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In the usual model of an imaging system, only the effects of the aperture stop are considered in determining
diffraction-limited system performance. In fact, diffraction at other stops—those associated with different lens
elements, for example—can also affect system performance and cause the imaging to be space variant, even in
the absence of vignetting in the conventional ray optics sense. For the 4-f imaging system investigated in this
paper, the severity of the space variance depends on the relative sizes of the two lens stops and the aperture
stops. If the diameters of the lenses are equal, the aperture of the first lens has a greater effect on system
performance than does that of the second. © 2007 Optical Society of America
OCIS codes: 070.0070, 070.6020, 110.0110, 110.0220, 110.2990.
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. INTRODUCTION
he analysis of optical imaging systems can be ap-
roached in many ways [1–8]. For example, with a simple
ay-based analysis, system magnification, entrance and
xit pupil locations, and vignetting conditions can easily
e determined [3,4]. The effects of diffraction are calcu-
ated using wave optics tools [1,3]. Often the wave optics
escription is simplified [3]. For example, even though an
maging system may consist of several optical elements,
ach with its own aperture, these elements are often
umped together in a single “black box,” and only a pro-
ected image of the system’s limiting aperture, i.e., the
xit or the entrance pupil, is used to describe the effects of
iffraction [3]. In the paraxial regime, this simplified
nalysis results in a linear, shift-invariant (LSI) descrip-
ion of the imaging operation for spatially incoherent ob-
ects, and a simple convolution operation describes the
bject–image relationship. In this paper we examine the
undamental limits of this black box approximation in de-
ail for the special case of the 4-f imaging system by ex-
mining the effect of diffraction from the lens apertures
s well as from the limiting aperture. Our analysis shows
hat these diffraction effects destroy the space invariance
f the imaging operation, to an extent determined by the
elative sizes of the various apertures.

The basic notion is illustrated with the help of Fig. 1. A
oint source (PS), located in the front focal plane of lens
1, emits a diverging spherical wave that is incident upon

ens L1. If the lens is infinite in diameter, the spherical
ave will be transformed into an ideal plane wave trav-
ling at some angle to the optical axis, and diffraction ef-
1084-7529/07/071911-9/$15.00 © 2
ects are first introduced by the limiting aperture in the
ourier plane (FP in the figure). If L1 is not infinite in ex-

ent, however, the wave leaving L1 is subject to the effects
f diffraction by the lens aperture itself. The conse-
uences of this diffraction depend on the location of the
oint source, and the imaging operation is thus space
ariant and must be described not by a convolution inte-
ral but rather by a more general superposition integral,
superposition model (SPM) resulting. We explicitly de-

ne these two models, LSI and SPM, in Section 2.
In Section 3 we investigate differences between the LSI

nd the SPM models by examining how the plane-wave (
1 infinite) and the plane wave segment (L1 finite) distri-
utions differ from each other in the Fourier plane. By ex-
mining deviations between these two cases, we establish
relationship between the locations of the magnitude and
hase deviation extrema and the parameters of the opti-
al system, i.e., the diameter and focal length of L1 and
he wavelength of the illuminating light. We then proceed
o compare the point-spread functions (PSFs) of the LSI
nd SPM models for point sources located both on and off
xis. A modified version of the optical transfer function
OTF) for the SPM model is derived and discussed. We
ompare the LSI and SPM predictions for the image plane
istribution when a straight edge is imaged for both co-
erent and incoherent illumination. Finally, in this sec-
ion we examine the effect of the finite extent of the sec-
nd lens, L2, in the 4-f system. We show that once L2
ecomes larger than L1, L2 can be considered to be effec-
ively infinite.

In our analysis we assume that the imaging systems
007 Optical Society of America
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re diffraction limited and that a paraxial scalar model is
ufficiently accurate. In many practical cases this is not
rue; even expensive lenses suffer from aberrations [1,7],
nd in high numerical aperture and confocal scanning mi-
roscopy [8,9] a scalar model is not capable of accurately
escribing details of the imaging operation. Nevertheless,
he relative simplicity of a scalar model allows significant
nsight into resolution limits and image formation [6] and
an be used to determine, with reasonable accuracy, the
imits of the commonly used black box model outlined by
oodman [3] and others [1,4–9].
In Section 2 we present the linear equations that de-

cribe an image-forming system, identifying two cases: (i)
linear system that is not shift invariant and must be de-

cribed using a superposition integral and (ii) a simpler
SI model that can be described using a convolution inte-
ral. It is necessary at this point to also briefly discuss
ignetting in a 4-f imaging system using a ray optics ap-
roach. In Section 3 we compare the LSI and SPM models
y examining the PSF, the OTF, and the imaging of a
emi-infinite straight edge. We then show the input lens,
1, has a more significant effect on the system perfor-
ance than L2 once the diameter of L2 is greater than or

qual to L1. Finally, in Section 4 we present a brief con-
lusion of the results of the paper. In what follows, for
oth clarity and brevity, we restrict ourselves to present-
ng a 2-D analysis (x and z).

