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This paper further investigates the specification and calibration

of FDs. The purpose is to provide a consistent, systematic, and

adaptive way to obtain FDs from single-loop detector measurements.

In particular, the piecewise linear form is adopted for the FD, because

(a) more-complex forms of the FD can be approximated by a piece-

wise linear form with arbitrarily many pieces, and (b) empirical

evidence tends to support such a form. For example, Windover and

Cassidy found that there is no dependency of wave speed on flow in

either the free-flow or the congested region of traffic, implying that

the flow–density relationship is locally linear (6). Meanwhile, the

piecewise linear form greatly simplifies analysis and computation

of the kinematic wave model of Lighthill and Whitham (7 ) and

Richards (8). For example, explicit calculation is enabled in Newell’s

simplified KW theory (9) and the cell transmission model (10) with

the use of triangular or trapezoidal FDs.

RELATED WORK

Castillo and Benítez derived a functional form for the speed–density

relation as the solution to a system of mathematical and behavioral

constraints (2). Among these constraints, the following three are

essential: the speed–density relation V(ρ) is sufficiently smooth, for

example, V(ρ) ∈ C1; speed is a decreasing function of density, that is,

V′(ρ) < 0; and the flow–density relation is concave, that is, Q″(ρ) < 0.

In the accompanying empirical study (11), calibration of the proposed

FD is based on a method to identify stationary states.

Like Castillo and Benítez (11), Cassidy suggested that the station-

ary traffic state is marked by constant average vehicle speeds and a

linear trend in cumulative vehicle arrivals (4). The near-stationary

periods are identified through careful examination of the cumulative

curves. Then the identified near-stationary traffic data are averaged

over 4- to 10-min periods to suppress the random fluctuations.

The averaged data form a curve, implying the existence of FDs.

Pertaining to the previous two studies, Coifman formulated the

problem of traffic measurement smoothing in a unified perspective

of digital filtering design (3). It was observed that the common

approaches to eliminating noise in traffic measurements, for example,

fixed time average, moving average, and cumulative summation,

can all be formulated as equivalent filter forms in the frequency

domain.

The preceding methods are all trend oriented; that is, they rely

on the trend of measurements to identify the stationary states and

construct FDs. However, studies indicate that congested traffic cannot

maintain stationarity for a prolonged period (4, 11). Therefore, the

constructed FD contains many observations only in high-occupancy

regions. It is also not clear whether Q(ρ) should be concave, as
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A systematic approach is developed to identify the bivariate relation of

two fundamental traffic variables, traffic volume and density, from

single-loop detector data. The approach is motivated by the observation

of a peculiar feature of traffic fluctuations. That is, in a short time, traffic

usually experiences fluctuations without a significant change in speed.

This fact is used to define equilibrium in a new manner, and a mixed

integer programming approach is proposed for constructing a piecewise

linear fundamental diagram (FD) accordingly. By construction, the pro-

posed method is data adaptive and optimal in the sense of least absolute

deviation. This method is used to perform a case study with data from

one section of a multilane freeway. The results indicate that both capacity

drop and concave–convex FD shapes abound in practice. Differences in

traffic behavior across freeway lanes and along freeway sections revealed

through the FD are discussed.

The fundamental diagrams (FDs), that is, bivariate equilibrium

relationships of traffic flow, concentration, and speed, are of great

theoretical and practical concern. For example, the concept of level

of service for a highway is based on the speed–flow FD. FDs are

also of particular interest in their own right in traffic flow theory.

The flow–density FD, for example, specifies the transition patterns

of various traffic states on the phase plane and completes the 

kinematic wave (KW) traffic flow theory. In high-order models, the

speed–density or speed-spacing FD also plays a critical role. Such

models can be conveniently analyzed in the framework of the

effective FD (1), which demonstrates from another perspective the

rich information inherent in the FDs, as well as their importance in

understanding and modeling traffic flow. Throughout the following

discussion, FD specifically refers to the flow–density FD unless

otherwise noted.

Numerous efforts have sought to identify FDs from observations.

Early researchers searched for the best fit to data while implicitly

assuming the existence of FDs (2). The existence of FDs was empir-

ically and constructively confirmed by a series of later studies (2–4).

