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In the usual model of an imaging system, only the effects of the aperture stop are considered in determining
diffraction-limited system performance. In fact, diffraction at other stops—those associated with different lens
elements, for example—can also affect system performance and cause the imaging to be space variant, even in
the absence of vignetting in the conventional ray optics sense. For the 4-f imaging system investigated in this
paper, the severity of the space variance depends on the relative sizes of the two lens stops and the aperture
stops. If the diameters of the lenses are equal, the aperture of the first lens has a greater effect on system
performance than does that of the second. © 2007 Optical Society of America
OCIS codes: 070.0070, 070.6020, 110.0110, 110.0220, 110.2990.

1. INTRODUCTION

The analysis of optical imaging systems can be ap-
proached in many ways [1-8]. For example, with a simple
ray-based analysis, system magnification, entrance and
exit pupil locations, and vignetting conditions can easily
be determined [3,4]. The effects of diffraction are calcu-
lated using wave optics tools [1,3]. Often the wave optics
description is simplified [3]. For example, even though an
imaging system may consist of several optical elements,
each with its own aperture, these elements are often
lumped together in a single “black box,” and only a pro-
jected image of the system’s limiting aperture, i.e., the
exit or the entrance pupil, is used to describe the effects of
diffraction [3]. In the paraxial regime, this simplified
analysis results in a linear, shift-invariant (LSI) descrip-
tion of the imaging operation for spatially incoherent ob-
jects, and a simple convolution operation describes the
object—image relationship. In this paper we examine the
fundamental limits of this black box approximation in de-
tail for the special case of the 4-f imaging system by ex-
amining the effect of diffraction from the lens apertures
as well as from the limiting aperture. Our analysis shows
that these diffraction effects destroy the space invariance
of the imaging operation, to an extent determined by the
relative sizes of the various apertures.

The basic notion is illustrated with the help of Fig. 1. A
point source (PS), located in the front focal plane of lens
L4, emits a diverging spherical wave that is incident upon
lens Lq. If the lens is infinite in diameter, the spherical
wave will be transformed into an ideal plane wave trav-
eling at some angle to the optical axis, and diffraction ef-
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fects are first introduced by the limiting aperture in the
Fourier plane (FP in the figure). If L; is not infinite in ex-
tent, however, the wave leaving L is subject to the effects
of diffraction by the lens aperture itself. The conse-
quences of this diffraction depend on the location of the
point source, and the imaging operation is thus space
variant and must be described not by a convolution inte-
gral but rather by a more general superposition integral,
a superposition model (SPM) resulting. We explicitly de-
fine these two models, LSI and SPM, in Section 2.

In Section 3 we investigate differences between the LSI
and the SPM models by examining how the plane-wave (
L, infinite) and the plane wave segment (L; finite) distri-
butions differ from each other in the Fourier plane. By ex-
amining deviations between these two cases, we establish
a relationship between the locations of the magnitude and
phase deviation extrema and the parameters of the opti-
cal system, i.e., the diameter and focal length of L; and
the wavelength of the illuminating light. We then proceed
to compare the point-spread functions (PSFs) of the LSI
and SPM models for point sources located both on and off
axis. A modified version of the optical transfer function
(OTF) for the SPM model is derived and discussed. We
compare the LSI and SPM predictions for the image plane
distribution when a straight edge is imaged for both co-
herent and incoherent illumination. Finally, in this sec-
tion we examine the effect of the finite extent of the sec-
ond lens, Lo, in the 4-f system. We show that once Ly
becomes larger than L, Ly can be considered to be effec-
tively infinite.

In our analysis we assume that the imaging systems

© 2007 Optical Society of America
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Fig. 1. 4-fimaging system. OP, object plane; FP, Fourier (aper-
ture) plane; IP, image plane; MR, marginal ray; LT, light tube;
BR: a, bundle of rays (defined by cone angle «); OFT, optical
transfer function.

are diffraction limited and that a paraxial scalar model is
sufficiently accurate. In many practical cases this is not
true; even expensive lenses suffer from aberrations [1,7],
and in high numerical aperture and confocal scanning mi-
croscopy [8,9] a scalar model is not capable of accurately
describing details of the imaging operation. Nevertheless,
the relative simplicity of a scalar model allows significant
insight into resolution limits and image formation [6] and
can be used to determine, with reasonable accuracy, the
limits of the commonly used black box model outlined by
Goodman [3] and others [1,4-9].

