to estimate
β0. We assume she approximately knows the `2-norm of the noise w and the empirical distribution
of the coordinates of β0 in senses we will make precise below.

We are interested in the high-dimensional regime in which p is comparable to n, and both
are large. In this regime, computational considerations are crucial: only estimators which can be
implemented by polynomial-time algorithms are relevant to statistical practice.

This paper develops precise lower bounds that characterize a broad class of estimators which
are attractive in large part for their computational tractability. These are penalized least-squares
estimators of the form:

β̂cvx ∈ arg min
β

{
1

n
‖y −Xβ‖2 + ρ(β)

}
, (1.2)

where ρ : Rp → R ∪ {∞} is a lower semi-continuous (lsc), proper, convex function. The penalty
ρ is selected to incorporate prior knowledge on the structure of β0 into the estimation procedure.
Convexity typically yields an estimator which is efficiently computable. Concretely, we address the
following question:

How well can we hope estimator (1.2) to perform in the high-dimensional regime by optimally
designing ρ? How does this performance compare to other polynomial-time algorithms and to
conjectured computational lower bounds?

The design of optimal penalties or loss functions was considered only when the distribution of
the noise or –in the case of Bayesian models– the prior had log-concave density with respect to
Lebesgue measure [BBEKY13, AG16]. Log-concavity excludes important structural assumptions
like sparsity, and, as we will show, is exactly the condition which leads to gaps between convex
procedures and important computational or information-theoretic benchmarks. Thus, the case of
non-log-concave priors is both practically important and algorithmically more subtle.

We will illustrate our conclusions with two small simulation studies.
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1.1 A surprise: Exact recovery of a vector from 3-point prior

Consider the case of noiseless linear measurements, namely w = 0 in Eq. (1.1). We assume that
the empirical distribution of β0 is known, and let S be the set of vectors with that empirical distri-
bution (i.e., vectors obtained by permuting the entries of β0). If we had unbounded computational
resources, we would attempt reconstruction by finding β ∈ S such that y = Xβ. If only one such
vector exists, then we are sure it coincides β0. Otherwise, exact recovery is impossible.

What is the best we can achieve by convex procedures and practical (polynomial-time) algo-
rithms? Most researchers with a knowledge of compressed sensing or high-dimensional statistics
would consider the following convex relaxation

find β ∈ conv(S) ,

subject to y = Xβ.
(1.3)

This is the tightest possible relaxation of the combinatorial constraint β ∈ S. It can be written in
the form (1.2), where, setting C := conv(S), the penalty is ρ(β) = IC(β), and IC(β) := 0 if β ∈ C,
IC(β) :=∞ otherwise.

Notice that the approach (1.3) is at least as effective as —for instance— basis pursuit [CD95],
which minimizes ‖β‖1 subject to y = Xβ. To see this, notice that (for a generic X) the approach
(1.3) fails if and only if there exists β∗ in the interior of conv(S) such that y = Xβ∗. Since
S ⊆ {β : ‖β‖1 ≤ ‖β0‖1}, this implies ‖β∗‖1 < ‖β‖1 and therefore basis pursuit fails as well.

Is replacing the combinatorial constraint S with its tightest convex relaxation C ≡ conv(S) the
best we can do? We report the results of a simulation study, with p = 2000, n = 0.4 · p = 800. We
generate a parameter vector β0 in which 0.75 · p = 1500 coordinates are equal to 0, 0.15p = 300
coordinates are equal to 0.2/

√
p, and 0.1 · p = 200 coordinates are equal to 1/

√
p. In particular,

the empirical distribution of the coordinates of
√
pβ0 is π := .75 · δ0 + .15 · δ0.2 + .1 · δ1, which is

far from being log-concave. We generate Gaussian features (Xij)i≤n,j≤p
iid∼ N(0, 1) and response y

according to linear model (1.1) with w = 0.
We attempt to recover β0 using two different methods: (i) an accelerated proximal gradient

method to solve (1.3), and (ii) a Bayes-optimal approximate message passing (Bayes-AMP) algo-
rithm at prior π (see Section 2.2). The former is a convex optimization method, while the latter is
an efficient but non-convex procedure. We generate 500 independent realizations of the data, and
for each realization, we attempt to recover β0 by each method. In Table 1, we report the percentage
of simulations in which full recovery was achieved by each method. For 498 of the 500 realizations of
the data, Bayes-AMP achieved full recovery; that is, β̂ = β0 up to machine precision. In contrast,
the convex procedure never fully recovered β0. We also report the median, minimal, and maximal
value of the relative estimation error ‖β̂ − β0‖2/‖β0‖22. The relative errors displayed indicate that
projection denoising never comes close to achieving exact recovery of the true parameter vector.

This study supports the perhaps surprising conclusion that estimator (1.3) is sub-optimal among
polynomial-time estimators for the task of noiseless recovery of a parameter vector whose coordi-
nates have known empirical distribution π. In fact, this paper rigorously establishes a substantially
more powerful conclusions, namely, that (i) any convex estimator of the form (1.2) will with high-
probability not only fail to recover the true signal, but also have estimation error lower-bounded
by a constant (we refer to Section 2 for precise asymptotic statements). This lower bound is re-
ported in Table 1. Thus, in this case full recovery is possible both information theoretically and
in polynomial-time but not via convex procedures. As we will see, this gap is driven by the non
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Projection Denoising Bayes-AMP

% Full Recovery 0.00 99.60
Median Est. Error 0.14 0.00

Min Est. Error 0.06 0.00
Max Est. Error 0.22 0.03

Theory Lower Bounds 0.06 0.00

Table 1: Percentage of simulations in which full recovery is achieved by convex projection (estimator
(1.3)) and by Bayes-AMP, as well as median, minimum, and maximum value of ‖β̂ − β0‖2/‖β0‖22
observed over 500 independent realization of the data. Full recovery for Bayes-AMP means β̂ = β0

up to machine precision. “Theory lower bounds” are high-probability asymptotic lower bounds on
‖β̂ − β0‖2/‖β0‖22 for any convex procedure (left) and for Bayes-AMP (right).

log-concavity of π. In fact, the convex estimator (1.3) is suboptimal with respect to `2-estimation
error even among convex procedures.

In contrast to convex procedures, Bayes-AMP achieves vanishingly small reconstruction error
in the current setting with probability approaching 1. Let us mention that for noiseless or nearly
noiseless observations, an alternative polynomial-time algorithm that achieves exact recovery for
discrete priors was recently developed in [DI17]. However, the approach of [DI17] does not apply
when the signal-to-noise ratio is of order one, which is the main focus of the present paper.

1.2 An example: Noisy estimation of a sparse vector

Gaps between the performance of convex procedures and optimal polynomial-time algorithm persist
in the presence of noise. They may also occur in regimes in which all known polynomial-time
algorithms are suboptimal information theoretically. To illustrate these claims, in Figure 1 we
report the results of a simulation study for p = 2000, n = 2000δ. We generated Gaussian features

(Xij)i≤n,j≤p
iid∼ N(0, 1), noise w ∼ Unif(

√
nσSn−1) the uniform distribution on the sphere of radius√

nσ in Rn, and β0 such that 0.1p coefficients are 1/
√
p, 0.1p coefficients are −1/

√
p, and 0.8p

coefficients are 0. Observe that the empirical distribution of the coordinates of
√
pβ0 is π :=

(ε/2)δ−1 + (1 − ε)δ0 + (ε/2)δ1 with ε = 0.2, which is of course non log-concave. We generated
response variables y according to the linear model (1.1) and attempted to estimate the parameter
vector β0 using two different methods: (i) a convex M-estimator of the form (1.2), with a penalty
ρ(β) which was carefully optimized for the prior π, (ii) an approximate message passing (AMP)
algorithm called Bayes AMP (which is optimal among AMP algorithms for the prior π, but not
always Bayes optimal).

The choice of Bayes-AMP as a reference algorithm is not arbitrary. It is in fact justified
by the following conjecture, which is motivated by ideas in statistical physics and has appeared
informally several times in the literature. In the context of statistical estimation problems arising
in information theory, this conjecture appears in Chapters 15 and 21 of [MM09]. For tutorials
discussing it in the context of statistical estimation, see Sections III E and IV B of [ZK15]; Sections
4.2 and 4.3 of [BPW18]. For recent contributions mentioning this idea or analogous ones in the
context of matrix estimation, see [BMDK17, LM19, BMR21].

Conjecture 1.1. Consider the problem of estimating β0 in the linear model (1.1) with standard

Gaussian features (Xij)i≤n,j≤p
iid∼ N(0, 1), noise (wi)i≤n

iid∼ N(0, σ2) with σ > 0, and coefficients
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Figure 1: Median squared error of estimation in high-dimensional regression. Symbols refer to
simulations for two different polynomial-time algorithms. Crosses: M-estimator (1.2) for a certain
optimized penalty ρ(β). Circles: Bayes-Approximate Message Passing. Dashed and solid lines
correspond to our theoretical predictions for the asymptotic behavior of these algorithms. Dotted
line corresponds to the asymptotics of the Bayes error. See main text for further details.

such that (
√
pβ0,i)i≤p

iid∼ π, with π a distribution with finite second moment. Assume π is known to
the statistician. Then Bayes-AMP achieves the minimum mean square estimation error among all
polynomial-time algorithms in the limit n, p→∞ with n/p→ δ fixed.

We plot the median error under square loss achieved by these two estimators, as a function of
the noise level, for four values of δ = n/p. We also plot: (i′) the asymptotic Bayes risk, as predicted
by [TAH18, BMDK17, BKM+19] (see Section 3.2); (ii′) the predicted performance of Bayes-AMP
(see Section 2.2); (iii′) our lower bound on the risk of convex M-estimators (cf. Theorem 1). Three
qualitatively different behaviors can be discerned:

• For δ = 0.45, optimal convex M-estimators matches the performance of Bayes-AMP, and they
are both substantially suboptimal with respect to Bayes estimation.

• For δ ∈ {0.5, 0.6}, optimal convex M-estimation is suboptimal compared to Bayes AMP, and
–in turn– they are both inferior to Bayes estimation.

• For δ = 0.75, Bayes-AMP is Bayes optimal for all noise levels σ, and both Bayes-AMP and
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Bayes estimation are superior to optimal convex M-estimation.

We further note that our lower bound for convex M-estimation is nearly matched by the error
achieved by the specific regularizer used in simulations. Our results rigorously establish the exis-
tence of these three qualitative behaviors, and, as we will see, are driven by the non log-concavity
of π convolved with various levels of Gaussian noise. Moreover, our convex lower bounds appear
to be tight and are consistent with the conjectured computational lower bound achieved by Bayes
AMP.

1.3 Summary of contributions

The present paper establishes the scenario illustrated by Figure 1 and Table 1 in a precise way.
Our results hold for the case of standard Gaussian features. Since convex regularizers are thought
to perform well in this setting, establishing lower bounds in this case is particularly informative.
Namely:

1. We prove that, for any given convex penalty, a solution to a certain system of equations
provides a lower bound on the asymptotic estimation error achieved by this penalty. Further,
this lower bound is tight –and hence precisely characterizes the asymptotic mean square error–
if the penalty ρ is strongly convex.

2. We prove the lower bound on the error of any convex M-estimator plotted in Figure 1 and
reported in Table 1. This lower bound applies to both log-concave and non log-concave priors
for β0.

3. We prove that the three behaviors illustrated by Figure 1 are the only possible and that they
indeed occur. Namely, the Bayes error is smaller than the Bayes-AMP error, and sometimes
strictly smaller, and the Bayes-AMP error is always smaller than the convex M-estimation
error, and sometimes strictly smaller.

4. The occurrence of these three phases is determined by the log-concavity or not of the prior
convolved with Gaussian noise at a certain variance which we specify. Importantly, non-trivial
phase diagrams occur exactly when the prior is non log-concave. In particular, we provide a
nearly complete characterization of when convex M-estimation achieves Bayes-optimal error,
and when it does not. In order get a quantitative understanding on the statistical-convex
gap, we characterize it in the high and low signal-to-noise ratio regimes.

5. Finally, our general lower bound holds under a certain technical condition on the regularizers
ρ, which we call δ-bounded width. We illustrate our results by considering a number of con-
vex penalties introduced in the literature, including separable penalties, convex constraints,
SLOPE, and OWL norms. We show that, in each of these cases, the bounded width condition
holds.

Our work is consistent with Conjecture 1.1 in showing that no convex M-estimator of the form (1.1)
can surpass the postulated lower bound on polynomial-time algorithms. Further, we believe that
the characterization mentioned at the first point holds beyond strongly convex penalties: since we
are mostly interested in the lower bound, we do not attempt to prove such general result.

The asymptotic characterization of Bayes-AMP is completely explicit and can be easily eval-
uated, hence it can provide concrete guidance in specific problems. We expect that universality
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arguments [KM11, BLM15, OT18] can be used to show that the same asymptotics hold for iid
non-Gaussian features.

Finally, let us emphasize that we do not advocate the dismissal of convex penalization method
in favor of other approaches, such as message passing algorithms. Convex algorithms present strong
robustness properties that are practically important and not captured by our setting. At the same
time, our work points at directions for improving their statistical properties. For instance, Section
5 shows that a suitable post-processing of a convex M-estimator can nearly bridge the gap to
information-theoretically optimal performance in a large sample size regime (namely for n/p large
but of order one).

1.4 Related literature

By far the best-studied estimator of the form (1.2) is the Lasso [Tib96, CD95], which corresponds
to the penalty ρ(β) = λ‖β‖1. An impressive body of theoretical work supports the conclusion
that the Lasso achieves nearly optimal performances when we know that the true vector β0 is
sparse [CT05, CT07, BRT09, vdGB09]. Our main conclusion is that, if we attempt to exploit
richer information about the empirical distribution of the coefficients (β0,j)j≤p, then not only the
Lasso, but also any convex estimator (1.2) is substantially suboptimal as compared to the Bayes
error or other polynomial-time algorithms. On the other hand, convex estimators are optimal if
the coefficients distribution is log-concave.

Our work builds on a series of recent theoretical advances. First, we make use of the sharp
analysis of AMP algorithms using state evolution which was developed in [Bol14, BM11, JM13]. In
particular, the recent paper [BMN19] proves that state evolution holds for certain classes of non-
separable nonlinearities. This is particularly relevant for the present setting, since we are interested
in non-separable penalties ρ(β).

The connection between M-estimation and AMP algorithms was first developed in [DMM09]
and subsequently used in [BM12] to characterize the asymptotic mean square error of the Lasso
for standard Gaussian designs. The same approach was subsequently used in the context of robust
regression in [DM16]. AMP algorithms were developed and analyzed for a number of statistical
estimation problems, including generalized linear models [Ran11], phase retrieval [SR15, MXM19],
and logistic regression [SC19].

A different approach to sharp asymptotics in high-dimensional estimation problems makes use
of Gaussian comparison inequalities. This line of work was pioneered by Stojnic [Sto13] and then
developed by a number of authors in the context of regularized regression [TOH15], M-estimation
[TAH18], generalized compressed sensing [CRPW12], binary compressed sensing [Sto10], the Lasso
[MM18], and so on.

An independent approach to high-dimensional estimation based on leave-one-out techniques
was developed by El Karoui in the context of ridge-regularized robust regression [EK13, EK18].
Closely related to the present work is the paper [BBEKY13], which considers convex M-estimation,
and constructs separable convex losses that match the Bayes optimal error in settings in which the
noise distribution is log-concave and hence the gap between the two vanishes. Our work extends
this analysis to cases in which log-concavity assumptions are violated so that the Bayes error cannot
be achieved. In this paper, we focus on the role of regularization rather than the loss function,
though we suspect similar analyses should be possible for general convex losses. Optimal convex
M-estimators were also studied —using tools from statistical physics— in [AG16].

As mentioned above, we compare the performance of convex M-estimators to the optimal Bayes
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error and conjectured computational lower bounds. The asymptotic value of the Bayes error for
random designs was recently determined in [BDMK16, RP16]. Generalizations of this result were
also obtained in [BKM+19] for other regression problems.

Finally, the gap between polynomial-time algorithms and statistically optimal estimators has
been studied from other points of view as well. It was noted early on that constrained least square
methods (which exhaustively search over supports of given size) perform accurate regression under
weaker conditions than required by the Lasso [Wai09]. Strong lower bounds for compressed sensing
reconstruction were proved in [BIPW10] using communication complexity ideas. Gamarnik and
Zadik [DI17] study the case of binary coefficients, namely β0 ∈ {0, 1}p, and standard Gaussian de-
signs X. They prove existence of a gap between the maximum likelihood estimator (which requires
exhaustive search over binary vectors) and the Lasso. They argue that the failure of polynomial-
time algorithms originates in a certain ‘overlap gap property’ which they also characterize. Further
implications of this point of view are investigated in [GZ17]. After a preprint of this paper appeared
online, further work studied the design of optimal penalties and loss functions in classification mod-
els and analyzed the achievability of Bayes optimal performance [MKL+20, TPT20, TPT21].

1.5 Notations

The Euclidean norm of a vector x ∈ Rp is denoted by ‖x‖ := ‖x‖2. The operator and nuclear
norms of a matrix X ∈ Rn×p are denoted by ‖X‖op and ‖X‖nuc, respectively. We denote by Sk+
the set of k × k positive semi-definite matrices.

Subscripts under the expectation or probability sign, e.g. Eβ0,z and Pβ0,z indicate the variables
which are random. We denote by Pk(R) the collection of Borel probability measures on R with finite
k-th moment. For a distribution π ∈ Pk(R), we will denote by s`(π) the `-th moment of π. We will
often extend a distribution π ∈ Pk(R) to a distribution on Rp by taking β0 = (β0j)j≤p ∈ Rp with

coordinates such that (
√
pβ0j)j≤p

iid∼ π. We will write this succinctly as β0j
iid∼ π/

√
p. Under this

normalization, Eβ0
[‖β0‖2] = s2(π) does not depend on p. We reserve z and z to denote Gaussian

random variables and vectors, respectively. We will always take z ∼ N(0, 1) and z ∼ N(0, Ip/p).
Convolution of probability measures will be denoted by ∗.

We define the Wasserstein distance between two probability measures π, π′ ∈ P2(R) by

dW(π, π′) = inf
X,X′

(
EX,X′

[
(X −X ′)2

])1/2
, (1.4)

where the infimum is taken over joint distributions of random variables (X,X ′) with marginal
distributions X ∼ π and X ′ ∼ π′. It is well known that this defines a metric on P2(R) [San15].

Convergence in Wasserstein metric will be denoted
W→, and we use

p→,
as→,

d→ for other standard
notions of convergence. For any sequence of real-valued random variables {Xp}, not necessarily
defined on the same probability space, we denote

p

lim inf
p→∞

Xp = sup
{
t ∈ R

∣∣∣ lim
p→∞

P (Xp < t) = 0
}
,

and
p

lim sup
p→∞

Xp = −
p

lim inf
p→∞

(−Xp). For sequences {Xp} and {Yp} of real-valued random variables

such that, for each p, Xp and Yp are defined on the same probability space, we use the notation

Xp
p
' Yp to denote |Xp − Yp|

p→ 0.

9



We adopt the convention that when the minimizing set in (1.2) is empty, β̂cvx = ∞ and
‖∞− x‖ =∞ for any x ∈ Rp. Thus, the estimation error is infinite when no minimizer exists.

Finally, a collection of functions {ϕ : (Rp)` → Rm}, where p and m but not ` may vary, is said
to be uniformly pseudo-Lipschitz of order k if for all ϕ and xi,yi ∈ Rp, i = 1, . . . , `, we have

‖ϕ(x1, . . . ,x`)− ϕ(y1, . . . ,y`)‖ ≤ C

(
1 +

∑̀
i=1

‖xi‖k−1 +
∑̀
i=1

‖yi‖k−1

)∑̀
i=1

‖xi − yi‖, (1.5)

for some C which does not depend on p,m.

2 The convex lower bound, the risk of Bayes-AMP, and the Bayes
risk

In this section, we present a rigorous lower bound on the `2 estimation error of convex M-estimators
of the form (1.2) under proportional asymptotics, Gaussian noise, and structural assumptions on
the unknown parameter β0. A primary focus will be comparing the convex lower bound to two
important benchmarks which have been studied elsewhere [RP16, BDMK16, BKM+19]:

• Risk of Bayes-AMP: The `2-estimation error of a certain message passing algorithm con-
jectured to be optimal among all polynomial-time algorithms (see Conjecture 2.5).

• Bayes risk: The optimal risk over all (possibly computationally unbounded) estimators
under a certain Bayesian model for the signal.

Before defining these quantities precisely, we may summarize the comparison we will establish by

Convex
Lower Bound

≥ Risk of
Bayes AMP

≥ Bayes Risk.

While the second inequality holds by the statistical optimality of the Bayes risk, the first is non-
trivial. Previous work established exactly when the second inequality is strict [BKM+19]. We
will likewise specify exactly when the first inequality is strict. Previous work has only considered
optimal convex estimation in regimes in which strict inequality does not occur [BBEKY13, AG16].

Precisely, we study these three quantities under a certain high-dimensional proportional asymp-
totics for model (1.1).

High Dimensional Asymptotics (HDA)
The design matrix satisfies the following assumptions.

• The sample size and number of parameters n, p → ∞ satisfy n/p → δ ∈ (0,∞), a fixed
asymptotic aspect ratio.

• The matrix X has entries Xij
iid∼ N(0, 1).

Further, we introduce two sets of assumptions on the unknown parameter β0 and the the noise w.

Deterministic Signal and Noise (DSN)
For each p and n, we have deterministic parameter vector β0 ∈ Rp and noise vector w ∈ Rn.
For some π ∈ P2(R) and σ2 ≥ 0, these satisfy

π̂β0
:=

1

p

p∑
j=1

δ√pβ0j
W→ π and

1

n
‖w‖2 → σ2. (2.1)

10



Random Signal and Noise (RSN) Assumption
For each p and n, we have random parameter vector β0 ∈ Rp and noise vector w ∈ Rn
satisfying

β0j
iid∼ π/

√
p, w ∼ N(0, σ2In), (2.2)

where π ∈ P2(R) and σ2 ≥ 0 do not depend on p.

When necessary to indicate where β0 w fall in the sequence of realizations with growing dimensions,
we include indices as β0(p) and w(p).

Under the DSN assumption, we will establish a convex lower bound for symmetric convex
penalties; that is, penalties which are invariant to permutation of the coordinates of their argument.
The DSN assumption specifies the limiting empirical distribution of the coordinates of β0, which
captures structural information, like sparsity, which is permutation invariant. Nevertheless, the
lower bound applies also to models in which additional information about the order in which the
coordinates appear is available: for example, the statistician may know that the coordinates are
monotone, have sparse first differences, or satisfy other smoothness conditions. The lower bound
—which applies only to symmetric convex penalties— describes a limitation of convex procedures
which fail to exploit such information.

In contrast, under the RSN assumption, we will establish a convex lower bound for arbitrary
convex penalties. Here, the statistician can exploit all available information. But because she has
no prior knowledge about the ordering of the coordinates of β0, she cannot benefit from asymmetric
procedures.

The two sets of assumptions are complementary, differing in how they impose symmetry on the
problem: either through the method or through the model. It turns out that the lower bound on
the estimation error under the two sets assumptions is the same.

We only make comparisons to information theoretic lower bounds —that is, the Bayes risk—
under the RSN assumption. Indeed, the RSN assumption is needed for the Bayes risk to be
meaningful.

2.1 The convex lower bound

The convex lower bound is defined via a comparison of the linear model (1.1) to a simpler Gaussian
sequence model. In the sequence model, we observe

yseq = β0 + τz, (2.3)

where β0j
iid∼ π/

√
p, z ∼ N(0, Ip/p) independent, and τ2 ≥ 0. Analogously to (1.2), we consider

convex M-estimators in the sequence model, also known as proximal operators:

β̂seq := arg min
β

1

2
‖yseq − β‖2 + λρ(β) =: prox[λρ](yseq). (2.4)

By strong convexity, when ρ is lower semi-continuous and proper, the minimizer exists and is unique
[PB13].

A large body of work exactly characterizes the estimation error of the estimators (1.2) in the
linear model in terms of the behavior of the estimators (2.4) in the sequence model [BM12, DM16,
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EKBB+13, EK13, TOH15, TAH18]. A typical characterization takes the following form. For a
sequence of penalties {ρp}, let (τ, λ) solve

δτ2 − σ2 = lim
p→∞

Ez[‖prox[λρp](β0 + τz)− β0‖2], (2.5a)

2λ

(
1− 1

δτ
lim
p→∞

Ez[〈z, prox[λρp](β0 + τz)〉]
)

= 1. (2.5b)

Then under the HDA and DSN assumption,

‖β̂cvx − β0‖2
p→ δτ2 − σ2 = Ez[‖prox[λρp](β0 + τz)− β0‖2]. (2.6)

In words, the `2 estimation error in the linear model asymptotically agrees with the `2 risk in the
sequence model at noise variance τ2 and regularization λ. Substantial effort is required to make
this rigorous, and many technical assumptions are required. For example, some work requires
strong-convexity assumptions on the cost function (1.2) [DM16, EK13]; other work involves analysis
tailored to a specific penalty like the LASSO or SLOPE [BM12, BKRS21]. We instead provide a
lower bound on the estimation error of estimators (1.2) which holds simultaneously for a large class
of penalties. We rely on weak assumptions—weaker than what is needed for exact characterizations
using existing techniques. At a high level, the lower bound follows from controlling the possible
solutions to Eq. (2.5) and applying exact characterization results.

Denote by Cp ⊆ {ρ : Rp → R ∪ {∞}} any collection of lsc, proper, and convex functions which
is closed under scaling; that is, ρp ∈ Cp implies λρp ∈ Cp for all λ > 0. Denote by C the collection
of sequences {ρp}p such that ρp ∈ Cp for all p. We will mostly be interested in two cases: either C
consists of all the sequences of convex functions, or it consists of all convex symmetric functions.

The optimal risk of convex M-estimation using collection Cp in the sequence model is

Ropt
seq,cvx(τ ;π, p) := inf

ρ∈Cp
Eβ0,z

[
‖prox[ρ](β0 + τz)− β0‖

2
]
, (2.7)

where β0, z are as in (2.3), and the optimal asymptotic risk using the sequences in C is

Ropt
seq,cvx(τ ;π) = lim inf

p→∞
Ropt
seq,cvx(τ ;π, p) = inf

{ρp}∈C
lim inf
p→∞

Eβ0,z

[
‖prox[ρp](β0 + τz)− β0‖

2
]
. (2.8)

We will study a quantity similar to (2.8) in the linear model (1.1) except that the infimum is taken
over a slightly more restrictive collection, which we now define.

Definition 2.1. For π ∈ P2(R) and δ ∈ (0,∞), we say a sequence of lsc, proper, convex functions
{ρp} has δ-bounded width at prior π, if the following holds:

for all compact T ⊂ (0,∞), there exists λ̄ = λ̄(T ) <∞ such that

lim sup
p→∞

sup
λ>λ̄,τ∈T

1

τ
Eβ0,z [〈z, prox [λρp] (β0 + τz)〉] < δ.

(2.9)

For a collection of penalty sequences C, we denote by Cδ,π the subset of sequences that satisfy this
condition.
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The terminology here is motivated by the resemblance of condition (2.9) with the Gaussian
width of convex cones [CRPW12, ALMT14], see Section 6.2. It is straightforward to show that for
δ > 1 and any π ∈ P2(R), all sequences of penalties have δ-bounded width at π (see Section O,
Eq. (O.11) of the Supplementary Material [CM21]). Thus,

Cδ,π = C if δ > 1. (2.10)

The convex lower bound we establish in the next theorem applies to sequences of penalties in Cδ,π.

Theorem 1. Fix π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. Define

τ2
reg,cvx = sup

{
τ2
∣∣∣ δτ2 − σ2 < Ropt

seq,cvx(τ ;π)
}
. (2.11)

Under the HDA and RSN assumptions,1

inf
{ρp}∈Cδ,π

p

lim inf
p→∞

‖β̂cvx − β0‖2 ≥ δτ2
reg,cvx − σ2. (2.12)

If C contains only symmetric penalties, then the preceding display holds also under DSN assumption.
(Note that we may have τ2

reg,cvx =∞.)
In both cases, for δ > 1, the infimum can be taken over the full collection C (instead of Cδ,π),

and the lower bound is tight.

The proof of Theorem 1 is provided in Section E of the Supplemenatary Material [CM21]. In Section
6, we argue through examples that Cδ,π includes most, if not all, reasonable penalty sequences.
Section I of the Supplementary Material [CM21] discusses the role of the restriction to Cδ,π. Because
Ropt
seq,cvx(τ ;π) is continuous in τ whenever C is such that τ2

reg,cvx is finite (see Lemma C.2 of the

Supplementary Material [CM21]), we will always have δτ2
reg,cvx − σ2 = Ropt

seq,cvx(τreg,cvx;π) in this
case. Thus, Theorem 1 should be interpreted as stating:

Optimal convex M-estimation in the linear model is no better than optimal convex M-estimation
in the sequence model at noise variance τ2

reg,cvx.

Importantly, the convex lower bound applies even when π is not log-concave.
Although Theorem 1 applies to any potentially restricted collection C of convex penalty se-

quences, our main interest is to apply it to the largest possible collections. This is because we
are interested in studying fundamental barriers to regression with any convex estimators of the
form (1.2). Thus, for the remainder of the paper we will consider only two cases: under the RSN
assumption, we will consider C to contain all sequences of convex penalties. In this case, {ρp} ∈ Cδ,π
contains any sequence of penalties satisfying (2.9). Under the DSN assumption, we will consider
C to contain all sequences of symmetric convex penalties. In this case, {ρp} ∈ Cδ,π contains any
sequence of symmetric penalties satisfying (2.9). The convex lower bound in these two cases is the
same.

Proposition 2.2. The parameter τ2
reg,cvx defined with C all sequences of convex penalties or with C

all sequences of symmetric convex penalties agree.

1When the minimizing set has multiple elements, we make no assumption on the mechanism used to break ties.
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Although we consider two cases throughout the remainder of the paper, there is only one funda-
mental convex lower bound, and it applies to both cases. In the first case—that described by the
RSN assumption—the statistician has no information about the order in which the coordinates of
the unknown parameter occur, and the convex lower bound applies to any convex procedure. In
the second case—that described by the DSN assumption—the statistician may have information
about the order in which the coordinates of the unknown parameter occur, and the convex lower
bound applies only to symmetric convex procedures. Thus, the convex lower bound applies either
to settings in which information about the order of the coordinates is not available or to settings
where such information is not exploited.

2.2 The risk of Bayes AMP

Bayes AMP, which we define below, is a fast iterative scheme for performing estimation in model
(1.1). Analogously to the convex lower bound, its estimation error is defined via a comparison of
the linear model (1.1) to the sequence model (2.3). In particular, define

mmseπ(τ2) = Eβ0,z[(Eβ0,z[β0|β0 + τz]− β0)2], (2.13)

for random scalars β0 ∼ π, z ∼ N(0, 1) independent. Because

mmseπ(τ2) = Eβ0,z

[∥∥Eβ0,z [β0|
√
pβ0 + τz]− β0

∥∥2
]
, (2.14)

we see that mmseπ(τ2) is analogous to (2.7) except that the infimum is taken over all estimators,
not just those in a restricted class. Finally, analogous to (2.11), define

τ2
reg,amp∗ := sup

{
τ2
∣∣∣ δτ2 − σ2 ≤ mmseπ(τ2)

}
. (2.15)

Note that because mmseπ(τ2) is continuous in τ [DYSV11],

δτ2
reg,amp∗ − σ2 = mmseπ(τ2

reg,amp∗). (2.16)

As we will see, Bayes AMP asymptotically achieves estimation error arbitrary close to δτ2
reg,amp∗ −

σ2 = mmseπ(τ2
reg,amp∗) in time O(np). That is,

Bayes AMP in the linear model is exactly as good as Bayesian estimation in the sequence
model at noise variance τ2

reg,amp∗.

Thus, a comparison of the convex lower bound and the risk of Bayes AMP reduces to a comparison
of the parameters τ2

reg,cvx and τ2
reg,amp∗. The following corollary of Theorem 1 establishes under

generic conditions, the convex lower bound is no smaller than the estimation error of Bayes AMP,
consistent with conjectured optimality of Bayes AMP among polynomial time algorithms.

Corollary 2.3. For any π ∈ P2(R),

τ2
reg,cvx ≥ τ2

reg,amp∗ (2.17)

holds for almost every value of δ, σ (w.r.t. Lebesgue measure). In fact, for any fixed σ, it holds for
almost all values of δ, and for any fixed δ, for almost all values of σ.
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For such values δ, σ, under the HDA and RSN assumptions, then

inf
{ρp}∈Cδ,π

p

lim inf
p→∞

‖β̂cvx − β0‖2 ≥ δτ2
reg,amp∗ − σ2. (2.18)

If C contains only symmetric penalties, then the preceding display holds instead under DSN assump-
tion.

Proof of Corollary 2.3. Define

τ2
reg,amp = sup

{
τ2
∣∣∣ δτ2 − σ2 < mmseπ(τ2)

}
. (2.19)

In Section L of the Supplementary Material [CM21], we show that for any π ∈ P2(R), the equality
τ2
reg,amp = τ2

reg,amp∗ holds for almost every value of δ, σ (w.r.t. Lebesgue measure). In fact, for any
fixed σ, it holds for almost all values of δ, and for any fixed δ, for almost all values of σ. Thus, we
only need to establish the result for τ2

reg,amp in place of τ2
reg,amp∗.

By (2.7) and (2.14), we have mmseπ(τ2) ≤ Ropt
seq,cvx(τ ;π, p). By (2.8)), we obtain mmseπ(τ2) ≤

Ropt
seq,cvxτ ;π). Thus, the set

{
τ2 | δτ2 − σ2 < mmseπ(τ2)

}
⊆
{
τ2 | δτ2 − σ2 < Ropt

seq,cvx(τ
2;π)

}
, and

(2.17) follows from (2.11) and (2.19). Theorem 1 then gives (2.18).

In the remainder of this section, we describe the Bayes AMP algorithm and formally charac-
terize its risk. Bayes AMP and its characterization via state evolution has been derived elsewhere
[DMM10, BKM+19]. Define the scalar iteration

τ2
0 =

1

δ

(
σ2 + s2(π)

)
, (2.20a)

τ2
t+1 =

1

δ

(
σ2 + mmseπ

(
τ2
t

))
. (2.20b)

Moreover, let

ηt(y) = Eβ0,z[β0|β0 + τtz = y] (2.21a)

where β0 ∼ π, z ∼ N(0, 1) are independent. Define

bt =
1

δ
Eβ0,z

[
η′t−1 (β0 + τt−1z)

]
, (2.22)

where η′t a weak derivative of ηt. For each p, define ηt : Rp → Rp by

ηt(x)j =
1
√
p
ηt(
√
pxj), (2.23)

where for convenience, we use the same notation ηt for the multivariate and scalar functions. They
are distinguished by the nature of their argument. The Bayes-AMP iteration is

rt =
y −Xβ̂

t

n
+ btr

t−1,

β̂
t+1

= ηt

(
β̂
t
+XTrt

)
,

(2.24)

with initialization β̂
0

= 0, r−1 = 0. For any fixed t, we may compute β̂
t

in O(np) time. The

following proposition characterizes the asymptotic loss of β̂
t

as an estimator of β0.
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Proposition 2.4. Fix π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. Assume s2(π) > 0. Consider τt

as defined by (2.20) and β̂
t

as defined by (2.24). Under the HDA and either the DSN or RSN
assumptions, for any fixed t we have

p

lim
p→∞

‖β̂
t
− β0‖2 = mmseπ

(
τ2
t

)
(2.25)

Further,
lim
t→∞

τ2
t = τ2

reg,amp∗. (2.26)

In particular, for all ε > 0, there exists t fixed such that

p

lim
p→∞

‖β̂
t
− β0‖2 ≤ δτ2

reg,amp∗ − σ2 + ε. (2.27)

Proposition 2.4 states that the state evolution (2.20) characterizes the large n, p behavior of Bayes
AMP. It follows from standard results in the AMP literature [BM11]. A minor technical difficulty
is that the main theorem of [BM11] requires Lipschitz non-linearities in the AMP iteration. The
Bayes estimator ηt need not be Lipschitz. Thus, to apply the results of [BM11], we must use a
truncation trick. Though this is a routine proof, we are unaware of a result that immediately implies
Proposition 2.4. For completeness, we provide this argument in Section L of the Supplementary
Material [CM21].

Proposition 2.4 shows that a polynomial-time (in fact, linear time) algorithm exists which
achieves asymptotic loss arbitrarily close to δτ2

reg,amp∗ − σ2. As discussed in the introduction, we
do not know of any polynomial-time algorithm that achieves asymptotic risk below δτ2

reg,amp∗− σ2.
Below is a more precise restatement of Conjecture 1.1.

Conjecture 2.5. Fix π ∈ P2(R), δ ∈ (0,∞), and σ > 0. Under the HDA and RSN assumptions
at π, δ, σ, no polynomial-time algorithm achieves asymptotic risk smaller than δτ2

reg,amp∗ − σ2.

2.3 The Bayes risk

The information theoretic lower bound under the RSN assumption is the Bayes risk

Eβ0,w,X

[
‖Eβ0,w,X [β0|y,X]− β0‖2

]
,

which cannot be outperformed even in finite samples. In this section, we recall recent results on
the asymptotic value of the Bayes risk on the HDA and RSN assumptions.

Define the potential

φ(τ2;π, δ, σ) =
σ2

2τ2
− δ

2
log

(
σ2

τ2

)
+ i(τ2), (2.28)

where i(τ2) is the base-e mutual information between β0 and y in the univariate model y = β0 + τz
when β0 ∼ π, z ∼ N(0, 1) independent. That is,

i(τ2) = Eβ0,z
[
log

p(y|β0)

p(y)

]
= −1

2
− Eβ0,z log

{∫
e−

1
2

(y−β/τ)2π(dβ)

}
. (2.29)

Also define
τreg,stat(π; δ, σ) = arg min

τ≥0
φ(τ2;π, δ, σ), (2.30)
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whenever π, δ, and σ are such that the minimizer is unique. The derivative of φ will be useful in
what follows. It is

d

dτ−2
φ(τ2;π, δ, σ) =

1

2

(
σ2 − δτ2 + mmseπ(τ2)

)
, (2.31)

where we have used that d
dτ−2 i(τ

2) = 1
2mmseπ(τ2) by [DYSV11, Corollary 1]. We see that if

τreg,stat > 0, then
δτ2

reg,stat − σ2 = mmseπ(τ2
reg,stat). (2.32)

Equation (2.32) is closely related to (2.19). The next result relates the effective noise parameter
τreg,stat to the asymptotic Bayes risk in model (1.1) under the RSN assumption.