These studies were similar in spirit: stationary measurement were

extracted, and it was shown that these measurements form well-defined

curves. Although a complete picture of traffic phase transitions is

still unclear (5), the existence of FDs is widely acknowledged.
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hypothesized by Castillo and Benítez (2). Arguably, only in this case

does the Lighthill–Whitham–Richards model render “solutions with

deceleration shock waves” (2). However, substantial empirical

evidence has contradicted this hypothesis (12, 13).

NEW IDENTIFICATION SCHEME

Throughout the following discussion, it is assumed that the conversion

between occupancy (percent) and traffic density is defined by affine

mapping: density = 200 × occupancy. This relation is equivalent to the

constant g-factor assumption for velocity estimation, essentially stat-

ing that the effective vehicle length is constant over time. Apparently

restrictive, this assumption agrees with reality well, especially during

peak periods (14). The variation in the g-factor is mainly caused by

the appearance of heavy trucks; therefore, their influences are most

significant on morning or night right-lane traffic.

The following notation is used:

d = detector length,

Δ t = sampling interval,

i = sampling time,

j = detector,

qij = flow measurement, and

occij = occupancy measurement.

Index may be dropped when no confusion arises.

There are two key differences between this approach and pre-

vious approaches. First, the concept of equilibrium is examined

more carefully. For a complex system like traffic, the equilibrium is

inevitably accompanied by fluctuations. This study conjectures that

fluctuation features reveal information such as deviation of traffic from

equilibrium. This leads to a detrended fluctuation analysis elaborated

on later in the paper. Second, the piecewise linear functional form

was chosen for FD. Such a selection allows for sufficient flexibility to

capture curious patterns in the FD while remaining simple enough to

allow quick solution of corresponding KW problems. With trapezoidal

and triangle FD as special cases, the piecewise linear FD encompasses

much richer modeling possibilities. The KW problem with piecewise

linear FD is locally a linear advection equation, and its solution can

be analytically given when the FD stays continuous (15).

Motivating Observation: Peculiarity 

of Traffic Fluctuations

Traffic is characterized by the first as well as high-order information

of its fundamental variables. Experimental study found a simultaneous

decrease of mean velocity and increase of variance of velocity with

traffic jam (16). This was also indirectly revealed by Coifman (3) and

Cassidy (4), that is, congestion traffic is subject to larger variability.

Therefore, there is a strong sign indicating the fundamental difference

between congested and free-flow traffic for fluctuation patterns. This

observation motivates the development of an identification method to

differentiate traffic states, based on not only trend but also fluctuation

characteristics.

Fluctuations are closely related to time scale, which can be several

minutes, hours, or days. Associated with the concept of time scale,

some attention has been paid to the scaling properties of traffic (17).

(“Scaling property” refers to traffic properties with explicit depen-

dency on the time scale of description.) Although the existence of

and underlying reasons for scale-invariant properties of traffic remain

to be explored, the existence of various characteristic time scales

appears to be well recognized.

Fluctuations of the intermediate frequency, that is, those induced

by stop-and-go traffic and that persist several minutes, are among

the most elusive traffic phenomena. This type of fluctuation was

extensively observed and analyzed (18–20). This is called traffic

oscillations when the focus is on spatial propagation of disturbances.

At the upstream locations of a freeway section, the oscillations of

all traffic variables have largely the same dominating frequency of

2 to 3 mHz, corresponding to a period of 5 to 8 min (20).

For bivariate fluctuations of traffic states on the flow–density

phase plane, the conventional one-dimensional data analysis tools,

such as Fourier transformation and cumulative curve analysis, are

not applicable. Therefore, an adaptive aggregation algorithm was

developed to facilitate the analysis. The spirit of this algorithm is sim-

ple: consecutive measurements are aggregated if they lie in a small

neighborhood. With such treatment, the local random fluctuations

are suppressed, and traffic state transition patterns are more visually

identifiable. The adaptive approach is less likely to introduce spurious

states and thus is more effective in exploiting traffic peculiarities.