In Section 2 we present the linear equations that de-
scribe an image-forming system, identifying two cases: (i)
a linear system that is not shift invariant and must be de-
scribed using a superposition integral and (ii) a simpler
LSI model that can be described using a convolution inte-
gral. It is necessary at this point to also briefly discuss
vignetting in a 4-f imaging system using a ray optics ap-
proach. In Section 3 we compare the LSI and SPM models
by examining the PSF, the OTF, and the imaging of a
semi-infinite straight edge. We then show the input lens,
L4, has a more significant effect on the system perfor-
mance than Ly once the diameter of L, is greater than or
equal to L;. Finally, in Section 4 we present a brief con-
clusion of the results of the paper. In what follows, for
both clarity and brevity, we restrict ourselves to present-
ing a 2-D analysis (x and z).

2. LINEAR SYSTEM MODEL OF AN
IMAGING SYSTEM

A linear optical imaging system operating on input object
field Uobj(x[’,bj) can be described by the superposition inte-
gral [3]

Uim (i) = f h(xin;5)Ug(s)ds, 1)

where h(x,;s) is the PSF of the optical system and where
Uy, the geometrical optics image, is given by

1 S
Ug(g) = MUobj<M ’ (2)

M representing the system magnification. Equations (1)
and (2) describe a linear but not necessarily shift-
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invariant imaging system. If the system can be consid-
ered to be shift invariant, the superposition integral re-
duces to a convolution:

Ui (%7, =f h(xi, = PU(Hdp, 3)
where the PSF, h(x;y,), is now given by [3]
” _jmxi,m
h(x],)=— — |dx. 4
(xlm) \J’/_ex _Ocpex(x)exp )\dex ( )

In this expression A is a constant, d. is the distance from
the exit pupil to the image plane, and p.(x) is the exit pu-
pil function. Note that h(x;,) is a scaled Fourier trans-
form of the exit pupil function. The exit pupil is an image
of the system’s limiting aperture, given by pupil function

1’
p(x)={0

where ¢ is the radius of the aperture. When d,=f5, both
the exit pupil and the physical limiting aperture are de-
scribed by Eq. (5).

Because of vignetting, only a central region in the ob-
ject plane can be imaged without the operation becoming
space variant. Vignetting can be introduced by the finite
aperture of the input lens L, (see Fig. 1). We begin by ex-
amining vignetting in a 4-f system using a ray-based
analysis. In Fig. 2 we see that for point source PSyy, the
marginal ray of light, delimiting the upper boundary of
the bundle of rays defined by the cone angle «, just grazes
the aperture of L;. Nevertheless, the limiting aperture in
the Fourier plane is still fully illuminated by a light tube
of width 2a, and all of the rays in the bundle are mapped
to a corresponding bundle in the image plane (see Fig. 1).

PSy in Fig. 2, lying farther off axis than PSy;,, will pro-
duce a bundle of rays with a cone angle «. However, in
this instance the aperture of the lens L; will ensure that
not all of the rays are mapped from the object plane to the
image plane, with a corresponding reduction in the
amount of light reaching the image plane. Thus PSyg,

x| =a

(5)

otherwise’
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Fig. 2. Example of vignetting in the first OFT module of a 4-f
imaging system for off-axis PSy, and even farther off-axis point
PSg. OP, object plane; FP, Fourier (aperture) plane; LA, lens ap-
erture; LT, light tube; BR:a, bundle of rays (defined by cone angle
).
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marks the onset of vignetting in the geometrical optics re-
gime, and we use the subscript VL to refer to this point as
the vignetting limit. We note that PSyq, lies a distance L
—a off axis.