Proposition 2.6 (Theorem 2 of [BKM+19]). Fix π ∈ P∞(R), δ ∈ (0,∞), and σ > 0. Under the
HDA and RSN assumptions,

lim
p→∞

Eβ0,w,X

[
‖Eβ0,w,X [β0|y,X]− β0‖2

]
= mmseπ(τ2

reg,stat) = δτ2
reg,stat − σ2, (2.33)

whenever the minimizer in (2.30) is unique. This occurs for almost every (δ, σ) (w.r.t. Lebesgue
measure).

This is a specific case of Theorem 2 of [BKM+19]. We carry out the conversion from their notation
to ours in Section L of the Supplementary Material [CM21]. This result was previously established
under slightly less general conditions in [TAH18, BMDK17]. In particular, Proposition 2.6 states
that:

Bayesian estimation in the linear model is exactly as good as Bayesian estimation in the
sequence model at noise variance τ2

reg,stat.

Thus, a comparison of the convex lower bound, the risk of Bayes AMP, and the Bayes risk reduces to
a comparison of the noise variances τ2

reg,cvx, τ
2
reg,amp∗, and τ2

reg,stat. Because it is simply a lower bound,
the convex lower bound could plausibly sometimes be smaller than the Bayes risk. Fortunately,
this does not occur:

Corollary 2.7. For all π, δ, σ, we have

τ2
reg,cvx ≥ τ2

reg,stat. (2.34)

Proof. The inequality τ2
reg,cvx ≥ τ2

reg,amp holds because the supremum in (2.19) is taken over a subset
of the supremum in (2.11). Thus, it suffices to show τ2

reg,amp ≥ τ2
reg,stat. For τ ′ < τreg,stat,

φ(τreg,stat;π, δ, σ) < φ(τ ′;π, δ, σ) (2.35)

= φ(τreg,stat;π, δ, σ) +
1

2

∫ τ ′−2

τ−2
reg,stat

(
σ2 − δτ2 + mmseπ(τ2)

)
dτ−2. (2.36)

Thus, the integral in the previous display must be positive for all τ ′ < τreg,stat, which implies there

exists τ ′ < τreg,stat arbitrarily close to τreg,stat for which δτ ′2−σ2 < mmseπ(τ ′2). By (2.19), we have
τreg,amp ≥ τreg,stat, as desired.
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3 Log-concavity and convex-algorithmic-statistical gaps

The results in the preceding section establish that (i) if τ2
reg,cvx > τ2

reg,amp∗, there is a gap between
the asymptotic estimation error achieved by convex M-estimators (1.2) and that achieved by Bayes
AMP, and (ii) for generic (δ, σ) (i.e., those for which the minimizer in (2.30) is unique), if τ2

reg,cvx >
τ2
reg,stat, there is a gap between the asymptotic estimation error achieved by convex M-estimators

(1.2) and that achieved by information theoretically optimal estimation. Two important questions
remain.

1. Is the converse true? Namely, if τ2
reg,cvx = τ2

reg,amp∗ or τ2
reg,cvx = τ2

reg,stat, is convex M-estimation
as good as Bayes AMP or Bayesian estimation?

2. Can we provide more interpretable conditions which determine whether the strict inequalities
τ2
reg,cvx > τ2

reg,amp∗ and τ2
reg,cvx > τ2

reg,stat occur?

It turns out that the condition we provide to answer the second question will provide an affirmative
answer to the first question. In particular, we will show that τ2

reg,cvx = τ2
reg,amp∗ (resp. τ2

reg,cvx =
τ2
reg,stat) if and only if π∗N(0, τ2

reg,amp∗) (resp. π∗N(0, τ2
reg,stat)) is log-concave. Moreover, while when

δ ≤ 1 we do not guarantee the tightness of the convex lower bound generally, we will guarantee
its tightness in the case that π ∗ N(0, τ2

reg,cvx) is log-concave. Because τ2
reg,cvx = τ2

reg,amp∗ implies
π∗N(0, τ2

reg,amp∗), and hence π∗N(0, τ2
reg,cvx), is log-concave, it also implies that convex M-estimation

is as good as Bayes AMP. A similar line of reasoning follows when τ2
reg,cvx = τ2

reg,stat. Thus, the
converse described in the first question indeed holds.

Before describing this argument in detail, we remark that when π itself is log-concave, π∗N(0, τ2)
is log-concave for all τ2. In this case, the convex lower bound, the risk of Bayes AMP, and the
Bayes risk agree for all values of σ, δ. Moreover, in this case the convex lower bound is always tight,
so that convex M-estimators (1.2) always achieve information theoretically optimal performance.
In contrast, we will show that when π is not log-concave, there exist values of σ, δ for which the
convex lower bound is strictly larger than the the risk of Bayes AMP and the Bayes risk. Thus,
non-trivial performance of convex M-estimation relative to computational and information-theoretic
benchmarks occurs exactly when π is not log-concave.

Proposition 3.1. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ ≥ 0. If C consists of all sequences of
convex penalties, the following statements hold under the HDA and RSN assumptions; if C consists
of all sequences of symmetric convex penalties, we may replace the RSN by the DSN assumption.

(i) If τ ≥ 0 is such that π ∗ N(0, τ2) has log-concave density (w.r.t. Lebesgue measure) and
δτ2 − σ2 > mmseπ(τ2), then

inf
{ρp}∈Cδ,π

p

lim
p→∞

‖β̂cvx − β0‖2 ≤ δτ2 − σ2. (3.1)

Under the RSN assumption, we may replace the limit in probability with limp→∞ Eβ0,w,X

[
‖β̂cvx−

β0‖2
]
. (We set these limits to ∞ when they do not exist.)

(ii) If τ ≥ 0 is such that π ∗ N(0, τ2) does not have log-concave density (w.r.t. Lebesgue measure)
and δτ2 − σ2 ≤ mmseπ(τ2), then τ2

reg,cvx > τ2 whence

inf
{ρp}∈Cδ,π

p

lim inf
p→∞

‖β̂cvx − β0‖2 > δτ2 − σ2. (3.2)
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(iii) We have τ2
reg,cvx = τ2

reg,stat if and only if π ∗N(0, τ2
reg,stat) is log-concave. In the (generic) case

that τ2
reg,amp = τ2

reg,amp∗, we have τ2
reg,cvx = τ2

reg,amp∗ if and only if π ∗ N(0, τ2
reg,amp∗).

The proof of Proposition 3.1 is provided in Section J of the Supplementary Material [CM21].
While the relevance of the log-concavity of the convolutional density π ∗ N(0, τ2) may seem

surprising, it is related to the following fact: in the Gaussian sequence model (2.3), the Bayes
estimator is the proximal operator of some convex function if and only if π ∗N(0, τ2) is log-concave.
This is a remarkable consequence of Tweedie’s formula. Our construction of penalties achieving
(3.1) involves identifying the penalty whose proximal operator is the Bayes estimator at noise
variance τ2 in the sequence model. This is related to the construction of [BBEKY13]. See Section
J of the Supplementary Material [CM21] for details of this fact and its use in proving Proposition
3.1.

3.1 Gaps between convex M-estimators and Bayes AMP

Under generic conditions, convex M-estimators achieve the risk of Bayes AMP if and only if π ∗
N(0, τ2

reg,amp∗) has log-concave density.

Theorem 2. Consider π ∈ P2(R), δ ∈ (0,∞), σ ≥ 0. Assume τreg,amp = τreg,amp∗ (which holds
generically, see the proof of Corollary 2.3, as well as Section L of the Supplementary Material
[CM21]). If C contains all sequences of convex penalties, then under the HDA and RSN assump-
tions, inequality (2.18) holds with equality if and only if π ∗ N(0, τ2

reg,amp∗) has log-concave density
(w.r.t. Lebesgue measure), which occurs if and only if τ2

reg,cvx = τ2
reg,amp∗. The same holds if we

replace the limits in probability with the limits of expectations in (2.18).
If C contains all sequences of symmetric convex penalties, the preceding statements hold also

under the DSN assumption.

When equality occurs in Theorem 3, the penalty achieving the convex lower bound is (up to
a small strong convexity term added for technical reasons) given by the convex function whose
proximal operator is the Bayes estimator in the sequence model (2.3) at noise variance τ2

reg,amp∗.
The existence of such a penalty is a consequence of the log-concavity of π ∗ N(0, τ2

reg,amp). See the
remark following Proposition 3.1 and the proof of that proposition in Section J of the Supplementary
Material [CM21] for further details.

Proof of Theorem 2. The equivalence of π ∗N(0, τ2
reg,amp∗) having log-concave density and τ2

reg,cvx =
τ2
reg,amp∗ holds by Proposition 3.1.(iii). We now focus on the remaining parts of the Theorem.

We first prove the “if” direction. By (2.15), we have for τ > τreg,amp∗ that δτ2−σ2 > mmseπ(τ2).
Further, because π ∗N(0, τ2

reg,amp∗) has log-concave density, so too does π ∗N(0, τ2) [SW14, Propo-
sition 3.5]. By Proposition 3.1.(i), we have that (3.1) holds with this choice of τ . Taking τ ↓
τreg,amp∗ = τreg,amp, we conclude that (2.18) holds with the inequality reversed, so in fact holds with
equality.

We now prove the “only if” direction. By (2.15) and the continuity of mmseπ(τ2) in τ2 [DYSV11,
Proposition 7], we have

δτ2
reg,amp∗ − σ2 = mmseπ(τ2

reg,amp∗). (3.3)

If π ∗N(0, τ2
reg,amp∗) does not have log-concave density, by Proposition 3.1.(ii) Eq. (2.18) holds with

strict inequality. By Lemma K.1 of the Supplementary Material [CM21], the same holds when
replace limits in probability with limits of expectations.
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A corollary of Theorem 1 is that when π has log-concave density, gaps between convex M-
estimation and the risk of Bayes AMP do not occur, whereas when π does not have log-concave
density, they do occur at large enough signal-to-noise ratios.

Corollary 3.2. Consider π ∈ P2(R) and σ ≥ 0. Let B ⊆ R be the set of δ > 0 for which
τreg,amp < τreg,amp∗ holds (recall that, by the proof of Corollary 2.3, B has zero Lebesgue measure).
We have the following.

(a) If π has log-concave density, then for all δ ∈ R>0 \ B, inequality (2.18) holds with equality.

(b) If σ > 0 and π does not have log-concave density, then there exist 0 ≤ δalg < ∞ such that
inequality (2.18) holds with equality for δ ∈ (0, δalg) \ B and with strict inequality for all δ ∈
(δalg,∞) \ B.

Part (b) states that, if π is not log-concave, then either (i) there is always a gap between convex
M-estimation and the best algorithm we know of or (ii) for small δ, the algorithmic lower bound is
achieved by a convex procedure, while for large δ there is a gap between convex M-estimation and
the best algorithm that we know of. This might seem counterintuitive, because large δ corresponds
to larger sample size and therefore easier estimation. An intuitive explanation of this result is
that, for large δ, we can exploit more of the structure of the prior π, and this requires non-convex
methods.

Proof of Corollary 3.2.
Part (a): By [SW14, Proposition 3.5], π ∗ N(0, τ2

reg,amp) has log-concave density. The result
follows by Theorem 2.

Part (b): Define δalg = inf{δ | π ∗N(0, τ2
reg,amp) does not have log-concave density}. By [SW14,

Proposition 3.5], if τ < τ ′ and π∗N(0, τ2) has log-concave density, then so too does π∗N(0, τ ′2). By
(2.19), τreg,amp is non-increasing in δ. Combining these two facts, for δ > δalg we have N(0, τ2

reg,amp)
does not have log-concave density, and for δ < δalg we have N(0, τ2

reg,amp) does have log-concave
density. Then, by Theorem 2, inequality (2.18) holds with equality for B 3 δ < δalg and with
strict inequality when B 3 δ > δalg. We need only check that δalg < ∞. By (2.16), τ2

reg,amp =
1
δ

(
σ2 + mmseπ(τ2

reg,amp)
)
≤ 1

δ

(
σ2 + s2(π)

)
. Thus, limδ→∞ τ

2
reg,amp = 0. Because log-concavity

is preserved under convergence in distribution [SW14, Proposition 3.6] and π ∗ N(0, τ2)
d−−−→

τ→0
π,

we conclude that for δ sufficiently large, π ∗ N(0, τ2
reg,amp) does not have log-concave density, as

desired.

3.2 Gaps between convex M-estimators and the Bayes risk

Under generic conditions, convex M-estimators achieve the Bayes risk exactly when the convex
lower bound is equal to the Bayes risk, which in turn occurs exactly when π ∗ N(0, τ2

reg,stat) has
log-concave density.

Theorem 3. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ > 0. Assume the potential φ defined in
Eq. (2.28) has a unique minimizer. If C cosists of all sequences of convex penalties, then under the
HDA and RSN assumptions, τ2

reg,cvx = τ2
reg,stat if and only if

inf
{ρp}p∈Cδ,π

lim inf
p→∞

Eβ0,w,X

[
‖β̂cvx − β0‖2

]
= lim

p→∞
Eβ0,w,X

[
‖Eβ0,w,X [β0|y]− β0‖2

]
, (3.4)
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which in turn occurs if and only if π ∗N(0, τ2
reg,stat) has log-concave density with respect to Lebesgue

measure on R.

Analogously to Theorem 2, when equality occurs in Theorem 3, the penalty achieving the convex
lower bound is (up to a small strong convexity term added for technical reasons) given by the
convex function whose proximal operator is the Bayes estimator in the sequence model (2.3) at
noise variance τ2

reg,stat. See the remark following Proposition 3.1 and the proof of that proposition
in Section J of the Supplementary Material [CM21] for further details. The condition that the
minimizer of φ is unique holds –by analyticity considerations– for all (δ, σ) except a set of Lebesgue
measure zero.

Proof of Theorem 3. The equivalence of π ∗ N(0, τ2
reg,stat) having log-concave density and τ2

reg,cvx =
τ2
reg,stat holds by Proposition 3.1(iii). We now focus on the remaining parts of the Theorem.

The right-hand side of (3.4) is δτ2
reg,stat − σ2 by Proposition 2.6 (this is where we use σ > 0).

By (2.34), if τ2
reg,cvx 6= τ2

reg,stat, then τ2
reg,cvx > τ2

reg,stat. Then by Theorem 1, as well as Lemma K.1
of the Supplementary Material [CM21], we have under the RSN assumption that (3.4) holds with
equality replace by strict inequality.

Now consider that τ2
reg,cvx = τ2

reg,stat, or equivalently, that π ∗ N(0, τ2
reg,stat) has log-concave

density. Assume N(0, τ2
reg,stat) has log-concave density, σ > 0, and φ has unique minimizer. For

τ ′ > τreg,stat we have

φ(τreg,stat;π, δ, σ) = φ(τ ′;π, δ, σ) +
1

2

∫ τ−2
reg,stat

τ ′−2

(
σ2 − δτ2 + mmseπ(τ2)

)
dτ−2

> φ(τreg,stat;π, δ, σ) +
1

2

∫ τ−2
reg,stat

τ ′−2

(
σ2 − δτ2 + mmseπ(τ2)

)
dτ−2, (3.5)

where in the inequality we use that the minimizer of φ is unique. Thus, the integral is negative for all
τ ′ > τreg,stat, so there exists τ ′ > τreg,stat arbitrarily close to τreg,stat for which δτ ′2−σ2 > mmseπ(τ ′2).
By [SW14, Proposition 3.5], we have for all such τ ′ that π∗N(0, τ ′2) has log-concave density. Taking
τ ′ ↓ τreg,stat along τ ′ for which δτ ′2 − σ2 > mmseπ(τ ′2) and applying Proposition 3.1.(i), we have
under the RSN assumption that

inf
{ρp}p∈Cδ,π

lim
p→∞

Eβ0,w,X

[
‖β̂cvx − β0‖2

]
≤ δτ2

reg,stat − σ2. (3.6)

By (2.33), we have δτ2
reg,stat − σ2 equals the right-hand side of (3.4). The reverse inequality holds

by the optimality of the Bayes risk, whence we conclude (3.4).

A corollary of Theorem 1 is that when π has log-concave density, gaps between convex M-
estimation and the Bayes risk do not occur, whereas when π does have log-concave density, they
do occur at large enough signal-to-noise ratios.

Corollary 3.3. Consider π ∈ P∞(R) and σ > 0. We have the following.

(a) If π has log-concave density with respect to Lebesgue measure, then for all δ > 0 for which φ
has unique minimizer, equality (3.4) holds.
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(b) If π does not have log-concave density with respect to Lebesgue measure, then there exist 0 ≤
δstat < ∞ such that equality (3.4) holds for all δ < δstat for which φ has unique minimizer,
and (3.4) holds with strict inequality replacing equality for all δ > δstat for which φ has unique
minimizer. Moreover, δstat ≤ δalg.

Proof of Corollary 3.3.
Part (a): By [SW14, Proposition 3.5], we have π ∗ N(0, τ2

reg,stat) has log-concave density with
respect to Lebesgue measure. The result follws by Theorem 3.

Part (b): Define δstat = inf{δ | π ∗ N(0, τ2
reg,stat) does not have log-concave density}. Because

the derivative (2.31) of φ with respect to τ−2 is strictly decreasing in δ, we have by (2.28) that
τreg,stat is strictly decreasing in δ. As in the proof of Corollary 3.2, this implies that for for δ > δstat
we have N(0, τ2

reg,stat) does not have log-concave density and for δ < δstat we have N(0, τ2
reg,stat) does

have log-concave density. Then, by Theorem 3, if φ has unique minimizer and δ > δstat, then the
left-hand side of (3.4) is strictly larger than the right-hand side, and if φ has unique minimizer
and δ < δstat, equality holds. We need only check that δstat < ∞. By (2.30) and (2.31), we have
τ2
reg,stat = 1

δ

(
σ2 + mmseπ(τ2

reg,stat)
)
≤ 1

δ

(
σ2 + s2(π)

)
, where s2(π) is the second moment of π. Thus,

limδ→∞ τ
2
reg,stat = 0. Because log-concavity is preserved under convergence in distribution [SW14,

Proposition 3.6] and π ∗ N(0, τ2)
d−−−→

τ→0
π, we conclude that for sufficiently large δ, π ∗ N(0, τ2

reg,stat)

is not log-concave, as desired.

4 Quantifying the gap: high and low signal-to-noise ratio (SNR)
regimes

We now provide quantitative estimates of the gap between convex M-estimation and the Bayes risk
when such gaps occur. Consider π ∈ P∞(R), δ ∈ (0,∞), σ > 0, and let C contain all sequences of
convex penalties. Define the asymptotic gap between convex M-estimation and Bayes error

∆(π, δ, σ) ≡(
inf

{ρp}p∈Cδ,π
lim inf
p→∞

Eβ0,w,X

[
‖β̂cvx − β0‖2

])
−
(

lim
p→∞

Eβ0,w,X

[
‖Eβ0,w,X [β0|y,X]− β0‖2

])
,

where the limits are taken under the HDA and RSN assumptions. The results of Section 3.2
characterize whether ∆(π, δ, σ) = 0 or ∆(π, δ, σ) > 0. Here we provide a more quantitative estimate
of its size for large δ (high SNR) and for large σ (low SNR).

Theorem 4. Fix π ∈ P∞(R) and let C contain all sequences of convex penalties.

(i) Restricting ourselves to δ, σ > 0 for which the minimizer of (2.30) is unique, we have

∆(π, δ, σ) ≥ Ropt
seq,cvx

(
σ/
√
δ;π
)
−mmseπ

(
σ2/δ

)
+O

(
1/
√
δ
)
, (4.1)

where O hides constants depending only on the moments of π.

(ii) Let snr = s2(π)
σ2 denote the signal-to-noise ratio for the sequence model. For any fixed δ, we

have ∆(π, δ, σ) = O(snr2) as snr→ 0. More precisely

lim sup
snr→0

∆(π, δ, σ)

snr2
≤ s2(π)δ2 s

2
3(π)

2s3
2(π)

, (4.2)

22



where the lim sup is taken over σ at which (2.28) has unique minimizer.

The proof of this theorem is given in Section M of the Supplementary Material [CM21]. We
believe its results provide some useful insight:

• The large δ regime of point (i) is most commonly analyzed in the statistics literature, because
it ensures high-dimensional consistency. In this regime, Theorem 4 establishes that the gap
between convex M-estimation and Bayes error is essentially determined by the analogous gap
in the sequence model for noise level σ/

√
δ. As will be discussed in the next section, in this

regime, it makes sense to refine the M-estimate by post-processing.

• In the low SNR regime (large σ), the structure of the signal β0 (and in particular the distri-
bution of the coefficients β0j) is blurred by the Gaussian noise, and the gap vanishes. This
should be compared with the results of Corollary 3.3, which state that gaps, when they oc-
cur, occur for small values of δ, which also corresponds to a low SNR regime. Both of these
results can be traced to the fact that the measure π ∗ N(0, τ2

reg,stat) will in some sense be
“more log-concave” when τ2

reg,stat is larger. Because τ2
reg,stat quantifies, in a certain sense, the

intrinsic noisiness of the problem, we see that convex M-estimation comes closer to achieving
(or exactly achieves) information theoretic limits at low SNR.

5 Beyond mean square error

A natural concern with the optimality theory we have presented is that it only addresses `2 loss.
With a certain type of efficient post-processing, the optimality theory for general continuous losses is
essentially unchanged. In particular, if we consider two-step procedures in which we first compute a
penalized least squares estimator β̂cvx and second implement simple post-processing detailed below,
the optimal choice of penalty in the first step should not depend on the loss `. The main reason for
this is captured by the following result. (This proposition relies on the notion of strong stationarity
introduced in Section B which formalizes the notion of solving the fixed point equations (2.5) and
includes a few more technical conditions. It also uses the collection of penalty sequences C∗ which
are uniformly strongly convex, defined below in Definition 6.1. This is a subset of the collection of
convex penalty sequences.)

Proposition 5.1. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ ≥ 0. Let {ρp}, {ρ̃p} be sequences of lsc,
proper, convex penalties. Let T = (π, {ρp}) and T̃ = (π, {ρ̃p}), and assume τ, λ, τ̃ , λ̃ are such that
τ, λ, δ, T and τ̃ , λ̃, δ, T̃ are strongly stationary. Without loss of generality, consider τ̃ ≤ τ . Assume

either δ > 1 or {ρp}, {ρ̃p} ∈ C∗ (see Definition 6.1 below). Let β̂cvx and
̂̃
βcvx be defined by (1.2)

with penalties ρp and ρ̃p respectively. For such sufficiently large p, let

β̂cvx+ = prox [λρp]

(̂̃
βcvx +

2λ

n
XT(y −X ̂̃βcvx) +

√
τ2 − τ̃2z

)
, (5.1)

where for each p, z ∼ N(0, Ip/p) is independent of X.
Under the HDA and RSN assumptions, for any sequence of symmetric, uniformly pseudo-

Lipschitz sequence of losses `p : (Rp)2 → R of order k for some k, we have

`p

(
β0, β̂cvx+

)
p
' `p

(
β0, β̂cvx

)
. (5.2)
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If the penalties ρp, ρ̃p are symmetric, then the preceding display holds also under the DSN assump-
tion.

We prove Proposition 5.1 in Section H of the Supplementary Material [CM21]. Proposition 5.1

establishes that when τ̃ ≤ τ , we can always post-process
̂̃
βcvx to construct an estimator β̂cvx+

whose performance matches that of β̂cvx with respect to loss `. Proposition 5.1 suggests that for
any loss, the optimal choice of penalty in the M-estimation step in this two-step procedure is that
which minimizes the effective noise parameter τ . It turns out this is equivalent to choosing a penalty
which minimizes `2 loss.

A formalization of this discussion is provided in the next theorem.

Theorem 5. Assume η : R→ R is the Bayes estimator of β0 in the scalar model y = β0 + τreg,cvxz
with respect to loss `. If C contains all sequences of convex penalties, then under the HDA and RSN
assumption

inf
{ρp}∈C∗

p

lim inf
p→∞

1

p

p∑
j=1

`
(√

pβ0j ,
√
pβ̂cvx,j

)
≥ Eβ0,z[`(β0, η(β0 + τreg,cvxz)]. (5.3)

When η is not the proximal operator of a convex function, inequality (5.3) is strict.
Further, when δ > 1,

inf
{ρp}∈C∗

η′ Lipschitz

p

lim
p→∞

1

p

p∑
j=1

`

(
√
pβ0j , η

′

(
√
pβ̂cvx,j + 2λ

[XT(y −Xβ̂cvx)]j
n

))

= Eβ0,z[`(β0, η(β0 + τreg,cvxz)]. (5.4)

The sequences {ρp} which minimize the `2 loss of β̂cvx also achieve the infimum in (5.4). (Note
that the infimum over η′ is taken after the limit p → ∞, and in particular η′ does not depend on
p.)

If C contains all sequences of symmetric convex penalties, the preceding statements hold also
under the DSN assumption.

We prove Theorem 5 in Section H of the Supplementary Material [CM21]. We expect inequality
(5.3) to hold also when the infimum is taken over Cδ,π, but we are not aware how to control the
estimation error with respect to arbitrary pseudo-Lipschitz losses for {ρp} ∈ Cδ,π. We expect
equality (5.4) to hold also when δ ≤ 1, but this requires establishing the tightness of the convex
lower bound when δ ≤ 1, which are are unable to do (see discussion following Theorem 1). We
believe these extensions may be possible using currently available tools but leave it for future work.

For large δ, post-processing nearly closes the gap between convex M-estimation and Bayes AMP.
Indeed, as is shown in Section M of the Supplementary Material [CM21], when δ is large (high SNR)
–so that (4.1) provides a good approximation of the gap ∆(π, δ, σ)– we have τreg,cvx ≈ τreg,amp∗ ≈
σ/
√
δ. Thus, the gap between the convex lower bound and the Bayes risk in this case is driven not

by the difference between τreg,cvx and τreg,amp∗ but rather by the difference between estimation at
that noise level using the optimal proximal operator (as done in (2.7)) and the Bayes estimator (as
done in (2.14)). Theorem 5 states that by post-processing we may effectively replace the proximal
operator in Eq. (H.1) of the Supplementary Material [CM21] by a non-proximal denoiser, which
we may take to be the Bayes estimator (or a Lipschitz approximation of it) with respect to `2 loss.
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This is an important insight because we suspect that the behavior of M-estimation with one step of
post-processing is more robust to model misspecification than is the behavior of Bayes AMP, whose
finite sample convergence has been observed to be highly sensitive to distributional assumptions
on the design matrix X (see e.g. [RSF14, RSF17]).

6 Examples

Recall that, for δ > 1, the assumption that ρ has δ-bounded width does not pose any restriction.
For δ ≤ 1, our proof requires ρ ∈ Cδ,π for technical reasons, which are discussed Section I of
the Supplementary Material [CM21]. We believe the conclusion of Theorem 1 should hold more
generally. Nevertheless, as illustrated in the present section, the assumption ρ ∈ Cδ,π is quite weak
and is satisfied by broad classes of penalties.

Most proofs are omitted from this section and can be found in Section N of the Supplementary
Material [CM21]. Through this section, we take C to contain all sequences of convex penalties, so
that Cδ,π contains all sequences with δ-bounded width.

6.1 Strongly convex penalties

We introduce the notion of uniform strong convexity.

Definition 6.1 (Uniform strong convexity). A sequence ρp : Rp → R ∪ {∞} of lsc, proper, convex
functions has uniform strong-convexity parameter γ ≥ 0 if x 7→ ρp(x)− γ

2‖x‖
2 is convex for all p.

We say that {ρp} is uniformly strongly convex if this holds for some γ > 0.

We define
C∗ =

{
{ρp} ∈ C | {ρp} is uniformly strongly convex

}
. (6.1)

When the penalties are uniformly strongly convex, the situation is particularly nice.

Proposition 6.2. For all π ∈ P2(R) and δ ∈ (0,∞), we have C∗ ⊂ Cδ,π.

6.2 Convex constraints

Consider

ρp(x) = ICp(x) :=

{
0 x ∈ Cp
∞ otherwise,

(6.2)

where Cp is a closed convex set. Convex M-estimation using this penalty is equivalent to defining

β̂cvx via the constrained optimization problem

β̂cvx = arg min
β

{ 1

n
‖y −Xβ‖2 : β ∈ Cp

}
. (6.3)

In this context, the condition (2.9) is closely related to bounding the Gaussian width of convex
cones [CRPW12, ALMT14]. We briefly recall the relevant notions.

Given a closed convex set K, we denote by ΠK the orthogonal projector onto K. Namely
ΠK(y) := arg minx∈K ‖y−x‖2. Recall that K is a convex cone if K is convex and for every α > 0,
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K = {αx | x ∈ K}. For any set A ⊆ Rp, we define the closed, conic hull of A centered at b ∈ Rp
by

TA(b) := cone({x− b | x ∈ A}) := conv ({α(x− b) | x ∈ A,α ≥ 0}) ,

where the overline denotes closure and conv denotes the convex hull. There are several equivalent
definitions of the Gaussian width of a closed, convex cone K. The following translates most readily
into our setup (recall that z ∼ N(0, Ip/p):

w(K) := Ez
[
‖ΠK(z)‖2

]
. (6.4)

The Gaussian width is closely related to the geometry of high-dimensional linear inverse problems.
In particular, under the HDA and DSN assumptions, exact recovery β̂cvx = β0 in the noiseless set-
ting (i.e., w = 0) is achieved with high probability by (6.3) if and only if lim supp→∞w(TCp(β0)) < δ
[ALMT14, CRPW12]. The same condition which guarantees stable recovery under noisy measure-
ments, namely, that the error ‖β̂cvx − β0‖ is bounded, up to a constant, by the norm of the noise
‖w‖. Thus, when w(TCp(β0)) > δ, we expect the estimation error of β̂cvx to be uncontrolled. It is
therefore reasonable to focus on the case w(TCp(β0)) < δ.

In the case of convex constraints, the δ-bounded width assumption reduces to a slightly weaker
condition than w(TCp(β0)) < δ. This is perhaps not surprising in light of the fact that for ρp =
ICp(x), the proximal operator prox[λρp](β0+τz) = ΠCp(β0+τz) and limτ→0

1
τEz[〈z, prox[λρp](β0+

τz) = ΠCp(β0 + τz)〉] = Ez[‖ΠTCp (β0)(z)‖2]. The following proposition makes the relationship
between Gaussian widths and the δ-bounded width assumption precise.

Proposition 6.3. Consider Cp closed, symmetric, convex sets, π ∈ P2(R), and δ ∈ (0,∞). Assume
that

lim
p→∞

Eβ0
[d (β0, Cp)] = 0 . (6.5)

Further assume that
lim
ε→0

lim sup
p→∞

Eβ0

[
w(TCp∩Bc(β0,ε)

(β0))
]
< δ , (6.6)

where Bc(β0, ε) denotes the complement of the ball of radius ε centered at β0. Then {ICp} ∈ Cδ,π.

The quantity limε→0w(TCp∩Bc(β0,ε)
(β0)) agrees with w(TCp(β)) when β0 ∈ ∂Cp. Thus, when β0 ∈

∂Cp almost surely, assumption (6.6) of Proposition 6.3 is exactly that lim supp→∞w(TCp(β0)) <
δ. This condition guarantees exact and stable recovery for the convex program (6.3). Thus,
Proposition 6.3 implies that if constraint sets {Cp} guarantee exact and stable recovery, then
{ICp} ∈ Cδ,π.

In the definition of the δ-bounded width assumption (or under the RSN assumption), β0 is
random. Thus, it will in general be close to but not exactly on the boundary of Cp. For β0 in an ε-
neighborhood of the boundary but not on the boundary, the quantity w(TCp∩Bc(β0,ε)

(β0)) describes
the behavior of the convex program (6.3) and the quantity w(TCp(β)) does not. Indeed, w(TCp(β))
is highly sensitive to small perturbations of β0: it jumps to 1 when β0 is in the interior of Cp.
In contrast, the behavior of the convex program (6.3) is not sensitive to such small perturbations.
When β0 is asymptotically arbitrarily close to but not necessarily exactly on the boundary of Cp, the
condition of Proposition 6.3 is the correct extension of the condition lim supp→∞w(TCp(β0)) < δ.

It guarantees recovery with asymptotically vanishing error ‖β̂cvx−β0‖2 → 0 when d(β0, ∂Cp)→ 0.
For such β0, this is the natural replacement of the more stringent notion of exact recovery, which
will not occur if β0 6∈ ∂Cp.
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6.3 Separable penalties

A common class of penalties considered in high-dimensional regression are the separable penalties

ρp(x) =
1

p

p∑
j=1

ρ(
√
pxj), (6.7)

for an lsc, proper, convex function ρ : R → R ∪ {∞} which does not depend on p. Much pre-
vious work has analyzed the asymptotic properties of M-estimators which use separable penalties
[BBEKY13, EKBB+13, DM16], and a few works have broken the separability assumption [TAH18].
While Theorem 1 is more general, it applies to separable penalties under a mild condition.

Proposition 6.4. Consider ρp as in (6.7) for some lsc, proper, convex ρ : R → R ∪ {∞}. Let
C ⊆ R be the set of minimizers of ρ (which is necessarily a closed interval). If C is non-empty, we
have

sup
τ>ε

Pβ0,z(β0 + τz ∈ C) < δ for all ε > 0,

if and only if {ρp} ∈ Cδ,π.

Remark 6.1. Proposition 6.4 applies whenever C is a singleton set because in this case P(β0+τz ∈
C) = 0 for all τ > 0. Thus, Proposition 6.4 covers most, if not all, separable penalties commonly
considered in practice (and many more).

6.4 SLOPE and OWL norms

Here we consider the Ordered Weighted `1 (OWL) norms defined by

ρp(x) =
1
√
p

p∑
j=1

κ
(p)
j |x|(j), (6.8)

where κ
(p)
1 ≥ κ

(p)
2 ≥ · · · ≥ κ

(p)
p ≥ 0 are the coordinates of κ(p) ∈ Rp and |x|(j) are the decreasing

order statistics of the absolute values of the coordinates of x. When κ
(p)
j = Φ−1(1 − jq/(2p)) for

some q ∈ (0, 1) and Φ−1 the standard normal cdf, the estimator (1.2) is referred to as SLOPE.
Penalties of the form (6.8) have been used for a few purposes. SLOPE has recently been proposed
for sparse regression because it automatically adapts to sparsity level [BvdBS+15, SC16, BLT18].
More generally, the use of OWL norms has been argued to produce estimators which are more
stable than LASSO under correlated designs [BR08, FN14].

Proposition 6.5. Consider ρp as in (6.8). If for all ε > 0 there exists ξ > 0 such that j ≤ (1−ε)p
implies κ

(p)
j > ξ, then {ρp} ∈ Cδ,π.
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inequality for a large class of probability measures including the log-concave case.
Electronic Communications in Probability, 13, 02 2008.

[BBEKY13] Derek Bean, Peter J. Bickel, Noureddine El Karoui, and Bin Yu. Optimal M-
estimation in high-dimensional regression. Proceedings of the National Academy of
Sciences of the United States of America, 110(36):14563–8, 9 2013.

[BDMK16] Jean Barbier, Mohamad Dia, Nicolas Macris, and Florent Krzakala. The mutual
information in random linear estimation. In 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 625–632, 2016.

[BF81] Peter J. Bickel and David A. Freedman. Some asymptotic theory for the bootstrap.
The Annals of Statistics, 9(6):1196–1217, 11 1981.

[Bil12] Patrick Billingsley. Probability and Measure. John Wiley & Sons, Inc., Hoboken, New
Jersey, anniversary edition, 2012.

[BIPW10] Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for
sparse recovery. In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 1190–1197. SIAM, 2010.

[BKM+19] Jean Barbier, Florent Krzakala, Nicolas Macris, Léo Miolane, and Lenka Zdeborová.
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1965.

[MXM19] Junjie Ma, Ji Xu, and Arian Maleki. Optimization-based AMP for phase retrieval:
The impact of initialization and `2 regularization. IEEE Transactions on Information
Theory, 65(6):3600–3629, 2019.

[OT18] Samet Oymak and Joel A Tropp. Universality laws for randomized dimension reduc-
tion, with applications. Information and Inference: A Journal of the IMA, 7:753–822,
2018.

[PB13] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in
Optimization, 1(3):123–231, 2013.

[Ran11] Sundeep Rangan. Generalized approximate message passing for estimation with ran-
dom linear mixing. In Information Theory Proceedings (ISIT), 2011 IEEE Interna-
tional Symposium on, pages 2168–2172. IEEE, 2011.

[Roc97] R. Tyrrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ,
1997.

[RP16] Galen Reeves and Henry D. Pfister. The replica-symmetric prediction for compressed
sensing with gaussian matrices is exact. In Information Theory (ISIT), 2016 IEEE
International Symposium on, pages 665–669. IEEE, 2016.

[RSF14] Sundeep Rangan, Philip Schniter, and Alyson K. Fletcher. On the convergence of
approximate message passing with arbitrary matrices. In Information Theory Pro-
ceedings (ISIT), 2014 IEEE International Symposium on, pages 236–240. IEEE, 2014.

[RSF17] Sundeep Rangan, Philip Schniter, and Alyson K. Fletcher. Vector approximate mes-
sage passing. In Information Theory Proceedings (ISIT), 2017 IEEE International
Symposium on, pages 1588–1592. IEEE, 2017.

[San15] Filippo Santambrogio. Optimal Transport for Applied Mathematicians. Springer In-
ternational Publishing Switzerland, New York, 2015.

[SC16] Weijie Su and Emmanuel Candès. SLOPE is adaptive to unknown sparsity and asymp-
totically minimax. The Annals of Statistics, 44(3):1038–1068, 6 2016.