With the aggregation scheme and 30-s middle-lane count-occupancy

data from one section of eastbound I-80 near Davis, California, an

empirical plot along with its schematic representation were obtained,

as shown in Figure 1. Here the neighborhood is defined as a rectangle

of size 2 × 0.1. Although this neighborhood size is not expected to

be optimal, this setting helps one visualize and interpret data that in

raw form is very noisy. The patterns shown in Figure 1 are common

to other data sets. For congested traffic, there are two major types of

transitions. In a region with very high occupancy, loops commonly

known as hysteresis are observed. The other type of transition

gradually becomes dominant when traffic becomes less congested,

that is, when occupancy is not as high. In contrast to hysteresis, these

transitions occur primarily along straight lines emanating from

the origin of the traffic count–occupancy plane. As mentioned, the

g-factor is nearly constant in congestion region. Therefore, the straight

lines correspond to traffic of constant speed, and these transitions

are called speed-constant fluctuation.

In addition to the intuitive proof in Figure 1, a more rigorous

empirical justification to the existence of speed-constant fluctuations

is as follows. Mathematically, a process consists of speed-constant

fluctuations if and only if it satisfies the condition

where

Δ = forward difference operator, that is, Δ fi = fi+1 − fi for a

given series fi;

counti = traffic count in the ith sampling period;

occi = occupancy in the ith sampling period; and

N = set of natural numbers.

The left column of Figure 2 shows calculated values of the left

and right sides of Equation 1 done with two data sets, which are

preconditioned with the adaptive aggregation algorithm. The units

of count/occ and Δcount/Δocc are vehicles per 30 s. The negative

Δcount/Δocc are not shown in the figure because they pertain to

hysteresis. The hysteresis states are also relatively few. In the lower

left graph, for example, of the 242 aggregated traffic states during

hours of congestion (3:00 to 8:00 p.m.), only 12 (4.96%) pertain to

hysteresis transitions. In the left column of Figure 2, the profiles of

Δcount/Δocc and count/occupancy are very alike in general trend,
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(a)

(b)

FIGURE 1 (a) Empirical and (b) schematic representations of transition patterns 
on traffic count–occupancy phase plane.



except that the former appears slightly more scattered, indicating

it is more sensitive to data variations. The following cumulative

measures are used to compare the trend of two profiles in a more

evident manner:

where

m1 and m2 = cumulative measures,

counts = traffic count in the sth sampling period, and

occs = occupancy in the sth sampling period.

The slopes of these measures are roughly proportional to the

instantaneous traffic speed under the assumption of constant g-factor.

The right column of Figure 2 presents the calculation results, each

graph corresponding to its left neighbor. The curves m1 and m2 are

m i m is

ss i

s

ss
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∑ count

occ
and

count

occ

Δ
Δii
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plotted with a thick red line and a thin blue line, respectively. A very

good match of the m1, m2 profiles is found in both cases. This finding

further justifies the validity of Equation 1. Hence the conjecture of

constant-speed fluctuation holds.

An explanation of the speed-constant fluctuation is that drivers

are usually reluctant to change their speeds when possible. (In the

long run they are still subject to the equilibrium relation, especially

in heavy traffic.) Thus, a perturbation such as a slowdown will induce

a change of the space gap between leading and following vehicles,

and thus of flow rate, but not necessarily the speed, for a short period

before the gap between vehicles is too small for that traveling speed.

Structure of FDs

With the observation that speed-constant fluctuations are dominant,

it is postulated that a FD has the structure shown in Figure 3. The

(a) 

(c) (d) 

(b) 

FIGURE 2 Empirical evidence justifying conjecture of speed-constant fluctuation.
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free-flow branch is a single line, and the congestion branch is a fan

consisting of many line segments emitting from the origin, which

represent the speed-constant fluctuations. The red line illustrates the

equilibrium states associated with the congestion state fluctuations,

per the new definition elaborated later. A complete characterization

of all transition details associated with FD is beyond the scope of

this paper; relevant discussions are available elsewhere (1).