Note that for PSg in Fig. 2 the aperture delimiting L
eliminates part of the light tube associated with PSg, and
the aperture in the Fourier plane is thus no longer fully
illuminated. From Eqs. (3) and (4) we recall that the PSF
is given by a scaled Fourier transform of p. However, with
vignetting, the region of the Fourier plane aperture that
is no longer illuminated cannot contribute to the distribu-
tion in the image plane. This condition effectively reduces
the size of that aperture and changes its shape, causing
the integration limits in Eq. (3) to change and the corre-
sponding PSF to broaden [5]. Thus for points that are lo-
cated farther off axis than the vignetting limit the form of
the PSF changes as a function of object point position. In
this case the LSI properties do not hold, and the convolu-
tion relationship given in Eq. (3) no longer describes the
imaging system behavior. Later in Section 3 we include
these vignetting effects due to L; in our LSI model in or-
der to compare deviations that are due to diffraction.

3. FINITE-LENS APERTURE EFFECTS IN A
4-f IMAGING SYSTEM

In the conventional analysis of 4-f imaging systems it is
generally assumed that the effect of diffraction from the
lens apertures is negligible and that the LSI model of Sec-
tion 2 provides an adequate description of system behav-
ior [7]. In this section we examine this assumption in de-
tail and quantify the effects of diffraction by the input
lens aperture. We incorporate these effects by using the
Fresnel transform to describe the evolution of the wave
segment that propagates from the lens plane to the Fou-
rier plane. This approach is similar both conceptually and
mathematically to that considered in Refs. [10,11]. For
most of this section we assume that the diameter of L, is
infinite, postponing a discussion of its effect until Subsec-
tion 3.E.

This section is structured as follows. In Subsection 3.A
we examine the magnitude and phase deviations between
the LSI and the SPM predictions of the field in the Fou-
rier plane. In Subsection 3.B we compare the correspond-
ing distributions in the image plane using a root-mean-
square error (RMSE) metric denoted (). The variation of
the ) as a function of \ is then examined, and we show
that as A\ decreases, () decreases. In Subsection 3.C we ex-
amine the deviations between the LSI and the SPM pre-
dictions using the OTF. In Subsection 3.D we compare the
LSI and SPM models for the case of the imaging of a semi-
infinite straight edge. Finally, in Subsection 3.E we exam-
ine the effect of diffraction from the edge (aperture) of the
second lens, L.

A. Deviations in the Field Distribution at the Fourier
Plane

First, we describe LSI imaging, i.e., when the diameter of
L, is sufficiently large that it can be considered infinite. A
spherical wavefront incident on L; due to PSy located a
distance &' off axis in the object plane can be described as
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Jjm

Uy (x7,&) =exp| —(x;, - &)?|. (6)
M1

After passing through a thin lens of infinite extent it as-

sumes the form of a plane wave,

Upw(x7 £ = exp(-j2mKx¢), (7)

where K=nL2/\f;, é=¢'/L, and x=x'/L (normalized with
respect to L, the radius of lens L;). We neglect all con-
stant phase terms. Upy(x,é) is a plane wave that has a
linear phase proportional to £ but is not a function of z. It
is this wave field that is incident on the aperture in the
Fourier plane.

We now examine the SPM predictions by letting L,
have finite extent. Using the Fresnel transform to model
the propagation of light from the lens, we can write the
distribution incident on the aperture in the Fourier plane
as

+L

T
ULI(xL,f/)exp{—(xi —x;p)Q}dxi.

, J
Uap(xap) = }\f
1

I

WM
(8)

Rewriting in normalized coordinates and dropping any
constant phase terms give

K 1
Up(ap) = /JTTJ exp{KIX? +x2, — 2X(x,p + &) J}dX
1

1 ) —
= 5[eXp(—J2wKxapé)]{erﬁ[wK(xap +¢-1)]

- erﬁ[\x’]?{(xap +&+ D]}, ©)

where X=uxp/L, xap=x,,/L, §&=¢'/L, and erfi(-) is the
imaginary error function [12-14].