[SC19] Pragya Sur and Emmanuel Candès. A modern maximum-likelihood theory for high-
dimensional logistic regression. Proceedings of the National Academy of Sciences,
116(29):14516–14525, 2019.

[SR15] Philip Schniter and Sundeep Rangan. Compressive phase retrieval via generalized
approximate message passing. IEEE Transactions on Signal Processing, 63(4):1043–
1055, 2015.

[Ste81] Charles M. Stein. Estimation of the mean of a multivariate normal distribution. The
Annals of Statistics, 9(6):1135–1151, 11 1981.

32



[Sto10] Mihailo Stojnic. Recovery thresholds for `1 optimization in binary compressed sensing.
In Information Theory Proceedings (ISIT), 2010 IEEE International Symposium on,
pages 1593–1597. IEEE, 2010.

[Sto13] Mihailo Stojnic. A framework to characterize performance of Lasso algorithms.
arXiv:1303.7291, 2013.

[SW14] Adrien Saumard and Jon A. Wellner. Log-concavity and strong log-concavity: A
review. Statistics Surveys, 8(0):45–114, 2014.

[TAH18] Christos Thrampoulidis, Ehsan Abbasi, and Babak Hassibi. Precise error analysis
of regularized M-estimators in high dimensions. IEEE Transactions on Information
Theory, 64(8):5592–5628, 2018.

[Tib96] Rob Tibshirani. Regression shrinkage and selection with the Lasso. J. Royal. Statist.
Soc B, 58:267–288, 1996.

[TOH15] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. Regularized linear regres-
sion: A precise analysis of the estimation error. In Conference on Learning Theory,
pages 1683–1709, 2015.

[TPT20] Hossein Taheri, Ramtin Pedarsani, and Christos Thrampoulidis. Sharp asymptotics
and optimal performance for inference in binary models. In Silvia Chiappa and
Roberto Calandra, editors, Proceedings of the Twenty Third International Confer-
ence on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 3739–3749. PMLR, 26–28 Aug 2020.

[TPT21] Hossein Taheri, Ramtin Pedarsani, and Christos Thrampoulidis. Fundamental lim-
its of ridge-regularized empirical risk minimization in high dimensions. In Arindam
Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International Confer-
ence on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pages 2773–2781. PMLR, 13–15 Apr 2021.
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A Equivalence of lower bounds: proof of Proposition 2.2

In fact, for any finite p,

Ropt
reg,cvx(τ ;π, p) = inf

ρ∈C1
Eβ0,z[(prox[ρ](β0 + τz)− β0)2],

both when C contains all lsc, proper, convex functions and when C contains all lsc, proper, convex
functions. Here C1 is the set of all lsc, proper, convex functions on R.

First, note that Ropt
reg,cvx(τ ;π, p) ≤ infρ∈C1 Eβ0,z[([ρ](β0 + τz)− β0)2] because Eβ0,z[(prox[ρ](β0 +

τz) − β0)2] is in fact the risk in the sequence model of dimension p of the procedure which uses
separable penalty ρp(x) = 1

p

∑p
j=1 ρ(

√
px). Indeed, prox[ρp](y)j = prox[ρ](

√
pyj)/

√
p. (Note that

ρp is separable and symmetric).
Now note that for any lsc, proper, convex ρp : Rp → R ∪ {∞}, fixing y−j the function yj 7→

prox[ρ](y) is 1-Lipschitz, whence in fact yj 7→ prox[ρ](y)j is 1-Lipschitz. Further, by the firm
non-expansiveness of the proximal operator (Eq. (O.3)), we also have that yj 7→ prox[ρ](y)j is
non-decreasing. By Fact 2.1 of [Cel21], the set {prox[ρ]} as ρ varies over C! is exactly the set of
1-Lipschitz and non-decreasing functions on R. Thus, we get E[(prox[ρp](β0 + τz)j − β0j)

2|y−j ] ≥
Eβ0,z[(prox[ρ](β0 + τz)− β0)2]/p almost surely. We conclude that

E[‖prox[ρp](β0+τz)−β‖2] =

p∑
j=1

E[E[(prox[ρp](β0+τz)j−β0j)
2|y−j ]] ≥ Eβ0,z[(prox[ρ](β0+τz)−β0)2].

Having established both directions of the inequality completes the proof of Proposition 2.2.

B Exact asymptotics for the oracle estimator

As discussed in Section 2.1, our proof of the convex lower bound (Theorem 1) leverages exact
asymptotics of the estimation error of penalized least squares estimators. Because we cannot
provide exact asymptotics under only the δ-bounded width assumption, we will define an oracle
estimator which performs at least as well as the original estimator (1.2) and to which we can apply
exact asymptotic results. For any γ ≥ 0, the oracle estimator is

β̂
(γ)

orc ∈ arg min
β

{
1

n
‖y −Xβ‖2 + ρ(β) +

γ

2
‖β − β0‖2

}
. (B.1)

That is, we use the perturbed penalty

ρ(γ)(β) := ρ(β) +
γ

2
‖β − β0‖2, (B.2)

which includes a term which shrinks the estimate towards the true value β0. We remark that for
γ > 0, (i) using this penalty in practice would require knowledge of the true parameter, so it cannot
be implemented by the statistician, and (ii) because of its dependence on β0, the penalty defining
the oracle estimator is itself random under the RSN assumption.

Previous work (e.g., [EK13]) has considered the addition of a small strongly-convex penalty
in high-dimensional regression to permit rigorous exact asymptotics. The oracle term we add also
serves this purpose, but is tailored to our goal of establishing estimation error lower bounds. Indeed,
the oracle estimator performs at least as well as the original estimator for every realization of the
data.
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Lemma B.1. For ρ : Rp → R ∪ {∞} an lsc, proper, convex function, β0 ∈ Rp, w ∈ Rn, γ > 0,
and all realizations of the design matrix X ∈ Rp×n and parameter β0, we have

‖β̂
(γ)

orc − β0‖2 ≤ ‖β̂cvx − β0‖2, (B.3)

for any β
(γ)
orc satisfying (B.1). That is, the `2-loss of β̂

(γ)

orc is no larger than the `2-loss of β̂cvx.

Proof of Lemma B.1. If the minimizing set of (1.2) is empty, then the right-hand side of (B.3) is
∞ by convention, and there is nothing to show. Thus, assume β̂cvx satisfies (1.2). For any β ∈ Rp
with ‖β − β0‖ > ‖β̂cvx − β0‖, we have

1

n
‖y −Xβ‖2 + ρ(β) +

γ

2
‖β − β0‖2 >

1

n
‖y −Xβ‖2 + ρ(β) +

γ

2
‖β̂cvx − β0‖2

≥ 1

n
‖y −Xβ̂cvx‖2 + ρ(β̂cvx) +

γ

2
‖β̂cvx − β0‖2,

where the second inequality follows from the definition of β̂cvx in (1.2). Thus, β cannot be a
minimizer in (B.1)). Moreover, because ρ(γ) has strong-convexity parameter γ > 0, the minimizing
set of (B.1)) is non-empty. Thus, we have (B.3).

The exact asymptotic characterization of the oracle estimator requires several definitions. De-
note by Tp a pair (π, ρp) where π ∈ P2(R) and ρp : Rp → R∪{∞} is an lsc, proper, convex function.
For any τ, λ ≥ 0 and T ∈ S2

+, define

Rreg,cvx(τ, λ, Tp) := Eβ0,z

[
‖prox[λρp](β0 + τz)− β0‖2

]
, (B.4a)

Wreg,cvx(τ, λ, Tp) :=
1

τ
Eβ0,z [〈z, prox[λρp](β0 + τz)〉] , (B.4b)

Kreg,cvx(T , λ, Tp) := Eβ0,z1,z2 [〈prox [λρp] (β0 + z1)− β0, prox [λρp] (β0 + z2)− β0〉] , (B.4c)

where β0j
iid∼ π/

√
p, z ∼ N(0, Ip/p), and (z1, z2) ∼ N (0,T ⊗ Ip/p). Consider a sequence of

penalties {ρp : Rp → R ∪ {∞}}. Let T = (π, {ρp}). Define

R∞reg,cvx(τ, λ, T ) := lim
p→∞

Rreg,cvx(τ, λ, Tp),

W∞reg,cvx(τ, λ, T ) := lim
p→∞

Wreg,cvx(τ, λ, Tp),

K∞reg,cvx(T , λ, T ) := lim
p→∞

Kreg,cvx(T , λ, Tp),

(B.5)

whenever these limits exist. Here Tp is related to T in the obvious way. Finally, denote

τorc = τorc(τ, λ, γ) =
τ

λγ + 1
, λorc = λorc(λ, γ) =

λ

λγ + 1
,

T orc = T orc(T , λ, γ) =
T

(λγ + 1)2
.

(B.6)

The exact asymptotic characterization is given by a solution (τ, λ) to the following system of
equations.

δτ2 − σ2 = R∞reg,cvx(τorc, λorc, T ), (B.7a)

2λ

(
1− 1

δ(λγ + 1)
W∞reg,cvx(τorc, λorc, T )

)
= 1. (B.7b)

The following notion will be needed.
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Definition B.2 (Strong stationarity). For any τ ≥ 0, λ > 0, T ∈ S2
+, and γ ≥ 0, we denote τorc,

λorc, and T orc as in (B.6). We say the quintuplet τ, λ, γ, δ, T is strongly stationary if at λorc and
at all τ ′ ≥ 0, T ′ � 0, the limits (B.5) exist, and at τ, λ, γ, the equations (B.7) are satisfied.

We are ready to provide our exact characterization of oracle estimators.

Proposition B.3. Consider π ∈ P∞(R), δ ∈ (0,∞), and σ ≥ 0. Consider a sequence of lsc,
proper, convex functions ρp : Rp → R ∪ {∞}. Let T = (π, {ρp}). Assume τ, λ, γ ≥ 0 are such that

τ, λ, γ, δ, T is strongly stationary. For each p, let β̂
(γ)

cvx be a solution to (1.2). If either δ > 1, γ > 0,
or the ρp have uniform strong convexity parameter κ > 0, then

(i) The solution to (B.1)) exists and is unique for all n large enough:

PX(solution to (B.1)) exists and is unique) = 1 eventually. (B.8)

(ii) Under RSN assumption the loss obeys

‖β̂
(γ)

cvx − β0‖2
p→ R∞reg,cvx(τorc, λorc, T ) = δτ2 − σ2. (B.9)

If the penalties are symmetric, then (B.9) holds also under the DSN assumption.

(iii) Consider the case that γ = 0 and either δ > 1 or ρp are uniformly strongly convex. Consider
any sequence of functions ϕp : (Rp)2 → R which are uniformly pseudo-Lipschitz of order k for
some k. Under the RSN assumption

ϕp

(
β0, β̂cvx + 2λ

XT(y −Xβ̂cvx)

n

)
p
' Ez [ϕp(β0,β0 + τz)] . (B.10)

If the penalties are symmetric, then (B.9) holds under the DSN assumption.

The proof of Proposition B.3 is provided in Appendix D.
Note that although Kreg,cvx(T , λ, Tp) and K∞reg,cvx(T , λ, T ) do not appear in the equations (B.7),

the existence of the limit (B.5) will play an essential role in the proof of Proposition B.3. In
particular, it will allow us to control the convergence of the iterates of a certain AMP algorithm to
the convex M-estimator, which will be important for establishing its characterization (see Section
D for details).

In addition to its use in establishing the convex lower bound, Proposition B.3 will play a role in
establishing the tightness of the convex lower bound under log-concavity assumptions or when δ > 1.
Proposition B.3(iii) plays a role in our consideration of non-quadratic losses and post-processing in
Section 5.

Our proof follows closely the proof of the similar result in Theorem 1.2 of [DM16]. The authors
of [DM16] establish an asymptotic characterization of the loss of M-estimators of the form β̂ =
arg minβ

∑n
i=1 ρ (yi − [Xβ]i) where ρ is strongly convex and δ > 1. Our Proposition B.3 differs from

their theorem in that (i) we impose a penalty on the parameters rather than an arbitrary penalty
on the residuals, (ii) we permit non-separable penalties, and (iii) we consider δ ≤ 1. Nevertheless,
our argument follows almost exactly theirs (see Appendix D). In handling non-separable penalties,
we rely on recent results on approximate message passing algorithms with non-separable denoisers
[BMN19], which the authors of [DM16] did not have access to.
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A result similar to Proposition B.3 was also proved in [TAH18] using Gaussian comparison
inequalities. The conditions in [TAH18] are not directly comparable to the ones of Proposition
B.3. We prefer proving an independent statement, since checking the conditions of the general
theorem in [TAH18] is non-trivial. As an advantage, Proposition B.3 gives access –via Eq. (B.10)–

to the empirical distribution of the entries of β̂cvx and β̂cvx + 2λX
T(y−Xβ̂cvx)

n , which is not provided
by [TAH18]. As stated above, this plays a role in our consideration of non-quadratic losses and
post-processing.

Finally, Proposition explicitly describes the impact of the oracle term.

C Regularity lemmas

This appendix provides several lemmas controlling the regularity of various objects appearing in the
exact characterization of Proposition B.3. These will be required in both the proof of Proposition
B.3 and in its applications.

First, for τ > 0,

Wreg,cvx(τ, λ, Tp) =
1

τ
Eβ0,z[〈z, prox[λρp](β0 + τz)〉] =

1

p
Eβ0,z[div prox[λρp](β0 + τz)] ≤ 1, (C.1)

where in the first equality we have used the definition (B.4b), in the second equality we have used
(O.11), and in the inequality we have used (O.7). Taking limits, we have (using (O.10))

W∞reg,cvx(τ, λ, T ) ≤ 1, and Wreg,cvx(τ, λ, Tp) ≥ 0, and W∞reg,cvx(τ, λ, T ) ≥ 0, (C.2)

whenever these are defined.
Next, in this and other appendices we will sometimes need the following basic algebraic inequal-

ities which hold for any vectors a,a′, b, b′ ∈ Rp and are straightforward to verify.

|〈a, b〉 − 〈a′, b′〉| ≤ 2 max{‖a‖, ‖a′‖, ‖b‖, ‖b′‖}︸ ︷︷ ︸
(∗)

(‖a− a′‖ ∨ ‖b− b′‖)︸ ︷︷ ︸
(∗∗)

, (C.3)

∣∣‖a‖2 − ‖b‖2∣∣ ≤ 2 (‖a‖ ∨ ‖b‖)︸ ︷︷ ︸
(∗)

‖a− b‖︸ ︷︷ ︸
(∗∗)

. (C.4)

We label the terms on the right-hand sides with (∗) and (∗∗) to facilitate future reference. The
inequalities are straightforward to verify. In fact, (C.4) is a special case of (C.3).

We say a sequence of functions {ρp} ∈ C does not shrink towards infinity if

sup
p
‖prox[ρp](0)‖ <∞. (C.5)

We define the collection of penalty sequences which do not shrink towards infinity

B =
{
{ρp} ∈ C

∣∣∣ (C.5) holds
}
. (C.6)

Finally, we provide a series of lemmas which we will need in later sections.
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Lemma C.1. Consider {ρp} ∈ B (see (C.6)). Then for any fixed τ, λ ≥ 0, the functions

ϕ
(p)
R (β0, z) = ‖prox[λρp](β0 + τz)− β0‖2,

ϕ
(p)
W (β0, z) =

1

τ
〈z, prox[λρp](β0 + τz)〉 ,

ϕ
(p)
K (β0, z1, z2) = 〈prox [λρp] (β0 + z1)− β0, prox [λρp] (β0 + z2)− β0〉 ,

are uniformly pseudo-Lipschitz of order 2.

Proof of C.1. Let M := supp ‖prox[ρp](0)‖. We have M <∞ because {ρp} ∈ B. By (O.5), we have

‖prox[λρp](0)‖ ≤ ‖prox[ρp](0)‖+ ‖prox[λρp](0)− prox[ρp](0)‖
≤ ‖prox[ρp](0)‖+ ‖prox[λρp](0)‖ |λ− 1| ≤ (2M + 1)λ.

Thus, ‖prox[λρp](0)‖ is bounded over p. Further, by (O.4), the functions (β0, z) 7→ prox[λρp](β0 +
τz)−β0 and (β0, z) 7→ prox[λρp](β0 + τz) are uniformly pseudo-Lipschitz of order 1. Further, the
function (β0, z) 7→ 1

τ z is trivially uniformly pseudo-Lipschitz of order 1. Applying Lemma P.2, the
Lemma follows.

Lemma C.2. There exists universal constant C such that the functions τ 7→ Ropt
seq,cvx(τ ;π, p) and

τ 7→ Ropt
seq,cvx(τ ;π) defined in (2.7) and (2.8) satisfy for any τ, τ ′ ≥ 0 (using f to denote each

function)
|f(τ ′)− f(τ)| ≤ C(1 + |τ ′ − τ |+ f(τ))|τ ′ − τ |. (C.7)

This makes sense even when C is such that Ropt
seq,cvx(τ ;π) is infinite (note, f is always non-negative).

In particular, if Ropt
seq,cvx(τ ;π) is finite anywhere, it is finite and continuous everywhere.

Proof of Lemma C.2. First, we develop a bound on∣∣Eβ0,z

[
‖prox[ρ](β0 + τz)− β0‖2

]
− Eβ0,z[‖prox[ρ](β0 + τ ′z)− β0‖2]

∣∣ ,
for ρ : Rp → Rp an lsc, proper, convex function. We apply Jensen’s inequality to get∣∣Eβ0,z

[
‖prox[ρ](β0 + τz)− β0‖2

]
− Eβ0,z[‖prox[ρ](β0 + τ ′z)− β0‖2]

∣∣
≤ Eβ0,z

[∣∣‖prox[ρ](β0 + τz)− β0‖2 − ‖prox[ρ](β0 + τ ′z)− β0‖2
∣∣] .

We bound the integrand by applying (C.4):∣∣‖prox[ρ](β0 + τz)− β0‖2 − ‖prox[ρ](β0 + τ ′z)− β0‖2
∣∣

≤ 2
(
‖prox[ρ](β0 + τz)− β0‖+ ‖τz − τ ′z‖

)︸ ︷︷ ︸
bound on (∗)

‖τz − τ ′z‖︸ ︷︷ ︸
bound on (∗∗)

≤ 2‖prox[ρ](β0 + τz)− β0‖‖z‖|τ − τ ′|+ 2‖z‖2(τ − τ ′)2

≤
(
‖prox[ρ](β0 + τz)− β0‖2 + ‖z‖2

)
|τ − τ ′|+ 2‖z‖2(τ − τ ′)2.

Combining the previous two displays,∣∣Eβ0,z

[
‖prox[ρ](β0 + τz)− β0‖2

]
− Eβ0,z[‖prox[ρ](β0 + τ ′z)− β0‖2]

∣∣
≤
(
Eβ0,z

[
‖prox[ρ](β0 + τz)− β0‖2

]
+ 1
)
|τ − τ ′|+ 2(τ − τ ′)2.
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Thus, τ 7→ Eβ0,z

[
‖prox[ρ](β0 + τz)− β0‖2

]
satisfies (C.7). To prove (C.7) for Ropt

seq,cvx(τ ;π, p) and

Ropt
seq,cvx(τ ;π), we use that the property (C.7) is preserved by taking point-wise infima of collections of

functions, as well as limit infima (provided infinite limit infima are permitted, with (C.7) interpreted
in the natural way in this case). The finiteness and continuity of Ropt

seq,cvx(τ ;π, p) and Ropt
seq,cvx(τ ;π)

in the case that these are finite anywhere is then automatic.

Lemma C.3. Let π ∈ P2(R). Let ϕp : Rp → R be a sequence of functions which is uniformly
pseudo-Lipschitz of order 2. Then

ϕp(β0)
as' Eβ0

[ϕp(β0)],

where for each p, β0j
iid∼ π/

√
p, and the β0 are independent across p.

In particular, if {ρp} ∈ B and the limits (B.5) exist (with z ∼ N(0, Ip/p)), then with respect to
the randomness in β0,

Ez
[
‖prox[λρp](β0 + τz)− β0‖2

] as' Rreg,cvx(τ, λ, T ),

1

τ
Ez [〈z, prox[λρp](β0 + τz)〉] as'Wreg,cvx(τ, λ, T ),

Ez1,z2 [〈prox [λρp] (β0 + z1)− β0, prox [λρp] (β0 + z2)− β0〉]
as' Kreg,cvx(T , λ, T ).

Proof. Throughout the proof, β0 will denote a random variable drawn from π. Let s2(π)2 = E[β2
0 ].

By assumption, the restriction of ϕp to {‖β0‖22 ≤ s2(π)2 + 1} is L-Lipschitz for some L which does
not depend on p. Let ϕ̄p be an L-Lipschitz extension of ϕp|{‖β0‖22≤s2(π)2≤s2(π)2+1} to all of Rp; that

is, it is L-Lipschitz and agrees with ϕp on {‖β0‖22 ≤ s2(π)2 + 1}. For example, one can check that
ϕ̄p(x) = sup‖x′‖≤R{ϕp(x′)− ‖x− x′‖} is a valid Lipschitz extension.

Fix 1 > ε > 0. Pick M > 0 such that E[|β0|21|β0|>M ] < ε2. For each p, let h have coordi-

nates drawn iid from the Laplace distribution with scale parameter 1/
√
p (i.e., density

√
p

2 e
−√p|x|),

independent of β0 and across p. Define βε0 = (|β0j |1√p|β0j |≤M + hj)j∈[p]. Then
√
pβε0j satisfies a

Poincaré inequality (this follows by Corollary 1.6 of [BBC08]); that is, for any weakly differentiable
f , Var(f(

√
pβε0j)) ≤ CE[f ′(

√
pβε0j)

2] for some constant C which does not depend on p (but may
depend on ε, π,M). Then the product measure π⊗p satisfies a Poincaré inequality with the same
constant C: Var(ϕ̄p(β)) ≤ CE[‖∇ϕp(β0)‖2]/p. Then, by Corollary 4.6 of Ledoux [Led99], ϕ̄p has
exponential concentration. In particular, there exists a constant c, which does not depend on p,
(but may depend on ε, π,M,L) such that

P
(∣∣∣ϕ̄p(β0)− E[ϕ̄p(β

ε
0)]
∣∣∣ > t

)
≤ 2e−cmin(

√
pt,pt2).

Taking t→ 0 after p→∞ and using the Borel-Cantelli lemma, we get that ϕ̄p(β
ε
0)

as' E[ϕ̄p(β
ε
0)].

By the strong law of large numbers and the definition of βε0, we have ‖β0 − βε0‖2
as→ E[(β0 −

β0j1|β0|≤M−εh)2] < 2ε2, where h has Laplace distribution with scale parameter 1 and is independent

of β0. Thus, almost surely we have that for large enough p, |ϕ̄p(β0)− ϕ̄p(βε0)| <
√

2Lε. Also by the

strong law of large numbers, we have ‖β2
0‖ → s2(π)2 and ‖βε0‖2

as→ E[(
√
pβε0j)

2] < s2(π)2 + 1, where
the inequality holds because ε < 1. Thus, almost surely we have that for large enough p, ϕp(β0) =
ϕ̄p(β0) and ϕp(β

ε
0) = ϕ̄p(β

ε
0). Combining the preceding observations, almost surely we have that
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for large enough p, |ϕp(β0)−E[ϕ̄p(β
ε
0)]| <

√
2Lε. Finally, E[‖β0−βε0‖] ≤ E[‖β0−βε0‖2]1/2 <

√
2ε.

Thus, almost surely we have that for large enough p, |ϕp(β0)− E[ϕ̄p(β0)]| < 2
√

2Lε.
Because ϕp is pseudo-Lipschitz of order 2, ϕ̄p is in fact C(1 + s2(π)2 + 1)-Lipschitz, so that

|ϕ(x)− ϕ̄(x)| ≤ |ϕ(x)− ϕ(0)|+ |ϕ̄(x)− ϕ̄(0)| ≤ C(2 + s2(π)2)‖x‖+ C(1 + ‖x‖)‖x‖. Thus, there
exists C which does not depend on p, ε,M such that |ϕp(x)− ϕ̄p(x)| ≤ C‖x‖21‖x‖2≥s2(π)2+1. Thus,
|E[ϕ̄p(β0)]−E[ϕp(β0)]| < CE[‖β0‖21‖β0‖2≥s2(π)2+1]→ 0 because ‖β0‖2 is uniformly integrable and
P(‖β0‖2 ≥ s2(π)2 + 1) → 0. We conclude that almost surely we have that for large enough p,

|ϕp(β0)− E[ϕp(β0)]| < 2
√

2Lε. Because the left-hand side does not depend on ε, in fact ϕp(β0)
as'

E[ϕp(β0)] as desired.
The identities involving Rreg,cvx(τ, λ, T ), Wreg,cvx(τ, λ, T ), and Kreg,cvx(T , λ, T ) now hold because

β0 7→ Ez
[
‖prox[λρp](β0 + τz)− β0‖2

]
is uniformly pseudo-Lipschitz of order 2, and likewise for

the remaining relevant functions. The proof is complete.

Lemma C.4. Consider a sequence {ϕp : (Rp)k+1 → R} of uniformly pseudo-Lipschitz functions of
order 2. Moreover, assume ϕ are symmetric in the sense that for any σ ∈ Sp, the symmetric group
on [p], we have

ϕp(x
σ
0 , . . . ,x

σ
k) = ϕp(x0, . . . ,xk),

where (xσ)i := xσ(i). Fix deterministic sequence {x0(p)} such that p−1
∑p

i=1 δ
√
px0,i

W→ π for some
π ∈ P2(R). Then

lim
p→∞

Ez1,...,zk [ϕp(x0, z1, . . . ,zk)] = lim
p→∞

Ex̃0,z1,...,zk [ϕp(x̃0, z1, . . . ,zk)] (C.8)

whenever either of the limits exists, where on the right-hand side we take x̃0 with coordinates
distributed iid from π/

√
p. In particular, both limits exist as soon as one of them exists.

Proof of Lemma C.4. We now drop index p from our notation to avoid clutter. Consider a probabil-
ity space on which we have random vectors x̃0, z1, . . . ,zk ∈ Rp for each p such that the coordinates
of x̃0 are distributed iid from π/

√
p and the x̃0 are independent for different values of p. By [BF81,

Lemma 8.4],
dW (π̂x0 , π̂x̃0) ≤ dW (π̂x0 , π) + dW (π, π̂x̃0)

as→ 0, (C.9)

where π̂v ≡ p−1
∑p

i=1 δ
√
pvi denotes the empirical distributions of the entries of v ∈ Rp. For

each p and realization x̃0, there is a permutation σp (depending on x̃0) such that
∥∥x0 − x̃

σp
0

∥∥ =

dW (π̂x0 , π̂x̃0) . By the symmetry of ϕp, we have ϕp(x̃0, z1, . . . ,zk) = ϕp
(
x̃
σp
0 , z

σp
1 , . . . ,z

σp
k

) d
=

ϕp
(
x̃
σp
0 , z1, . . . ,zk

)
, where the equality of distribution follows because σp is independent of z1, . . . ,zk,

and the distribution of z1, . . . ,zk is invariant under permutation of the coordinates. We have

∣∣ϕp (x0, z1, . . . ,zk)− ϕp
(
x̃
σp
0 , z1, . . . ,zk

)∣∣ ≤ L(1 + ‖x0‖+ ‖x̃σp0 ‖+ 2

k∑
i=1

‖zi‖

)
‖x0 − x̃σ0‖

= L

(
1 + ‖x0‖+ ‖x̃0‖+ 2

k∑
i=1

‖zi‖

)
dW (π̂x0 , π̂x̃0)

p→ 0,

(C.10)
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where we have used (C.9) and that
(

1 + ‖x0‖+ ‖x̃0‖+ 2
∑k

i=1 ‖zi‖
)

= Op(1). Further, we check

uniform integrability. First,

∣∣ϕp (x0, z1, . . . ,zk)− ϕp
(
x̃
σp
0 , z1, . . . ,zk

)∣∣ ≤ L(1 + ‖x0‖+ ‖x̃0‖+
k∑
i=1

‖zi‖

)
(‖x0‖+ ‖x̃0‖) .

Because ‖x0‖ is bounded, we only need to check that ‖x̃0‖2 and ‖zi‖‖x̃0‖ are uniformly integrable
over p. Observe that ‖x̃0‖2 = 1

p

∑p
j=1(
√
px̃0j)

2. The random variables (
√
px̃0j)

2 are iid from an

L1 probability distribution (which does not depend on p), so that ‖x̃0‖2 are uniformly integrable.
Also, ‖zi‖‖x̃0‖ ≤ 1

2

(
‖x̃0‖2 + ‖zi‖2

)
, so these are uniformly integrable for the same reason. Thus,

the probabilistic convergence (C.10) and Vitali’s Convergence Theorem (see e.g. [Dur10, Theorem
5.5.2]) implies that

|Ez1,...,zk [ϕp(x0, z1, . . . ,zk)]− Ex̃0,z1,...,zk [ϕp(x̃0, z1, . . . ,zk)]|
=
∣∣Ez1,...,zk [ϕp (x0, z1, . . . ,zk)]− Ex̃0,z1,...,zk

[
ϕp
(
x̃
σp
0 , z1, . . . ,zk

)]∣∣
≤ Ex̃0,z1,...,zk

[∣∣ϕp (x0, z1, . . . ,zk)− ϕp
(
x̃
σp
0 , z1, . . . ,zk

)∣∣]→ 0. (C.11)

Thus, if Ez1,...,zk [ϕp(x0, z1, . . . ,zk)] converges, then Ex̃0,z1,...,zk [ϕp(x̃0, z1, . . . ,zk)] also converges
and has the same limit, and conversely.

Lemma C.5. Consider π ∈ P2(R) and {ρp} ∈ B (see (C.6)). For each p, let Tp = (π, ρp) and
consider the functions Rreg,cvx(τ, λ, Tp), Wreg,cvx(τ, λ, Tp), and Kreg,cvx(T , λ, Tp) defined by (B.4).
Consider 0 < τmin ≤ τmax and 0 < λmin ≤ λmax. We have the following:

(i) Rreg,cvx is uniformly (over p) Lipschitz continuous in τ and λ for (τ, λ) ∈ [0, τmax]×[λmin, λmax].

(ii) Wreg,cvx is uniformly (over p) Lipschitz continuous in τ and λ for (τ, λ) ∈ [τmin, τmax] ×
[λmin, λmax].

(iii) Kreg,cvx is uniformly (over p) equicontinuous in T and uniformly Lipschitz continuous in λ
for 0 � T � τ2

maxI2 and λ ∈ [λmin, λmax].

Proof of Lemma C.5. Let M > supp ‖prox[ρp](0)‖ with M <∞, which is permitted because {ρp} ∈
B. Throughout the proof, we will denote by C a constant which may depend on M , π, τmax, λmin,
or λmax, but not on p or τmin, and will denote by C+ a constant which may depend also on τmin

but not on p. Both C and C+ may differ at different appearances, even within the same chain of
inequalities, as it absorbs terms.

Observe that for any λ we have

‖prox[λρp](β0 + τz)‖ ≤ ‖prox[ρp](0)‖+ ‖prox[λρp](0)− prox[ρp](0)‖+ ‖prox[λρp](β0 + τz)− prox[λρp](0)‖
≤M + ‖prox[ρp](0)‖|λ− 1|+ ‖β0‖+ τ‖z‖ ≤M(2 + λmax) + ‖β0‖+ τmax‖z‖
≤ C (1 + ‖β0‖+ ‖z‖) , (C.12)

where in the second inequality we have used (O.4) and (O.5). With one more application of the
triangle inequality, we get

‖prox[λρp](β0 + τz)− β0‖ ≤ C (1 + ‖β0‖+ ‖z‖) . (C.13)
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Further, observe that for λ, λ′ ∈ [λmin, λmax] and τ ∈ [τmin, τmax], we have by applying (C.12) and
the triangle inequality∥∥prox[λρp](β0 + τz)− prox[λ′ρp](β0 + τz)

∥∥ ≤ ‖β0 + τz − prox[λρp](β0 + τz)‖
∣∣∣∣λ′λ − 1

∣∣∣∣
≤ C (1 + ‖β0‖+ ‖z‖) |λ− λ′|, (C.14)

where in the first inequality we have used (O.5) and in the second inequality we have usedC.13 and

that
∣∣∣λ′λ − 1

∣∣∣ = |λ−λ′|
λ ≤ |λ−λ

′|
λ∧λ′ ≤ C|λ− λ

′|.
We are ready to demonstrate the claimed continuity properties of Rreg,cvx, Wreg,cvx, and Kreg,cvx.

Fix τ, τ ′ ∈ [0, τmax], λ, λ
′ ∈ [λmin, λmax] and 0 � T ,T ′ � τ2

maxI2. These will remain fixed throughout
the remainder of the proof unless otherwise stated.
Uniform Lipschitz continuity of Rreg,cvx in τ . We apply (C.4) identifying a = prox[λρp](β0 +
τz)−β0 and b = prox[λρp](β0 +τ ′z)−β0. Using C.13 and (O.4) to bound (∗) and (∗∗) respectively,
we get∣∣‖a‖2 − ‖b‖2∣∣ ≤ C (1 + ‖β0‖+ ‖z‖)︸ ︷︷ ︸

bound on (∗)

· |τ − τ ′|‖z‖︸ ︷︷ ︸
bound on (∗∗)

≤ C
(
1 + ‖β0‖2 + ‖z‖2

)
|τ − τ ′|. (C.15)

We have by Jensen’s inequality∣∣∣Rreg,cvx(τ, λ, Tp)− Rreg,cvx(τ
′, λ, Tp)

∣∣∣ =
∣∣Eβ0,z

[
‖a‖2

]
− Eβ0,z

[
‖b‖2

]∣∣ ≤ Eβ0,z

[∣∣‖a‖2 − ‖b‖2∣∣]
≤ CEβ0,z

[(
1 + ‖β0‖2 + ‖z‖2

)]
|τ − τ ′| = C|τ − τ ′|. (C.16)

Uniform Lipschitz continuity of Rreg,cvx in λ. We apply (C.4) identifying a = prox[λρp](β0 +
τz)−β0 and b = prox[λ′ρp](β0+τz)−β0. Using C.13 and (C.14) to bound (∗) and (∗∗) respectively,
we get ∣∣‖a‖2 − ‖b‖2∣∣ ≤ C (1 + ‖β0‖+ ‖z‖)︸ ︷︷ ︸

bound on (∗)

·C (1 + ‖β0‖+ ‖z‖) |λ− λ′|︸ ︷︷ ︸
bound on (∗∗)

≤ C
(
1 + ‖β0‖2 + ‖z‖2

)
|λ− λ′|. (C.17)

We have by Jensen’s inequality∣∣∣Rreg,cvx(τ, λ, Tp)− Rreg,cvx(τ, λ
′, Tp)

∣∣∣ =
∣∣Eβ0,z

[
‖a‖2

]
− Eβ0,z

[
‖b‖2

]∣∣ ≤ Eβ0,z

[∣∣‖a‖2 − ‖b‖2∣∣]
≤ CEβ0,z

[(
1 + ‖β0‖2 + ‖z‖2

)]
|λ− λ′| = C|λ− λ′|. (C.18)

Uniform Lipschitz continuity of Wreg,cvx in τ . In this section only, we require also that τ, τ ′ ≥
τmin. We apply (C.3) identifying a = z

τ , b = prox[λρp](β0 + τz), a′ = z
τ ′ , and b′ = prox[λρp](β0 +

τ ′z). Observe that ‖a − a′‖ = |1/τ − 1/τ ′|‖z‖ ≤ C+‖z‖|τ − τ ′|, where the last inequality holds
because τ, τ ′ ≥ τmin > 0. Using (C.12) and (O.4) to bound max{‖a‖, ‖a′‖, ‖b‖, ‖b′‖} and ‖b− b′‖
respectively, we get∣∣〈a, b〉 − 〈a′, b′〉∣∣ ≤ C (1 + ‖β0‖+ ‖z‖)︸ ︷︷ ︸

bound on (∗)

·C+‖z‖|τ − τ ′|︸ ︷︷ ︸
bound on (∗∗)

≤ C+

(
1 + ‖β0‖2 + ‖z‖2

)
|τ − τ ′|. (C.19)
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We have by Jensen’s inequality∣∣Wreg,cvx(τ, λ, Tp)−Wreg,cvx(τ
′, λ, Tp)

∣∣ =
∣∣Eβ0,z [〈a, b〉]− Eβ0,z[〈a′, b′〉]

∣∣ ≤ Eβ0,z

[∣∣〈a, b〉 − 〈a′, b′〉∣∣]
≤ C+Eβ0,z

[(
1 + ‖β0‖2 + ‖z‖2

)]
|τ − τ ′| = C+|τ − τ ′|.

(C.20)

Uniform Lipschitz continuity of Wreg,cvx in λ. We apply (C.3) identifying a = z
τ , b =

prox[λρp](β0 + τz), a′ = z
τ , and b′ = prox[λ′ρp](β0 + τz). Using (C.12) and (C.14) to bound

(∗) and (∗∗) respectively, we get∣∣〈a, b〉 − 〈a′, b′〉∣∣ ≤ C (1 + ‖β0‖+ ‖z‖)︸ ︷︷ ︸
bound on (∗)

·C (1 + ‖β0‖+ ‖z‖) |λ− λ′|︸ ︷︷ ︸
bound on (∗∗)

≤ C
(
1 + ‖β0‖2 + ‖z‖2

)
|λ− λ′|.