Identifying Equilibrium States: Minimum Principle

The first step in FD construction is to split the free-flow data from

congested-flow data. First define a measure of fluctuation strength,

called the fluctuation index:

p i
w

f s f sf

A s s i t w

A
( ) = ( ) − ( )( )

= −{ }
( )∑λ

:

( )
Δ <

loc

2

3

where

f = time series of interest,

floc(A)(�) = local linear approximation of f(�) on set A in the least-

squares sense,

w = bandwidth parameter that needs to be prescribed,

λ = scaling parameter nondimensionalizing the whole term,

and

s = sth sampling period.

By construction, the measure pf is dimensionless and independent of

the trend of data. The first property means the fluctuation index is

invariant with respect to the change of measurement unit. As such,

fluctuation indices based on data of different aggregation levels are

comparable. The second property is desirable because when the series

under analysis are nonstationary, the trend values may smear the infor-

mation carried by the high-order characteristics of data. The detrended

fluctuation analysis, whose theoretical rationale is similar, is discussed

elsewhere (21). The value of λ is specified such that < pf ≥ 1 over the

course of observation. Therefore, λ is calculated as

where n is the total number of observations. Specification of w is an

ad hoc issue; it should be small enough to reflect the local fluctua-

tion features while being large enough to cover at least several state

transitions. The adaptive aggregation algorithm was used to find that

the average gap between consecutive state transitions was about

1.5 min (calculated as the total observation time divided by number

of aggregated states). Therefore, a time window of 5 to 10 min

should be appropriate. Moreover, experiments with a set of values

of w in this range do not indicate strong numerical difference, so

w = 5 min here.

The profiles of fluctuation index appear noisy in its original form

(Figure 4a), but some important features are still identifiable. The

onset of congestion is accompanied by stronger fluctuations in

occupancy but weaker fluctuations in traffic count. This observation

λ =
( ) − ( )( )

= −{ }
( )∑∑

nw

f s f s
A s s i t wi
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:
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FIGURE 3 Postulated structure of FD.

(a) (b)

FIGURE 4 Comparison of fluctuation indices during 1 day: (a) original form and (b) cumulative form.



is consistent with stop-and-go traffic, which tends to maintain a steady

flow although an individual’s driving experience is less uniform.

The patterns of fluctuations are shown more clearly by the cumulative

fluctuation profile, defined as the fluctuation index integrated over

time (Figure 4b). In this graph, the cumulative fluctuation profile

of occupancy is rescaled by a constant factor 1.25. This treatment

allows the two cumulative profiles to overlap each other nicely until

congestion onset (around 3:00 p.m.). After the congestion is fully

dissipated (around 8:00 p.m.), the two profiles again increase with

the same rate.

This finding implies that the fluctuations of occupancy and traffic

count are proportional unless traffic is congested. To capture this

effect, a traffic state indicator c(i) is defined as the corrected ratio of

the two fluctuation profiles pcount and pocc,

Definition as such avoids numerical problems in calculation: � is

a small number to exclude a zero denominator, and the constant C

ensures that c(i) is upper bounded by a reasonable value; � = 10−3,

C = 10. The c(i) can be clustered with the K-means approach. The

number of clusters is two, corresponding to the free and the congested

traffic, respectively. Figure 5 is an example of the resulting state

split. The figure shows that the developed measure effectively sep-

arates the traffic phases: high-occupancy traffic and low-occupancy

traffic are clearly distinguished. Despite this, traffic of intermediate

occupancy can fall into both categories. This is possibly because of the

sensitivity of the proposed indicator to the relatively large variation in

raw data.

Equilibrium can be obtained by suppressing the high-frequency

components of traffic data and then identifying the constant periods.

However, the stationarity criterion usually needs to be relaxed for a

constant period of congested traffic to be found. This indicates a

c i
p i

p i
C( ) =

( ){ }
( ){ }
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max ,
,

occ
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⎬
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fundamental deficiency of defining equilibrium via stationarity

criterion, because congested traffic is seldom stationary. Therefore,

it is desirable to define equilibrium states in an alternative way. This

problem is approached by defining the equilibrium states through a

minimum principle: the equilibrium FD is a curve consisting of

points (density, flow) = (ke, fe) such that the speed-constant fluctuations

around point (ke, fe) are symmetric with respect to the FD, that is, the

difference of possibilities to visit each side of an equilibrium curve is

minimal. The philosophical consideration underlying this definition

is that fluctuations should be symmetric to the equilibrium, unless

disproved. This definition is empirically sound because of the domi-

nance of speed-constant fluctuation demonstrated earlier. Moreover,

in a modeling perspective, a solution of a kinematic wave problem

with FD obtained as such should be unbiased with respect to the real

scattered data.