. LINEAR SYSTEM MODEL OF AN
MAGING SYSTEM
linear optical imaging system operating on input object

eld Uobj�xobj� � can be described by the superposition inte-
ral [3]

Uim�xim� � =�
−�

�

h�xim� ;��Ug���d�, �1�

here h�xim� ;�� is the PSF of the optical system and where
g, the geometrical optics image, is given by

Ug��� =� 1

M
Uobj� �

M� , �2�

representing the system magnification. Equations (1)
nd (2) describe a linear but not necessarily shift-

ig. 1. 4-f imaging system. OP, object plane; FP, Fourier (aper-
ure) plane; IP, image plane; MR, marginal ray; LT, light tube;
R: �, bundle of rays (defined by cone angle �); OFT, optical

ransfer function.
nvariant imaging system. If the system can be consid-
red to be shift invariant, the superposition integral re-
uces to a convolution:

Uim�xim� � =�
−�

�

h�xim� − ��Ug���d�, �3�

here the PSF, h�xim�, is now given by [3]

h�xim� � =
A

��dex
�

−�

�

pex�x�exp�− j�xxim�

�dex
�dx. �4�

n this expression A is a constant, dex is the distance from
he exit pupil to the image plane, and pex�x� is the exit pu-
il function. Note that h�xim� is a scaled Fourier trans-
orm of the exit pupil function. The exit pupil is an image
f the system’s limiting aperture, given by pupil function

p�x� = �1, �x� � a

0, otherwise
, �5�

here a is the radius of the aperture. When dex= f2, both
he exit pupil and the physical limiting aperture are de-
cribed by Eq. (5).

Because of vignetting, only a central region in the ob-
ect plane can be imaged without the operation becoming
pace variant. Vignetting can be introduced by the finite
perture of the input lens L1 (see Fig. 1). We begin by ex-
mining vignetting in a 4-f system using a ray-based
nalysis. In Fig. 2 we see that for point source PSVL, the
arginal ray of light, delimiting the upper boundary of

he bundle of rays defined by the cone angle �, just grazes
he aperture of L1. Nevertheless, the limiting aperture in
he Fourier plane is still fully illuminated by a light tube
f width 2a, and all of the rays in the bundle are mapped
o a corresponding bundle in the image plane (see Fig. 1).

PSQ in Fig. 2, lying farther off axis than PSVL, will pro-
uce a bundle of rays with a cone angle �. However, in
his instance the aperture of the lens L1 will ensure that
ot all of the rays are mapped from the object plane to the

mage plane, with a corresponding reduction in the
mount of light reaching the image plane. Thus PSVL

ig. 2. Example of vignetting in the first OFT module of a 4-f
maging system for off-axis PSVL and even farther off-axis point
SQ. OP, object plane; FP, Fourier (aperture) plane; LA, lens ap-
rture; LT, light tube; BR:�, bundle of rays (defined by cone angle
).
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arks the onset of vignetting in the geometrical optics re-
ime, and we use the subscript VL to refer to this point as
he vignetting limit. We note that PSVL lies a distance L
a off axis.
Note that for PSQ in Fig. 2 the aperture delimiting L1

liminates part of the light tube associated with PSQ, and
he aperture in the Fourier plane is thus no longer fully
lluminated. From Eqs. (3) and (4) we recall that the PSF
s given by a scaled Fourier transform of p. However, with
ignetting, the region of the Fourier plane aperture that
s no longer illuminated cannot contribute to the distribu-
ion in the image plane. This condition effectively reduces
he size of that aperture and changes its shape, causing
he integration limits in Eq. (3) to change and the corre-
ponding PSF to broaden [5]. Thus for points that are lo-
ated farther off axis than the vignetting limit the form of
he PSF changes as a function of object point position. In
his case the LSI properties do not hold, and the convolu-
ion relationship given in Eq. (3) no longer describes the
maging system behavior. Later in Section 3 we include
hese vignetting effects due to L1 in our LSI model in or-
er to compare deviations that are due to diffraction.