(C.21)

We have by Jensen’s inequality∣∣Wreg,cvx(τ, λ, Tp)−Wreg,cvx(τ, λ
′, Tp)

∣∣ =
∣∣Eβ0,z [〈a, b〉]− Eβ0,z[〈a′, b′〉]

∣∣ ≤ Eβ0,z

[∣∣〈a, b〉 − 〈a′, b′〉∣∣]
≤ CEβ0,z

[(
1 + ‖β0‖2 + ‖z‖2

)]
|λ− λ′| = C|λ− λ′|. (C.22)

Uniform equicontinuity of Kreg,cvx in T . Let T ,T ′ ∈ S2
+. By [GS84, Proposition 7], we have

dW

(
N(0,T ),N(0,T ′)

)
=

√
Tr
(
T + T ′ − 2(T 1/2T ′T 1/2)1/2

)
. (C.23)

By [GS84, Proposition 1], there exists a coupling which achieves the infimum in (1.4). Let ν
a probability distribution on R4 which implements the minimal coupling between N(0,T ) and
N(0,T ′). Consider a probability space with random vectors β0 and z1, z2, z

′
1, z
′
2 for all p such that

(z1j , z2j , z
′
1j , z

′
2j)

iid∼ ν/
√
p. Then

Ez1,z2,z′1,z′2
[
‖z1 − z′1‖2 + ‖z2 − z′2‖2

]
= Tr

(
T + T ′ − 2(T 1/2T ′T 1/2)1/2

)
. (C.24)

We apply (C.3) identifying a = prox[λρp](β0 + z1) − β0, b = prox[λρp](β0 + z2) − β0, a′ =
prox[λρp](β0 + z′1)−β0, and b′ = prox[λρp](β0 + z′2)−β0. Using C.13 and (O.4) to bound (∗) and
(∗∗) respectively, we get∣∣〈a, b〉 − 〈a′, b′〉∣∣ ≤ C (1 + ‖β0‖+ max(‖z1‖, ‖z2‖, ‖z′1‖, ‖z′2‖)

)︸ ︷︷ ︸
bound on (∗)

·max(‖z1 − z′1‖, ‖z2 − z′2‖)︸ ︷︷ ︸
bound on (∗∗)

.

(C.25)

We have by Jensen’s inequality and Cauchy-Schwartz∣∣Kreg,cvx(T , λ, Tp)− Kreg,cvx(T
′, λ, Tp)

∣∣
≤ CEβ0,z1,z2,z

′
1,z
′
2

[(
1 + ‖β0‖+ max(‖z1‖, ‖z2‖, ‖z′1‖, ‖z′2‖)

)2]1/2

× Ez1,z2,z′1,z′2
[
max(‖z1 − z′1‖, ‖z2 − z′2‖)2

]1/2
. (C.26)

43



We have

Eβ0,z1,z2,z
′
1,z
′
2

[(
1 + ‖β0‖+ max(‖z1‖, ‖z2‖, ‖z′1‖, ‖z′2‖)

)2]1/2

≤ CEβ0,z1,z2,z
′
1,z
′
2

[
1 + ‖β0‖2 + ‖z1‖2 + ‖z2|2 + ‖z′1‖2 + ‖z′2‖2

]1/2 ≤ C. (C.27)

Further, by (C.24), we have

Ez1,z2,z′1,z′2
[
max(‖z1 − z′1‖, ‖z2 − z′2‖)2

]1/2 ≤√Tr
(
T + T ′ − 2(T 1/2T ′T 1/2)1/2

)
. (C.28)

Thus, ∣∣Kreg,cvx(T , λ, Tp)− Kreg,cvx(T
′, λ, Tp)

∣∣ ≤ C√Tr
(
T + T ′ − 2(T 1/2T ′T 1/2)1/2

)
. (C.29)

Now observe that (T ,T ′) 7→
√

Tr
(
T + T ′ − 2(T 1/2T ′T 1/2)1/2

)
is continuous and is 0 when T =

T ′. Thus, it is uniformly continuous on the compact domain {(T ,T ′) ∈ (S2
+)2 | 0 � T ,T ′ �

τ2
maxI2} (where because this is a finite dimensional Euclidean space, continuity holds with respect

to any norm by equivalence of norms). Thus, for any ε > 0, there exists δ > 0 such that if

0 � T ,T ′ � τ2
maxI2 and ‖T − T ‖op < δ, then

√
Tr
(
T + T ′ − 2(T 1/2T ′T 1/2)1/2

)
< ε. Because

this modulus of continuity does not depend upon p, we have Kreg,cvx(T , λ, Tp) is uniformly (over p)
equicontinuous in T .
Uniform Lipschitz continuity of Kreg,cvx in λ. Let (z1, z2) ∼ N (0,T ⊗ Ip/p). We apply (C.3)
identifying a = prox[λρp](β0+τz1)−β0, b = prox[λρp](β0+τz2)−β0, a′ = prox[λ′ρp](β0+τz1)−β0,
and b′ = prox[λ′ρp](β0 + τz2)− β0. Using C.13 and (C.14) to bound (∗) and (∗∗) respectively, we
get ∣∣〈a, b〉 − 〈a′, b′〉∣∣ ≤ C (1 + ‖β0‖+ ‖z1‖ ∨ ‖z2‖)︸ ︷︷ ︸

bound on (∗)

·C (1 + ‖β0‖+ ‖z1‖ ∨ ‖z2‖) |λ− λ′|︸ ︷︷ ︸
bound on (∗∗)

≤ C
(
1 + ‖β0‖2 + ‖z1‖2 + ‖z2‖2

)
|λ− λ′|. (C.30)

We have by Jensen’s inequality∣∣Kreg,cvx(T , λ, Tp)− Kreg,cvx(T , λ
′, Tp)

∣∣ =
∣∣Eβ0,z [〈a, b〉]− Eβ0,z[〈a′, b′〉]

∣∣ ≤ Eβ0,z

[∣∣〈a, b〉 − 〈a′, b′〉∣∣]
≤ CEβ0,z

[(
1 + ‖β0‖2 + ‖z‖2

)]
|λ− λ′| = C|λ− λ′|. (C.31)

This completes the proof.

D Proof of Proposition B.3

This argument follows closely that of [DM16]. In contrast to [DM16], we consider penalized pro-
cedures and use non-separable penalties. Our analysis also establishes the impact of the oracle
penalty on the fixed point equations (B.7). We find that using the recent results [BMN19] for AMP
with non-separable denoisers, their argument goes through.

Throughout the argument, we will frequently (but not always) drop the index p from our
notation. For sequences {Xp} and {Yp} of real-valued random variables all defined on the same

probability space, we use the notation Xp
as' Yp to denote |Xp − Yp|

as→ 0.
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D.1 Proof of part (i)

For each p, define

L(β) :=
1

n
‖y −XTβ‖2 + ρp(β0) +

γ

2
‖β − β0‖2, (D.1)

the objective in (B.1)). If n > p, γ > 0, or ρp is strongly convex, then L is strongly convex almost
surely. Thus, PX(solution to (1.2) exists and is unique) = 1 eventually. This justifies assuming
existence and uniqueness of solutions to (1.2) for the remainder of the proof.

We now prove (ii) and (iii), which require substantially more work.

D.2 Pick a typical sequence of normal vectors

Without loss of generality, we may assume p is increasing. The remainder of the argument will
occur conditional on the realization of the sequence of parameters {β0}. We will be able to carry
out all steps under the DSN assumption if the penalties are symmetric, or almost surely under the
RSN. (We will justify this as we go).

We construct a deterministic sequence of vectors {z0(p) ∈ Rp} such that for all τ ′ ≥ 0,

lim
p→∞

‖z0‖2 = 1,

lim
p→∞

‖prox[λρ(γ)
p ](β0 + τz0)− β0‖2 = δτ2 − σ2, (D.2)

lim
p→∞

Ez
[〈

prox[λρ(γ)
p ](β0 + τz0)− β0, prox[λρ

(γ)
p ](β0 + τ ′z)− β0

〉]
= K∞reg,cvx (T τ ′ , λ, T ) ,

where z ∼ N(0, Ip/p) and T τ ′ :=

(
τ2 0
0 τ ′2

)
. Such a sequence exists because if we draw z0(p) ∼

N(0, Ip/p) independently across p, then {z0} satisfies the required properties (simultaneously over
τ ′) almost surely, as we now show.

For such random z0, by Gaussian Lipschitz concentration (Lemma P.8), we have

Pz0
(∣∣∥∥z0

∥∥− Ez0
[∥∥z0

∥∥]∣∣ > t/p1/4
)
≤ 2e−

p1/2

2
t2 . (D.3)

Because the right-hand side is summable over p (recall we assume p is increasing), we have by

Borel-Cantelli that
∥∥z0

∥∥ as' Ez0
[∥∥z0

∥∥]→ 1. Thus, the first identity of (D.2) holds almost surely.
For the remaining two identities, first note that by by (O.16), the second and third identities

of (D.2) are equivalent to

lim
p→∞

‖prox[λorcρp](β0 + τorcz
0)− β0‖2 = δτ2 − σ2,

lim
p→∞

Ez
[〈
prox[λorcρp](β0 + τorcz

0)− β0, prox[λorcρp](β0 + τ ′orcz)− β0

〉]
= K∞reg,cvx (T τ ′ , λ, T ) .

If the ρn are symmetric, π has finite second moments, and the ρn are symmetric, then by Lemmas
C.1 and C.4 and the symmetry of ρp, under the DSN assumption, for all τ ′ ≥ 0, λ′ ≥ 0, T � 0
fixed,

R∞reg,cvx(τ
′, λ′, Tp) = lim

p→∞
Ez
[
‖prox[λ′ρp](β0 + τ ′z)− β0‖2

]
,

W∞reg,cvx(τ
′, λ′, Tp) = lim

p→∞

1

τ ′
Ez
[
〈z, prox[λ′ρp](β0 + τ ′z)〉

]
, (D.4)

K∞reg,cvx(T , λ
′, Tp) = lim

p→∞
Ez1,z2

[〈
prox

[
λ′ρp

]
(β0 + z1)− β0, prox

[
λ′ρp

]
(β0 + z2)− β0

〉]
,
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(Note the expectations are only over the Gaussian random vectors and β0 is fixed). If the ρn are not
necessarily symmetric, then under the RSN assumption, the previous display holds almost surely
with respect to the realization of {β0} by Lemma C.3.

Because fp(x; τorc) := prox[λρp](β0 + τorcx)−β0 is τorc-Lipschitz by (O.4), we have by Gaussian
Lipschitz concentration (Lemma P.8) and Borel-Cantelli that∥∥fp(z0; τorc)

∥∥ as' Ez0
[∥∥fp(z0; τorc)

∥∥] . (D.5)

Now observe by Jensen’s inequality that Ez0
[∥∥fp(z0; τorc)

∥∥2
]
≥ Ez0

[∥∥fp(z0; τorc)
∥∥]2. By assump-

tion, the left-hand side and hence the right-hand side is bounded. By exponential concentration of∥∥fp(z0; τorc)
∥∥, we conclude that

∥∥fp(z0; τorc)
∥∥2

is uniformly integrable. Because it concentrates on

Ez0
[∥∥fp(z0; τorc)

∥∥]2, we have

lim
p→∞

Ez0
[∥∥fp(z0; τorc)

∥∥]2 = lim
p→∞

Ez0
[∥∥fp(z0; τorc)

∥∥2
]

= δτ2 − σ2. (D.6)

Then by (D.5),
∥∥fp(z0; τorc)

∥∥2 as→ δτ2 − σ2. Thus, the second identity of (D.2) hold almost surely.
We now show that almost surely, the third identity (D.2) for all τ ′ ≥ 0. Recall by strong

stationarity that the limit (B.5) holds for T τ ′ =

(
τ2
orc 0
0 τ ′2

)
for all τ ′ ≥ 0. Now fix a particular

τ ′ ≥ 0. Let hp(x; τ ′) = Ez[〈fp(x; τorc), fp(z; τ ′)〉], where z ∼ N(0, Ip/p). By Cauchy-Schwartz and
because fp is Lipschitz,∣∣hp(x1; τ ′)− hp(x2; τ ′)

∣∣ ≤ τorcEz [∥∥fp(z; τ ′)
∥∥] ‖x1 − x2‖. (D.7)

By (D.6) and (O.4), we have Ez[‖fp(z; τ ′)‖] ≤ Ez[‖fp(z; τorc)‖]+|τorc−τ ′|Ez[‖z‖] ≤ Ez[‖fp(z; τorc)‖]+
|τorc−τ ′| is bounded in p. Thus, for a fixed τ ′, inequality (D.7) gives that hp(·; τ ′) is uniformly (over
p) Lipschitz. Then, applying Lemma P.8 and Borel-Cantelli in the same way we did to establish
(D.5), we have (using also (B.4c) and condition (B.5) of strong stationarity)

hp(z
0; τ ′)

as' Ez0 [hp(z
0)] = Kreg,cvx(T

′, λ, Tp)→ K∞reg,cvx (T τ ′ , λ, T ) . (D.8)

This establishes the results for fixed τ ′ > 0. We may extend to all of R+ by considering a countable
dense subset of R+ and using continuity of hp in τ ′.

In summary, we have proved that if z0 ∼ N(0, Ip/p) for all p, then almost surely the limits
(D.2) hold simultaneously for all τ ′ ≥ 0. Therefore, we may choose a deterministic sequence {z0}
such that these limits all hold.

D.3 The Approximate Message Passing (AMP) iteration

Let {z0} be a deterministic sequence of vectors satisfying limits (D.2) for all τ ′ ≥ 0, as permitted

by the previous section. For each p, define the sequence {β̂
t
}t≥0 via the following iteration. Define

b = 1− 1

2λ
, (D.9)
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and for t ≥ 0

rt =
y −Xβ̂

t

n
+ brt−1, (D.10a)

β̂
t+1

= prox[λρ(γ)
p ]
(
β̂
t
+XTrt

)
, (D.10b)

β̂
0

= prox[λρ(γ)
p ]
(
β0 + τz0

)
and r−1 = 0. (D.10c)

This iteration is an approximate message passing (AMP) algorithm. Several papers (see [BMN19]
and references therein) precisely characterize the iterates of such algorithms in the p → ∞ limit,
as we will see in Appendix D.5 below. Further, they satisfy certain identities relating them to ρp
and L. First, by (O.1) and (D.10b), we have for t ≥ 0 that

β̂
t
+XTrt − β̂

t+1
∈ λ∂ρ(γ)

p

(
β̂
t+1
)
. (D.11)

Second, by (D.10a),

∇β
(

1

n
‖y −Xβ‖2

) ∣∣∣
β=β̂

t+1 =
2

n
XT

(
Xβ̂

t+1
− y

)
= 2XT

(
brt − rt+1

)
. (D.12)

Combining (D.11) and (D.12) with (D.1),

∂L
(
β̂
t+1
)
3 2XT

(
brt − rt+1

)
+
β̂
t
+XTrt − β̂

t+1

λ

= 2bXT
(
rt − rt+1

)
+

(β̂
t
+XTrt)− (β̂

t+1
+XTrt+1)

λ
, (D.13)

where in the equality we have used that 1
λ = 2(1− b). If L is κ-strong convex for some κ > 0 and

g ∈ ∂L
(
β̂
t+1
)

, then for any β ∈ Rp

L(β) ≥ L
(
β̂
t+1
)

+
〈
g,β − β̂

t+1
〉

+
κ

2

∥∥∥β − β̂t+1
∥∥∥2
≥ L

(
β̂
t+1
)
−‖g‖

∥∥∥β − β̂t+1
∥∥∥+

κ

2

∥∥∥β − β̂t+1
∥∥∥2
.

Because L(β̂cvx) ≤ L(β̂
t+1

) by (1.2), we have∥∥∥β̂cvx − β̂
t+1
∥∥∥ ≤ 2‖g‖

κ
. (D.14)

Combining (D.13) and (D.14), we have that if L is κ-strongly convex, then

∥∥∥β̂cvx − β̂
t+1
∥∥∥ ≤ 2

κ

2b
∥∥∥XT

∥∥∥
op

∥∥rt − rt+1
∥∥+

∥∥∥(β̂
t
+XTrt)− (β̂

t+1
+XTrt+1)

∥∥∥
λ

 . (D.15)

Inequality (D.15) allows us to control the distance of the iterates β̂
t

from the minimizer β̂cvx of L
in terms of the rate at which the iterates are changing and the strong convexity parameter of L.
We will control this distance in the p→∞, fixed t asymptotic regime by controlling the terms on
the right-hand side of (D.15).
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D.4 The state evolution

We now study a certain scalar iteration which, in the following sections, will allow us to characterize

the p→∞, fixed t behavior of the AMP iteration (D.10). For q ∈ [0, 1], defineQq =

(
τ2
orc qτ2

orc

qτ2
orc τ2

orc

)
,

and observe that Qq � 0. Define Ψ : [0, 1]→ R by

Ψ(q) =
1

δτ2

(
σ2 + K∞reg,cvx

(
Qq, λorc, T

))
. (D.16)

Because τ, λ, γ, δ, T is strongly stationary, Ψ(q) is well-defined for all q ∈ [0, 1] (recall strong sta-
tionarity requires the limit (B.5) exist for all T ∈ S2

+). Define the doubly-infinite symmetric matrix
Q = (qij)

∞
i,j=1 via the following scalar iteration, referred to as the state evolution:

q1,1 = 1, q1,i = qi,1 = 0 for i > 1, (D.17a)

qs+1,t+1 = Ψ(qs,t). (D.17b)

In order for (D.17b) to make sense, we must verify that qs,t ∈ [0, 1] for all s, t ≥ 1. By induction, it
will suffice to show that Ψ(q) ∈ [0, 1] for all q ∈ [0, 1]. In preparation for what is to come later in
the proof, we will in fact show more.

Lemma D.1. For any sequence of symmetric convex function ρp,

Ψ(1) = 1, (D.18a)

Ψ(q) is non-decreasing and convex for q ∈ [0, 1], (D.18b)

Ψ(q) ≥ 1− 1

(λγ + 1) ∨ δ
(1− q) for q ∈ [0, 1]. (D.18c)

Proof of properties (D.18a), (D.18b) of Lemma D.1. By (B.4a), (B.4c), and (B.5),

K∞reg,cvx
(
τ2
orcI2, λorc, T

)
= R∞reg,cvx(τorc, λorc, T ). (D.19)

Because τ, λ, γ, δ, T is strongly stationary, (B.7), (D.16), and (D.19) imply (D.18a).
For each p, define Ψp : [0, 1]→ R by

Ψp(q) =
1

δτ2

(
σ2 + Kreg,cvx

(
Qq, λorc, Tp

))
, (D.20)

where Tp is related to T in the obvious way. By strong stationarity condition (B.5), Ψ(q) =
limp→∞Ψp(q) for every q ∈ [0, 1]. It is straightforward to see that properties (D.18b), (D.18c) will
hold if we can establish

for all p, Ψp(q) is increasing in q for q ∈ [0, 1], (D.21a)

for all p, Ψp(q) is convex in q for q ∈ [0, 1], (D.21b)

lim sup
p→∞

Ψ′p(1) ≤ 1

(λγ + 1) ∨ δ
. (D.21c)

To show (D.21a), (D.21b) we extend the argument of [DM16, Lemma 6.9] and [BM12, Lemma
C.1] to multivariate maps. Fix p. Define f : Rp → Rp, x 7→ 1√

δτ
(prox [λorcρp] (β0 + τorcx)− β0).
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Let {zt}t≥0 be the p-dimensional Ornstein-Uhlenbeck process with mean 0 and covariance E
[
zsz

T
t

]
=

e−|t−s|Ip/p. By (D.20) and (B.4c), we may write Ψp(q) = σ2

δτ2
+ Ez0,zt [〈f(z0), f(zt)〉] for t =

log(1/q). Denoting the ith component of f by fi, we have the spectral representation

fi(x) =
∑
k∈Zp≥0

cik

p∏
j=1

φkj (xj),

where for each k ≥ 0 we have φk is the eigenvector of the generator of the univariate Ornstein-
Uhlenbeck process corresponding to eigenvalue k [Gar85, p. 134]. The equality is in L2 with respect

to base measure
( p

2π

)p/2
e−

p
2
‖x‖2dx. Then,

Ψp(q) =

p∑
i=1

Ez0,zt [fi(z0)fi(zt)] =

p∑
i=1

Ez0 [fi(z0)Ez0,zt [fi(zt)|z0]]

=
∑
k∈Zp≥0

cikEz0

fi(z0)

p∏
j=1

φkj (z0j)e
−kjt

 =

p∑
i=1

∑
k∈Zp≥0

c2
ike
−(

∑p
j=1 kj)t

=

p∑
i=1

∑
k∈Zp≥0

c2
ikq

∑p
j=1 kj ,

whence (D.21a), (D.21b) follow.

The proof of property (D.18c) of Lemma D.1 requires the following technical lemma.

Lemma D.2. If h : Rp → R is Lipschitz and z1, z2 ∼ N(0, Ip/p) are independent, then

d

dq
Ez1,z2

[
h (z1)h

(
q z1 +

√
1− q2z2

)] ∣∣∣
q=1

= −1

p

p∑
j=1

E
[
(∂jh(z))2

]
,

(where the derivative on the left-hand side is a left-derivative, and the derivatives on the right-hand
side exist almost everywhere by [EG15, Theorem 3.2]).

Proof. This is an elementary fact, so we only sketch the proof idea. Denote by F (q) the expectation
on the left hand side, and g1 := (z1 + (q z1 +

√
1− q2z2))/2, g2 = (z1 − (q z1 +

√
1− q2z2))/2

assuming ∇2h bounded, Taylor’s expansion implies

2(F (0)− F (q)) = 4E{〈∇h(g1), g2〉2}+O(E{‖g2‖42}) =
2

p
E{‖∇h(g1)‖2}(1− q) +O((1− q)2) .

and the claim follows by dominated convergence. This is extended to general Lipschitz h by a
routine approximation argument.

We are now ready to prove property (D.18c) of Lemma D.1.
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Proof of property (D.18c) of Lemma D.1. As in the proof of properties (D.18a), (D.18b), define
f : Rp → Rp the function which maps x 7→ 1√

δτ
(prox [λρp] (β0 + τx)− β0) and let fi be its ith

coordinate. Applying Lemma D.2 to h = fi and summing over i, we have

Ψ′p(1) =
1

p(λγ + 1)2
Ez[‖Df(z)‖2F] =

1

δp(λγ + 1)2
Ez
[
‖D prox [λorcρp](β0 + τorcz)]‖2F

]
≤ 1

δp(λγ + 1)2
Ez
[
‖D prox [λorcρp] (β0 + τorcz)‖op ‖D prox [λorcρp] (β0 + τorcz)‖nuc

]
≤ 1

(λγ + 1)2

1

δp
Ez
[
‖D prox [λorcρp] (β0 + τorcz)‖nuc

]
=

1

(λγ + 1)2

1

δp
Ez [div prox [λorcρp] (β0 + τorcz)]

=
1

(λγ + 1)2
· 1

δ
Wreg,cvx(τorc, λorc, Tp). (D.22)

In the first equality, we have used that τ2
orc/τ

2 = 1/(λγ + 1)2. In the first inequality, we have
used that the operator and nuclear norms are dual with respect to the matrix inner product
〈A,B〉 = Tr(ATB), which induces the Frobenius norm. In the second inequality, we have applied
(O.8). In the second-to-last line we have used that ‖D prox[λρp](β0+τz)‖nuc = div prox[λρp](β0+τz)
because all eigenvalues of D prox[λρp](β0 + τz) are non-negative by (O.9). In the last equality, we
have used (B.4b) and (O.11). Because τ, λ, γ, δ, T is a strongly stationary quadruplet, by (B.7)
we have limp→∞

1
δ(λγ+1)Wreg,cvx(τorc, λorc, Tp) < 1, whence lim supp→∞Ψ′p(1) ≤ 1

λγ+1 . Further, by

(B.4b) and (O.12), we have Wreg,cvx(τorc, λorc, T ) ≤ 1, whence we also have lim supp→∞Ψ′p(1) ≤ 1
δ .

Inequality (D.21c) follows.

We are ready to verify that the recursion (D.16), (D.17) makes sense and establish some of its
properties. By (D.18a) and (D.18b), we have Ψ(q) ≤ 1 for q ∈ [0, 1], and by (D.18c), we have
Ψ(q) ≥ 0 for q ∈ [0, 1]. Then, inductively we have qs,t ∈ [0, 1] for all s, t, so that (D.17) makes sense.
Further, by (D.18c), we have for all t ≥ 1 that 1 − qt+1,t+2 = 1 − Ψ(qt,t+1) ≤ 1

(λγ+1)∨δ (1 − qt,t+1),
so that inductively, with base case 1− q1,2 = 1, we have

1− qt,t+1 ≤
(

1

(λγ + 1) ∨ δ

)t−1

. (D.23)

If either λγ > 0 or δ > 1, we have
qt,t+1 −−−→

t→∞
1. (D.24)

Further, by (D.17) and (D.18a), we get for all t ≥ 1,

qt,t = 1. (D.25)

D.5 Relating AMP and state evolution

We will show that for t ≥ 2,

p

lim
p→∞

√
n
∥∥rt − rt+1

∥∥ =
√

2(1− qt+1,t+2)τ, (D.26a)

p

lim
p→∞

∥∥∥(β̂
t
+XTrt)− (β̂

t+1
+XTrt+1)

∥∥∥ =
√

2(1− qt+1,t+2)τ. (D.26b)
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These identities are a consequence of the characterization of the AMP iteration proved in [BMN19],
as we now describe. The authors of [BMN19] study a more general AMP iteration given by

vt =
1√
n
Xet(u

t)− b̂tgt−1(vt−1), ut+1 =
1√
n
XTgt(v

t)− d̂tet(u
t), (D.27)

with initialization given by deterministic vector

u0 ∈ Rp and g−1(·) = 0, (D.28)

and for each t ≥ 0 the functions et : Rp → R and gt : Rn → Rn are uniformly (in p) pseudo-Lipschitz
of order 1 (a.k.a. uniformly Lipschitz). In [BMN19], iteration (D.27) is written with respect to a

random matrix A with entries Aij
iid∼ N(0, 1/n). We have replaced this with X/

√
n, which is

distributed in this way. Theorem 1 and Corollary 2 of [BMN19] give that certain functionals of
the iterates in (D.27) converge in probability to deterministic constants given by a scalar iteration
called state evolution, of which the iteration in Appendix D.4 is, as we will see, a special case. In
particular, we will show that iteration (D.10) is a special case of the iteration (D.27), the scalar
recursion (D.16) and (D.17) is the corresponding state evolution, and the limits (D.26) are the result
of Theorem 1 and Corollary 2 of [BMN19] applied to particular functions.2 To avoid confusion with
corollaries which appear in this paper, we will refer to Corollary 2 of [BMN19] as Corollary SE.

Iteration (D.10) is equivalent to iteration (D.27) under the following change of variables.

vt =
√
p/nw −√nprt, ut+1 =

√
p
(
β0 −

(
XTrt + β̂

t
))

,

et(u) =
√
p
(
prox[λρ(γ)

p ] (β0 − u/
√
p)− β0

)
, t ≥ 0, gt(v) = v −

√
p/nw, t ≥ 0,

u0 =
√
pτz0, b̂t = −b and d̂t = 1.

(D.29)

Due to their different choice of normalization, the authors of [BMN19] use a slightly different
notion of a collection of functions’ being uniformly pseudo-Lipschitz of order k than used in this
paper. In particular, for them a collection of functions {ϕ : (Rp)` → Rm}, where p and m but not
` may vary, is uniformly pseudo-Lipschitz of order k if for all ϕ and xi,yi ∈ Rp, i = 1, . . . , `, we
have

‖ϕ(x1, . . . ,x`)− ϕ(y1, . . . ,y`)‖√
m

≤ C

(
1 +

∑̀
i=1

(
‖xi‖√
p

)k−1

+
∑̀
i=1

(
‖yi‖√
p

)k−1
)∑̀

i=1

‖xi − yi‖√
p

,

(D.30)
for some C which does not depend on p,m. We will refer to their notion as [BMN19]-uniformly
pseudo-Lipschitz of order k. It is exactly equivalent to our notion under a change of normalization.
In particular, the following claim is easy to check.

Claim D.3. A collection of functions {ϕ} is uniformly pseudo-Lipschitz of order k if and only if
the collection of functions {ϕ̃} defined by ϕ̃(x1, . . . ,x`) =

√
mϕ

(
x1/
√
p, . . . ,x`/

√
p
)

is [BMN19]-
uniformly pseudo-Lipschitz of order k.

2In fact, most of this task has already been carried out by Theorem 14 of [BMN19]. Unfortunately, Theorem 14 of
[BMN19] uses a different initialization than (D.10c) and does not address limits of the form (D.26). Thus, Theorem
14 gives us almost what we need, but not quite. To conclude (D.26), we perform the required change of variables and
apply their more general theorem on the iteration (D.27) ourselves.
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This will allow us to translate their conditions and results into our normalization. Corollary SE
requires six assumptions on the iteration (D.27), which the authors label (B1) - (B6). In our setting,
assumption (B1) holds by assumption; assumption (B2) holds by (D.29), (O.4), and inspection;
assumption (B3), (B4), and (B5) hold by (D.29), (D.2), and the HDA assumption. Assumption
(B6) holds by (D.29), strong stationarity (i.e. definition (B.4c) and the existence of the limit (B.5))
and the proximal operator identity (O.16), the HDA assumption n/p→ δ, and the DSN assumption
‖w‖2/n→ σ2.

Finally, the authors of [BMN19] require that

d̂t
p
' 1

n
Ez
[
div gt(Σt,t

√
nz)

]
, b̂t

p
' 1

n
Ez [div et(Tt,t

√
pz)] , (D.31)

where Σt,t and Tt,t are deterministic scalars which we now define. The authors of [BMN19] define
the double infinite arrays (Σs,t)s,t≥0 and (Ts,t)s,t≥1 through the recursion

Ts+1,t+1 = lim
p→∞

1

n
Ez1,z2

[〈
gs
(√
nz1

)
, gt
(√
nz2

)〉]
, (D.32a)

Σs,t = lim
p→∞

1

n
Ez1,z2 [〈es (

√
pz1) , et (

√
pz2)〉] , (D.32b)

Σ0,0 = lim
p→∞

1

n
‖e0(u0)‖2, Σ0,i = Σi,0 = 0 for i ≥ 1, (D.32c)

where in (D.32a) we take (z1, z2) ∼ N

(
0,

(
Σs,s Σs,t

Σt,s Σt,t

)
⊗ In/n

)
and in (D.32b) we take (z1, z2) ∼

N

(
0,

(
Ts,s Ts,t
Tt,s Tt,t

)
⊗ Ip/p

)
. We claim that for all s, t ≥ 1,

Ts,t = qs,tτ
2. (D.33)

We establish this inductively. By (D.29), (D.2), and HDA assumption n/p→ δ, we have

Σ0,0 = lim
p→∞

1

n
‖e0(u0)‖2 = lim

p→∞

p

n
‖prox[λρ(γ)

p ](β0 + τz0)− β0‖2 = τ2 − 1

δ
σ2. (D.34)

Moreover, for any s, t ≥ 0, we have by (D.29), (D.32a), the HDA assumption n/p → δ, and the
DSN assumption ‖w‖2/n→ σ2, that

Ts+1,t+1 = lim
p→∞

1

n
Ez1,z2

[〈√
nz1 −

√
p/nw,

√
nz2 −

√
p/nw

〉]
=

1

δ
σ2 + Σs,t. (D.35)

By (D.34) and (D.35), we have T1,1 = τ2, the base case. Now assume (D.33) holds for all 1 ≤ s, t ≤ l.
Fix 1 ≤ s, t ≤ l. By (D.29), (D.32b), strong stationarity definition (B.4c) and condition (B.5), and
HDA assumption n/p→ δ, we have

Ts+1,t+1 =
1

δ
σ2 + lim

p→∞

p

n
Ez1,z2

[
〈prox[λρ(γ)

p ](β0 − z1)− β0, prox[λρ
(γ)
p ](β0 − z2)− β0〉

]
=

1

δ
σ2 +

1

δ
K∞reg,cvx

(
Qqs,t , λorc, T

)
= Ψ(qs,t)τ

2 = qs+1,t+1τ
2, (D.36)
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where we have used in the second equality the HDA assumption n/p→ δ, the inductive hypothesis

that (z1, z2) ∼ N

(
0,

(
Ts,s Ts,t
Tt,s Tt,t

)
⊗ Ip/p

)
= N(0,Qs,t ⊗ Ip/p), and the oracle proximal identity

(O.16); in the third equality, we have used definition (D.16); and in the last equality, we have
used (D.17b). This confirms the inductive step. Thus, state evolution (D.16), (D.17b) exactly
corresponds to the state evolution (D.32), (D.32c) of [BMN19].

Now we are able to verify assumptions (D.31), which are the final assumptions the authors of
[BMN19] require for Corollary SE. By (D.29), we see that div gt = n, so that again by (D.29) we
see the first identity in (D.31) holds with equality even in finite samples. By (D.33) and (D.25), we
have Tt,t = τ2 for all t ≥ 1. The second identity in (D.31) holds because

1

n
Ez [(div et)(τ

√
pz)] = − 1

n
Ez
[
(div prox[λρ(γ)

p ])(β0 − τz)
]

=
p

τorc(λγ + 1)n
Ez[〈z, prox[λorcρp](β0 − τorcz)〉]

p
' − 1

δ(λγ + 1)
W∞reg,cvx(τorc, λorc, T ) =

1

2λ
− 1 = −b = b̂t, (D.37)

where in the first equality we have used (D.29); in the second equality we have used (O.11); and in
the fourth equality we have used strong stationarity condition (B.7) and (D.9). The third equality
has two distinct justifications, depending on whether we are working under the DSN assumption, or
under the RSN assumption conditional on the realization of {β0}. Under the DSN assumption and
if the penalties are symmetric, we have used strong stationarity definition (B.4b), condition (B.5),
and Lemma C.4. Under the RSN assumption and if the penalties are not necessarily symmetric,
we have instead used Lemma C.3. Having verified (B1) - (B6) and (D.31), we have verified all
assumptions required to apply Corollary SE.

Finally, we show that Corollary SE implies (D.26a), (D.26b). The collection of maps (Rp)2 3
(x,x′) 7→ ‖x−x′‖√

p is [BMN19]-uniformly pseudo-Lipschitz of order 1. Thus, Corollary SE gives

(because we have verified its assumptions) that limp→∞
‖vt−1−vt‖√

p =
√

Σt−1,t−1 + Σt,t − 2Σt−1,t

and limp→∞
‖ut+1−ut+2‖√

p =
√
Tt+1,t+1 + Tt+2,t+2 − 2Tt+1,t+2 in probability. Under the change of

variables (D.29) and using (D.25), (D.33), and (D.35), we get (D.26a), (D.26b).

D.6 Relating AMP and convex optimization

We now complete the proof of parts (ii) and (iii) of Proposition B.3. Observe that by (D.29) and
(O.4),

‖et(0)‖2

p
= ‖prox[λρ(γ)

p ](β0)− β0‖2 ≤
(
‖prox[λρ(γ)

p ](β0 − τz)− β0‖+ τ‖z‖
)2

≤ 2‖prox[λρ(γ)
p ](β0 − τz)− β0‖2 + 2τ2‖z‖2. (D.38)

Considering z ∼ N(0, Ip/p), taking expectations on both sides, and using (B.4a) and (B.5), we get

that ‖et(0)‖√
p is bounded. Moreover, by (O.4) and (D.29), we have x 7→ et(

√
px)√
p is uniformly (over p)

pseudo-Lipschitz of order 1. By these two facts, Lemma P.5 gives that x 7→ ‖et(
√
px)‖2
p is uniformly

pseudo-Lipschitz of order 2. By Claim D.3, we have u 7→ ‖et(u)‖2
p is [BMN19]-uniformly pseudo-

Lipschitz of order 2. Thus, by (D.10b), (D.29), Corollary SE, oracle proximal identity (O.16), and
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strong stationarity condition (B.7), we have∥∥∥β̂t+1
− β0

∥∥∥2
=

∥∥et(ut+1)
∥∥2

p

p
' Ez

[∥∥et(τ√pz)
∥∥2

p

]
p
' R∞reg,cvx(τorc, λorc, T ). (D.39)

By the triangle inequality,∣∣∣∥∥∥β̂cvx − β0

∥∥∥−√R∞reg,cvx(τorc, λorc, T )
∣∣∣

≤
∥∥∥β̂t+1

− β̂cvx

∥∥∥+
∣∣∣∥∥∥β̂t+1

− β0

∥∥∥−√R∞reg,cvx(τorc, λorc, T )
∣∣∣ .