Given this definition, there should be an equal number of obser-

vations on both sides of an equilibrium curve in the direction of

constant speed. For any given density ke, the following algorithm

is proposed to obtain the corresponding fe. This algorithm uses

simple geometry relations illustrated in Figure 3: for a given ke,

iteratively search for a corresponding fe that is median to all obser-

vations in a speed-constant region (the small rectangle in Figure 3).

It reads as follows:

1. Set initial guess of fe : fe = f0.

2. Rotate the observation on the phase plane counterclockwise

by (π/2) − θ with respect to (k, fe), where θ = arctan( fe/k). Denote the

rotated set as Brot.

3. Calculate the median of { f ′: (k ′, f ′ ) ∈ Brot, � k ′ − k � < wk},

where wk is a parameter specifying the width of rectangle illustrated

in Figure 3. Denote it as fm.

4. Check if � fe − fm � ≤ �, where � is a prescribed threshold param-

eter. If so, stop the calculation and return value fe; otherwise, set

f0 = fm and go to Step 1.

FIGURE 5 Split of observations. Dots indicate free flow; plus signs indicate
congested flow.
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Congested traffic data are used to apply this algorithm with 

wk = 10 min. wk cannot be too small; otherwise, the set in Step 3 may

be empty. The smallest wk that ensures the algorithm runs without

premature termination is chosen. For free-flow traffic, similar to

previous studies, the equilibrium state can be obtained by simply

taking time averages. The time window was set at 20 min, because

the smoothing result does not have strong dependency on this value.

Adaptive Piecewise Linear Fit

When data of equilibrium states are obtained, it is desirable to obtain

a functional form that neatly describes them. Compared with a fixed

functional form, a nonparametric form is more favorable, because the

latter is data driven and thus much more flexible. The fit that has the

least absolute deviation is preferred, because such a fit is insensitive to

outliers in measurement.

The FD fitting method is based on a generic formulation proposed

by Bertsimas and Shioda (22), which seeks the piecewise linear fit

of data with least absolute deviation via a mixed integer program.

The FD fitting method is as follows. Denote (occi, counti) = (xi, yi),

i = 1, . . . , N the set of observations. Without loss of generality, assume

x1 ≤ . . . ≤ xN. The following program solves the best m-piece linear

description (which possesses the least absolute deviation) of this set

of data: y = βjx + γj, j = 1, . . . , m, x ∈ Dj, where {Dj, j = 1, . . . , m}

is a partition of the set {x1, . . . , xN} satisfying max Di ≤ min Di+1, 

i = 1, . . . , N − 1. The program reads

In this formulation, the decision variables are δi and aij; m is a

sufficiently large number. The aij is binary (Constraint c6), which

equals 1 if observation i is fitted by the jth piece and 0 otherwise.

The continuous δi model the deviation of the ith observation to the

fit via Constraints c1 and c2. Constraint c3 says that each observation

corresponds to one and only one piece of fit. Constraints c4 and c5

ensure that each piece covers the points in an interval. Constraint c7

ensures that free-flow branch passes origin on the phase plane.

Constraints c4 and c5 also enforce that the resulting fit is a

well-defined (i.e., single-valued) function, although not necessarily

continuous. Removal of these two constraints could result in a fit with

multiple y corresponding to one x, for example, a reverse-λ FD (12).

Parameter m needs to be specified. This largely determines what

the fitted FD look like. When m is large, the resulting FD virtually

approximates any relationship that is not necessarily continuous or

concave. It is possible to determine an optimal m by minimizing

min δ
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certain objective functions, which consist of the fitting deviation and

penalty caused by larger m. Nonetheless, physical interpretability

and computational simplicity should be more of more concern in the

context of the traffic flow problem.

Treatment of Tail

Usually, the observed sample near very high density is quite limited.