In Fig. 3 we plot the magnitude of U,p(x,,) for K=15.7
and £=0.5. We note that this value of K corresponds to a
system where L=f;=10cm and A=2cm, an unusually
large value for the wavelength. For the remainder of this
section, values of K of the order K~ 15.7 will be used so
that deviations between the LSI and the SPM models are
emphasized. Returning to Fig. 3, we can see that the mag-
nitude distribution is no longer symmetric about the y
axis and has been shifted to the left of the origin. Thus, as
¢ varies, the distribution that passes through the aper-

[F (5. K.6)
1.2
i
width of light
0.6 tube
0.4
0.2‘/
M
-2 -1 1 2
Xap

Fig. 3. Magnitude distribution of F(x,,,K,¢) for K=15.7 and ¢
=0.5.
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ture changes, and the system can no longer be considered
shift invariant. There are two perpendicular lines in-
serted in the figure, marking the boundaries of the light
tube predicted from a ray optics model (see Fig. 1). Dif-
fraction can act to either spread light outside this light
tube or focus the light along the optical axis [10]. The
form of the wave field incident on the aperture can thus
determine the amount of power that passes through to
the image plane. As a result, the power in the image
plane, predicted using the LSI and SPM models, is in gen-
eral not equivalent.

The first term (square brackets) in Eq. (9) is a linear
phase term and is identical to the term in Eq. (7). The sec-
ond term (curly brackets) describes the form of the distri-
bution and has a dependency on the ¢ term, which is the
normalized displacement of the point source in the object
plane. Dividing Eq. (9) by Eq. (7) gives

U ap(ap)

m = F(x,p, K, é)exp(jAg')

= erfil \jK(xap + £ = 1)] - erfil\jK(xap + £+ 1)],
(10)

where F(x,,,K,¢) and exp(jA¢’) represent the magnitude
and phase deviations between the LSI and the SPM mod-
els, respectively [10,11].

Recently [10] we investigated a similar diffraction
problem, examining the deviations between ideal and
nonideal converging spherical waves where the nonideal
wave is formed using a converging lens of finite extent.
We derived a set of curves that pass through the phase
and magnitude deviation extrema [10,11]. These curves
are a function of the wavelength of light, lens diameter
and focal length, the distance from the lens, z,, and the
perpendicular distance from the optical axis x,. In Eq. (11)
we reproduce an equation originally presented in Ref.
[10]:

Nmzg 1

e (11)

Xg =

In Refs. [15,16], propagating collimated and converging
beams with the Fresnel transform is discussed. Using the
results and insight provided by Ref. [15] in particular, we
can extend the applicability of Eq. (11) [10] to the diffrac-
tion problem we are considering in this paper. We are con-
cerned with deviations in the distribution at the Fourier
(aperture) plane, which is the focal plane of L;, and so we
set z,=f1 and x;=x,,. In Fig. 4 we present magnitude de-
viation plots for Eq. (10) for 5<K<20 and -0.4<x,,<1
with £=0.

The curves given by Eq. (11) are overlayed on the fig-
ure. Only curves with an even value for the integer pa-
rameter IV are seen to lie on the magnitude maximum de-
viations [10,11]. Although only magnitude deviations are
shown in Fig. 4, Eq. (11) is also valid for phase deviation
extrema [10,11].

B. Deviations in the Image Field Distribution

Assuming that the lens Ly is infinite, the field distribu-
tion in the image plane is given by a scaled Fourier trans-
form:

Kelly et al.

o O O O

Fig. 4. Magnitude deviations of F(x,,,K, ¢ with £=0. The devia-

. .. ap» .
tions range between a minimum of 0.5 and a maximum of 1.2 and

are marked with ten contour levels.

Uim(xi,m) = -F{Uap(xap)p(xap)}(u) ‘uaxi'm/)\fz' (12)

An analytical solution for Eq. (12) can be found in Ref.
[17].

To compare the deviations between LSI and SPM mod-
els, we calculate the RMSE of distributions over the range
R in the image plane, i.e.,

R+¢L
Q= \/f |ILSI(QN,K) _ISPM(aN7K)|2d-xim) (13)

-R+¢L

where I} g and Igpy; denote the predicted LSI and SPM in-
tensity distributions, respectively; ay=a/L, where a is
the Fourier plane aperture radius; and R=\/(5a). We
note that the power contained in the ideal (L.SI) PSF over
this range, 2R, is 97.5% of the total power present at the
Fourier plane aperture.