By (D.39) and (P.1), we have for fixed t

p

lim sup
p→∞

∣∣∣∥∥∥β̂cvx − β0

∥∥∥−√R∞reg,cvx(τorc, λorc, T )
∣∣∣ ≤ p

lim sup
p→∞

∥∥∥β̂t+1
− β̂cvx

∥∥∥
≤

p

lim sup
p→∞

2

κ

2b ‖X‖op
∥∥rt − rt+1

∥∥+

∥∥∥(β̂
t
+XTrt)− (β̂

t+1
+XTrt+1)

∥∥∥
λ

 , (D.40)

where κ > 0 is such that with probability going to 1 as p→∞, we have L is κ strongly convex and
in the second inequality, we have used (D.15). . Such a κ exists whenever δ > 0, γ > 0, or {ρp}
has positive uniform strong convexity parameter. By (D.24), (D.26a), and (P.2), we have

lim
t→∞

p

lim sup
p→∞

‖X‖op
∥∥rt − rt+1

∥∥ ≤ lim
t→∞

p

lim sup
p→∞

‖X‖op√
n

√
2(1− qt+1,t+2)τ = 0, (D.41)

where we have used that
p

lim sup
p→∞

‖X‖op/
√
n <∞ (see [Ver12, Theorem 5.31]). Similarly, by (D.24)

and (D.26b), we have

lim
t→∞

p

lim
p→∞

∥∥∥(β̂
t
+XTrt)− (β̂

t+1
+XTrt+1)

∥∥∥
λ

= lim
t→∞

√
2(1− qt+1,t+2)τ

λ
= 0. (D.42)

We conclude

lim
t→∞

p

lim sup
p→∞

∥∥∥β̂t+1
− β̂cvx

∥∥∥ = 0, (D.43)

whence again by (D.40)

lim
t→∞

p

lim sup
p→∞

∣∣∣∥∥∥β̂cvx − β0

∥∥∥−√R∞reg,cvx(τorc, λorc, T )
∣∣∣ = 0. (D.44)

Thus, (B.9) holds, as desired. This complete the proof of part (ii) of Proposition B.3.
Now we complete the proof of part (iii) of Proposition B.3. Take ϕp as given in part (iii). By

the DSN assumption, π̂β0

W→ π ∈ P2(R), we have ‖β0‖ is bounded (over p). Thus, by Lemmas P.3
and P.5, we have ψp (x) = ϕp(β0,β0−x), is uniformly pseudo-Lipschitz of order k. Then by Claim
D.3

ϕ̃p(u) = ψp(u/
√
p) (D.45)
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is [BMN19]-uniformly pseudo-Lipschitz of order k. Corollary SE and (D.29) then gives

ϕp

(
β0, β̂

t
+XTrt

)
= ϕp

(
β0,β0 − ut+1/

√
p
)

= ψp
(
ut+1/

√
p
)

= ϕ̃p
(
ut+1

)
p
' Ez [ϕ̃p(τ

√
pz)] = Ez [ϕp(β0,β0 − τz)] . (D.46)

By (D.10a), we have

y −Xβ̂cvx

(1− b)n
=
y −Xβ̂

t

(1− b)n
+
X(β̂

t
− β̂cvx)

(1− b)n
= rt +

b

1− b
(rt − rt−1) +

X(β̂
t
− β̂cvx)

(1− b)n
. (D.47)

Some algebra and the triangle inequality gives∥∥∥∥∥(β̂t +XTrt
)

︸ ︷︷ ︸
:=at

−

(
β̂cvx +

XT(y −Xβ̂cvx)

(1− b)n

)
︸ ︷︷ ︸

:bt

∥∥∥∥∥ =

∥∥∥∥∥β̂t − β̂cvx −XT

(
b

1− b
(rt − rt−1) +

X(β̂
t
− β̂cvx)

(1− b)n

)∣∣∣∣∣
≤
∥∥∥β̂t − β̂cvx

∥∥∥+ ‖X‖op

∥∥∥∥∥ b

1− b
(rt − rt−1) +

X(β̂
t
− β̂cvx)

(1− b)n

∥∥∥∥∥
≤

(
1 +

‖X‖2op
(1− b)n

)∥∥∥β̂t − β̂cvx

∥∥∥+
‖X‖opb

1− b
‖rt − rt−1‖, (D.48)

where we have defined at, bt for future reference. Now combining (D.41), (D.43), and
p

lim sup
p→∞

‖X‖op/
√
n <

∞ (see [Ver12, Theorem 5.31]) using (P.1) and (P.2), we get

lim
t→∞

p

lim sup
p→∞

‖at − bt‖ = 0. (D.49)

In the remainder of the argument, we let C be a constant which does not depend on p or t but
which may change at each appearance. By (D.29), for each t

‖at‖ = ‖β0 − ut+1/
√
p‖ ≤ ‖β0‖+ ‖ut+1‖/√p

p
' ‖β0‖+ τEz[‖z‖]

p
' s1/2

2 (π) + τ, (D.50)

where for each p we let z ∼ N(0, Ip/p), and in the first probabilistic equality we have used Corollary
SE and that u 7→ ‖u‖/√p is [BMN19]-uniformly pseudo-Lipschitz of order 1, and in the second
probabilistic equality we have used the DSN assumption (2.1). Because ‖bt‖ ≤ ‖at‖ + ‖at − bt‖,
by (D.49), (D.50), and (P.1), we have for every t that

p

lim sup
p→∞

‖bt‖ ≤ s1/2
2 (π) + τ. (D.51)

Combining (D.50) and (D.51) using (P.1), we have for each t

p

lim sup
p→∞

(
1 + ‖β0‖k−1 + ‖at‖k−1 + ‖bt‖k−1

)
≤ C. (D.52)
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Because the ϕp are uniformly pseudo-Lipschitz of order k,

lim
t→∞

p

lim sup
p→∞

∣∣ϕp (β0,a
t
)
− ϕp

(
β0, b

t
)∣∣ ≤ C lim

t→∞

p

lim sup
p→∞

(
1 + ‖β0‖k−1 + ‖at‖k−1 + ‖bt‖k−1

)
‖at − bt‖

≤ C lim
t→∞

p

lim sup
p→∞

‖at − bt‖ = 0, (D.53)

where in the first inequality we have used Definition 1.5, in the second inequality we have used
(P.2) and (D.52), and in the equality we have used (D.49). By (D.46), (D.53), and the triangle
inequality,∣∣ϕp(β0, b

t)− Ez[ϕ(β0,β0 − τz)]
∣∣ ≤ ∣∣ϕp(β0, b

t)− ϕp(β0,a
t)
∣∣+
∣∣ϕp(β0,a

t)− Ez[ϕ(β0,β0 − τz)]
∣∣

p→ 0. (D.54)

Plugging in for bt yields (B.10), as desired.
Thus, we have shown part (iii) and completed the proof of Proposition B.3 �

E Proof of Theorem 1

The main technical challenge is that exact asymptotics for the estimation error of penalized least
squares estimators rely on several technical assumptions we would like to avoid. We summarize the
main technical hurdles below.

1. δ > 1 or strong convexity. One set of technical assumptions under which exact asymptotics
can be established in full generality is that either δ > 1 or the penalties are strong-convexity.
Proposition B.3 leverages this fact in establishing exact asymptotics for oracle estimators
when either δ > 1, γ > 0, or ρp is uniformly strongly convex. To establish our lower bound
when δ ≤ 1 and ρp need not be uniformly strongly convex, we construct an oracle estimator
with oracle parameter γ > 0 which improves the estimation error of the original estimator.
Its exact characterization then provides a lower bound on the estimation error of the original
estimator.

2. Strong stationarity. Proposition B.3 requires the limits (B.5) exist and satisfy (B.7) (i.e.,
strong stationarity), but the δ-bounded width assumption {ρp} ∈ Cδ,π does not require that
(B.7) be satisfied or even that the limits (B.5) exist. To address this, we establish the
existence of limits satisfying (B.7) along certain subsequences of penalties using a compactness
argument. This is done in the proof of Lemma E.3.

3. Solutions to fixed point equations are appropriately bounded. We must show the
oracle estimator does not have risk which is too small. For this we will use the δ-bounded
width assumption. In fact, this is the only place the δ-bounded width assumption is used
in our argument. This is done in the proof of Lemma E.3. For further discussion of the
role of the δ-bounded width assumption, see Appendix I (though our proof does not use that
Appendix).

The proof is organized as follows. In Section E.1, we argue that without loss of generality it is
enough to consider penalty sequences {ρp} which satisfy an additional technical assumption. This
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technical assumption will be important for the compactness argument mentioned in item 2 above.
In Section E.2, we carry out the main technical steps of our proof: defining the oracle estimator
and showing that its risk is smaller than the risk of the original estimator but is not much smaller
than the convex lower bound (2.12). The proof of the main technical lemma in that section, Lemma
E.2, is deferred to Appendix F. It is here that the δ-bounded width assumption plays a role. In
Section E.3, we combine the first two parts to finish the proof of the lower bound. In Section E.4,
we show the lower bound is tight when δ > 1.

E.1 Penalty sequences which do not shrink towards infinity

The following claim shows that it is enough to prove Theorem 1 under the additional assumption
that the penalty sequence does not shrink towards infinity (see (C.5)).

Claim E.1. To show (2.12) under the conditions of Theorem 1, it is enough to show

inf
{ρp}∈Cδ,π∩B

p

lim inf
p→∞

‖β̂cvx − β0‖2 ≥ δτ2
reg,cvx − σ2, (E.1)

under the conditions of Theorem 1. (If Cδ,π ∩ B is empty, we take the infimum to be infinite).

The proof of Claim E.1 is based on the following lemma.

Lemma E.2. Fix π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. For a sequence of convex functions {ρp}, we
have under there exist constants c1 > 0 and c2 ≥ 0 depending only on π, δ, σ such that

p

lim inf
p→∞

‖β̂cvx − β0‖2 ≥ lim inf
p→∞

(c1‖prox[ρp](0)‖ − c2)2. (E.2)

(We use the same convention as in Theorem 1 when the minimizing set in (1.2) is empty).

Proof of Lemma E.2. For each p, observe that whenever the minimizing set in (1.2) is non-empty,
2
nX

T(y −Xβ̂cvx) ∈ ∂ρp(β̂cvx), whence

1

2
‖β‖2 + ρp(β) ≥ 1

2
‖β‖2 + ρp(β̂cvx) +

2

n
(β − β̂cvx)

TXT(y −Xβ̂cvx)

=
1

2
‖β̂cvx‖2 + 〈β̂cvx,β − β̂cvx〉+

1

2
‖β − β̂cvx‖2 + ρp(β̂cvx)

+
2

n
(β − β̂cvx)

TXT(y −Xβ̂cvx)

≥ 1

2
‖β̂cvx‖2 + ρp(β̂cvx) +

(
1

2
‖β − β̂cvx‖ − ‖β̂cvx‖ − 2

‖X‖op√
n

‖y −Xβ̂cvx‖√
n

)
‖β − β̂cvx‖

≥ 1

2
‖β̂cvx‖2 + ρp(β̂cvx) +

(
1

2
‖β‖ − 3

2
‖β̂cvx‖ − 2

‖X‖op√
n

‖y‖√
n
−
‖X‖2op
n
‖β̂cvx‖

)
‖β − β̂cvx‖.

By (2.4), 1
2‖prox[ρp](0)‖2+ρ(prox[ρp](0)) ≤ 1

2‖β̂cvx‖2+ρp(β̂cvx). Thus, when evaluating the previous
display at β = prox[ρp](0), the expression in parentheses on the right-hand side is non-positive. That
is,

‖β̂cvx‖ ≥
1
2‖prox[ρp](0)‖ − 2

‖X‖op√
n
‖y‖√
n

3
2 +

‖X‖2op
n

≥
1
2‖prox[ρp](0)‖ − 2

‖X‖op√
n
‖w‖+‖X‖op‖β0‖√

n

3
2 +

‖X‖2op
n

. (E.3)
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By [Ver12, Theorem 5.31] and the HDA assumption,

‖X‖op/
√
n

p→ 1 +
√

1/δ =: c. (E.4)

Then, by the DSN assumption and the Continuous Mapping Theorem, 4
‖X‖op√

n
‖w‖+‖X‖op‖β0‖√

n

p→
4c(σ + cs2(π)). Let c1 = 1

3+2c2
and c2 = 4cc1(σ + cs2(π)) + s2(π). Then by (E.3) and Lemma

P.1 from Appendix P whenever the minimizing set in (1.2) is non-empty, and the convention
‖∞− β0‖2 =∞ otherwise, we have (E.2).

We now establish Claim E.1.

Proof of Claim E.1. Assume we have shown (E.1) under the conditions of Theorem 1. Now, we
assume the conditions of Theorem 1 and show the stronger (2.12).

Let {p(`)} be the subsequence of {p} containing exactly those p for which (c1‖prox[ρp](0)‖ −
c2)2 ≥ δτ2

reg,cvx − σ2 + 1, and let {p′(`)} its complement, that is, the subsequence of {p} containing
exactly those p for which (c1‖prox[ρp](0)‖ − c2)2 < δτ2

reg,cvx − σ2 + 1. We permit that one of these
subsequences be finite. It is straightforward to check that

p

lim inf
p→∞

‖β̂cvx(p)− β0‖2 ≥ min

{
p

lim inf
`→∞

‖β̂cvx(p(`))− β0‖2,
p

lim inf
`→∞

‖β̂cvx(p
′(`))− β0‖2

}
, (E.5)

if we adopt the convention that when either of these sequences is finite, the corresponding
p

lim inf is
∞. We now check that each expression in the minimum on the right-hand side of (E.5) is bounded

below by δτ2
reg,cvx − σ2. First, we show that

p

lim inf
`→∞

‖β̂cvx(p(`))− β0‖2 ≥ δτ2
reg,cvx − σ2. If {p(`)} is

finite, there is nothing to check. If {p(`)} is infinite, then we apply Lemma E.2. Second, we show

that
p

lim inf
`→∞

‖β̂cvx(p
′(`)) − β0‖2 ≥ δτ2

reg,cvx − σ2. If {p′(`)} is finite, there is nothing to check. If

{p′(`)} is infinite, then {ρp′(`)} ∈ B by construction, and we apply the assumption of the claim.
Thus, for all {ρp} ∈ Cδ,π, the left-hand side of (E.5) is bounded below by (2.12), as desired.

E.2 Constructing oracles with not-too-small effective noise

The bulk of the proof of Theorem 1 involves constructing a sequence of estimators to which we can
apply the exact asymptotics of Proposition B.3 and whose asymptotic estimation error is not too
much smaller than that of the original sequence of estimators. To do so, we take a subsequence of
the {ρp} and add a small but non-zero oracle term as in (B.2). The only place in our proof where the
δ-bounded width assumption plays a role is in showing that small oracle penalties cannot improve
the estimation error too much.

Lemma E.3. Consider π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. Consider an increasing sequence of
integers {p} and a sequence {ρp} ∈ Cδ,π ∩ B.

(i) Consider arbitrary δ and sequence {ρp} ∈ Cδ,π ∩ B. If τlb > 0 is such that δτ2
lb − σ2 <

Ropt
seq,cvx(τlb;π), then there exists sub-sequence {p(`)}, γ > 0, τ > τlb, and λ > 0 such that the

following is true: with T = (π, {ρp(`)}), the quintuplet τ, λ, δ, γ, T is strongly stationary.
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(ii) Consider sequence {ρp} and T ′ = (π, {ρp}). If δ > 1, and τ ≥ 0,λ′ > 0 are such that

δτ2 − σ2 = R∞reg,cvx(τ, λ
′, T ′),

then there exists sub-sequence {p(`)} and λ > 0 such that the following holds: with T =
(π, {λ′ρp/λ}), the quintuplet τ, λ, δ, γ = 0, T is strongly stationary.

Most of the technical machinery of the proof of Theorem 1 is contained in the proof of Lemma E.3.
The proof of Lemma E.3 is provided in Appendix F. In part (i), the reader should have in mind
taking τlb ↑ τreg,cvx and ε small, so that we may produce strongly stationary quintuplets with τ not
too much smaller than τreg,cvx in the case that τreg,cvx is finite, or diverging in the case that τreg,cvx
is infinite. Part (ii) is only used in establishing tightness of the convex lower bound when δ > 1.

E.3 Lower bounding the asymptotic loss

Assume the conditions of Theorem 1. If τreg,cvx = 0, then (2.12) is trivial. Thus, assume τreg,cvx > 0.
We will show that for any {ρp} ∈ Cδ,π ∩ B and any τlb > 0 such that δτ2

lb − σ2 > Ropt
seq,cvx(τlb;π),

lim
p→∞

P
(
‖β̂cvx − β0‖2 < δτ2

lb − σ2
)

= 0. (E.6)

We then take τlb ↑ τreg,cvx such that δτ2
lb−σ2 > Ropt

seq,cvx(τlb;π) is satisfied along this sequence, which
is permitted by the definition of τreg,cvx. By Claim E.1, this is enough.

Assume otherwise. Then for some ξ > 0, we may pick a subsequence {p(`)} such that

P
(
‖β̂cvx(p(`))− β0(p(`))‖2 < δτ2

lb − σ2
)
> ξ (E.7)

for all `. Observe {ρp(`)} ∈ Cδ,π ∩ B because conditions (2.9) and (C.5) are closed under taking
subsequences. By Lemma E.3(i), we may choose γ > 0, a further subsequence {p′(`)}, τ > τlb, and

λ > 0 such that, with T = (π, {ρ(γ)
p′(`)}), we have that τ, λ, γ, δ, T is strongly stationary (here, we

have used τlb > 0). By Proposition B.3, we have ‖β̂
(γ)

orc(p′(`))− β0(p′(`))‖2 p−−−→
`→∞

δτ2 − σ2, whence

lim
`→∞

P
(
‖β̂

(γ)

orc(p′(`))− β0(p′(`))‖2 < δτ2
lb − σ2

)
= 0. (E.8)

By Lemma B.1, ‖β̂
(γ)

orc(p′(`))− β0(p′(`))‖2 ≤ ‖β̂cvx(p
′(`))− β0(p′(`))‖2 for all ` and all realizations

of X, whence

lim
`→∞

P
(
‖β̂cvx(p

′(`))− β0(p′(`))‖2 < δτ2
lb − σ2

)
= 0, (E.9)

contradicting (E.7). We conclude (E.6).

E.4 Tightness for δ > 1

Tightness is trivial when both the left and right-hand side of (2.12) is infinite, so we assume
τ2
reg,cvx <∞. In particular, Ropt

seq,cvx(τ ;π) is finite for some τ .

Then, by Lemma C.2, Ropt
seq,cvx(τ ;π) is finite for all τ and continuous. Thus, by the definition of

τ2
reg,cvx, we have δτ2

reg,cvx − σ2 = Ropt
seq,cvx(τreg,cvx;π). The infimum in (2.8) can always be achieved
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by taking a sequence of {{ρ(k)
p }p}k approaching the infimum, and then taking a sequence {ρ(k(p))

p }p
where k(p) goes to infinity appropriately as a function of p. By passing to a subsequence, we can
assume that the limit infimum is a limit. Thus, we may assume we have a sequence {ρp}p such that

δτ2
reg,cvx − σ2 = lim

p→∞
Eβ0,z

[
‖prox[ρp](β0 + τz)− β0‖

2
]

= Rreg,cvx(τreg,cvx, 1, T ′),

where T ′ = (π, {ρp}). Because ‖prox[ρp](β0 + τz)− β0‖ ≥ ‖prox[ρp](0)‖ − τ‖z‖ − 2‖β0‖, we may
conclude that {ρp} ∈ B. By Lemma E.3(ii), we may find λ > 0 and a subsequence {p(`)} such that
τreg,cvx, λ, δ, γ = 0, T = (π, {ρp(`)/λ}) is strongly stationary. By Proposition B.3, under the penalty

sequence {ρp(`)/λ} we have ‖β̂cvx − β0‖2
p→ δτ2

reg,cvx − σ2.
The proof of Theorem 1 is complete. �

F Proof of Lemma E.3

Lemma E.3 contains most of the technical machinery of our proof. The argument relies on several
lemmas, some of whose proofs are deferred to Appendix G.

To guide the reader, we first provide a high-level overview of the argument.

1. Finite sample version of fixed-point equations. We begin by defining finite-sample versions of
the fixed point equations (B.7) (see (F.1) below). The solutions to (B.7) which we construct
will be limits to solutions of (F.1).

2. Bounds on possible solutions to finite sample fixed-point equations. By comparing the right
and left-hand sides of (F.1a), we place an upper (Lemma F.1) and lower (Lemma F.2) bound
on the noise variance τ2 at a solution to the finite-sample fixed point equations. The lower
bound is the only location in our argument where the δ-bounded width assumption is used,
corresponding to the statement that the estimation error of the oracle estimator is not too
much smaller than the convex lower bound.

3. Existence of solutions to finite sample fixed-point equations. Using a topological argument,
we show that solutions to the finite sample fixed-point equations must exist (Lemma F.3).
Although the Lemma is quite intuitive (having the flavor of a two-dimensional intermediate
value theorem), we could not find a statement of the required result in the literature, and the
proof is a bit involved.

4. From finite-sample fixed points to strongly stationary quintuplets. Using the existence of and
bounds on the solutions to (F.1), we apply a compactness arguments to find a subsequence
and construct the required strongly stationary quintuplet (see Section F.2).

F.1 Solutions to finite-sample version of fixed point equations

We first consider the following finite-sample versions of the fixed point equations (B.7):

δτ2 − σ2 = Rreg,cvx(τorc, λorc, Tp), (F.1a)

2λ

(
1− 1

δ(λγ + 1)
Wreg,cvx(τorc, λorc, Tp)

)
= 1. (F.1b)
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The first step in proving Lemma E.3 is to establish the existence of solutions to these finite-sample
equations and to control their size. This is achieved by the following series of lemmas, whose proofs
are provided in Appendix G.

Lemma F.1. Consider an lsc, proper, convex, function ρ : Rp → R∪ {∞}. Let M ≥ ‖prox[ρ](0)‖.
Let Tp = (π, ρ). If δ > 1 or γ > 0 or ρ is κ-strongly convex with κ > 0, there exists some τmax

depending only on π,M, δ, γ, κ (and not on p) such that if τ, λ is a solution of (F.1b) at γ with
τ ≥ τmax, then

δτ2 − σ2 > Rreg,cvx(τorc, λorc, Tp). (F.2)

The inequality of Lemma F.1 says solutions to (F.1) cannot be too big when either δ > 1, γ > 0,
or ρ is strongly convex. The next lemma establishes –under certain additional restrictions– the
reverse inequality at a value of τ which is not too small.

Lemma F.2. Consider {ρp} ∈ Cδ,π and τlb > 0 such that δτ2
lb − σ2 < Ropt

seq,cvx(τlb;π). For each p,
let Tp = (π, ρp). Then we can find γ > 0, τmin ≥ τlb, and a subsequence {p(`)} such that for all p
in the subsequence we have the following: for all λ which solves (F.1b) at τmin, γ,

δτ2
min − σ2 < Rreg,cvx(τmin,orc, λorc, Tp), (F.3)

where τmin,orc = τmin
λγ+1 and λorc = λ

λγ+1 .

Combining Lemmas F.1 and F.2, the next lemma allows us to choose an oracle parameter such
that, along a subsequence of {p}, there exist solutions to (F.1) with effective noise parameters τ
which are neither too large or too small.

Lemma F.3. We have the following.

(i) Assume conditions of Lemma F.2. Assume additionally that {ρp} ∈ B. Then we can find
γ > 0, τmax <∞, λmax <∞, and a subsequence {p(`)} such that for all p in the subsequence,
there exists solution τ, λ to (F.1) with (τ, λ) ∈ [τlb, τmax]× [1/2, λmax].

(ii) If δ > 1 or {ρp} are κ-strongly convex with κ > 0, part (i) holds except we may also take
γ = 0.

The needed characterization of solutions to (F.1) is complete.

F.2 From finite-sample fixed points to strongly stationary quintuplets

We now apply the lemmas above to prove Lemma E.3.

Proof of Lemma E.3(i). By Lemma F.3(i), we can (and do) choose γ > 0, τmax < ∞, λmax < ∞,
and a subsequence {p(`)} such that for all p in the subsequence there exists a solution τp, λp to (F.1)
with (τp, λp) ∈ [τlb, τmax] × [1, λmax]. By Bolzano-Weierstrass, we can find a further subsequence
{p′(`)} and (τ, λ) ∈ [τlb − ε, τmax]× [1, λmax] such that

(τp′(`), λp′(`))→ (τ, λ) ∈ [τlb, τmax]× [1, λmax]. (F.4)

To simplify notation, we write the subsequence as {p}. By (F.1a) and (F.4), we get

Rreg,cvx(τp,orc, λp,orc, Tp) −→
p→∞

δτ2 − σ2. (F.5)
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We also have by the definition of τorc and λorc and (F.4) that

(τp,orc, λp,orc)→ (τorc, λorc). (F.6)

Because {ρp} ∈ B, by Lemma C.5, Rreg,cvx(τ
′, λ′, Tp) are uniformly Lipschitz continuous on compact

sets. Thus, by (F.5) and (F.6),

Rreg,cvx(τorc, λorc, Tp) −→
p→∞

δτ2 − σ2. (F.7)

That is, the limit (B.5) exists at τorc, λorc, and the limiting value solves (B.7a).

Similarly, by (F.1b), for each p we have Wreg,cvx(τp,orc, λp,orc, Tp) = δ(λpγ+1)
(

1− 1
2λp

)
, so that

Wreg,cvx(τp,orc, λp,orc, Tp) −→
p→∞

δ(λγ + 1)

(
1− 1

2λ

)
. (F.8)

By Lemma C.5, Wreg,cvx(τ
′, λ′, Tp) is uniformly Lipschitz continuous in (τ ′, λ′) on compact sets.

Thus, by (F.8) and (F.6),

Wreg,cvx(τorc, λorc, Tp) −→
p→∞

δ(λγ + 1)

(
1− 1

2λ

)
. (F.9)

That is, the limit (B.5) exists at τorc, λorc, and the limiting value solves (B.7b).
Finally, by Lemma C.5, the functions Rreg,cvx(τ

′, λ′, Tp), Wreg,cvx(τ
′, λ′, Tp), and Kreg,cvx(T

′, λ′, Tp)
are uniformly equicontinuous in τ ′, λ′, and T ′ on bounded sets. Further, the convergence (F.7)
and (F.9) gives us that Rreg,cvx(τ, λ, Tp) and Rreg,cvx(τ, λ, Tp) are uniformly bounded over p. Fur-
ther, for T = τ2I2, by (B.4a) and (B.4c), we have Kreg,cvx(T , λ, Tp) = Rreg,cvx(τ, λ, Tp), so that
Kreg,cvx(T , λ, Tp) are uniformly bounded over p. Thus, by the Arzelá-Ascoli theorem, we may take a
further subsequence {p(`)} along which the limits (B.5) exist for all τ ′, λ′,T ′. We have now estab-
lished that with T = (π, {ρp(`)}), the quintuplet τ, λ, γ, δ, T = (π, {ρp(`)}) is strongly stationary.

Proof of Lemma E.3(ii). Because Wreg,cvx(τ, λ
′, T ′p ) ∈ [0, 1] for all p by (C.1) and (C.2), there is

a subsequence {p(`)} such that Wreg,cvx(τ, λ
′, T ′p(`)) converges to a limit w. Let λ = 1

2(1−w/δ) ,

so that 1 = 2λ(1 − w/δ). Note R∞reg,cvx(τ, λ, (π, {λ′ρp(`)/λ})) = R∞reg,cvx(τ, λ
′, (π, {ρp(`)})) and

W∞reg,cvx(τ, λ, (π, {λ′ρp(`)/λ})) = W∞reg,cvx(τ, λ
′, (π, {ρp(`)})). Thus, (B.7) are satisfied for T = (π, {λ′ρp/λ})

at τ, λ, γ = 0, δ. Now we may take a further subsequence such that the limits (B.5) exist for all
τ ′,T ′ by the same argument used in the proof of Lemma E.3(i).

G Proofs of Appendix F Lemmas

G.1 Proof of Lemma F.1

We prove Lemma F.1 by controlling the size of Rreg,cvx(τ, λ, Tp) for large τ . The following claim is
what we need.

Claim G.1. For any lsc, proper, convex ρ : Rp → R∪ {∞} and z ∼ N(0, Ip/p) independent of β0,

Eβ0,z[‖prox[ρ](β0+τz)−β0‖2] ≤
(√

Eβ0,z[〈τz, prox[ρ](β0 + τz)〉] +
√
Eβ0,z[‖prox[ρ](β0)− β0‖2]

)2

.

(G.1)
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Proof of Claim G.1. Write

‖prox [ρ] (β0 + τz)− β0‖
2 ≤ ‖prox [ρ] (β0 + τz)− prox [ρ] (β0)‖2 (G.2a)

+ 2 ‖prox [ρ] (β0 + τz)− prox [ρ] (β0)‖ ‖prox [ρ] (β0)− β0‖ (G.2b)

+ ‖prox [ρ] (β0)− β0‖
2 . (G.2c)

First, we bound the first term on the right-hand side.
By (O.3), we have

‖prox[ρ](β0 + τz)− prox[ρ](β0)‖2 ≤ 〈τz, prox[ρ](β0 + τz)− prox[ρ](β0)〉. (G.3)

Taking expectations of both sides and using that Eβ0,z[〈τz, prox[ρ](β0)〉] = 0 by the independence
of β0 and z and the fact that Ez[z] = 0, we get

Eβ0,z[‖prox[ρ](β0 + τz)− prox[ρ](β)‖2] ≤ Eβ0,z[〈τz, prox[ρ](β0 + τz)〉]. (G.4)

We bound the expectation of (G.2b) by Cauchy-Schwartz.

Eβ0,z[‖prox [ρ] (β0 + τz)− prox [ρ] (β0) ‖ ‖prox [ρ] (β0)− β0‖]

≤
√
Eβ0,z[‖prox [ρ] (β0 + τz)− prox [ρ] (β0)‖2]

√
Eβ0,z[‖prox[ρ](β0)− β0‖2]

≤
√
Eβ0,z[〈τz, prox[ρ](β0 + τz)〉]

√
Eβ0,z[‖prox[ρ](β0)− β0‖2], (G.5)

where in the third line we have used (G.4). Taking the expectation of (G.2) and applying bounds
(G.4), (G.5) gives (G.1).

We are ready to prove Lemma F.1. Fix γ ≥ 0 and κ ≥ 0, so that ρp is κ-strongly convex (note,
when κ = 0 we make no strong convexity assumption). Consider solutions τ, λ to (F.1b) at γ. To
simplify notation, we denote ρorc = λorcρ. By (B.4a) and Claim G.1,

1

δτ2
Rreg,cvx(τorc, λorc, Tp) =

1

δτ2
Eβ0,z[‖prox[ρorc](β0 + τorcz)− β0‖2]

≤

(√
1

δτ2
Eβ0,z[〈τorcz, prox[ρorc](β0 + τorcz)〉] +

√
1

δτ2
Eβ0,z[‖prox[ρorc](β0)− β0‖2]

)2

.

(G.6)

First we bound the second term on the right-hand side of (G.6). By (C.1) and (F.1b), 1 ≥
2λ
(

1− 1
δ(λγ+1)

1
λorcκ+1

)
= 2λ

(
1− 1

δ
1

λκ+λγ+1

)
. If either δ > 1, γ > 0, or κ > 0, the right-hand side

diverges to ∞ for λ→∞. Thus, there exists λmax depending only on δ, γ, κ such that all solutions
τ, λ to (F.1b) at γ satisfy λ ≤ λmax. Then we have

‖prox[ρorc](β0)− β0‖ ≤ ‖prox[ρ](0)‖+ ‖prox[λorcρ](0)− prox[ρ](0)‖
+ ‖prox[λorcρ](β0)− prox[λorcρ](0)‖+ ‖β0‖

≤M +M |λorc − 1|+ 2‖β0‖ ≤M(λmax + 2) + 2‖β0‖,
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where in the second inequality, we have used (O.5) and (O.4), and in the third inequality, we have
used λorc ≤ λ ≤ λmax. Thus,

Eβ0,z[‖prox[ρorc](β0)− β0‖2] ≤ 2M2(λmax + 2)2 + 8s2(π), (G.7)

where s2(π) is the second moment of π.
Second we bound the first term on the right-hand side of (G.6). We bound the first term by

using the fact that τ, λ, γ solve (F.1b). In particular, by (F.1b) we have that

1

δ(λγ + 1)
Wreg,cvx(τorc, λorc, Tp) = 1− 1

2λ
≤ 1− 1

2λmax
(G.8)

Then, applying (B.4b), we get

1

δτ2
Eβ0,z[〈τorcz, prox[ρorc](β0 + τorcz)〉] =

1

δ(λγ + 1)2
Wreg,cvx(τorc, λorc, Tp)

≤ 1− 1

2λmax
.

Plugging this and (G.7) into (G.6), we get

1

δτ2
Rreg,cvx(τorc, λorc, Tp) ≤

(√
1− 1

2λmax
+

√
2M2(λmax + 2)2 + 8s2(π)

δτ2

)2

. (G.9)

Choose τmax such that

1 >
σ2

δτ2
max

+

(√
1− 1

2λmax
+

√
2M2(λmax + 2)2 + 8s2(π)

τ2
maxδ

)2

, (G.10)

which is possibly because 1− 1
2λmax

< 1. This choice depends only on π,M, γ, κ, δ. This inequality
also holds for any τ ≥ τmax. Chaining (G.9) and (G.10) and performing some rearrangement, we
get that F.2 holds, as desired. �

G.2 Proof of Lemma F.2

The proof proceeds in three steps. The only place where the δ-bounded width assumption is used
is in Case 1 of Step 2.
Step 1: Construct interval on which δτ2 − σ2 < Ropt

seq,cvx(τ ;π).
By the definition of Ropt

seq,cvx(τ ;π), there exists ζ > 0 such that

δτ2
lb − σ2 < Ropt

seq,cvx(τlb;π, p)− ζ

eventually. By the regularity property established in Lemma C.2, we may pick ∆ > 0 such that
Ropt
seq,cvx(τ ;π, p) > Ropt

seq,cvx(τlb;π, p)− ζ/3 and δτ2 − σ2 < δτ2
lb − σ2 + ζ/3 for all τ ∈ [τlb, τlb + ∆]. In

particular, for all such τ

δτ2 − σ2 ≤ δτ2
lb − σ2 + ζ/3 < Ropt

seq,cvx(τlb;π, p)− 2ζ/3 < Ropt
seq,cvx(τ ;π, p)− ζ/3. (G.11)

Step 2: Choose oracle parameter with not-too-small oracle effective noise.
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The meaning of the preceding statement will become clear shortly. Let

τmin = τlb + ∆. (G.12)

Denote
τlb

τlb + ∆
= 1− θ. (G.13)

For simplicity, for the remainder of the proof, we denote the subsequence {p(`)} as {p}. We will
show how to choose γ > 0 such that, for each p, any solution λ to (F.1b) at τmin, γ satisfies

τmin,orc ≥ τlb, (G.14)

where we have denoted τmin,orc = τmin
λγ+1 . This is what we mean by “choose oracle parameter with

not-too-small oracle effective noise.” There are two cases.

• Case 1: δ ≤ 1.

Because {ρp} ∈ Cδ,π, by (2.9), we can (and do) choose λ̄ > 0 and ξ > 0 such that

lim sup
p→∞

sup
λ>λ̄,τ ′∈[δτmin/2,τmin]

1

τ ′
Eβ0,z[〈z, prox[λρp](β0 + τ ′z)〉] < δ(1− ξ), (G.15)

(note that by assumption, δ/2 < 1, so the interval is non-empty). Let {p(`)} be a subsequence
of {p} such that

sup
λ>λ̄,τ ′∈[δτmin/2,τmin]

1

τ ′
Eβ0,z[〈z, prox[λρp(`)](β0 + τ ′z)〉] < δ(1− ξ) (G.16)

for all `. Now choose

0 < γ < min

{
2

δ
− 1,

θ

λ̄
,

θ

1− θ
2ξ

}
. (G.17)

It is straightforward to check that the right-hand side is positive, so that such γ exist. Now
consider any solution λ to (F.1b) at τmin, γ. Thus,

2

δ
− 1 > γ = 2λγ

(
1− 1

δ(λγ + 1)
Wreg,cvx(τmin,orc, λorc, Tp)

)
≥ 2λγ

(
1− 1

δ(λγ + 1)

)
= 2

((
1

λγ + 1

)−1

− 1

)(
1− 1

δ(λγ + 1)

)
,

where in the first inequality we have used (G.17), in the first equality we have used (F.1b),
and in the second inequality we have used (C.1). The right-hand side is strictly decreasing
in 1

λγ+1 . Moreover, the right-hand side equals 2
δ − 1 when 1

λγ+1 = δ
2 . We conclude that

1
λγ+1 ≥

δ
2 , whence

τmin ≥ τmin,orc ≥
δτmin

2
, (G.18)
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where the first inequality holds because trivially 1 ≥ 1
λγ+1 . We now use the crude lower bound

of (G.18) to generate the lower bound (G.14). Either λ > 1
2ξ or λ ≤ 1

2ξ . If λ > 1
2ξ , then

1

τmin,orc
Eβ0,z [〈z, prox [λorcρ] (β0 + τmin,orcz)〉] = Wreg,cvx(τmin,orc, λorc, Tp)

= δ(λγ + 1)

(
1− 1

2λ

)
> δ (1− ξ) , (G.19)

where in the first line, we have used (B.4b), and in the second line, we have used (F.1b).
Combining this with (G.16) and (G.18), we conclude λ̄ ≥ λorc. Thus, 1

λγ+1 = 1 − λγ
λγ+1 =

1− λorcγ ≥ 1− λ̄γ. By (G.12), (G.17) and (G.13),

τmin,orc =
τlb + ∆

λγ + 1
≥ (τlb + ∆)

(
1− λ̄γ

)
≥ (τlb + ∆)(1− θ) = τlb,

so we have (G.14). On the other hand, if λ ≤ 1
2ξ , then by (G.17)

τmin,orc =
τlb + ∆

λγ + 1
≥ τlb + ∆

γ/(2ξ) + 1
≥ τlb + ∆

θ
1−θ + 1

= (τlb + ∆)(1− θ) = τlb,

so we also have (G.14). Thus, if we choose γ to satisfy (G.17), then (G.14) holds at any
solution λ to (F.1b) at τmin, γ.

• Case 2: δ > 1.

Choose

0 ≤ γ < 2θ(δ − 1)

(1− θ)δ
. (G.20)

Now consider any solution λ to (F.1b) at τmin, γ. By (C.1),

1 = 2λ

(
1− 1

δ(λγ + 1)
Wreg,cvx(τmin,orc, λorc, Tp)

)
≥ 2λ

(
1− 1

δ

)
.

We conclude that λ ≤ δ
2(δ−1) . Thus, by (G.20) and (G.13),

τmin,orc =
τlb + ∆

λγ + 1
>

τlb + ∆
δ

2(δ−1)
2θ(δ−1)
(1−θ)δ + 1

= (τlb + ∆)(1− θ) = τlb,

so we have (G.14). Thus, if we choose γ to satisfy (G.20), then (G.14) holds at any solution
λ to (F.1b) at τmin, γ.

Step 3: Combine steps 1 and 2.
We now provide the construction required by the lemma. We choose γ, τmin, and subsequence {p(`)}
as in Step 2. We showed that, along this sequence, for any λ which solves (F.1b), we have (G.14).
Because 1

λγ+1 ≤ 1, we also have τmin,orc ≤ τlb + ∆. Thus, τmin,orc ∈ [τlb, τlb + ∆], and by (G.11), we

have δτ2
min − σ2 < δτ2

lb − σ2 + ζ/3 < Ropt
seq,cvx(τmin,orc;π, p). We conclude (F.3). �
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G.3 Proof of Lemma F.3

Proof of Lemma F.3. We prove parts (i) and (ii) in parallel.
Under the conditions of part (i), by Lemma F.2, we can (and do) choose γ > 0, τmin ≥ τlb, and

a subsequence {p(`)} of {p} such that for all p in the subsequence and all λ which solves (F.1b)
at τmin, γ, (F.3) holds. Under the conditions of part (ii), we take τmin = τlb and γ = 0. Now there
exists a subsequence such that (F.3) holds for any λ by the definition of Ropt

reg,cvx and τlb (and in
particular, it holds for those λ solving (F.1b)).