This prevents reliable estimation of the FD in this region. Castillo and

Benitez suggested that the wave speed cj at jam density is a relatively

consistent value around −15 mph (11). For a particular site, ideally, this

value can be estimated as the maximizer of a cross-correlation-based

value of measurement at two consecutive sites, that is,

where

x(u)
n+j = upstream measurement,

x(d)
n = downstream measurement, and

dud = distance between these two sites.

Calculations revealed an issue in applying Formula 7 when dud /Δt > cj.

This is because the sampling rate does not warrant sufficient resolution.

In this case, the following estimate is adopted:

where f represents the piecewise linear fit to the data. It must be

double-checked that Equation 8 produces values consistent with a

priori knowledge. The values cj ∈ [8,15] mph are reasonable (11).

Following is a summary of the steps needed to obtain the

flow–density FD from single loop detector measurements:

1. Transform the occupancy and traffic count data to traffic density

and traffic flow data.

2. Separate the two traffic states based on fluctuation character-

istics.

3. Use the minimum principle to identify representative equilibrium

points.

4. Fit the equilibrium data with a piecewise linear function.

5. Treat the tail with estimated cj.

Although quantitative results will rely on the selection of the

conversion factor between occupancy and density, that is, the 

g-factor, its specific value does not affect Steps 2 and 3. Moreover,

the shape of the fitted FD is independent of the g-factor as long as

the affine relation of occupancy and flow is kept, because a change

in g-factor is equivalent to a relabeling of the horizontal axis of the

flow–density plane.

CASE STUDY

The preceding method is applied to real data in this section. The data

used are freeway loop detector measurements of eastbound traffic from

a 2.5-mi segment of I-80 located between Davis and Sacramento,
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California. The site map and layout are given in Figure 6. This free-

way segment has three lanes. The upstream detector is located about

410 ft (0.07 mi) before an on ramp, and the downstream detector is

located about 4,500 ft (0.85 mi) before an off ramp. Recurrent con-

gestion occurs downstream of this segment around the off ramp on

Friday afternoons. The congestion spills back and is observed at those

detectors. Data from October 23, 2009, are used. The measurement

interval is 30 s.

The method illustrated earlier is used to fit eight FDs with the

measurements from the nine detectors (three lanes and three locations).

The right lane in the upstream location is significantly influenced by

the oncoming merging traffic from the on ramp, and its corresponding

fluctuation characteristics are quite different from those of the others:

even at low densities, the fluctuations at this site are as significant as

those at highly congested densities. In such a case there is no clear

transition between free flow and congested flow, and the method based

on fluctuation strength does not apply. To accommodate the issue,

the piecewise linear fit was applied to 20-min averages.

The fitting results are presented in Figure 7. The figure shows that

the FDs at different locations in each lane have the same shape in

general, whereas they differ significantly across lanes. The left-lane

FDs consist of disconnected pieces, with a sudden drop in capacity

at the critical density. This indicates that the transition from free flow

to congested flow in this lane is quite sharp, without much wandering

in the intermediate region. The middle-lane FDs are generally trian-

gular, as typically assumed in modeling (9, 10). This is most evident

in the downstream location of the middle lane. Some of the FDs in

the middle- and left-lane locations are convex rather than concave in

the congested branch, implying the existence of acceleration shocks

and deceleration wave fans. The right-lane FDs appear most varied,

especially at both the upstream and downstream locations where

weaving is prominent. Closer to ramps, the right-lane FDs tend to

have a gradual transition from free flow to congestion, hence a flatter

top, which is a sign of the presence of a bottleneck. Away from ramps

where lane-changing activities diminish, the right-lane FD has more

or less a triangular shape. Regardless of location, the maximum flow

decreases from left to middle to right lane.

Table 1 provides parameters and errors of the identified FDs.

With the piecewise linear fit, the free-flow speed vf, critical density k1,

and capacity fcap are easily identified. Moreover, the wave speeds in

congested regions, c j
(1) and c j

(2), are conveniently known. As commonly

expected, free-flow speed vf, critical density k1, and capacity fcap

decrease from the left lane to the right lane. Absolute values of wave

speed c j
(2) are also decreasing, but not as much as free-flow speed.