In all of the following analysis, fo=f1, ensuring that the
systems have unit magnification. In Fig. 5 we present
plots of the intensities in the image plane with K=15.7
and an=0.25 for the three cases in Figs. 5(a)-5(c) with &
=0, £=0.75, and £=1, respectively. We refer to the RMSE
in each case as 02, QP etc., while the powers in the image
plane are P2, P?, etc.

In Fig. 5(a) the LSI intensity distribution is also plotted
for comparison (dashed curve). We see that both the LSI
and the SPM PSF's are symmetric about the y axis and
02=0.0039. In Fig. 5(b), £=0.75, and there is a noticeable
asymmetry in the PSF. In this case Q?=0.0357 compared
with 02=0.0039. A ray analysis predicts that this point is
the vignetting limit (see Section 2). We also note that PP
=0.045 is considerably less than P2. Finally, in Fig. 5(c),
we present the PSF when £=1. The shape of the PSF is
distorted, with °=0.1491 and P¢=0.017, both of which
are significantly worse than in the two previous cases.

In each case of Figs. 5(a)-5(c) the PSF changes, and as
¢ increases the corresponding PSF becomes increasingly
asymmetric. Clearly this system is no longer shift
invariant.

Thus far, to examine the deviations between the LSI
and the SPM models, we have used a specific value of K.
We now wish to examine how these deviations vary as a
function of K. Setting an=0.25, we plot log;o(Q) for 5
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Fig. 5.

Intensity of image distribution for ay=0.25, 3?=0.0039, and P?=0.050. LSI PSF is also plotted (see dashed curve). (b) Intensity

of image distribution at the vignetting limit: ¢=0.75, ay=0.25, Q°=0.0357, and P’=0.045. (c) Intensity of image distribution for é=1,

an=0.25, 0°=0.1491, and P°=0.017.

575
(Color online) Variation of () as a function of K and &.

Fig. 6.

<K<575 and 0<£¢<0.775 in Fig. 6. We draw the reader’s
attention to two points: (1) as ¢ increases, so too does ()
for all values of K, and (2) as K increases, () decreases,
indicating that the deviations between the two models de-
crease. In a practical optical system, e.g., K=590524 (i.e.,
A=532nm, L=10cm, f=10cm), O ~1.3x 1077,

C. Effect on the Optical Transfer Function
If an imaging system can be modeled as linear and shift
invariant, then its incoherent imaging ability can be con-
veniently described using the OTF, given by a scaled ver-
sion of the autocorrelation of the generalized pupil func-
tion [3]. The term generalized pupil function is used to
indicate that lens aberrations can be included in the pupil
function with the result that it may no longer be a real
function [3].

In this subsection we incorporate the diffraction effects
due to the finite extent of L, using Eq. (10) to write a gen-
eralized pupil function p,4(x,,) as follows:

Dg(xap) =X F iy, K, £)exp(jAQ). (14)

The OTF, Hgpp(w), of the SPM optical system is found
by calculating the normalized autocorrelation of p,; see
Eq. (15). Using a variable, w, that has been normalized
with respect to the aperture size, a, such that w=x,,/a,
gives

|E

g_w)l Difm)
82 0.02
0.4 0.01
0.2
~0.01} 0L T2
0.5 1 152 @
(a)
IH(lw)l @ Diff( @)
0.8 0.03
0.6 0.02
0.4 0.01
0.2 0.0l 0.51 2
0.5 1 1.5 2 ’ @
(b)
Diff(@)
0.06
0.04
0.02
51 1.52
0.5 1 1.5 2 > L5
T a

(©)
Fig. 7. |H(w)| of LSI (dashed lines) and SPM (solid curves) with
any=0.25 (left column) and Diff(w)=|Hg(w)|-|Hgpm(w)| (right
column). (a) =0, (b) £=0.5, (¢) £=0.75.

P(®) * py(w)
Hgpy(w) = —————,

‘hSPM(u)|2du

(15)

—0

where hgpy(«) is the Fourier transform of Hgpy(w) and *
denotes correlation.