Because {ρp(`)} ∈ B (indeed, property (C.5) is closed under taking subsequences), we may
choose M such that M ≥ ‖prox[ρp(`)](0)‖ for all `. By Lemma F.1, under the conditions of parts (i)
and (ii) and the respective choices of γ, we can (and do) choose τmax such that if τ, λ is a solution
of (F.1b) at γ with τ ≥ τmax, then F.2 holds.

Choose λmax > 0 such that

2λmax

(
1− 1

δ(λmaxγ + λmaxκ+ 1)

)
> 1, (G.21)

where κ = 0 when {ρp} is not uniformly strongly convex. Note that this is possible in part (i)
because γ > 0, and in part (ii) because either δ > 1 or κ > 0. Finally, choose λmin > 0 such that

2λmin < 1. (G.22)

For simplicity, we denote the subsequence {p(`)} by {p} for the remainder of the proof.
For each p, denote

rp(τ, λ) = δτ2 − σ2 − Rcvx,cvx(τorc, λorc, Tp), (G.23)

wp(τ, λ) = 2λ

(
1− 1

δ(λγ + 1)
Wreg,cvx(τorc, λorc, Tp)

)
. (G.24)

By Lemma C.5 and the continuity of the map (τ, λ) 7→
(

τ
λγ+1 ,

λ
λγ+1

)
on (τ, λ) ∈ [τmin, τmax] ×

[λmin, λmax], we have that wp and rp are continuous on [τmin, τmax]×[λmin, λmax]. To simplify notation
in the argument that follows, we will work under the change of variables implemented by the linear
bijection

ι : [0, 1]× [0, 2]→ [τmin, τmax]× [λmin, λmax], (G.25)

(a, b) 7→
(

(1− a)τmin + aτmax,

(
1− b

2

)
λmin +

b

2
λmax

)
. (G.26)

The functions rp ◦ ι and wp ◦ ι are continuous on [0, 1]× [0, 2]. By (C.1), (C.2), and (O.12), we have

for all τ, λ that 2λ ≥ wp(τ, λ) ≥ 2λ
(

1− 1
δ(λγ+1)(1+λorcκ)

)
= 2λ

(
1− 1

δ(1+λγ+λκ)

)
. Thus, by (G.21),

(G.22), and (G.24),

wp ◦ ι(a, 0) < 1, wp ◦ ι(a, 2) > 1 for all a ∈ [0, 1]. (G.27)

We seek (a, b) ∈ [0, 1]× [0, 2] such that

rp ◦ ι(a, b) = 0 and wp ◦ ι(a, b) = 1. (G.28)
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The next several paragraphs provide the construction, which essentially amounts to a type of two-
dimensional intermediate value theorem.

Let D0 = [0, 1] × {0} and D2 = [0, 1] × {2}. Let S = {(a, b) ∈ [0, 1] × [0, 2] | wp ◦ ι(a, b) ≤ 1}.
Note that D0 is a connected subset of S by (G.27). Let C0 =

⋃
C, where the union is taken over

connected sets C ⊂ S which contain D0. The set C0 is connected [Moi77, Theorem 1.14], so we are
justified in calling C0 “the connected component of S which contains D0.” The set C0 is also closed
because S is closed and the closure of any connected set is still connected. Thus, it is compact. By
(G.27), D2 ∩ S = ∅, so that C0 and D2 are disjoint. Because C0 and D2 are disjoint and compact,
they are separated by some Euclidean distance ξ > 0.

For any θ > 0, define

C0,θ = {(a, b) ∈ [0, 1]× [0, 2] | d((a, b), C0) ≤ θ}, (G.29)

where d denotes Euclidean distance. Clearly, C0,θ is closed. For θ < ξ/3, C0,θ is distance at

least 2ξ/3 from D2. We consider the lattice on [0, 1] × [0, 2] consisting of points
(
i
N ,

j
N

)
for

i ∈ {0, 1, . . . , N} and j ∈ {0, 1, . . . , 2N}, where N is chosen to be large enough so that

θN :=

√
5

N
= diam

([
i

N
,
i+ 2

N

]
×
[
j

N
,
j + 1

N

])
<
ξ

3
. (G.30)

Here, diam denotes the supremal distance between two points contained in a set. We define a set
of points V and line segments E as follows. The vertex set V is

V =

{
vij :=

(
i

N
,
j

N

) ∣∣∣ i ∈ {0, 1, . . . , N}, j ∈ {0, 1, . . . , 2N}} . (G.31)

The edge set E contains “horizontal” edges EHij :=
{(

i
N ,

j
N

)
,
(
i+1
N , jN

)}
and “vertical” edges

EVij :=
{(

i
N ,

j
N

)
,
(
i
N ,

j+1
N

)}
for certain values of i, j, as we now specify.

Horizontal edges. The edge EHij ∈ E if and only if the following are all true.

(i) i ∈ {0, . . . , N − 1} and j ∈ {1, . . . , 2N − 1} (ie. we exclude edges along the bottom or
top edge of [0, 1]× [0, 2]).

(ii) Either (i) j − i is even and exactly one of the open rectangles
(
i
N ,

i+2
N

)
×
(
j
N ,

j+1
N

)
and(

i−1
N , i+1

N

)
×
(
j−1
N , jN

)
has non-empty intersection with C1,ξ/3, or (ii) j − i is odd and

exactly one of the open rectangles
(
i−1
N , i+1

N

)
×
(
j
N ,

j+1
N

)
and

(
i
N ,

i+2
N

)
×
(
j−1
N , jN

)
has

non-empty intersection with C1,ξ/3.

Vertical edges. The edge EVij ∈ E if and only if the following are all true.

(i) i ∈ {0, . . . , 2N − 1} and j ∈ {1, . . . , N − 1} (ie. we exclude edges along the left or right
edge of [0, 1]× [0, 2]).

(ii) j− i is even and exactly one of the open rectangles
(
i−2
N , iN

)
×
(
j
N ,

j+1
N

)
and

(
i
N ,

i+2
N

)
×(

j
N ,

j+1
N

)
has non-empty intersection with C1,ξ/3.
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Remark G.1. To interpret the preceding definitions, the reader should have in mind the following
picture. We tile the rectangle [0, 1]× [0, 2] with “bricks” of width 2 and height 1 whose alignment
is offset by 1 in neighboring rows (as is done in [Moi77, Theorem 4.4]). The collection of edges
we have specified delineates the outer-boundary of the union of bricks in the tiling which intersect
C0,ξ/3 (excluding the shared boundary with [0, 1] × [0, 2] itself). We should think of think of this
as a more topologically well-behaved approximation to the boundary of C0 itself.

We establish the following series of claims.

Claim G.2. For all edges E ∈ E, all points p ∈ E are distance at least θN and at most 2θN from
C0 and at least ξ/3 from D2.

Proof of Claim G.2. Note each edge is contained in the boundary of each of the rectangles invoked

in its definition. That is, for horizontal edges EHij with j−i even, we have EHij ∈
[
i
N ,

i+2
N

]
×
[
j
N ,

j+1
N

]
and

[
i−1
N , i+1

N

]
×
[
j−1
N , jN

]
, and for j − i odd we have EHij ∈

[
i−1
N , i+1

N

]
×
[
j
N ,

j+1
N

]
and

[
i
N ,

i+2
N

]
×[

j−1
N , jN

]
. For vertical edges, we have EVij ∈

[
i−2
N , iN

]
×
[
j
N ,

j+1
N

]
and

[
i
N ,

i+2
N

]
×
[
j
N ,

j+1
N

]
. Thus,

all edges E ∈ E are contained in the boundary of a rectangle which does not intersect C0,ξ/3, so
that all p ∈ E are distance at least ξ/3 > θN from C0. Also, all edges E ∈ E are contained in
the boundary of a rectangle of diameter < θN with non-empty intersection with C0,ξ/3. Because
every point of C0,ξ/3 is distance at most ξ/3 from C0, we see that all p ∈ E are distance at most
ξ/3 + θN < 2ξ/3 from C0. Because C0 and D2 are separated by distance ξ, all p ∈ E are distance
at least ξ/3 from D2. We have established Claim G.2.

Claim G.3. For i 6= 0 or N and j 6= 0 or 2N , the vertex vij is the endpoint of either 0 or 2 edges
in E. (That is, this applies to vertices not on the boundary of [0, 1]× [0, 2]).

Proof of G.3. The only edges which possibly have endpoint vij are vertical edges EVij , E
V
i(j−1) and

horizontal edges EHij , E
H
(i−1)j . First, consider that j − i is even. Then EVi(j−1) 6∈ E because j − 1− i

is not even. There are three rectangles whose intersection with C0,θN determine the membership of

the remaining three edges, EVij , E
H
ij , and EH(i−1)j , in E . They are

(
i−2
N , iN

)
×
(
j
N ,

j+1
N

)
,
(
i
N ,

i+2
N

)
×(

j
N ,

j+1
N

)
, and

(
i−1
N , i+1

N

)
×
(
j−1
N , jN

)
. The edge EVij is in E if exactly one of the first two rectangles

has non-empty intersection with C0,θN ; the edge EHij is in E if exactly one of the last two has

non-empty intersection with C0,θN ; and the edge EH(i−1)j is in E if exactly one of the first and
last rectangle has has non-empty intersection with C0,θN . Thus, if exactly one or two of the three
rectangles has non-empty intersection with C0,θN , then two of the edges EVij , E

H
ij , E

H
(i−1)j is in E ;

otherwise, none of these edges are in E . The case j − i odd is similar. This establishes Claim
G.3.

Claim G.4. If i = 0 or N or j = 0 or 2N , then the vertex vij is the endpoint of either 0 or 1
edges in E.

Proof of Claim G.4. For i = 0, it is easy to check that the only edge which could be in E without
violating conditions (i) is EH0j . The other cases are similar, establishing Claim G.4.
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Though we have defined V and E as sets of points and line segments in the plane, we may think
of them as vertices and edges in a graph G = (V, E). Claims G.3 and G.4 establish by elementary
graph theory that the graph is partitioned into connected components, each of which is a path
whose endpoints are on the boundary of [0, 1] × [0, 2] and whose other vertices are in the interior
of [0, 1]× [0, 2]. These paths contain each of the vertices in the path exactly once.

Claim G.5. There is a path p0, . . . ,pK in the graph G such that p0 ∈ {0} × [0, 2] and pK ∈
{1} × [0, 2], the left and right boundary of [0, 1]× [0, 2].

Proof of Claim G.5. Observe that
(

0, 2
N

)
×
(

0, 1
N

)
intersects C0,θN because it is distance 0 from

[0, 1] × {0} = D0 ⊂ C0. Also,
(
− 1

N ,
1
N

)
×
(

2N−1
N , 2

)
does not intersect C0,θN because it has

diameter θN < ξ/3 and intersects D2, which has distance at least ξ from C0. Thus, there is a

jmax the maximal value of j such that
(
i(j)
N , i(j)+2

N

)
×
(
j−1
N , jN

)
has non-empty intersection with

C0,θN , where we have denoted i(j) = −1 if j is even and i(j) = 0 if j is odd. By the definition of
E , we see that EH0jmax

∈ E and jmax is the maximal j for which this is true. Let p0 = v0jmax and
p0,p1, . . . ,pK be the connected path in G to which p0 belongs. We claim pK ∈ {1} × [0, 2]. We
have already established that pK is on the boundary of [0, 1]× [0, 2], so we only need to eliminate
the possibility that it belongs to the top, bottom, or left boundaries. Because pK is contained
in an edge E ∈ E , we have pK 6∈ D2, the top boundary, by Claim G.2. Similarly, pK 6∈ D0, the
bottom boundary, because D0 ⊂ C0 and, by Claim G.2, pK is distance at least θN from C0. Finally,
consider that pK were in {0} × [0, 2], the left boundary. Then the final edge in the path is EV0j for
some j 6= jmax. By the definition of jmax, we in fact have j < jmax. Also, j > 0 because otherwise

pK−1 is also on the boundary of [0, 1] × [0, 2]. If we connect pK =
(

0, jN

)
and p0 =

(
0, jmax

N

)
by a line-segment, then p0,p1, . . . ,pK are the vertices of a polygon P (formally, the union of line
segments connecting the adjacent vertices and p0,pK). By [Moi77, Theorem 2.1], R2 \ P has two
connected components which are disconnected from each other, one of which is bounded and one of

which is unbounded. It is straightforward to check that the open rectangle
(

0, 1
N

)
×
(
jmax−1
N , jmax

N

)
is in the bounded component,3 and D0 is in the unbounded component (because j > 0). But(
i(jmax)
N , i(jmax)+2

N

)
×
(
jmax−1
N , jmax

N

)
intersects C0,ξ/3 but not the polygon, and D0 ⊂ C0,ξ/3 and C0,ξ/3

is connected, which contradicts that
(

0, 1
N

)
×
(
jmax−1
N , jmax

N

)
and D0 are contained in disconnected

components of R2 \P . Thus, we conclude pK 6∈ {0}× [0, 2], the left boundary. We have established
Claim G.5.

Now we construct such a path for a sequence N → ∞. That is, for each N we have a path

p
(N)
0 , . . . ,p

(N)
KN

such that p
(N)
0 ∈ {0} × [0, 2], p

(N)
KN
∈ {1} × [0, 2], and whose edges satisfy Claim

G.2. By compactness, we may take a subsequence {N(`)} of {N} such that pN(`)0 → pleft and
pN(`)KN(`)

→ pright for some pleft,pright. Because by Claim G.2 the points pN(`)0 and pN(`)KN(`)

are between distance θN and 2θN from C0, we have that pleft,pright ∈ ∂C0. Thus, wp ◦ ι(pleft) =
wp◦ι(pright) = 1. Thus, by Lemmas F.1 and F.2, we have rp◦ι(pleft) < 0 and rp◦ι(pright) > 0. By the
continuity of rp ◦ ι, we have for sufficiently large ` that rp ◦ ι(pN(`)0) > 0 and rp ◦ ι(pN(`)KN(`)

) < 0.

3This can be established rigorously by computing the “index” in the sense of [Moi77, Lemma 2.2] of a point p in
its interior. Compute the index via a horizontal ray which starts at p and points left. This ray intersect the polygon
in 1 point, so has index 1. See [Moi77] for details.
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Then, by the Intermediate Value Theorem along the path pN(`)0, . . . ,pN(`)KN(`)
, we have for each `

sufficiently large a point pN(`) on the path such that rp◦ι(pN(`)) = 0. By compactness, there exists a
further subsequence {N ′(`)} of {N(`)} such that pN ′(`) → p∗. By continuity, we have rp◦ι(p∗) = 0.
Further, because pN ′(`) is between distance θN ′(`) and 2θN ′(`) from C0, we have in fact that p∗ ∈ ∂C0,
whence wp ◦ ι(p∗) = 1. With (τ, λ) = ι(p∗), we have that (τ, λ) ∈ [τreg,cvx − ε, τmax] × [1/2, λmax]
and τ, λ solves (F.1a), (F.1b), as desired.

H Proofs for Section 5: beyond mean square error

Proof of Proposition 5.1. By the strong stationarity of τ, λ, δ, T , we have by (B.4a), (B.5), (B.7),

that Eβ̃0,z

[
‖prox[λρp](β̃0 + τz)− β̃0‖2

]
is bounded, where β̃0j

iid∼ π/
√
p. By Jensen’s, also Eβ̃0,z

[
‖prox[λρp](β̃0 + τz)− β̃0‖

]
is bounded. By the triangle inequality that

‖prox[λρp](0)‖ ≤ ‖prox[λρp](β̃0 + τz)− β̃0‖+ ‖β̃0‖
+ ‖prox[λρp](0)− prox[λρp](β̃0 + τz)‖

≤ ‖prox[λρp](β̃0 + τz)− β̃0‖+ ‖β̃0‖+ ‖β̃0 + τz‖,

where in the second inequality we have applied (O.4) from Appendix O. Taking expectations on
both sides, we get that prox[λρp](0) is bounded. Further, again by (O.4) from Appendix O, we have
that the sequence (in p) of functions (x1,x2) 7→ (x1, prox[λρp](x2)) is uniformly pseudo-Lipschitz
of order 1 and bounded at (0,0). Then, by Lemma P.5 from Appendix P, we have the sequence of
functions (x1,x2) 7→ `p(x1, prox[λρp](x2)) is uniformly pseudo-Lipschitz of order k. By Proposition
B.3(iii) applied to τ̃ , λ̃, δ, T̃ , we then have

`p

(
β0, prox[λρp]

(
β̂cvx + 2λ

XT(y −Xβ̂cvx)

n

))
p
' Ez [`p (β0,β0 + τz)] , (H.1)

where we have used that either δ > 1 or {ρp} ∈ C∗. Further, by Lemma P.4, the sequence of

functions (x1,x2) 7→ Ez
[
`p(x1, prox[λρp](x2 +

√
τ2 − τ̃2z)

]
is uniformly pseudo-Lipschitz of order

k. By Proposition B.3(iii) applied to τ̃ , λ̃, δ, T̃ , we then have under either (i) the HDA and RSN
assumption, or (ii) the HDA and DSN assumptions if ρ̃p are symmetric, that

Ez

[
`p

(
β0, prox [λρp]

(̂̃
βcvx + 2λ

XT(y −X ̂̃βcvx)

n
+
√
τ2 − τ̃2z

))]
p
' Ez1,z2

[
`p

(
β0,β0 + τ̃z1 +

√
τ2 − τ̃2z2

)]
= Ez [`p (β0,β0 + τz)] , (H.2)

where z1, z2 ∼ N(0, Ip/p) are independent and we have used that either δ > 1 or {ρp} ∈ C∗. By
Lemma C.3, we have that

Ez

[
`p

(
β0, prox [λρp]

(̂̃
βcvx + 2λ

XT(y −X ̂̃βcvx)

n
+
√
τ2 − τ̃2z

))]
p
' `p

(
β0, prox [λρp]

(̂̃
βcvx + 2λ

XT(y −X ̂̃βcvx)

n
+
√
τ2 − τ̃2z

))
. (H.3)
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Combining (H.1), (H.2), and (H.3), and using the definition (5.1), we get (5.2), as desired.

Proof of Theorem 5. By the same argument as in Claim E.1, it is enough to show (5.3) for {ρp} ∈
C∗ ∩ B. Assume for the sake of contradiction that the left-hand side of (5.3) is less than the
right-hand side. By passing to a subsequence, we may assume we have {ρp} ∈ C∗ such that

p

lim
p→∞

1

p

p∑
j=1

`
(√

pβ0j ,
√
pβ̂cvx,j

)
< Eβ0,z[`(β0, η(β0 + τreg,cvxz)].

By Lemma E.3, we may find a further subsequence {p(`)}, τ ≥ τreg,cvx, and λ > 0 such that with
T = (π, {ρp(`)}), the quintuplet τ, λ, δ, γ = 0, T is strongly stationary. By the KKT conditions for
(1.2),

β̂cvx = prox[λρ]

(
β̂cvx + 2λ

X>(y −Xβ̂cvx)

n

)
,

whence Proposition B.3(iii) implies (either under the HDA and RSN assumptions, or, if the penalties
are symmetric, with the RSN assumption replaced by the DSN assumption)

p

lim
p→∞

1

p

p∑
j=1

`
(√

pβ0j ,
√
pβ̂cvx,j

)
p
' Ez

1

p

p∑
j=1

` (
√
pβ0j ,

√
pprox[λρp](β0 + τreg,cvxz)j)


p
' Eβ̃0,z

1

p

p∑
j=1

`
(√

pβ̃0j ,
√
pprox[λρp](β̃0 + τreg,cvxz)j

)
≥ Eβ0,z[`(β0, η(β0 + τreg,cvx))],

where the second inequality holds by Lemma C.3 under the DSN and RSAN assumption or by

Lemma C.4 when ρp are symmetric and the DSN assumption holds (here β̃0j
iid∼ π/

√
p; and the

final inequality holds by the optimality of η with respect to the loss `. Moreover, if η 6= prox[λρp],
which occurs when η is not a proximal operator, this inequality is strict.

By Theorem 1, when δ > 1 the convex lower bound is strict. As we saw in its proof in Section
E.4, tightness holds because there exists {ρp} ∈ C∗ and λ ≥ 0 such that with T = (π, {ρp}) we have
that τreg,cvx, λ, γ = 0, δ, T is strongly stationary. Thus, for any Lipschitz η′, by Proposition B.3 we
have

p

lim
p→∞

1

p

p∑
j=1

`

(
√
pβ0j , η

′

(
√
pβ̂cvx,j + 2λ

[XT(y −Xβ̂cvx)]j
n

))
= Eβ0,z[`(β0, η

′(β0 + τreg,cvxz))].

Because the set of Lipschitz functions is dense in L2(π ∗ N(0, τ2
reg,cvx)), taking the infimum over η′

gives Eβ0,z[`(β0, η(β0, τreg,cvxz))] on the right-hand side. This completes the proof.

I The role of the δ-bounded width assumption

The primary weakness of Theorem 1 is its restriction to sequences of convex functions in Cδ,π. For
δ > 1, this is no restriction at all. In this section, we provide some reflection on the nature of the
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restriction for δ < 1 and the role it plays in Theorem 1. No other sections or appendices depend
upon the results in this appendix.

First, we observe that for δ < 1, Theorem 1 does not hold if we instead take the infimum in
(2.12) over {ρp} ∈ C, the collection of all sequences of convex penalties.

Claim I.1. Take ρp = 0 (so {ρp} 6∈ Cδ,π). Under the RSN assumption, if δ < 1, there exists a

random sequence β̂cvx such that for each p we have β̂cvx ∈ arg minβ
1
n‖y − Xβ‖

2 + ρp(β) with
probability 1 but

p

lim
p→∞

‖β̂cvx − β0‖2 =
δσ2

1− δ
.

For some such values of π, δ, σ, we have δσ2

1−δ < δτ2
reg,stat − σ2 ≤ δτ2

reg,cvx − σ2.

Proof. For sufficiently large p, we have p > n because n/p→ δ < 1. Take such sufficiently large p.
Define

β̂cvx = arg min
β

{
‖β − β0‖2

∣∣∣ β ∈ arg min
β′

{
1

n
‖y −Xβ‖2

}}
. (I.1)

Clearly β̂cvx ∈ arg minβ
1
n‖y−Xβ‖

2 +ρp(β). Let the singular value decomposition of X be USV T

where U ∈ Rn×n is orthonormal, S ∈ Rn×n is diagonal, and V ∈ Rp×n has orthonormal columns.
Let V ⊥ ∈ Rp×(p−n) have orthonormal columns orthogonal to those of V . Because p > n, this makes
sense, and moreover, X is full-rank with probability 1, whence S is non-singular. We parameterize
β as V b+ V ⊥b⊥ for b ∈ Rn and b⊥ ∈ Rp−n. Then

1

n
‖y −Xβ‖2 =

1

n

∥∥∥y −USV T(V b+ V ⊥b⊥)
∥∥∥2

=
1

n
‖y −USb‖2 =

1

n

∥∥∥UTy − Sb
∥∥∥ .

Because S is non-singular,

arg min
β

{
1

n
‖y −Xβ‖2

}
=
{
V S−1UTy + V ⊥b⊥ | b⊥ ∈ Rp−n

}
.

Observe ∥∥∥V S−1UTy + V ⊥b⊥ − β0

∥∥∥2
=
∥∥∥V S−1UTy + V ⊥b⊥ − V V Tβ0 − V ⊥V T

⊥β0

∥∥∥2

=
∥∥∥S−1UTy − V Tβ0

∥∥∥2
+
∥∥∥b⊥ − V T

⊥β0

∥∥∥2
. (I.2)

This is minimized at b⊥ = V T
⊥β0, whence

β̂cvx = V S−1UTy + V ⊥V
T
⊥β0. (I.3)

Now consider the oracle estimator with parameter γ. The objective we must minimize is

1

n
‖y −Xβ‖2 +

γ

2
‖β − β0‖2 =

1

n

∥∥∥UTy − Sb
∥∥∥2

+
γ

2

∥∥∥b− V Tβ0

∥∥∥2
+
γ

2

∥∥∥b⊥ − V T
⊥β0

∥∥∥2

= (b− a)T
(
S2/n+ γIn/2

)
(b− a) +

γ

2

∥∥∥b⊥ − V T
⊥β0

∥∥∥2
,

where a =
(
S2/n+ γIn/2

)−1 (
SUTy/n+ γV Tβ0/2

)
. Thus,

β̂
(γ)

cvx = V
(
S2/n+ γIn/2

)−1
(
SUTy/n+ γV Tβ0/2

)
+ V ⊥V

T
⊥β0. (I.4)
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We get

‖β̂cvx − β̂
(γ)

cvx‖ =
∥∥∥V (S2/n)−1SUTy/n− V

(
S2/n+ γIn/2

)−1
(
SUTy/n+ γV Tβ0/2

)∥∥∥
=
∥∥∥(S2/n)−1SUTy/n−

(
S2/n+ γIn/2

)−1
(
SUTy/n+ γV Tβ0/2

)∥∥∥
≤
∥∥∥((S2/n)−1 −

(
S2/n+ γIn/2

)−1
)
SUTy/n

∥∥∥
+
∥∥∥(S2/n+ γIn/2

)−1
γV Tβ0/2

∥∥∥
≤
∥∥∥(S2/n)−1 −

(
S2/n+ γIn/2

)−1
∥∥∥
op

‖S‖op√
n

‖y‖√
n

+
γ

2

∥∥∥(S2/n+ γIn/2
)−1
∥∥∥
op

∥∥∥V Tβ0

∥∥∥
=

∣∣∣∣ 1

σmin(X)2/n
− 1

σmin(X)2/n+ γ/2

∣∣∣∣ ‖X‖op√
n

‖y‖√
n

+
γ

2

1

σmin(X)2/n+ γ/2

∥∥∥V Tβ0

∥∥∥
= ε(γ)Op(1), (I.5)

for some deterministic function ε(γ) ↓ 0 as γ → 0 and Op(1) tight over both p and γ, where σmin(X)
is the minimal non-zero singular value of X and we have used that ‖X‖op/

√
n and σmin(X)/

√
n

both converge in probability to constants by [Ver12, Theorem 5.31].
Let T = (π, {ρp = 0}). Because ρp = 0, for all τ, λ, prox[λρp](β0+τz)−β0 = β0+τz−β0 = τz.

Then by (B.4a) and (B.4b), we have that R∞reg,cvx(τ, λ, T ) = τ2 and W∞reg,cvx(τ, λ, T ) = 1. Thus, at
oracle parameter γ, the fixed point equations (B.7) are equivalent to

δτ2 − σ2 =
τ2

(λγ + 1)2
and 2λ

(
1− 1

δ

1

λγ + 1

)
= 1. (I.6)

It is straightforward to see that such a solution exists: we may choose non-negative λ to solve the
second equation in (I.6) by the intermediate value theorem; at this value of λ we have 1

λγ+1 < δ,

whence setting τ2 = σ2

δ−(λγ+1)−2 solves the first equation in (I.6). Then τ, λ, γ, δ, T is strongly
stationary.

Equation (I.6) implies that 1
λγ+1 < δ, which implies λ > δ−1−1

γ → ∞ as γ → 0 because

δ < 1. We conclude that 1
λγ+1 = δ

(
1− 1

2λ

)
→ δ as γ → 0. Then, writing equation (I.6) as

δ(λγ + 1)2 τ2

(λγ+1)2
− σ2 = τ2

(λγ+1)2
, we get τ2

(λγ+1)2
= σ2

δ(λγ+1)2−1
→ σ2

δ−1−1
= δσ2

1−δ . In particular, by

Proposition B.3, we have

lim
γ→0

p

lim
p→∞

‖β̂
(γ)

cvx − β0‖2 =
δσ2

1− δ
. (I.7)

By (I.5), we have ‖β̂cvx − β0‖2 = ‖β̂
(γ)

cvx − β0‖2 + ε(γ)Op(1). Taking γ → 0 and applying (I.7), we
get

p

lim
p→∞

‖β̂cvx − β0‖2 =
δσ2

1− δ
,

as desired.
It is easy to construct examples in which this is smaller than δτ2

reg,stat−σ2 and τreg,stat ≤ τreg,cvx.
Here is one construction. Observe that all solutions τ2

reg,stat to (2.32) must satisfy τ2
reg,stat ≥ σ2/δ.

Thus, for fixed σ, we have limδ→0(δτ2
reg,stat − σ2) = limδ→0 mmseπ(τ2

reg,stat) = limτ→∞mmseπ(τ2) =
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s2(π) [DYSV11, Eq. (61)]. Moreover, limδ→0
δσ2

1−δ = 0. Thus, if s2(π) > 0 (which is true unless π is

a point mass at 0), then for sufficiently small δ we have δσ2

1−δ < δτ2
reg,stat − σ2. When the minimizer

of (2.30) is unique, we have δτ2
reg,stat − σ2 ≤ δτ2

reg,cvx − σ2 by Theorem 2. Because the minimizer of
(2.30) is unique for almost every (δ, σ) (w.r.t. Lebegesgue measure), for some σ there are arbitrarily
large δ at which the minimizer of (2.30) is unique. This completes the construction.

Of course, Claim I.1 does not –indeed, could not– imply that we can achieve smaller than Bayes
risk using convex M-estimation. The construction of β̂cvx given in (I.1) uses knowledge of β0, so
is information theoretically inaccessible to the statistician. Indeed, even though our measurements
and our penalty are completely uninformative along directions parallel to the null space of X, the
estimator β̂cvx in (I.1) achieves perfect estimation along these directions, as captured by the term
V ⊥V

T
⊥β0 in (I.3).

The counterexample of Claim I.1 demonstrates that the conclusion of Theorem 1 is too strong
to remove all restrictions on the penalty sequence in (2.12). This is because Theorem 1 applies to
all mechanisms for breaking ties between members of the minimizing set, even those which rely on
knowledge of β0. The counterexample of Claim I.1 uses an uninformative penalty. When ρp = 0,
the set of minimizers is large, and we have much to gain from breaking ties by looking at β0,
something which the conditions of Theorem 1 do not prohibit.

This discussion is perhaps unsurprising given the way in which the δ-bounded width assumption
is used in the proof of Theorem 1. The δ-bounded width assumption is used only in the proof of
Lemma E.3. This Lemma shows that the oracle estimator which exploit knowledge of β0 does so
weakly enough that it achieves loss at best negligibly smaller than the convex lower bound (see
Lemma E.3). It is not hard to show that when ρp = 0, even arbitrarily weak oracles can dramatically
improve the performance of the M-estimator by allowing us to estimating β0 exactly correctly along
the null space of X. Said more generally (but more heuristically), when the minimizing set of the
original M-estimator is large –as it is when δ < 1 and ρp = 0– arbitrarily weak oracles break ties in
the way that best exploits knowledge of β0. Thus, arbitrarily weak oracles achieve a non-negligible
improvement over the convex lower bound. Indeed, this is essentially what we have used in the
proof of Claim I.1.

This is not to say that the statistician can do better by choosing penalty sequence from C rather
than Cδ,π. Without making statements which are fully precise, we conjecture that (i) no convex
M-estimator which with high-probability returns a singleton minimizing set (or perhaps even a
minimizing set which is “small” in an appropriate sense) can achieve asymptotic loss smaller than
δτ2

reg,cvx − σ2, and (ii) no convex procedure which breaks ties among members of the minimizing
set with a polynomial-time algorithm can achieve asymptotic loss smaller than δτ2

reg,amp∗ − σ2.4 If
(i) is true, then it is possible to expand, at least slightly, the set over which we take the infimum
in Theorem 1. We suspect that the restriction {ρp} ∈ Cδ,π corresponds closely, though not exactly,
to the restriction that the minimizing set be “small” in the appropriate sense. Resolving (i) would
require identifying the appropriate weaker condition. Successfully resolving statement (ii) would
require addressing some of the deepest and most insurmountable problems in the theory of com-
putational complexity. Exploring whether and in what sense any of these speculations is true is
beyond the scope of the current work.

4Perhaps the lower bound is even larger than this, because we are requiring that we use convex M-estimation for
at least a part of the procedure.
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J Proof of Proposition 3.1

Proof of Proposition 3.1(i). In fact, we prove (3.1) when the infimum is taken over {ρp} ∈ C∗, the
sequences of uniformly strongly convex penalties:

inf
{ρp}∈C∗

p

lim
p→∞

‖β̂cvx − β0‖2 ≤ δτ2 − σ2. (J.1)

This is stronger than (3.1). If we show (J.1), we can conclude that under RSN assumption (3.1)
holds also when the limit in probability is replaced by limp→∞ Eβ0,w,X

[
‖β̂cvx − β0‖22

]
by applying

Lemma K.2 and using that C∗ ⊂ Cδ,π (see Proposition 6.2).
The proof of (J.1) proceeds in three steps.

Step 1: Construct lsc, proper, convex ρ : R → R such that prox[ρ] is the Bayes esti-
mator. This construction is provided in [BBEKY13, pg. 14567]. We provide most of the details
for completeness. Let pY (x) be the density of π ∗ N(0, τ2) (recall, τ > 0, so that this exists). Let
m(y) = −τ2 log pY (y) and p2(x) = 1

2x
2. By assumption, m is convex. Observe that up to the

additive constant τ2 log
(√

2πτ
)

m(y) = −τ2 log

∫
e−

1
2τ2

(y−x)2π(dx) =
1

2
y2 − τ2 log

∫
e

1
τ2
yx− 1

2τ2
x2π(dx). (J.2)

We identify the second term on the right-hand side –up to a multiplicative and additive constant–
as the cumulant generating function of the probability distribution with density proportional to

e−
1

2τ2
x2 with respect to π. This term can be written as p2(y)−m(y). Because, for all y, e

1
τ2
yx− 1

2τ2
x2

is bounded over x, this term is finite for all y, and by [Bro86, Theorem 1.13], it is infinitely
differentiable and lsc, proper, and convex in y.

For an lsc, proper, convex f : R → R ∪ {∞}, the Fenchel-Legendre conjugate f∗ is defined by
f∗(g) = supx∈R{gx− f(x)}. Define

ρ = (p2 −m)∗ − p2. (J.3)

This makes sense because we have argued that p2 − m is lsc, proper, and convex. Moreover, as
argued in [BBEKY13, pg. 14567] by appeal to [Mor65, Proposition 9.b], ρ so defined is convex.5

Define the Moreau envelope of ρ by M[ρ](y) = infx
{

1
2(y − x)2 + ρ(x)

}
. Repeating the argument of

[BBEKY13, pg. 14567], we have

M[ρ](y) = inf
x

{
1

2
(y − x)2 + ρ(x)

}
= p2(y)− sup

x
{yx− (ρ(x) + p2(x))}

= (p2 − (ρ+ p2)∗) (y) = m(y), (J.4)

where we use that for any lsc, proper, convex f , we have f∗∗ = f [Roc97, Theorem 12.2]. By a
fundamental identity for Moreau envelopes (see [BBEKY13, pg. 14567] and references therein), we
get

d

dy
M[ρ](y) = prox[ρ∗](y) = y − prox[ρ](y). (J.5)

5Roughly, this is because p2 −m is “less convex” than p2, so (p2 −m)∗ is “more convex” than p2.
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Let η : R→ R be the Bayes estimator with respect to `2-loss in the scalar model y = β0 + τz where
β0 ∼ π and z ∼ N(0, 1) independent of β0. That is η(y) = Eβ0,z[β0|y]. Recall τ > 0. Thus, by
Tweedie’s formula (Lemma P.7), η(y) = y −m′(y). By comparison with (J.5), we conclude

η(y) = prox[ρ](y). (J.6)

Step 2: Strongly stationary τ, λ, γ = 0, δ, T with uniformly strongly convex penalty.
We have mmseπ(τ2) = Eβ0,z[(η(y)− β0)2], whence by (J.6) and the assumption of the proposition

δτ2 − σ2 > mmseπ(τ2) = Eβ0,z
[
(prox[ρ](β0 + τz)− β0)2

]
. (J.7)

Observe also that for any f : R→ R measurable for which the following expectations exist and are
finite,

Eβ0,z [f(y)(Eβ0,z[β0|y]− β0)] = Eβ0,z [Eβ0,z[f(y)(Eβ0,z[β0|y]− β0) | y]]

= Eβ0,z [f(y)Eβ0,z[Eβ0,z[β0|y]− β0 | y]] = 0.