The mean absolute error (MAE) of each FD fit is calculated; the

MAE is the value of the objective function in Equation 6 divided

by the number of identified equilibrium observations. MAE can be

regarded as an uncertainty measure, indicating how well the data can

be described by the proposed FDs. It is found that left-lane FDs tend

to have larger MAE values. The upstream right-lane FD also has a

large MAE value because of the uncertain data. Furthermore, relative

mean absolute error (rMAE) is defined to eliminate the influence of

scale. rMAE is obtained by dividing the MAE by value of capacity fcap.

The upstream right-lane FD is found to have an rMAE of 6%; rMAE

values are 1.5% to 3% for all other FDs. This indicates that uncertainty

pertaining to the upstream right lane is inherently large.

Although the presented method does not enforce the c j
(2) (shock

wave speed at extremely high density) to be in a certain range, the

(b)

13,6709,170

DownstreamUpstream Middle

Distance

(feet)

3,8804100

(a)

FIGURE 6 I-80 eastbound, Davis: (a) site map and (b) illustration of layout
(not to scale).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 7 Identified FDs with I-80 data. Left to right: left lane to right lane; bottom to top: upstream to downstream.

TABLE 1 Parameters and Goodness of Fit of Piecewise Linear FDs

Lane vf (mph) c j
(1)(mph) c j

(2)(mph) k1 (vpm) k2 (vpm) fcap (vph) MAE (vph) rMAE (%)

Location: Upstream

Left 88.4 −14.5 −7.6 28.3 120 2,495 43.1 1.7

Middle 75.1 −12.2 −9.0 26.4 120 1,993 57.5 2.9

Right 49.8 −6.0 −9.9 31.1 75 1,234 74.1 6.0

Location: Middle

Left 75.1 −11.7 −11.0 34.7 80 2,608 64.1 2.5

Middle 70.8 −13.3 −10.0 27.1 80 1,920 43.7 2.3

Right 67.9 −5.4 −8.6 25.6 44 1,735 26.5 1.5

Location: Downstream

Left 75.5 −11.4 −11.0 35.8 80 2,702 71.5 2.6

Middle 71.7 −10.5 −10.7 25.3 110 1,814 41.0 2.3

Right 67.2 −3.4 −10.6 20.0 90 1,343 32.5 2.4



results turn out to be consistent with observations summarized by

Castillo and Benitez (11). This case study also lends empirical support

to the choice of simple FDs, that is, FDs with a piecewise linear form:

the piecewise linear form appears to fit data well, and the triangular

form appears naturally in some cases, although a three-piece form

is specified in the data fitting procedure.

CONCLUSIONS

This paper presented a method for identifying and calibrating a

piecewise linear FD on the basis of the characteristics of traffic fluc-

tuations and through integer optimization. The method exploits the

characteristics of fluctuations in traffic flow to first separate traffic into

free-flow and congested regimes, then applies a minimum principle

to identify equilibrium states, and finally obtains a piecewise linear

FD through integer optimization that minimizes the absolute error

between observed and fitted equilibrium data points. The piecewise

linear form is flexible enough to approximate any other FD form,

and the method is adaptive and data driven.

Application of this method to three locations of a freeway in

California indicates that a three-piece linear FD is adequate in

obtaining a good fit to all but one data set. The single data set for

which this method fails to separate the two flow regimes pertains to

a location where flows from an entry ramp fundamentally change

the flow characteristics of the right lane, where the transition from

free-flow to congested flow is more gradual, and the fitted FD has a

flatter top, a sign of the existence of a nearby bottleneck. Even in

this case, a three-piece FD appears to fit the data reasonably well.

The results also confirm several well-known traffic phenomena: the

capacity drop (in the fast lane) and decreasing capacities from the

left to the right lanes.

Although the use of a piecewise linear FD, when it is continuous

and concave, greatly simplifies analysis of the kinematic wave traffic

flow model, the existence of capacity drops, and nonconcavity

observed in the empirical FDs present a challenge to the well-

posedness of the kinematic wave model endowed with these FDs,

which is worthy of further investigation.
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