In the left-hand plots of Figs. 7(a)-7(c), the magnitudes
of the LSI and SPM OTFs, |H(w)|, are presented for é=0,
0.5 and 0.75. The LSI OTF, H;gi(w), is calculated by per-
forming the autocorrelation of the aperture function given
by Eq. (5) and normalizing with respect to the total power
in the aperture opening as outlined in Chap. 6 of Ref. [3].
The SPM OTF, Hgpy(w), is given by Eq. (15) and is calcu-
lated numerically [14,17]. In order to highlight the devia-
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tions between the two models, we also provide plots of the
absolute difference between the LSI and SPM OTFs,
Diff(w) = |Hs1(w) | -|Hgpm(w)|, for the three situations,
when £¢=0, 0.5 and 0.75.

Equation (15) was evaluated for K=15.7, ay=0.25, and
for [Fig. 7(a)] £=0, [Fig. 7(b)] £=0.5, and [Fig. 7(c)] ¢
=0.75. In Figs. 7(a)-7(c) we present the results using the
normalized variable w. The dashed lines represent the
LSI case and the solid curves the SPM case. As can be
seen, the OTF changes as ¢ varies, emphasising again
that the imaging operation is not performing space-
invariant incoherent imaging. In Fig. 7(a) the magnitude
difference is less than in both Figs. 7(b) and 7(c). This is
in keeping with the analysis presented in Subsection 3.B.
As ¢ increases, the difference between the predictions of
the LSI and SPM models becomes larger.

D. Imaging of a Semi-Infinite Straight Edge

In this subsection we examine coherent and incoherent
imaging of an edge for the LSI and SPM cases. Math-
ematically we model a 1-D edge using the unit-step func-
tion [14,18]

1,
step(x) = 0

When comparing the coherent and incoherent cases we
will examine the behavior for two situations, an on-axis
and an off-axis centered edge. Mathematically we model
these cases using step (x,,;) and step (xp— &), where ¢ is
the location, off axis in the object plane, where the edge
occurs.

Examining Eq. (16), we can see that the edge, as de-
fined, extends to +/—infinity in the object plane. We know,
however, from Section 3 that a ray-based analysis pre-
dicts that the image of such an object will begin to taper
off to zero as we pass the vignetting limit (see Fig. 2). In
other words, even with the LSI model we do not expect
our system to be capable of imaging all the rays from an
infinite object plane to an infinite image plane. Thus
when simulating the LSI case we include the effects of vi-
gnetting as described in Section 2.

To make our results as general as possible, in the fol-
lowing figures the image plane axis, x{, is normalized
with respect to the diameter of L; and xj,=x; /L. This
time we choose a larger value for K, K=157, and set ay

x=0

x<0 (16)

Liw

[y

N B o0 © N D

o o O o
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=0.25. When this diffraction problem was considered by
Considine [18] and Goodman [3], the vignetting effects in
the LSI case were neglected and the intensities in the im-
age plane were normalized so that they approached unity
as X;;, approached infinity (see Fig. 7.20 in Ref. [3]). We
normalize the LSI and SPM intensities in the image
plane in the same manner and refer to them as Ij g;(xip)
and Igpy(xim), respectively.

1. Coherent Imaging

We note one feature that is common to the distributions
predicted by the LSI and SPM models that can be impor-
tant in estimating the widths of lines in integrated circuit
masks [3], namely, the point at which each distribution
crosses the edge [see Fig. 8(a)l. We refer to this point as
CRfq; or CRSpy;, where the superscript C' denotes coher-
ent imaging. In Fig. 8(a) we present the results for an on-
axis edge. Note that the values of both the LSI and the
SPM field intensities as they cross the edge are CRESI
=CR§pp=0.25.

The ringing observed in the coherent images is reminis-
cent of Gibb’s phenomenon that occurs at discontinuities
when the Fourier series expansion is used. This effect is
strongest when discontinuities in the object are imaged,
and thus strong oscillations are evident at the location of
the discontinuity x;,=0. If we could neglect the vignetting
effects in the imaging system, these oscillations would de-
cay asymptotically toward unity [18]. However, when
vignetting effects are included in the LSI model there is a
corner at the vignetting limit x;,=0.75, the derivative of
which is discontinuous. This causes the oscillations to
once again increase in amplitude as x;,>0.5. Since the
SPM model images only a finite region of the object plane,
due to the finite extent of L{, the vignetting effects are al-
ready included in this model. We do note, however, that
the frequency of the oscillations around the edge or dis-
continuity for the SPM case appears to be higher than for
the LSI case, with the result that at x;,,=0.8 the LSI and
SPM distributions are almost exactly out of phase.