. FINITE-LENS APERTURE EFFECTS IN A
-f IMAGING SYSTEM

n the conventional analysis of 4-f imaging systems it is
enerally assumed that the effect of diffraction from the
ens apertures is negligible and that the LSI model of Sec-
ion 2 provides an adequate description of system behav-
or [7]. In this section we examine this assumption in de-
ail and quantify the effects of diffraction by the input
ens aperture. We incorporate these effects by using the
resnel transform to describe the evolution of the wave
egment that propagates from the lens plane to the Fou-
ier plane. This approach is similar both conceptually and
athematically to that considered in Refs. [10,11]. For
ost of this section we assume that the diameter of L2 is

nfinite, postponing a discussion of its effect until Subsec-
ion 3.E.

This section is structured as follows. In Subsection 3.A
e examine the magnitude and phase deviations between

he LSI and the SPM predictions of the field in the Fou-
ier plane. In Subsection 3.B we compare the correspond-
ng distributions in the image plane using a root-mean-
quare error (RMSE) metric denoted �. The variation of
he � as a function of � is then examined, and we show
hat as � decreases, � decreases. In Subsection 3.C we ex-
mine the deviations between the LSI and the SPM pre-
ictions using the OTF. In Subsection 3.D we compare the
SI and SPM models for the case of the imaging of a semi-

nfinite straight edge. Finally, in Subsection 3.E we exam-
ne the effect of diffraction from the edge (aperture) of the
econd lens, L2.

. Deviations in the Field Distribution at the Fourier
lane
irst, we describe LSI imaging, i.e., when the diameter of
1 is sufficiently large that it can be considered infinite. A
pherical wavefront incident on L1 due to PSO located a
istance 	 off axis in the object plane can be described as
�
UL1
�xL� ,	�� = exp	 j�

�f1
�xL� − 	��2
 . �6�

fter passing through a thin lens of infinite extent it as-
umes the form of a plane wave,

Upw�x,	� = exp�− j2�Kx	�, �7�

here K=�L2 /�f1, 	=	� /L, and x=x� /L (normalized with
espect to L, the radius of lens L1). We neglect all con-
tant phase terms. Upw�x ,	� is a plane wave that has a
inear phase proportional to 	 but is not a function of z. It
s this wave field that is incident on the aperture in the
ourier plane.
We now examine the SPM predictions by letting L1

ave finite extent. Using the Fresnel transform to model
he propagation of light from the lens, we can write the
istribution incident on the aperture in the Fourier plane
s

Uap�xap� � =
1

�j�f1
�

−L

+L

UL1
�xL� ,	��exp	 j�

�f1
�xL� − xap� �2
dxL� .

�8�

ewriting in normalized coordinates and dropping any
onstant phase terms give

Uap�xap� =�K

j��−1

1

exp�jK�X2 + xap
2 − 2X�xap + 	�
�dX

=
1

2
�exp�− j2�Kxap	�
�erfi��jK�xap + 	 − 1�


− erfi��jK�xap + 	 + 1�
�, �9�

here X=xL /L, xap=xap� /L, 	=	� /L, and erfi�−� is the
maginary error function [12–14].

In Fig. 3 we plot the magnitude of Uap�xap� for K=15.7
nd 	=0.5. We note that this value of K corresponds to a
ystem where L= f1=10 cm and �=2 cm, an unusually
arge value for the wavelength. For the remainder of this
ection, values of K of the order K�15.7 will be used so
hat deviations between the LSI and the SPM models are
mphasized. Returning to Fig. 3, we can see that the mag-
itude distribution is no longer symmetric about the y
xis and has been shifted to the left of the origin. Thus, as
varies, the distribution that passes through the aper-

ig. 3. Magnitude distribution of F�xap,K ,	� for K=15.7 and 	
0.5.
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ure changes, and the system can no longer be considered
hift invariant. There are two perpendicular lines in-
erted in the figure, marking the boundaries of the light
ube predicted from a ray optics model (see Fig. 1). Dif-
raction can act to either spread light outside this light
ube or focus the light along the optical axis [10]. The
orm of the wave field incident on the aperture can thus
etermine the amount of power that passes through to
he image plane. As a result, the power in the image
lane, predicted using the LSI and SPM models, is in gen-
ral not equivalent.