Let f(y) = y − prox[ρ](y) in the previous display and recall y = β0 + τz. After rearrangement and
using the Eβ0,z[zβ0] = 0,

1

τ
Eβ0,z[z prox[ρ](y)] =

1

τ2
Eβ0,z

[
(prox(y)− β0)2

]
< δ − σ2

τ2
≤ δ. (J.8)

Now consider κ > 0 and define

ρ(κ)(x) = ρ(x) +
κ

2
x2. (J.9)

Then by (2.4)

prox[ρ(κ)](y) = arg min
x

{
1

2
(y − x)2 + ρ(x) +

κ

2
x2

}
= arg min

x

{
1

2

(
1

1 + κ
y − x

)2

+
1

1 + κ
ρ(x)

}

= prox

[
1

1 + κ
ρ

](
1

1 + κ
y

)
. (J.10)

First, we will choose κ > 0 sufficiently small such that (J.7) and (J.8) still hold with ρ replaced
by ρ(κ). To make our notation more compact, we let cκ = 1

1+κ . Let a = prox[ρ](y) − β0 and

b = prox
[
ρ(κ)

]
(y)− β0. We have

|a| ≤ |prox[ρ](0)|+ |prox[ρ](y)− prox[ρ](0)|+ |β0| ≤ |prox[ρ](0)|+ |y|+ |β0|, (J.11)

|b| ≤ |prox[ρ](0)|+ |prox [cκρ] (0)− prox[ρ](0)|+ |prox [cκρ] (cκy)− prox [cκρ] (0)|+ |β0|
≤ |prox[ρ](0)|+ |prox[ρ](0)| |cκ − 1|+ |cκy|+ β0

≤ (cκ + 2)|prox[ρ](0)|+ |cκy|+ |β0|, (J.12)

|a− b| ≤ |y − prox[ρ](y)| |cκ − 1| ≤ (|y|+ |prox[ρ](y)− prox[ρ](0)|+ |prox[ρ](0)|) |cκ − 1|
≤ (|prox[ρ](0)|+ 2|y|) |cκ − 1|, (J.13)
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where in (J.11), we have used (O.4), and in both (J.12) and (J.13), we have used (O.4) and (O.5).
Then by (J.11) and (J.12), we have |a| ∨ |b| ≤ (cκ + 2)|prox[ρ](0)|+ |y|+ |β0|. Applying this bound,
Jensen’s inequality, (C.4), and (J.13), we conclude∣∣∣Eβ0,z [(prox[ρ](y)− β0)2

]
− Eβ0,z

[
(prox[ρ(κ)](y)− β0)2

]∣∣∣ ≤ Eβ0,z
[
|a2 − b2|

]
≤ 2Eβ0,z

[(
(cκ + 2)|prox[ρ](0)|+ |y|+ |β0|

)(
|prox[ρ](0)|+ 2|y|

)]
|cκ − 1| −−−→

κ→0
0, (J.14)

because cκ − 1 → 0 as κ → 0, and the expectation is bounded. Also, by Jensen’s inequality,
Cauchy-Schwartz, and (J.13),∣∣∣∣1τ Eβ0,z [zprox[ρ](y)]− 1

τ
Eβ0,z[zprox[ρ

(κ)](y)]

∣∣∣∣ ≤ 1

τ
Eβ0,z [|z(a− b)|] ≤ 1

τ
Eβ0,z[(a− b)2]1/2

≤ 1

τ
Eβ0,z

[
(|prox[ρ](0)|+ 2|y|)2

]
(cκ − 1)2 −−−→

κ→0
0. (J.15)

By (J.7), (J.8), (J.14), and (J.15), we can (and do) choose κ sufficiently small that

Eβ0,z
[
(prox[ρ(κ)](y)− β0)2

]
< δτ2 − σ2, (J.16)

1

τ
Eβ0,z

[
zprox[ρ(κ)](y)

]
< δ. (J.17)

We now will define an lsc, proper, convex function ρ̃ : R → R such that (J.16) holds with
equality and (J.17) holds with the same strict inequality when ρ(κ) is replaced by ρ̃. By (J.16), we
may choose c ∈ R such that

Eβ0,z
[
(prox[ρ(κ)](y) + c− β0)2

]
= δτ2 − σ2. (J.18)

Define the lsc, proper, convex function ρ̃ : R → R by ρ̃(x) = −cx + ρ(κ)(x − c). Then by (O.14),
we have prox[ρ̃](y) = prox[ρ(κ)](y) + c. Then (J.18) can be written

Eβ0,z
[
(prox [ρ̃] (y)− β0)2

]
= δτ2 − σ2 (J.19)

Further, by (J.17) and because Ez[zc] = 0, we have

1

τ
Eβ0,z [zprox[ρ̃](y)] =

1

τ
Eβ0,z

[
zprox[ρ(κ)](y)

]
< δ. (J.20)

Let λ = 1
2

(
1− 1

δτEβ0,z [zprox[ρ̃](y)]
)−1

, where λ > 0 by (J.20). For each p, define the lsc,
proper, symmetric, convex function ρp : Rp → R ∪ {∞} by

ρp(x) =
1

λp

p∑
j=1

ρ̃(
√
pxj). (J.21)

By (O.13) and (O.15), we have for each 1 ≤ j ≤ p and y ∈ Rp that prox[λρp](y)j = 1√
pprox[ρ̃](

√
pyj).

For each p, let β̃0 ∈ Rp be random with coordinates distributed iid from π/
√
p and z ∼ N(0, Ip/p).
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These coordinates are denoted β̃0j and zj . As above, β0, z denote independent random variables
distributed from π and N(0, 1), respectively. For any τ ′ ≥ 0 and T ′ ∈ S2

+, we have

Eβ̃0,z

[∥∥∥prox [λρp] (β̃0 + τ ′z)− β̃0

∥∥∥2
]

=
1

p

p∑
j=1

Eβ0j ,zj
[
(prox[ρ̃](

√
p(β̃0j + τ ′zj))−

√
pβ̃0j)

2
]

= Eβ0,z
[
(prox[ρ̃](β0 + τ ′z)− β0)2

]
, (J.22a)

1

τ
Eβ̃0,z

[
〈z, prox[λρp](β̃0 + τ ′z)〉

]
=

1

τp

p∑
j=1

Eβ̃0j ,zj
[√

pzjprox[ρ̃](
√
p(β̃0j + τ ′zj)

]
=

1

τ
Eβ0,z

[
zprox[ρ̃](β0 + τ ′z)

]
, (J.22b)

Eβ̃0z1,z2

[〈
prox [λρp]

(
β̃0 + z1

)
− β̃0, prox [λρp]

(
β̃0 + z2

)
− β̃0

〉]
=

1

p

p∑
j=1

Eβ̃0j ,z1j ,z2j
[(

prox [ρ̃]
(√

p(β̃0j + z1j)
)
−√pβ̃0j

)(
prox [ρ̃]

(√
p(β̃0j + z2j)

)
−√pβ̃0j

)]
= Eβ0,z1,z2 [(prox [ρ̃] (β0 + z1)− β0) (prox [ρ̃] (β0 + z2)− β0)] . (J.22c)

Let T = (π, {ρp}). We see the limits (B.5) exist for all τ ′ ≥ 0, T ′ � 0 at the λ we have defined.
By (J.19), (J.22a), (J.22b), and the definition of λ, we see that equations (B.7) are satisfied at
τ, λ, γ = 0, δ, T . Thus, τ, λ, γ = 0, δ, T is strongly stationary.
Step 3: Exactly characterize the asymptotic risk.
By (J.9) and (J.21), observe that ρp has uniform strong convexity parameter κ > 0. Because

τ, λ, γ = 0, δ, T is strongly stationary, by Proposition B.3 we have ‖β̂cvx − β0‖2
p→ δτ2 − σ2 where

β̂cvx is defined as with respect to the penalties (J.21). This holds under the HDA and either the
RSN or DSN assumptions because the penalties are symmetric.

Thus, by construction, we see that the risk δτ2 − σ2 is achieved on the class C∗ of uniformly
strongly convex sequences of estimators, whence (J.1) follows.

To prove Proposition 3.1.(ii), we will need the following lemma.

Lemma J.1. Consider π ∈ P2(R) and τ > 0 such that π ∗ N(0, τ2) does not have log-concave
density with respect to Lebesgue measure on R. Then

Ropt
seq,cvx(τ ;π) > mmseπ(τ2). (J.23)

Proof of Lemma J.1. Throughout this proof, we will let Y ∼ π ∗ N(0, τ2) be a random variable.
Because τ > 0, π ∗ N(0, τ2) has density with respect to Lebesgue measure which is infinitely
continuously differentiable. Call this density pY . Let η : R → R be the Bayes estimator of β0

given observation β0 + τz where β0 ∼ π and z ∼ N(0, 1) independent of β0. By Tweedie’s formula
(Lemma P.7),

η(y) = y + τ2 d

dy
log pY (y). (J.24)

Because π ∗ N(0, τ2) is not log-concave and has infinitely continuously differentiable density, there

exists v ∈ R and ξ, ε > 0 such that d2

dy2
log pY (y) > ξ/τ2 on [v − 2ε, v + 2ε]. Thus,

η′(y) > 1 + ξ on [v − 2ε, v + 2ε].
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Then, for any 1-Lipschitz function ηLip : R→ R, either |η(y)− ηLip(y)| ≥ ξε for y ∈ [v + ε, v + 2ε]
(if ηLip(v) ≤ η(v)), or |η(y)− ηLip(y)| ≥ ξε for y ∈ [v − 2ε, v − ε] (if ηLip(v) ≥ η(v)). Thus, for any
1-Lipshictz function,

EY∼pY [(ηLip(Y )− η(Y ))2] ≥ ξεmin{pY ([v + ε, v + 2ε]), pY ([v − 2ε, v − ε])} =: ∆ > 0. (J.25)

Consider β0 ∈ Rp with coordinates distributed iid from π/
√
p and z ∼ N(0, Ip/p) independent

of β0. Let y = β0 + τz. Clearly,
√
py has coordinates distributed iid from π ∗ N(0, τ2). We

define the application of η to a vector by η(y)j = 1√
pη(
√
pyj). This agrees with (P.4) when p = 1,

so no confusion should result. Observe that η(y) = Eβ0,z[β0|y]. Because prox[ρ](y)j − η(yj) is
uncorrelated with η(yj) − β0j conditional on y−j ,β0,−j (where these denote the coordinates of
y,β0 excluding coordinate j), we have

Eβ0,z

[
(prox[ρ](y)j − β0j)

2|y−j ,β0,−j
]

= Eβ0,z

[
(prox[ρ](y)j − η(yj))

2|y−j ,β0,−j
]

+ Eβ0,z

[
(η(yj)− β0j)

2|y−j ,β0,−j
]

= Eβ0,z

[
(prox[ρ](y)j − η(yj))

2|y−j ,β0,−j
]

+ mmseπ(τ2)/p.

(J.26)

For any lsc, proper, convex ρ : Rp → R ∪ {∞}, fixing y−j the function yj 7→ prox[ρ](y) is
1-Lipschitz, whence in fact yj 7→ prox[ρ](y)j is 1-Lipschitz. Then by (J.25),

Eβ0,z

[
(prox[ρ](y)j − η(yj))

2|y−j ,β0,−j
]
≥ ∆/p, almost surely.

We conclude

Eβ0,z[‖prox[ρ](y)− β0‖2] =

p∑
j=1

Eβ0,z[Eβ0,z[(prox[ρ](y)j − β0j)
2|y−j ,β0,−j ]] ≥ mmseπ(τ2) + ∆.

The proof is complete.

We are ready to prove the second part of Proposition 3.1.

Proof of Proposition 3.1.(ii). By Lemma J.1, we have Ropt
seq,cvx(τ ;π) > mmseπ(τ2). By assumption,

mmseπ(τ2) ≥ δτ2 − σ2. Thus, Ropt
seq,cvx(τ ;π) > δτ2 − σ2. By Lemma C.2, the left and right-hand

sides are continuous in τ , so that there exists τ ′ > τ with Ropt
seq,cvx(τ

′;π) > δτ ′2−σ2. Then by (2.11),
τreg,cvx ≥ τ ′ > τ . Proposition 3.1(ii) then follows from Theorem 1.

Finally, we prove the third part of Proposition 3.1.

Proof of Proposition 3.1.(iii). If π ∗N(0, τ2
reg,amp∗) has log concave density, so too does π ∗N(0, τ2)

for all τ > τreg,amp∗. By the definition of τreg,amp∗ (Eq. (2.15)), we have δτ2 − σ2 > mmseπ(τ2) for
all such τ . Then by Proposition 3.1(i), Theorem 1, and the fact that C∗ ⊂ Cδ,π, we have

δτ2 − σ2 ≥ inf
{ρp}∈C∗

p

lim
p→∞

‖β̂cvx − β0‖2 ≥ inf
{ρp}∈Cδ,π

p

lim
p→∞

‖β̂cvx − β0‖2 ≥ δτ2
cvx,reg − σ2.

Taking τ ↓ τreg,amp∗ gives τ2
reg,amp∗ = τ2

reg,cvx.
If π∗N(0, τ2

reg,amp∗) does not have log concave density, then because δτ2
reg,amp∗−σ2 = mmseπ(τ2

reg,amp∗),
we have τ2

reg,cvx > τ2
reg,amp∗ by Proposition 3.1.

The argument for τ2
reg,stat is completely analogous.
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K Connection with the random signal and noise model

In this appendix we state and prove two lemmas that provide explicit connection between the
deterministic and random signal and noise models. The first lemma will allow us to extend lower
bounds on the lim inf of sequences of estimation errors.

Lemma K.1. Fix π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. Consider any sequence of estimators {β̂}
(ie. measurable functions of y,X and potentially some auxiliary noise). Assume that the HDA and
DSN assumptions imply that for some constant c we have

p

lim inf
p→∞

‖β̂ − β0‖2 ≥ c. (K.1)

Then under the HDA and RSN assumption (where the randomness in β0 and w is independent of
the auxiliary noise used to construction β̂), we have

lim inf
p→∞

Eβ0,w,X

[
‖β̂ − β‖2

]
≥ c. (K.2)

Proof of Lemma K.1. By [BF81, Lemma 8.4], if β0j
iid∼ π/

√
p for π ∈ P2(R), then

dW(π̂β0
, π)

as→ 0, (K.3)

where π̂β0
is as in (2.1). Further, under assumption RSN, by the strong law of large numbers,

1
n‖w‖

2 as→ σ2. Thus, under the RSN assumption the sequences {β0}, {w} satisfy the DSN assump-
tion with probability 1. Thus, if (K.1) holds under the DSN assumption, we have under the RSN
assumption that for all ε > 0

Pβ0,w,X

(
‖β̂ − β0‖2 > c− ε

∣∣∣ β0,w
)

as−−−→
p→∞

1. (K.4)

Observe by bounded convergence

Eβ0,w[‖β̂ − β‖2] = Eβ0,w,X

[
Eβ0,w,X

[
‖β̂ − β‖2

∣∣∣ β0,w
]]

≥ (c− ε)Eβ0,w,X

[
Pβ0,w,X

(
‖β̂ − β‖2 > c− ε

∣∣∣ β0,w
)]
→ c− ε.

Taking ε ↓ 0 gives (K.2).

Observe that Lemma K.1 applies to any sequence of estimators {β̂} defined in any way. In partic-
ular, the estimators need not be defined via convex M-estimation. The second lemma will allow us
to extend the exact loss characterization of Proposition B.3.

Lemma K.2. Fix π ∈ P2(R), δ ∈ (0,∞), and σ ≥ 0. Consider a sequence {ρp} ∈ C∗ and the
corresponding M-estimators (1.2) (which always exist and are unique by strong convexity). Assume
that the HDA and DSN assumptions imply that for some constant c we have

‖β̂cvx − β0‖2
p→ c. (K.5)

Then under the HDA and RSN assumption

lim
p→∞

Eβ0,w,X

[
‖β̂cvx − β0‖2

]
= c. (K.6)
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Proof of Lemma K.2. Let γ > 0 be such that ρp is strongly convex with parameter γ for all p.
Because ρp is strongly convex, it has a unique minimizer, which we will denote by mp. First we
show that ‖mp‖ is bounded in p. Without loss of generality, we may assume ρp(mp) = 0 for all p.
Thus, ρp(β) ≥ γ

2‖β −mp‖2 for all p and all β ∈ Rp. By (1.2),

1

n
‖y −Xβ̂cvx‖2 +

γ

2
‖β̂cvx −mp‖2 ≤

1

n
‖y −Xβ̂cvx‖2 + ρp(β̂cvx) ≤

1

n
‖y −Xmp‖2.

By optimality, we have that 2
nX

T(y −Xβ̂cvx) ∈ ∂ρp(β̂cvx). Thus,

ρp(β̂cvx) ≥ ρp(mp) ≥ ρp(β̂cvx) +
2

n
(y −Xβ̂cvx)

TX(mp − β̂cvx) +
γ

2
‖mp − β̂cvx‖2

≥ ρp(β̂cvx)−
2

n
‖y −Xβ̂cvx‖‖X‖op‖mp − β̂cvx‖+

γ

2
‖mp − β̂cvx‖2.

Also,
‖y −Xβ̂cvx‖ ≤ ‖y −Xβ0‖+ ‖X(β̂cvx − β0)‖ ≤ ‖w‖+ ‖X‖op‖β̂cvx − β0‖.

Combining the previous two displays,

‖mp − β̂cvx‖ ≤
4

γ

‖X‖op√
n

(
‖w‖√
n

+
‖X‖op√

n
‖β̂cvx − β0‖

)
.

In particular,

‖mp‖ ≤ ‖β0‖+ ‖β̂cvx − β0‖+ ‖mp − β̂cvx‖

≤ ‖β0‖+ ‖β̂cvx − β0‖+
4

γ

‖X‖op√
n

(
‖w‖√
n

+
‖X‖op√

n
‖β̂cvx − β0‖

)
.

The random variable ‖X‖op/
√
n is tight by [AGZ10], the random variable ‖w‖/

√
n is tight by the

law of large numbers, and ‖β̂cvx−β0‖ is tight under the DSN assumption by assumption. Because
‖mp‖ is deterministic, it must be bounded in p. Let M be such that ‖mp‖ ≤M for all p.

Now we turn to proving (K.6) under the RSN assumption. As in the proof of Lemma K.1,
we have that the sequences {β0}, {w} satisfy the DSN assumption with probability 1. Thus, we
have (K.5). By Vitali’s convergence theorem, we only need to verify that ‖β̂cvx−β0‖2 is uniformly
integrable over p [Bil12, Theorem 16.14]. Observe that for any β ∈ Rp,

1

n
‖y −Xβ̂cvx‖2 + ρp(β̂cvx) ≥

1

n
‖y‖2 − 2

n
yTXβ̂cvx +

γ

2
‖β̂cvx −mp‖2

≥ 1

n
‖y‖2 − 2

‖XTy‖
n

‖β̂cvx‖+
γ

2
‖β̂cvx‖2 − γM‖β̂cvx‖

≥ 1

n
‖y‖2 +

γ

4
‖β̂cvx‖2 −

1

γ

(
2
‖XTy‖

n
+ γM

)2

≥ 1

n
‖y‖2 +

γ

4
‖β̂cvx‖2 −

8‖XTy‖2

γn2
− 2γM2.

Further, recalling ρp(mp) = 0, by (1.2) and the triangle inequality

1

n
‖y −Xmp‖2 + ρp(mp) =

1

n
‖y −Xmp‖2 ≤

2

n
‖y −Xβ0‖2 +

2

n
‖X(mp − β0)‖2

=
2

n
‖w‖2 +

2

n
‖X(mp − β0)‖2.
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Combining the previous two displays, we get

‖β̂cvx‖2 ≤
4

γ

(
1

n
‖y −Xβ̂cvx‖2 + ρ(β̂cvx)−

1

n
‖y‖2 +

8‖XTy‖2

γn2
+ 2γM2

)
≤ 4

γ

(
1

n
‖y −Xmp‖2 + ρ(mp) +

8‖XTy‖2

γn2
+ 2γM2

)
≤ 4

γ

(
2

n
‖w‖2 +

2

n
‖X(mp − β0)‖2 +

8

γ

(
‖XTw‖

n
+
‖XTXβ0‖

n

)2

+ 2γM2

)

≤ 4

γ

(
2

n
‖w‖2 +

4

n
‖Xmp‖2 +

4

n
‖Xβ0‖2 +

16

γn2
‖XTw‖2 +

16

γn2
‖XTXβ0‖2 + 2γM2

)
.

(K.7)

We show the right-hand side is uniformly integrable one term at a time. First, we recall two
well-known facts about uniform integrability, which we state without proof.

Claim K.3. If the collection (over j) {Aj} is uniformly integrable, then the collection (over p){
1
p

∑p
i=1Ai

}
p

is uniformly integrable.

Claim K.4. If {Ap} and {Bp} are uniformly integrable and for each p the random variables Ap
and Bp are defined on the same probability space and are independent, then {ApBp} are uniformly
integrable.

First, the 2
n‖w‖

2 are uniformly integrable by Claim K.3 because the w2
j are integrable from the

same distribution. Second, 4
n‖Xmp‖2 ∼ 4‖mp‖2χ2

n/n
d
=

4‖mp‖2
n

∑n
i=1 Z

2
i , where Zi

iid∼ N(0, 1).
By Claim K.3, the 1

n

∑n
i=1 Z

2
i are uniformly integrable, and because the ‖mp‖2 are bounded,

the
4‖mp‖2

n

∑n
i=1 Z

2
i , and hence the 4

n‖Xmp‖2, are the uniformly integrable by Claim K.4. Third,

4
n‖Xβ0‖2 = 4

n

∑n
i=1

(∑p
j=1Xijβ0j

)2
. Observe that conditional on β0, the random variable

∑p
j=1Xijβ0j

has distribution N(0, ‖β0‖2), so that
(∑p

j=1Xijβ0j

)2 d
= Z2‖β0‖2 for Z ∼ N(0, 1) independent of β0.

Observe that the ‖β0‖2 = 1
p

∑p
j=1(
√
pβ0j)

2 are uniformly integrable (over p) by Claim K.3 because

√
pβ0j ∼ π ∈ P2(R) for all p. Then, by Claim K.4, the Z2‖β0‖2, and hence the

(∑p
j=1Xijβ0j

)2
,

are uniformly integrable. Then, by Claim K.3, the 4
n‖Xβ0‖2 are uniformly integrable. Fourth,

the 16
γn2 ‖XTw‖2 are uniformly integrable by the same argument (just replace β0 with w/

√
n and

switch i, j and n, p). Fifth, and lastly, we show the 16
γn2 ‖XTXβ0‖2 are uniformly integrable. We

have

‖XTXβ0‖2

n2
=

1

n

p∑
j=1

(
1√
n

n∑
i=1

Xij [Xβ0]i

)2

=
1

n

p∑
j=1

 1√
n

n∑
i=1

X2
ijβ0j +

1√
n

n∑
i=1

p∑
l 6=j

XijXilβ0l

2

≤ 2

p∑
j=1

(
1

n

n∑
i=1

X2
ijβ0j

)2

︸ ︷︷ ︸
:=a

+
2

n

p∑
j=1

 1√
n

n∑
i=1

p∑
l 6=j

XijXilβ0l

2

︸ ︷︷ ︸
:=b

.
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We write a as 2
n2p

∑p
j=1

∑n
i1,i2=1X

2
i1j
X2
i2j

(
√
pβ0j)

2, which are uniformly integrable by Claim K.3

because the X2
i1j
X2
i2j

(
√
pβ0j)

2 are integrable and have one of only two possible distributions (de-
pending on whether i1 = i2 or i1 6= i2) which do not depend on n, p. Now we consider b. We denote
the columns of X by Xj . Observe that conditional on Xj ,β0, we have 1√

n

∑n
i=1

∑p
l 6=j XijXilβ0l ∼

N
(

0,
(∑p

l 6=j β
2
0l

)
‖Xj‖2
n

)
, so that in fact,

(
1√
n

∑n
i=1

∑p
l 6=j XijXilβ0l

)2 d
= Z2

(∑p
l 6=j β

2
0l

)
‖Xj‖2
n for

Z ∼ N(0, 1) independent of β0,X. Observe that the
(∑p

l 6=j β
2
0l

)
are uniformly integrable because

they are dominated by ‖β0‖2, whose uniform integrability we already established. Further, the
‖Xj‖2
n = 1

n

∑n
i=1X

2
ij are uniformly integrable by Claim K.3. Then the Z2

(∑p
l 6=j β

2
0l

)
‖Xj‖2
n are

uniformly integrable by two applications of Claim K.4, because they are the product of three in-
dependent and uniformly integrable terms. Thus, the b’s are uniformly integrable by Claim K.3,

and the ‖X
TXβ0‖2
n2 are uniformly integrable by the uniform integrability of the a’s and b’s. We con-

clude that the right-hand side of (K.7) is uniformly integrable, whence the ‖β̂cvx‖2 are uniformly
integrable.

Because

‖β̂cvx − β0‖2 ≤ 2
(
‖β̂cvx‖2 + ‖β0‖2

)
,

and ‖β0‖2 are uniformly integrable, we also have the ‖β̂cvx − β0‖2 are uniformly integrable, com-
pleting the proof.

L Proof of Proposition 2.6, Proposition 2.4, and equivalence of
τreg,amp∗ and τreg,amp

Proof of Proposition 2.6. Model [BKM+19, eq. (1)] is equivalent to our model (1.1) under the
following change of variable (with the notation of [BKM+19] on the left).

Φ←X, X∗ ← √pβ0, Yµ ← yi, Aµ ← wi, (m,n)← (n, p),

ϕ(x, a) = x+ a, P0 ← π, α← δ, r ← 1/τ2, ρ← s2(π),

where we have used an equal sign for any quantity which we do not have our own notation for.
The authors of [BKM+19] denote by X0, Z0 independent random scalars distributed from P0 and
N(0, 1) respectively. In our notation, we denote by β0, z independent random scalars distributed
from π and N(0, 1) respectively. We will also denote the random scalar y = β0/τ + z. To avoid
clutter, we will write s2 in place of s2(π) for the remainder of the proof. The authors of [BKM+19]
define in Eq. (5) (where we have already converted to our notation)

ψπ(1/τ2) = Eβ0,z log

∫
eβ0β/τ

2+βz/τ−β2/2τ2π(dβ) = Eβ0,z log

(
e

1
2

(β0/τ+z)2
∫
e−

1
2

(β0/τ+z−β/τ)2
)
π(dβ)

=
s2

2τ2
+

1

2
+ Eβ0,z

∫
e−

1
2

(y−β/τ)2π(dβ) =
s2

2τ2
− i(τ2), (L.1)

where the last line follows by (2.29). Their Pout

(
Yµ
∣∣ 1√

n
[ΦX∗]µ

)
is the conditional density (w.r.t.

Lebesgue measure) of Yµ
∣∣ 1√

n
[ΦX∗]µ (in their notation), which in our notation is Pout (y|x) =
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1√
2πσ

exp
(
− 1

2σ2 (y − x)2
)
. The authors of [BKM+19] denote by V,W independent random scalars

distributed from N(0, 1) and by Ỹ0 a random scalar distributed from Pout(·|
√
qV+

√
s2 − qW ). In our

notation and with our choice of Pout, we denote by z1, z2 independent random scalars distributed
from N(0, 1) (corresponding to V,W respectively) and observe that

√
qz1 +

√
s2 − qz2 + σz3 ∼

Pout(·|
√
qz1 +

√
s2 − qz2) where z3 ∼ N(0, 1) independent of z1, z2. The authors of [BKM+19]

define in Eq. (6) (where we have already converted to our notation)

ΨPout(q; s2) = Ez1,z2,z3 log

∫
1√
2π
e−

1
2
w2
Pout

(√
qz1 +

√
s2 − qz2 + σz3|

√
qz1 +

√
s2 − qw

)
dw

= Ez1,z2,z3 log

∫
1√
2π
e−

1
2
w2 1√

2πσ
exp

(
− 1

2σ2

(√
s2 − qz2 + σz3 −

√
s2 − qw

)2)
dw

= Ez2,z3 log

(
1√

2π(σ2 + s2 − q)
exp

(
− 1

2(σ2 + s2 − q)
(√
s2 − qz2 + σz3

)2))
= −1

2
log 2π − 1

2
log(σ2 + s2 − q)−

1

2
. (L.2)

The authors of [BKM+19] define in Eq. (4)

fRS(q, 1/τ2; s2) = ψπ(1/τ2) + δΨPout(q; s2)− q

2τ2
. (L.3)

In Eq. (3) they define a parameter q∗ via a variational formula which in Theorem 1 they show to
be equivalent to defining q∗ as the first coordinate of

arg max
(q,τ)∈Γ

fRS(q, 1/τ2; s2), (L.4)

whenever maximizers exist and the first coordinate of maximizing pairs is unique, where

Γ =

{
(q, τ) ∈ [0, s2]× [0,∞]

∣∣∣ d

dq
fRS(q, 1/τ2; s2) =

d

dτ−2
fRS(q, 1/τ2; s2) = 0

}
.

Some calculus applied to (L.1), (L.2), and (L.3) shows that d
dqfRS(q, 1/τ2; s2) = 0 if and only if

s2 − q = δτ2 − σ2. That is,
(q, τ) ∈ Γ⇒ q = s2 − δτ2 + σ2. (L.5)

We claim that maximizing fRS over Γ is equivalent to maximizing fRS over the larger set q =
s2 − δτ2 + σ2, as we now show. By (L.1), (L.2), and (L.3), we have

fRS(s2 − δτ2 + σ2, 1/τ2; s2) =
s2

2τ2
− i(τ2)− δ

2
log 2π − δ

2
log(δτ2)− δ

2
− s2 − δτ2 + σ2

2τ2

= −
(
σ2

2τ2
− δ

2
log

(
σ2

τ2

)
+ i(τ2)

)
+ C = −φ(τ2) + C, (L.6)

where C is a constant which depends only on δ, σ2 and numerical constants. For τ → 0 and τ →∞,
we see from (L.6) that fRS(s2 − δτ2 + σ2, 1/τ2; s2) goes to −∞, so that it is maximized at a point

for which d
dτ−2 fRS(δτ2 − σ2, 1/τ2; s2) = 0. Because d

dqfRS(q, 1/τ2; s2)
∣∣∣
q=s2−δτ2+σ2

= 0, we have

that fRS(s2−δτ2 +σ2, 1/τ2; s2) is maximized at a τ for which d
dτ−2 fRS(q, 1/τ2; s2)

∣∣∣
q=s2−δτ2+σ2

= 0.
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That is, any maximizer (q, τ) of fRS which satisfies q = s2 − δτ2 + σ2 must lie in Γ, as claimed. In
particular, maximizing fRS over the weaker constraint q = s2−δτ2 +σ2 yields the same maximizers
as maximizing fRS over the stronger constraint (q, τ) ∈ Γ.

To summarize, all solutions to (L.4) are constructed in the following way: let τ∗ ∈ arg maxτ{−φ(τ2)} =
arg minτ φ(τ2) and let q∗ = s2 − δτ2 + σ2. Further, by (L.5), when τ∗ is the unique minimizer of
φ, we have q* is the unique first coordinate of maximizers of (L.4). We see that τ∗ = τreg,stat.
After converting into our notation, Theorem 2 of [BKM+19] and their Eq. (8) state that under
certain assumptions which we will list, limp→∞ Eβ0,w,X

[
‖Eβ0,w,X [β0|y,X]− β0‖2

]
= s2−q∗. The

assumptions they require are that π ∈ P∞(R), Eβ0,w,X

[∣∣∣∑p
j=1X1jβ0j + w1

∣∣∣2+γ
]

is bounded for

some γ > 0 (for us, it is bounded for all γ > 0), the function ϕ is continuous, σ > 0, and the
minimizer q∗ is unique. These are all satisfied in our setting when the minimizer of φ is unique.
By equation (2.32) and because s2 − q∗ = δτ2

reg,stat − σ2, equation (2.33) follows.
Finally, by [BKM+19, Theorm 2], we have for fixed σ2 that the maximizer q∗ is unique for

almost every δ (w.r.t. Lebesuge measure). By Fubini’s theorem, this holds for almost every (δ, σ)
(w.r.t. Lebesgue measure).

In the proof of Corollary 2.3 in Section 2, we use the following claim.

Claim L.1. For any π ∈ P2(R), the equality τ2
reg,amp = τ2

reg,amp∗ holds for almost every value of δ, σ
(w.r.t. Lebesgue measure).

Proof of Claim L.1. Comparing (2.19) and (2.15), we see τ2
reg,amp∗ ≥ τ2

reg,amp always. Consider
the case that τreg,amp < τreg,amp∗. By (2.19), for all τ ∈ (τreg,amp, τreg,amp∗] we have δτ2 − σ2 ≥
mmseπ(τ2). By (2.15), for all τ > τreg,amp∗, we have δτ2 − σ2 > mmseπ(τ2). By the continu-
ity of mmseπ(τ2) [DYSV11], we have δτ2

reg,amp∗ − σ2 = mmseπ(τ2
reg,amp∗). Combining these three

observations, we conclude by the differentiability of mmseπ(τ2) at τreg,amp∗ > 0 [DYSV11] that

δ = d
dτ2

mmseπ(τ2)
∣∣∣
τ=τ2reg,amp∗

and σ2 = δτ2
reg,amp∗−mmseπ(τ2

reg,amp∗). Thus, the set of δ, σ2 for which

τ2
reg,amp = τ2

reg,amp∗ holds is contained within the set{(
d

dτ2
mmseπ(τ2), τ2 d

dτ2
mmseπ(τ2)−mmseπ(τ2)

) ∣∣∣ τ2 > 0

}
,

which has Lebesgue measure 0 because mmseπ is infinitely differentiable [DYSV11].

Proof of Proposition 2.4. We will prove the proposition under the DSN assumption. Because the
DSN assumption holds almost surely under the RSN assumption, the proposition also holds under
the RSN assumption.

The proposition is nearly an instance of Theorem 14 of [BMN19], except that ηt as we have
defined it need not be Lipschitz continuous, which is required by [BMN19]. Versions of Proposition
2.4 appear elsewhere in the literature (e.g., [BMN19, BMDK17]), though often without proof,
citing works in which state evolution for AMP is established for Lipschitz denoisers [BM11, JM13,
BMN19]. For the sake of completeness, we address here the minor technical difficulty that arises
when ηt is not Lipschitz using a truncation technique which is standard in the AMP literature.

The truncation argument requires the following lemma.

Lemma L.2. There exist constants Ct > 0 such that for each t, |ηt(y)| ≤ Ct(1 + |y|).
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Proof. Assume K is such that π([−K,K]) ≥ 1/2. For y > K, we have

Eβ0,z[β0|β0 + τtz = y] ≤ y +

∫ ∞
0

Pβ0,z(β0 ≥ y + t|β0 + τtz = y)dt

≤ 2y +K +

∫ ∞
0

∫∞
2y+K+t exp(−(y − s)2/(2τ2

t ))π(ds)∫∞
−∞ exp(−(y − s)2/(2τ2

t ))π(ds)
dt

≤ 2y +K +
exp(−(y +K)2/(2τ2

t ))

exp(−(y +K)2/(2τ2
t ))/2

= 2y +K + 2.

A similar argument shows that for y < −K, Eβ0,z[β0|β0 + τtz = y] ≥ 2y −K − 2. This establishes
the lemma.

Define ηM,t(y) = ηt(y)1|y|≤M + ηt(M)1y>M + ηt(−M)1y<M . The reason for defining this trun-
cation is that, because ηt has continuous first derivative, ηM,t is Lipschitz continuous.

Define τ2
M,0 = τ2

0 and

τ2
M,t+1 =

1

δ
(σ2 + Eβ0,z[(ηM,t(β0 + τM,tz)− β0)2]), t ≥ 0, (L.7)

bM,t =
1

δ
Eβ0,z[η

′
M,t−1(β0 + τM,t−1z)]. (L.8)

The truncated Bayes AMP iteration is

rtM =
y −Xβ̂

t

n
+ bM,tr

t−1
M ,

β̂
t+1

M = ηM,t(β̂
t
M,t +X>rtM ).

(L.9)

To prove Proposition 2.4, we will use Theorem 14 of [BMN19] to establish state evolution for the
iteration (L.9) and then show that for large M , iteration (L.9) approximates iteration (2.24).
State evolution for truncated Bayes AMP.

We claim for any fixed t,

p

lim
p→∞

‖β̂
t

M − β0‖2 = Eβ0,z[(ηM,t(β0 + τM,tz)
2 − β2

0)]. (L.10)

This statement follow directly from Theorem 14 of [BMN19] because, due to the truncation, all the
technical conditions of that theorem are satisfied, as we now show.

First, Theorem 14 of [BMN19] is related to our setting by the following change of variables
(with the notation of [BMN19] on the left).

A← 1√
n
X, θ0 ←

√
pβ0, y ←

√
p

n
y, w ←

√
p

n
w, θ̂

t
← √pβ̂

t

M ,

rt ← √nprtM , (m,n)← (n, p), ηt(x)j ← ηM,t(
√
pxj), σ2

w ← σ2/δ, bt ← bM,t.

(L.11)

We must check conditions (C1) - (C6) of [BMN19] and one more condition which we list as
equation (L.13) below. (C1) holds by assumption; (C2) holds because the posterior mean is con-
tinuously differentiable to all orders,6, so it is Lipschitz on compact intervals, and ηM,t defined by
ηM,t(x)j = ηM,t(

√
pxj)/

√
p is uniformly Lipschitz; and (C3) and (C4) hold by the DSN assumption.

6See [LR05, Theorem 2.7.1]. Because the posterior mean as a function of y under Gaussian noise is the mean of
an exponential family with natural parameter y/τ2, this theorem applies.
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For (C5), we must check that limp→∞ Ez [〈β0, ηM,t(β0 + τz)〉] exists and is finite. Note the
functions (x1,x2) 7→ x1 and (x1,x2) 7→ ηM,t(x1 + τx2) are uniformly pseudo-Lipschitz of order 1
(the first trivially, the second by (C2)), and their norm evaluated at 0 is bounded over p. Because
these functions are symmetric, Lemma C.4, which gives

lim
p→∞

Ez[〈β0,ηM,t(β0 + τz)〉] = lim
p→∞

Eβ̃0,z

[〈
β̃0, ηM,t(β̃0 + τz)

〉]
= lim

p→∞

1

p

p∑
j=1

Eβ̃0,z

[√
pβ̃0jηM,t(

√
pβ̃0j + τ

√
pzj)

]
= Eβ0,z[β0ηM,t(β0 + τz)], (L.12)

where β̃0 has coordinates distributed iid from π/
√
p, and β0 ∼ π, z ∼ N(0, 1) independent. Because

ηM,t is bounded, the expectation on the right-hand side is finite, and (C5) is established.
For (C6), we must show that or any s, t and any 2 × 2 covariance matrix T ∈ S2

+, the limit
limp→∞ Ez1,z2 [〈ηM,s(β0 + z1), ηM,t(β0 + z2)〉] exists and is finite, where (z1, z2) ∼ N(0,T ⊗Ip/p).
This is shown in the same way we establisehd (C5).