In Fig. 8(b) we present the LSI and SPM distributions
for the case of an off-axis edge, and once again CRYg;
=CRSpy=0.25. There are strong oscillations around the
discontinuity and corner points associated with the edge
and the vignetting limit, respectively.

I'(xim)

vignetting limit

0.2 0.4 0.6 0.8 1 1.2 1.4
Xim

(b)

Fig. 8. LSI (solid curve) and SPM (dots) coherent distributions in the image plane for a 1-D step centered at £=0, K=157, and ay
=0.25. (b) LSI (solid curve) and SPM (dots) distributions for a 1-D step centered at £=0.5.
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Fig. 9. LSI (solid curve) and SPM (dots) incoherent distributions in the image plane for a 1-D step centered at é=0, K=157, and ay
=0.25. (b) LSI (solid curve) and SPM (dots) distributions for a 1-D step centered at £=0.5.

2. Incoherent Imaging

The incoherent response of the system to the semi-infinite
edge is displayed in Fig. 9(a) with CRIg;=CRLp=0.5. In
Fig. 9(a) we note that as the LSI (solid curve) and SPM
(dots) distributions rise from zero to unity there is a re-
gion where the slope in both cases is approximately linear
but different, with the SPM rising more rapidly. In control
engineering there is a common performance metric for de-
scribing the responses of systems to a sudden input or
load (usually a unit step), which is termed the rise time. It
is defined as the time taken for the system to go from 10%
to 90% of its new steady-state value [19]. We now use a
similar rise distance metric and illustrate what we mean
graphically in Fig. 9(a) for the LSI case.

From inspection of Fig. 9(a) it would appear that the
rise distance in the SPM case is less than in the LSI case,
indicating an improved response. Also, we note that the
vignetting limit occurs at x;,,=0.75, and in this region [the
circled area in Fig. 9(a)] the SPM response appears to
drop off more quickly than in the LSI case. This we at-
tribute mainly to the degradation in the PSF in the
circled region due to diffraction effects from the aperture
at Lq; see Figs. 5(a)-5(c) and Figs. 7(a)-7(c).

We now consider the response of the imaging system
for an off-set or off-axis edge, i.e., unit step (xq,;—¢). In
Fig. 9(b) we present the results with, once again, CRIg;
=CRLpy=0.5, and the rise distance for the SPM is less
than that for the LSI case. We again draw attention to the
degradation of the SPM response near the vignetting
limit point (see circled region).

We note that the results presented in Figs. 9(a) and
9(b) require the numerical calculation of integrals that ex-
hibit unstable convergence. This sometimes produces er-
roneous results, some of which for completeness are high-
lighted with gray boxes in Figs. 9(a) and 9(b).

E. Effect of a Finite-Size Lens L, on the Distribution in
the Image Plane

Earlier in this section we made the assumption that L,
was effectively infinite in extent. This assumption al-
lowed us to derive an analytical solution for the distribu-
tion in the image plane arising from a point source in the
object plane. In this subsection we wish to examine spe-
cifically how the finite extent of the second lens affects the

0.005} N

Fig. 10. Variation of ) with K=15.7, L=10 cm, and ay=0.25 as
a function of A (solid curve). Dashed line indicates corresponding
) when A —o0,

imaging system performance. Assuming that the input to
the imaging system is a point source located on axis in the
object plane, we examine how () varies as a function of the
radius of Ly, denoted A. We again choose K=15.7, L
=10 cm, and ay=0.25. We are not aware of an analytical
solution for this case, and so the following () values were
calculated numerically [20]. In Fig. 10 we present the re-
sults. The dashed line indicates the size of () when A is
assumed infinite and is plotted for comparative purposes.
) decreases rapidly (solid curve) as A approaches L, and,
indeed, once A>L, the solid curve and dashed line
quickly converge, indicating that effects of diffraction
from the second lens can effectively be neglected.