Under the change of variables (with the notation of [BMN19] on the left) τ2
t ← τ2

M,t, iteration
(206), (207) of [BMN19] becomes the scalar iteration (L.7). Under this change of variables, the
condition given by equation (208) of [BMN19] becomes

bM,t
p
' 1

n
Ez [div ηM,t−1 (β0 + τM,t−1z)] , (L.13)

where z ∼ N(0, Ip/p). Note τM,t−1 > 0 by induction: for the base case, use s2(π) > 0, and then
use that the right-hand side of (L.7) must be positive whenever τM,t > 0 because perfect recovery
with a non-trivial prior is impossible under Guassian corruption. Then by Gaussian integration by
parts (Lemma P.6), we have

1

n
Ez [div ηM,t−1 (β0 + τM,t−1z)] =

p

τM,t−1n
Ez [〈z, ηM,t−1 (β0 + τM,t−1z)〉] . (L.14)

As the dimension p varies, the functions (x0,x1) 7→ x1 and (x0,x1) 7→ ηM,t−1(x0 + τM,t−1x1)
are uniformly pseudo-Lipschitz of order 1 (the first trivially, the second by (C2)). By the same
argument as in (C5), their norm when evaluated at 0 is bounded (over p). Thus, by Lemma P.2,
the functions (x0,x1) 7→ 〈x1, ηM,t−1(x0 + τM,t−1x1)〉 are uniformly pseudo-Lipschitz of order 2.
Because these functions are also symmetric and {β0} satisfies the DSN assumption (2.1), we may
apply Lemma C.4, which gives

Ez [〈z, ηM,t−1 (β0 + τM,t−1z)〉]
p
' Eβ̃0,z

[〈
z, ηM,t−1(β̃0 + τM,t−1z)

〉]
=

1

p

p∑
j=1

Eβ̃0,z

[〈√
pz0jηM,t−1(

√
pβ̃0j +

√
pz0j)

〉]
=

1

p

p∑
j=1

Eβ0,z [〈zηM,t−1 (β0 + z0)〉]

= τM,t−1Eβ0,z
[
η′M,t−1(β0 + τM,t−1z)

]
, (L.15)

where we have taken β̃0 with coordinates distributed iid from π/
√
p, in the second equality we have

used (2.23), in the third line we have taken β0 ∼ π, z ∼ N(0, 1) independent, and in the fourth
equality we have used Lemma P.6 and the fact that ηM,t−1 : R 7→ R is Lipschitz (see (C2)). By the
HDA assumption, n/p→ δ, whence (L.14) and (L.15) yield (L.13).
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Estimation error of truncated Bayes AMP
Having checked the above conditions, we may apply Theorem 14 of [BMN19]. Because ηM,t :
Rp → Rp are uniformly pseudo-Lipschitz of order 1 by (C2) and ‖ηM,t(0) − 0‖ = ‖ηM,t(0)‖ is
uniformly (over p) bounded by the argument in (C5), we have by Lemma P.2 that the functions
(x0,x1) 7→ ‖ηM,t (x1)− x0‖2 are uniformly pseudo-Lipschitz of order 2. Thus, by Claim D.3,

the functions Ψp(x0,x1) :=
∥∥ηM,t

(
x1/
√
p
)
− x0/

√
p
∥∥2

are [BMN19]-uniformly pseudo-Lipschitz

of order 2.7 Under the change of variables (L.11), we have θ̂
t

+ ATrt ← √p(β̂
t

M + XrtM ) and
θ0 ←

√
pβ0. Then (justification follows equations)∥∥∥β̂t+1

M − β0

∥∥∥2
=
∥∥∥ηM,t

(
β̂
t

M +XTrtM

)
− β0

∥∥∥2 p
' Ez

[
‖ηM,t (β0 + τM,tz)− β0‖

2
]

p
' Eβ̃0,z

[
‖ηM,t(β̃0 + τM,tz)− β0‖2

]
=

1

p

p∑
j=1

Eβ̃0,z

[
(ηM,t(

√
pβ̃0j + τM,t

√
pzj)−

√
pβ0j)

2
]

= Eβ0,z
[
(ηM,t (β0 + τM,tz)− β0)2

]
, (L.16)

where in the first equality we have used (2.24); in the first line we have taken z ∼ N(0, Ip/p); in the
first probabilistic equality we have used Theorem 14 of [BMN19] (in particular, Eq. (210) applied
to ψp); in the second probabilistic equality we have used Lemma C.4; in the second line we have
taken β̃0 with coordinates distributed iid from π/

√
p; in the third line we have used (2.23); and in

the fourth line we have taken β0 ∼ π, z ∼ N(0, 1) independent.
The truncated and untruncated state evolutions are close
By induction, for each t ≥ 0, we have

lim
M→∞

τM,t = τt and lim
M→∞

bM,t = bt. (L.17)

Indeed, the base case (t = 0) holds by definition. For the induction step, assume τM,t → τt. Denote
η(·; τ) the Bayes estimator at noise level τ . That is, η(y; τ) = Eβ0,z[β0|β0 + τz = y]. By the same
argument we used in (C2), the Bayes estimator η is continuous in τ for τ > 0. Then, by the
inductive hypothesis, η(y; τM,t) −−−−→

M→∞
η(y; τt) for all y ∈ R. Further, because for β0, z fixed we

have M > β0 + τtz for sufficiently large M , we have

ηM,t(β0 + τM,tz) −−−−→
M→∞

η(β0 + τtz; τt) pointwise. (L.18)

Also, |ηM,t(β0+τM,tz)| < |η(β0+τM,tz; τM,t)| and the collection of random variables {η(β0+τz; τ)2 |
τ ≥ 0} is uniformly integrable because η(β0 + τz; τ)2 = Eβ0,z[β0|β0 + τz]2 ≤ Eβ0,z[β2

0 |β0 + τz], and
Eβ0,z[Eβ0,z[β2

0 |β0 + τz]1Eβ0,z [β2
0 |β0+τz]>C ] = Eβ0,z[β2

01Eβ0,z [β2
0 |β0+τz]>C ] becomes uniformly small for

sufficiently large C because Pβ0,z(Eβ0,z[β2
0 |β0 + τz] > C) ≤ s2(π)

C by Markov’s inequality. Thus, in
fact, the collection {(ηM,t(β0 + τM,tz) − β0)2} over all values of M and t is uniformly integrable.
By Vitali’s Convergence Theorem (see e.g. [Dur10, Theorem 5.5.2]) and (L.18), we have

Eβ0,z
[
(ηM,t (β0 + τM,tz)− β0)2

]
−−−−→
M→∞

Eβ0,z
[
(η (β0 + τtz, τt)− β0)2

]
= mmseπ

(
τ2
t

)
. (L.19)

7See (D.30). This terminology just refers to the use of the notion of being uniformly pseudo-Lipschitz under the
different choice of normalization used by [BMN19]. Thus, it tells us the functions to which we are able to apply their
theorem.
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By (2.20b), (L.7) and (L.19), we have (L.17). The induction is complete, so in fact τM,t → τt as
M →∞ holds for all t. A similar argument shows that convergence of bM,t.
The truncated and untruncated state evolutions are close
We claim

lim
M→∞

p

lim sup
p→∞

‖β̂
t

M − β̂
t
‖2 = 0.

This follows inductively by combining |ηt(y)−ηM,t(y)| ≤ Ct(1+ |y|)1|y|≥M (Lemma L.2), bM,t → bt,

and the boundedness (in probability) of ‖β̂
t

M‖2. Thus, by (L.10) and (L.17), we conclude (2.25).
Bayes AMP achieves noise variance τ2

reg,amp∗
Now we prove (2.26). Because s2(π) > 0, for all τ > 0, we have mmseπ(τ2) < s2(π). Thus,
for τ2 ≥ 1

δ (σ2 + s2(π)), we have δτ2 − σ2 ≥ s2(π) > mmseπ(τ2). Thus, by (2.15) and (2.20a)
and the continuity of mmseπ(τ2) in τ2, we have τ0 > τreg,amp∗. Further, if τ > τreg,amp∗, because
mmseπ(τ2) is strictly increasing in τ (see [DYSV11, Eq. (65)]), we have 1

δ

(
σ2 + mmseπ(τ2)

)
>

1
δ

(
σ2 + mmseπ(τ2

reg,amp∗)
)

= τ2
reg,amp∗. Thus, by (2.20b) and induction, we have τt−1 > τt > τreg,amp∗

for all t. Further, because mmseπ(τ2) is continuous in τ2 [DYSV11], for all ε > 0 such that
τreg,amp∗ + ε < τ0, we have infτ∈[τreg,amp∗+ε,τ0]

{
τ2 − 1

δ

(
σ2 + mmseπ(τ2)

)}
> 0. Thus, for all t such

that τt > τreg,amp∗ + ε, we have τt − τt+1 is bounded below by a positive constant. Thus, for t
sufficiently large we must have τt ≤ τreg,amp∗+ε. Because this is true for all sufficiently small ε > 0,
we have lim supt→∞ τt ≤ τreg,amp∗. Because we also have τt > τreg,amp∗ for all t, we in fact have
(2.26).

Eq. (2.27) now follows by (2.25) and taking t sufficiently large.

M Proof of Theorem 4

Proof of Theorem 4.(i). Throughout the proof, we will drop π from our notation for the moments
of π. That is, we write sk in place of sk(π). Observe that mmseπ(τ2) ≤ s2. Also, Ropt

seq,cvx(τ ;π) ≤ s2

because at each p we may take in (2.7) the function ρp(x) = Ix=0 which is 0 when x = 0 and ∞
otherwise. Thus,

σ2

δ
≤ σ2 + mmseπ(τ2)

δ
≤ σ2 + s2

δ
, (M.1)

σ2

δ
≤ σ2 + Ropt

seq,cvx(τ ;π)

δ
≤ σ2 + s2

δ
. (M.2)

By (M.1) and (2.32), σ
2

δ ≤ τ
2
reg,stat ≤ σ2+s2

δ , whence τreg,stat = σ√
δ

+O
(

1√
δ

)
, where we have used the

inequality that for a, b ≥ 0 we have
√
a+ b ≤

√
a+
√
b. By Lemma C.2, Ropt

seq,cvx(τ ;π) is continuous
in τ , whence by (2.11), we have δτ2

reg,cvx − σ2 = Ropt
seq,cvx(τreg,cvx;π). Combined with (M.2), we have

σ2

δ ≤ τ
2
reg,cvx ≤ σ2+s2

δ , whence τreg,cvx = σ√
δ

+O
(

1√
δ

)
as well.

With β0 ∼ π, z ∼ N(0, 1) independent and y = β0 + τz, we have (justification to follow)

d

dτ
mmseπ(τ2) = − 2

τ3

d

dτ−2
mmseπ(τ2) =

2

τ3
Eβ0,z

[
Eβ0,z

[
(β0 − Eβ0,z[β0|y])2

∣∣y]2]
≤ 2

τ3
Eβ0,z

[
(β0 − Eβ0,z[β0|y])4

]
≤ 32

√
24τ, (M.3)
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where in the second equality we have used [DYSV11, Proposition 9], in the first inequality we
have used Jensen’s inequality, and in the second inequality we have used [DYSV11, Proposition
5]. Further, because π ∈ P6(R), τ−2 7→ mmseπ(τ2) is continuously differentiable to second order
on [0,∞) [DYSV11, Proposition 7], whence d

dτ−2mmseπ(τ2) is bounded for τ ≥ C for any C > 0.
Combined with (M.3) (which bounds the derivative for small τ), we get that mmseπ(τ2) is Lipschitz
in τ on the entirety of its domain [0,∞). Because Ropt

seq,cvx(τ ;π) is also Lipschitz in τ , we have by
Theorem 1

∆(π, δ, σ) ≥ Ropt
seq,cvx(τreg,cvx;π)−mmseπ(τ2

reg,stat) = Ropt
seq,cvx(σ/

√
δ;π)−mmseπ(σ2/δ) +O(1/

√
δ).

Thus, we have (4.1).

Proof of Theorem 4.(ii). As in the proof of part (i), throughout the proof, we will drop π from our
notation for the moments of π. That is, we write sk in place of sk(π). By [DYSV11, Eq. (61)], we
have

mmseπ(τ2) = s2 − s2
2

1

τ2
+

1

2

(
2s3

2 − s2
3

) 1

τ4
− 1

6

(
15s4

2 − 12s2s
2
3 − 6s2

2s4 + s2
4

) 1

τ6
+O

(
1

τ8

)
,

(M.4)

where O
(

1
τ8

)
hides constants depending only on the moments of π. Define κ2 = σ2

δ

(
1 + s2

σ2

)
and

∆ = κ2 − τ2
reg,stat. By (2.32) and some rearrangement, we have

s2 − δ∆ = mmseπ
(
κ2 −∆

)
. (M.5)

For the remainder of the proof, O will also hide constants depending δ (in addition to the moments
of π), but will not depend on σ2 and likewise on κ2 or ∆. We see that ∆ ≤ s2

δ = O(1), so that by
(M.4) we have

mmseπ
(
κ2 −∆

)
= s2 −

s2
2

κ2

(
1 +

∆

κ2
+

∆2

κ4
+O

(
1

κ6

))
+

1

2

2s3
2 − s2

3

κ4

(
1 +O

(
∆

κ2

))
− 1

6

15s4
2 − 12s2s

2
3 − 6s2

2s4 + s2
4

κ6

(
1 +O

(
∆

κ2

))
+O

(
1

κ8

)
. (M.6)

Comparing with (M.5) and using ∆ = O(1), we see that ∆ =
s22
δκ2

+O
(

1
κ4

)
. Thus, we have

s2
2

κ2

(
1 +

∆

κ2
+

∆2

κ4
+O

(
1

κ6

))
=
s2

2

κ2
+

s4
2

δκ6
+O

(
1

κ8

)
,

1

2

2s3
2 − s2

3

κ4

(
1 +O

(
∆

κ2

))
=

1

2

2s3
2 − s2

3

κ4
+O

(
1

κ8

)
.

Plugging into (M.6), we have

mmseπ(τ2
reg,stat) = mmseπ(κ2 −∆) = s2 −

s2
2

κ2
+

1

2

2s3
2 − s2

3

κ4

− s4
2

δκ6
− 1

6

15s4
2 − 12s2s

2
3 − 6s2

2s4 + s2
4

κ6
+O

(
1

κ8

)
. (M.7)
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We now write this expansion in terms of the signal-to-noise parameter snr. Applying the definition

of κ2, we have s2
κ2

= δ snr(1 − snr + snr2) + O(snr4),
s22
κ4

= δ2snr2(1 − 2 snr) + O(snr4), and
s32
κ6

=
δ3 snr3 +O(snr4). Plugging into (M.7) and rearranging, we get

mmseπ(τ2
reg,stat) = s2 − s2δ snr + s2

(
δ + δ2

(
1− s2

3

2s3
2

))
snr2

+ s2

(
−δ − δ2

(
3− s2

3

s3
2

)
− δ3

(
5

2
− 2

s2
3

s3
2

− s4

s2
2

+
s2

4

6s4
2

))
snr3 +O(snr4). (M.8)

Now let τridge solve

δτ2 − σ2 = mmseN(0,s2)(τ
2). (M.9)

We will show that ridge regression with appropriately chosen regularization achieves risk mmseN(0,s2)(τ
2
ridge).

Let ρp(x) = σ2

δs2
‖x‖2. The risk of this estimator has been studied previously by [EK13]. We repeat

the analysis here for completeness. Let

λridge =
δτ2

ridge

2σ2
. (M.10)

Observe then that prox[λridgeρp](y) = s2
s2+τ2ridge

y. Let T = (π, {ρp}). Observe that R∞reg,cvx(τridge, λridge, T ) =

s2τ2

s2+τ2
= mmseN(0,s2)(τ

2
ridge) and W∞reg,cvx(τridge, λridge, T ) = s2

s2+τ2ridge
. One can then check using (M.9)

and (M.10) that τridge, λridge solve (B.7) at γ = 0. Because ρp are uniformly strongly convex, by
Proposition B.3.(ii) and Lemma K.2, we have

lim
p→∞

Eβ0,w,X

[
‖β̂cvx − β0‖2

]
= R∞orc,cvx(τridge, λridge, T ) = mmseN(0,s2)(τ

2
ridge). (M.11)

Because τridge solves (M.9), we in fact have that formula (M.8) holds for mmseN(0,s2)(τ
2
ridge) after

replacing the moments with those of N(0, s2). That is,

mmseN(0,s2)(τ
2
ridge) = s2 − s2δ snr + s2

(
δ + δ2

)
snr2 + s2

(
−δ − 3δ2 − δ3

)
snr3 +O(snr4), (M.12)

where we have used that the third moment of N(0, s2) is 0 and fourth moment of N(0, s2) is 3s2
2.

By [DYSV11, Eq. (65)], we have

− d

dτ−2
mmseπ(τ2) = Eβ0,z

[
(Eβ0,z

[
(Eβ0,z[β0|y]− β0)2|y

]
)2
]
≤ Eβ0,z

[
Eβ0,z

[
(Eβ0,z[β0|y]− β0)4|y

] ]
≤ 8Eβ0,z

[
Eβ0,z[β0|y]4 + β4

0

]
≤ 16Eβ0,z[β4

0 ] = 16s4,

where y denotes β0 + τz. Thus, d
dτ2

mmseπ(τ2) = − 1
τ4

d
dτ−2mmseπ(τ2) ≤ 16s4

τ4
. Thus, for sufficiently

large τ , the derivative of the right-hand side of (2.31) is strictly negative, so that for sufficiently
large σ there can be at most one solution to (2.32) in the region [σ2/δ,∞). But all solutions τ2

reg,stat

must satisfy τ2
reg,stat ≥ σ2/δ, whence the minimizer of (2.30) is unique for sufficiently large σ. Then,

by Proposition 2.6 and Eq. (M.11), for sufficiently large σ we have ∆(π, δ, σ) ≤ mmseN(0,s2)(τ
2
ridge)−

mmseπ(τ2
reg,stat). Combining (M.8) and (M.12), we get (4.2), as desired.
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N Proofs for Section 6: examples

N.1 Proof of Proposition 6.2

This follows from inequality (O.12) proved in Appendix O, which gives

1

τ
Eβ0,z [〈z, prox [λρp] (β0 + τz)〉] ≤ 1

λγ + 1
, (N.1)

because λρp has strong convexity parameter λγ. The right-hand side of (N.1) does not depend
upon τ or p. Thus, choosing 1/(λ̄γ + 1) < δ yields the proposition.

N.2 Proof of Proposition 6.3

claim Observe prox[λρp](x) = ΠCp(x) for all λ, where ΠCp denotes projection onto the set Cp.
Further, observe that Eβ0,z[〈z,β0〉] = 0. Thus, we must show

lim sup
p→∞

sup
τ∈T

1

τ
Eβ0,z

[〈
z,ΠCp (β0 + τz)− β0

〉]
< δ. (N.2)

First, we argue conditionally on β0, which for now we treat as fixed. To simplify notation, we
translate our problem—both β0 and Cp—by −β0, so that we may without loss of generality consider
β0 = 0. In the translated problem, denote b = ΠCp(0). Then〈

τz,ΠCp (τz)
〉

=
〈
τz − b,ΠCp (τz)− b

〉︸ ︷︷ ︸
(∗)

+
〈
b,ΠCp (τz)− b

〉
+ 〈τz, b〉︸ ︷︷ ︸

(∗∗)

. (N.3)

For t ∈ [0, 1], we have tb+ (1− t)ΠCp (τz) ∈ Cp. Thus,

d

dt

∥∥τz − (tb+ (1− t)ΠCp (τz)
)∥∥2

∣∣∣∣∣
t=0

≥ 0.

Some rearrangement gives

(∗) ≥ ‖ΠCp(τz)− b‖2 ≥ ‖ΠCp(τz)‖2 − 2‖b‖‖τz‖. (N.4)

Cauchy-Schwartz gives

(∗∗) ≥ −‖b‖
(
‖ΠCp(τz)− b‖+ ‖τz‖

)
≥ −2‖b‖‖τz‖, (N.5)

where in the second inequality we have used that projections onto convex sets are 1-Lipschitz. Also,
if ‖ΠCp(τz)‖ > ε, then ΠCp(τz) ∈ TCp∩Bc(0,ε)(0). Thus,

‖τz −ΠCp(τz)‖ ≥ ‖τz −ΠTCp∩Bc(0,ε)
(τz)‖ if ‖ΠCp(τz)‖ > ε. (N.6)

Thus, if ‖ΠCp(τz)‖ > ε,

‖ΠTCp∩Bc(0,ε)
(τz)‖2 = ‖τz‖2 − ‖τz −ΠTCp∩Bc(0,ε)

(z̃)‖2

≥ ‖τz‖2 − ‖τz −ΠCp(τz)‖2

= 2〈τz,ΠCp(τz)〉 − ‖ΠCp(τz)‖2

≥ 〈τz,ΠCp(τz)〉 − 4‖b‖‖τz‖,
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where in the second line, we have used (N.6), and in the last line, we have used (N.3), (N.4), and
(N.5). We conclude that

〈τz,ΠCp(τz)〉 ≤
(
‖ΠTCp∩Bc(0,ε)

(τz)‖2 + 4‖b‖‖τz‖
)

1‖ΠCp (τz)‖>ε + ‖τz‖ε1‖ΠCp (τz)‖≤ε

≤ ‖ΠTCp∩Bc(0,ε)
(τz)‖2 + (4‖b‖+ ε)‖τz‖.

Substituting the value of b, undoing the translation, and averaging over β0 and z, we get

Eβ0,z

[〈
τz,ΠCp (β0 + τz)− β0

〉]
≤ Eβ0,z

[
‖ΠTCp∩Bc(β0,ε)

(τz) ‖2
]

+ Eβ0,z [(4d (β0, Cp) + ε) ‖τz‖]
(N.7)

= τ2Eβ0

[
w
(
TCp∩Bc(β0,ε)

)]
+ τEβ0,z [(4d (β0, Cp) + ε) ‖z‖] .

(N.8)

By independence of β0 and z, and (6.5), we get

lim sup
p→∞

Eβ0,z [(4d (β0, Cp) + ε) ‖τz‖] ≤ ετEβ0,z [‖z‖] ≤ ετ. (N.9)

Fix compact [τmin, τmax] ⊂ (0,∞).

lim sup
p→∞

sup
τ∈T

1

τ
Eβ0,z

[〈
z,ΠCp (β0 + τz)− β0

〉]
≤ lim sup

p→∞
Eβ0

[
w
(
TCp∩Bc(β0,ε)

)]
+

ε

τmin
= δ(ε)+

ε

τmin
,

(N.10)
where we defined δ(ε) := lim supp→∞ Eβ0

[
w
(
TCp∩Bc(β0,ε)

)]
. The claim (N.2) follows from taking

the limit ε→ 0 and using Eq. (6.6).

N.3 Proof of Proposition 6.4

Applying the change of scaling identity for proximal operators (see Appendix O, Eq. (O.13)), we
get

prox[λρp](β0 + τz)j = prox[λρ] (
√
p(β0j + τzj)) /

√
p, (N.11)

so that

1

τ
Eβ0,z[〈z, prox[λρp](β0 + τz)〉] =

1

τ
Eβ0,z[zprox[λρ](β0 + τz)].

Having removed the dependence on p, the left-hand side of (2.9) becomes

sup
λ>λ̄,τ∈T

1

τ
Eβ0,z[zprox[λρ](β0 + τz)].

It is easy to check using (2.4) that for any fixed β0, z, τ , we have limλ→∞ prox[λρ](β0 + τz) =
ΠC(β0 + τz). Further, if m ∈ C, we have by the 1-Lipschitz property of the proximal operator
(O.4) that |prox[λρ](β0 + τz)| < |m|+ |β0|+ τ |z|. By dominated convergence, we have

lim
λ→∞

1

τ
Eβ0,z[zprox[λρ](β0 + τz)] =

1

τ
Eβ0,z[zΠC(β0 + τz)]. (N.12)
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By Gaussian integration by parts (Appendix O, Eq. (O.11)),

1

τ
Eβ0,z[zΠC(β0 + τz)] = Eβ0,z[1β0+τz∈C ] = Pβ0,z(β0 + τz ∈ C). (N.13)

First assume the δ-bounded width assumption is satisfied. Observe supλ≥λ̄
1
τEβ0,z[zprox[λρ](β0+

τz)] ≥ Pβ0,z(β0 +τz ∈ C), whence for any compact T ⊂ (0,∞), we have δ > supτ∈T Pβ0,z(β0 +τz ∈
C). Because τ 7→ Pβ0,z(β0 + τz ∈ C) is continuous and converges to 0 as τ → ∞, we have
supτ>ε Pβ0,z(β0 + τz ∈ C) = supτ∈[ε,M ] Pβ0,z(β0 + τz ∈ C) for some finite M . We conclude
supτ>ε Pβ0,z(β0 + τz ∈ C) < δ.

Conversely, assume supτ>ε Pβ0,z(β0 + τz ∈ C) < δ. Because prox[λρ] is 1-Lipschitz, we have
that τ → 1

τEβ0,z[zprox[λρ](β0 + τz)] is L-Lipschitz on compact T = [τmin, τmax] ⊂ (0,∞) for
some sufficiently large L depending on T (a complete argument of this fact occurs in a more
general setting in the proof of Lemma C.5 in Appendix C). Thus, in order to pick λ̄ such that

supλ≥λ̄,τ∈T
1
τEβ0,z[zprox[λρ](β0 + τz)] < δ, we can choose a δ−supτ P(β0+τz∈C)

4L -cover of T and a λ̄

sufficiently large such that 1
τEβ0,z[zprox[λρ](β0 + τz)] < δ+supτ P(β0+τz∈C)

2 for all λ > λ̄ and all τ in
the cover.

N.4 Proof of Proposition 6.5

Fix any compact interval T = [τmin, τmax] ⊂ (0,∞). First, we describe how to choose a λ̄ for which
(2.9) holds, and then we will prove that our choice works. Pick ε with

δ2τ2
min

4(s2(π) + τ2
max)

> ε > 0, (N.14)

such that, for any A ⊆ R,

P(A) ≤ ε =⇒ Eβ0 [β2
01A] < δ2τ2

min/32 and Ez[τ2
maxz

21A] < δ2τ2
min/32 . (N.15)

Pick t such that
Pβ0(|β0| > t) < ε and Pz(|τz| > t) < ε. (N.16)

Finally pick ξ > 0 such that j ≤ (1 − ε)p implies κ
(p)
j > ξ. We claim that (2.9) is satisfied for

λ̄ = 2t/ξ.
First we recall that the proximal operator for the OWL penalty satisfies (e.g. see Lemma 3.1 of

[SC16])
‖prox[λρp](x)‖ ≤ ‖(|x| − λκ(p)/

√
p)+‖, (N.17)

where |x| denotes the coordinate-wise absolute value and (·)+ denotes the coordinate-wise positive
part. By Cauchy-Schwartz, for any τ, λ,

1

τ
Eβ0,z[〈z, prox[λρp](β0 + τz)〉] ≤ 1

τ

√
Ez[‖z‖2]Eβ0,z[‖prox[ρp](β0 + τz)‖2]

≤ 1

τ

√
Eβ0,z[‖(|β0 + τz| − λκ(p)/

√
p)+‖2], (N.18)
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where the last inequality holds by (N.17). For λ > λ̄,∥∥∥∥∥
(
|β0 + τz| − λκ(p)

√
p

)
+

∥∥∥∥∥
2

=

b(1−ε)pc∑
j=1

(
|β0j + τzj | −

λκ
(p)
j√
p

)2

+

+

p∑
j=b(1−ε)pc+1

(
|β0j + τzj | −

λκ
(p)
j√
p

)2

+

≤
b(1−ε)pc∑
j=1

(β0j + τzj)
2 1|β0j+τzj |> 2t√

p
+

p∑
j=b(1−ε)pc+1

(β0j + τzj)
2

≤ 2

b(1−ε)pc∑
j=1

(
β2

0j + τ2z2
j

)
(1|β0j |> t√

p
+ 1|τzj |> t√

p
) +

p∑
j=b(1−ε)pc+1

(β0j + τzj)
2 ,

where in the first inequality, we have used that λκ
(p)
j /
√
p ≥ 2t/

√
p because λ > 2t/ξ and κ

(p)
j > ξ

for j ≤ (1−ε)p and that for any x, y ∈ R we have (|x|−y)2
+ ≤ x21|x|>y; and in the second inequality,

we have used that (β0j + τzj)
2 ≤ 2β2

0j + 2τ2z2
j and 1|β0j+τzj |> 2t√

p
≤ 1|β0j |> t√

p
+ 1|τzj |> t√

p
. Taking

expectations, inequality (N.18) becomes

1

τ
Eβ0,z[〈z, prox[λρp](β0 + τz)〉] ≤ 1

τ

√
2Eβ0,z

[(
β2

0 + τ2z2
)

(1|β0|>t + 1|τz|>t)
]

+ ε(Eβ0 [β2
0 ] + τ2)

≤ 1

τ

√
δ2τ2

min/4 + δ2τ2
min/4

≤ δ/
√

2 < δ,

where in the second inequality we have bounded the first term under the square-root by (N.15) and
the second term under the square-root by (N.14), and in the third inequality, we have used that
τmin ≤ τ . This completes the proof.

O Proximal operator identities

We collect here various identities and properties of proximal operators, defined in (2.4). Many argu-
ments are included because they are not well-known, others for the reader’s convenience. Through-
out this section, ρ : Rp → R ∪ {∞} is an lsc, proper, convex function which is γ-strongly convex
for γ ≥ 0 (if ρ is not strongly convex, we take γ = 0).

• We have the following sub-gradient identity, which follows by the KKT conditions applied to
(2.4).

y − prox[ρ](y) ∈ ∂ρ(prox[ρ](y)). (O.1)

• We have the following fixed point identity, which follows from (O.1).

y = prox[ρ](y)⇐⇒ y minimizes ρ. (O.2)

• prox[ρ] is firmly non-expansive [PB13, p. 131]. That is,

〈y − y′, prox[ρ](y)− prox[ρ](y′)〉 ≥ (1 + γ)‖prox[ρ](y)− prox[ρ](y′)‖2. (O.3)
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• prox[ρ] is (1 + γ)−1-Lipschitz [PB13]. That is, for y,y′ ∈ Rp,

‖prox[ρ](y)− prox[ρ](y′)‖ ≤ (1 + γ)−1‖y − y′‖. (O.4)

This follows by applying Cauchy-Schwartz to the left-hand side of (O.3) and rearrangement.

• prox[λρ] satisfies the following continuity property in regularization parameter λ. For λ > 0,
λ′ ≥ 0, we have

‖prox[λρ](y)− prox[λ′ρ](y)‖ ≤ ‖y − prox[λρ](y)‖
∣∣∣∣λ′λ − 1

∣∣∣∣ , (O.5)

as we now argue. For simplicity, denote a = prox[λρ](y). By (O.1), we have y − a ∈ λ∂ρ(a).
Scaling by λ′

λ , we have λ′

λ (y − a) ∈ λ′∂ρ(a). Thus,(
λ′

λ
− 1

)
(y − a) ∈ ∂

(
1

2
‖y − x‖2 + λ′ρ(x)

) ∣∣∣
x=a

. (O.6)

Denote a′ = prox[λ′ρ](y). We have

1

2
‖y − a‖2 + λ′ρ(a) ≥ 1

2
‖y − a′‖2 + λ′ρ(a′) +

1

2
‖a− a′‖2

≥ 1

2
‖y − a‖2 + λ′ρ(a) +

〈(
λ′

λ
− 1

)
(y − a),a′ − a

〉
+ ‖a′ − a‖2,

where in both inequalities we have used the strong convexity of x 7→ 1
2‖y − x‖

2 + λ′ρ(x), in
the first inequality we have used that this function has sub-gradient 0 at a′ by optimality,
and in the second inequality we have used (O.6). By Cauchy-Schwartz, rearrangement, and
substitution for the values of a and a′, we get (O.5).

• prox[ρ] is almost everywhere differentiable. This follows because prox[ρ] is Lipschitz [EG15].
Whenever we write the divergence div prox[ρ] and the Jacobian D prox[ρ], they are understood
to be defined almost everywhere. For all y for which the left-hand sides are defined, we have
by (O.4),

div prox[ρ](y) ≤ p

1 + γ
, (O.7)

‖D prox[ρ](y)‖op ≤
1

1 + γ
, (O.8)

and by (O.3),
D prox[ρ](y) � 0. (O.9)

By (O.9), we have
div prox[ρ](y) ≥ 0. (O.10)

• We may apply Stein’s Lemma (i.e. Gaussian integration by parts) to proximal operators.
That is, for any τ ≥ 0,

Ez [〈z, prox[ρ](β0 + τz)〉] =
τ

p
Ez[div prox[ρ](β0 + τz)], (O.11)
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where z ∼ N(0, Ip/p). To see this, observe that real-valued function zi 7→ prox[ρ](β0 + τz)i,
holding the other zj ’s fixed, is Lipschitz continuous. Thus, it is the indefinite integral of its
almost-everywhere derivative. Applying Stein’s lemma [Ste81], averaging over the other zj ’s,
and summing over i yields (O.11).

• By (O.8) and (O.11), we have for any τ ≥ 0 and b ∈ Rp,

Ez [〈z, prox[ρ](b+ τz)〉] ≤ τ

1 + γ
, (O.12)

where z ∼ N(0, Ip/p).

• Proximal operators obey the following identity under the change of scaling of ρ [PB13, p.
130]. Let ρ̃(x) = aρ(bx). Then

prox[ρ̃](y) = prox
[
ab2ρ

]
(by)/b. (O.13)

• Proximal operators shift by a constant under the following perturbation. For c ∈ Rp fixed,
let ρ̃(x) = −〈c,x〉+ ρ(x− c). We have,

prox[ρ̃](y) = arg min
x

{
1

2
‖y − x‖2 − 〈c,x〉+ ρ(x− c)

}
= arg min

x

{
1

2
‖y − (x− c)‖2 + ρ(x− c)

}
= prox[ρ](y) + c. (O.14)

• Proximal operators of separable functions are separable. In particular, if ρ(x) =
∑p

j=1 f(xj)
for some lsc, proper, convex f : R→ R ∪ {∞}, then for all j,

prox[ρ](y)j = prox[f ](yj). (O.15)

• The oracle penalty correspons to a decrease in both noise level and regularization. Precisely,

prox[λρ(γ)] (β0 + τz) = prox

[
λ

λγ + 1
ρ

](
β0 +

τ

λγ + 1
z

)
. (O.16)

Indeed, for any y

prox[λρ(γ)](y) = arg min
x

{
1

2
‖y − x‖2 + λρ(x) +

λγ

2
‖x− β0‖2

}
= arg min

x

{
1

2

∥∥∥∥λγβ0 + y

λγ + 1
− x

∥∥∥∥2

+
λ

λγ + 1
ρ(x)

}
= prox

[
λ

λγ + 1
ρ

](
λγβ0 + y

λγ + 1

)
.

Eq. (O.16) corresponds to y = β0 + τz.
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P Useful tools

We omit proof for the first five lemmas, which are easy to verify. Lemmas P.2, P.3, and P.4 appear
as Lemmas 20, 21, and 22 of [BMN19]. The remaining lemmas in this section are well-known, and
we provide citations for each.

Lemma P.1. The probabilistic limit supremum satisfies the following. For any real valued random
variables Xp, Yp such that, for each p, Xp and Yp are defined on the same probability space,

p

lim sup
p→∞

Xp + Yp ≤
(

p

lim sup
p→∞

Xp

)
+

(
p

lim sup
p→∞

Yp

)
. (P.1)

If Xp ≥ 0 and p− lim supp→∞Xp <∞, then Xp = Op(1). If Xp, Yp ≥ 0, then

p

lim sup
p→∞

XpYp ≤
(

p

lim sup
p→∞

Xp

)(
p

lim sup
p→∞

Yp

)
. (P.2)

Lemma P.2 (Lemma 20 in [BMN19]). Consider two sequences f : (Rp)`1 → Rp and g : (Rp)`2 →
Rp, p ≥ 1, of uniformly pseudo-Lipschitz functions of order k such that ‖f(0)‖, ‖g(0)‖ are bounded
over p. The sequence of functions ϕ : (Rp)`1 × (Rp)`2 → R, p ≥ 1 defined by ϕ(x,y) = 〈f(x), g(y)〉
is uniformly pseudo-Lipschitz of order 2k.

Lemma P.3 (Lemma 21 in [BMN19]). Let t, s, and k be any three positive integers. Consider a
sequence (in p) of x1, . . . ,xs ∈ Rp such that ‖xj‖ ≤ cj for some constants cj independent of p, for
j = 1, . . . , s, and a sequence (in p) of uniformly pseudo-Lipschitz functions ϕp : (Rp)t+s → R. Then
the sequence of functions φp(·) := ϕp(·,x1, . . . ,xs) is also uniformly pseudo-Lipschitz of order k.

Lemma P.4 (Lemma 22 in [BMN19]). Let t be any positive integer. Consider a sequence (in p)
of uniformly pseudo-Lipschitz functions ϕp : (Rp)t → R of order k. The sequence of functions
φp : (Rp)t → R such that φp(x1, . . . ,xt) = Ez [ϕp(x1, . . . ,xt−1,xt + τz)] where z ∼ N(0, Ip/p) and
τ ≥ 0 does not depend on p, is also uniformly pseudo-Lipschitz of order k.

Lemma P.5. If f : Rp → Rn is a sequence (in p) of uniformly pseudo-Lipschitz functions of order
k and g : Rn → Rm is a sequence (in p) of uniformly pseudo-Lipschitz functions of order l such
that ‖g(0)‖ is bounded, then g ◦ f : Rp → Rm is a sequence of uniformly pseudo-Lipschitz functions
of order kl.

Lemma P.6 (Stein’s lemma [Ste81]). Let f : Rp → R be “almost differentiable” in the sense that
there exists measurable ∇f : Rp → Rp such that, for all δ ∈ Rp,

f(x+ δ)− f(x) =

∫ 1

0
〈δ,∇f(x+ tδ)〉dt,

for almost every x ∈ Rp. In particular, this is satisfied if f is pseudo-Lipschitz. If (z1, z2) ∼
N(0,T ⊗ Ip/p) for some T ∈ S2

+, then

Ez1,z2 [〈z1, f(z2)〉] =
T12

p
E[div f(z2)]. (P.3)
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Lemma P.7 (Tweedie’s Formula. Eq. (2.8) in [Efr11]). Fix τ > 0. Fix π any probability measure
on R. Let y = β0 + τz where β0 ∼ π, z ∼ N(0, 1) independent. Let pY denote the density of y with
respect to Lebesgue measure. Then

Eβ0,z [β0|y] = y + τ2 d

dy
log pY (y). (P.4)

(See [Efr11] for a discussion of earlier references for this remarkable formula.)

Lemma P.8 (Gaussian concentration of Lipschitz functions. Theorem 5.6 in [BLM16]). If z ∼
N(0, Ip/p) and f : Rp → R is an L-Lipschitz function, then for all t > 0,

Pz (|f(z)− Ez[f(z)]| ≥ t) ≤ e−
p

2L2 t
2

. (P.5)

Lemma P.9 (Gaussian Poincaré inequality. Theorem 3.20 in [BLM16]). Let z ∼ N(0, Ip/p) and
ϕ : Rp → R be continuous and weakly differentiable. Then, for some universal constant c,

Var[ϕ(z)] ≤ c

p
Ez
[
‖∇ϕ(z)‖2

]
. (P.6)
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