In Fig. 11 we examine in more detail the effect the sec-
ond lens aperture has on the final image plane intensity
distribution, I§py(x) ). In the top graph we set A=L and
plot 0 <I&py(x/,) <0.2 over the range 0 <x/, <R. The LSI
PSF is plotted as a dashed curve, again for comparative
purposes. It is expected that the second lens aperture will
remove some of the incident wave field distribution, af-
fecting the final image plane distribution. The effect can
be seen clearly in the top graph of Fig. 11 [I/S\PM(xi’m) is
plotted as a solid curve]. For example, the second sidelobe
of I§py(x),) is distorted and slightly oscillatory when com-
pared with the LSI PSF. In the bottom graph of Fig. 11,
we plot the same distribution, this time with A=1.5L. In
this instance, less of the distribution incident upon Ls is
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removed by the aperture. The result is that the second
sidelobe associated with the Iipy(x/,) distribution be-
comes smooth and in fact larger than the corresponding
LSI sidelobe, consistent with the results presented in
Figs. 5(a) and 10.

4. CONCLUSION

In Chap. 6 of Goodman’s Introduction to Fourier Optics
[3], an imaging system consisting of several optical ele-
ments is modeled as a linear shift-invariant (LSI) system.
Diffraction effects in the imaging process are attributed to
a single limiting aperture somewhere in the system with
the assumption that all other apertures are effectively in-
finite in extent. Taking the case of the 4-f imaging system,
we examined this approximation in detail by comparing
the response of the LSI model to what we term the super-
position model (SPM), including diffraction effects due to
the finite extent of a lens, L. As was shown in Subsection
3.A, the LSI model indicates that the limiting aperture in
the Fourier plane is illuminated by a perfect plane wave.
However, the SPM model indicates that the aperture is in
fact illuminated by a more complex wave field. As we saw
in Subsection 3.E, once A > L, the effect of diffraction from
the second lens, Ly, has a much less significant impact on
the final output distribution in the image plane than does
L;. Thus it is the differences between the LSI and the
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Fig. 11. I4py(x],) refers to the distribution in the image plane

when diffraction from both L; and L, is considered. LSI PSF is

also plotted (see dashed curves in plots). Top, A=L; bottom, A
=1.5L.
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SPM representations of the system that effectively repre-
sent the fundamental paraxial diffraction limits. We pro-
ceed to analyze these differences for the remainder of Sec-
tion 3.

In Subsection 3.B the response of the SPM model to
several point sources in the object plane located at differ-
ent off-axis distances, £€=0, £=0.75, etc., are presented. It
is clear from examining Figs. 5(a)-5(c) that the system
does not perform space-invariant imaging.

In Subsection 3.C we consider the incoherent perfor-
mance of the system by examining a modified version of
the optical transfer function (OTF). This modified OTF is
dependent on spatial position in the object plane, again
demonstrating that the 4-f imaging system does not per-
form space-invariant imaging.

Finally, in Subsection 3.D we compare the imaging of
an edge (unit-step) function using the LSI and SPM mod-
els. Again, there are differences between the LSI and the
SPM predictions; however, significantly, the cross-over
point, CR, (see Subsection 3.D) for both models occurs at
£=0.25 (coherent case) and £=0.5 (incoherent case).

We conclude that (i) when diffraction effects from lens
apertures are included in the analysis of a 4-f imaging
system, the system no longer performs shift-invariant im-
aging; (ii) once the extent of L, is greater than that of L,
(in a unit magnification system), the resultant PSF (apart
from some distortion of the second sidelobe; see Fig. 11)
remains largely unaffected by changes in the diameter of
Ly; and (iii) the deviations between the LSI and the SPM
models dramatically reduce in size as K approaches val-
ues used in practical optical systems, e.g., when K~6
X105, 0~1.3x1077. In this case, as expected, an LSI
analysis is sufficient. It is, however, of fundamental im-
portance that the ultimate performance limitations of an
imaging system in the paraxial regime be fully under-
stood and quantified.

While the manuscript was under review, it came to the
author’s attention that a paper examining the effect of
diffraction from multiple apertures in an optical system
on the power transmitted to the output plane has previ-
ously been published and may serve as an interesting
companion to the work presented here [21].
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