The first term (square brackets) in Eq. (9) is a linear
hase term and is identical to the term in Eq. (7). The sec-
nd term (curly brackets) describes the form of the distri-
ution and has a dependency on the 	 term, which is the
ormalized displacement of the point source in the object
lane. Dividing Eq. (9) by Eq. (7) gives

Uap�xap�

Upw�xap�
= F�xap,K,	�exp�j
���

= erfi��jK�xap + 	 − 1�
 − erfi��jK�xap + 	 + 1�
,

�10�

here F�xap,K ,	� and exp�j
��� represent the magnitude
nd phase deviations between the LSI and the SPM mod-
ls, respectively [10,11].

Recently [10] we investigated a similar diffraction
roblem, examining the deviations between ideal and
onideal converging spherical waves where the nonideal
ave is formed using a converging lens of finite extent.
e derived a set of curves that pass through the phase

nd magnitude deviation extrema [10,11]. These curves
re a function of the wavelength of light, lens diameter
nd focal length, the distance from the lens, zs, and the
erpendicular distance from the optical axis xs. In Eq. (11)
e reproduce an equation originally presented in Ref.

10]:

xs =
N�zs

4

1

K
. �11�

n Refs. [15,16], propagating collimated and converging
eams with the Fresnel transform is discussed. Using the
esults and insight provided by Ref. [15] in particular, we
an extend the applicability of Eq. (11) [10] to the diffrac-
ion problem we are considering in this paper. We are con-
erned with deviations in the distribution at the Fourier
aperture) plane, which is the focal plane of L1, and so we
et zs= f1 and xs=xap. In Fig. 4 we present magnitude de-
iation plots for Eq. (10) for 5�K�20 and −0.4�xap�1
ith 	=0.
The curves given by Eq. (11) are overlayed on the fig-

re. Only curves with an even value for the integer pa-
ameter N are seen to lie on the magnitude maximum de-
iations [10,11]. Although only magnitude deviations are
hown in Fig. 4, Eq. (11) is also valid for phase deviation
xtrema [10,11].

. Deviations in the Image Field Distribution
ssuming that the lens L2 is infinite, the field distribu-

ion in the image plane is given by a scaled Fourier trans-
orm:
Uim�xim� � = F�Uap�xap�p�xap���u��u→xim� /�f2
. �12�

n analytical solution for Eq. (12) can be found in Ref.
17].

To compare the deviations between LSI and SPM mod-
ls, we calculate the RMSE of distributions over the range

in the image plane, i.e.,

� =��
−R+	L

R+	L

�ILSI�aN,K� − ISPM�aN,K��2dxim, �13�

here ILSI and ISPM denote the predicted LSI and SPM in-
ensity distributions, respectively; aN=a /L, where a is
he Fourier plane aperture radius; and R=� / �5a�. We
ote that the power contained in the ideal (LSI) PSF over
his range, 2R, is 97.5% of the total power present at the
ourier plane aperture.
In all of the following analysis, f2= f1, ensuring that the

ystems have unit magnification. In Fig. 5 we present
lots of the intensities in the image plane with K=15.7
nd aN=0.25 for the three cases in Figs. 5(a)–5(c) with 	
0, 	=0.75, and 	=1, respectively. We refer to the RMSE

n each case as �a, �b, etc., while the powers in the image
lane are Pa, Pb, etc.
In Fig. 5(a) the LSI intensity distribution is also plotted

or comparison (dashed curve). We see that both the LSI
nd the SPM PSFs are symmetric about the y axis and
a=0.0039. In Fig. 5(b), 	=0.75, and there is a noticeable
symmetry in the PSF. In this case �b=0.0357 compared
ith �a=0.0039. A ray analysis predicts that this point is

he vignetting limit (see Section 2). We also note that Pb

0.045 is considerably less than Pa. Finally, in Fig. 5(c),
e present the PSF when 	=1. The shape of the PSF is
istorted, with �c=0.1491 and Pc=0.017, both of which
re significantly worse than in the two previous cases.
In each case of Figs. 5(a)–5(c) the PSF changes, and as
increases the corresponding PSF becomes increasingly

symmetric. Clearly this system is no longer shift
nvariant.

Thus far, to examine the deviations between the LSI
nd the SPM models, we have used a specific value of K.
e now wish to examine how these deviations vary as a

unction of K. Setting a =0.25, we plot log ��� for 5

ig. 4. Magnitude deviations of F�xap,K ,	� with 	=0. The devia-
ions range between a minimum of 0.5 and a maximum of 1.2 and
re marked with ten contour levels.
N 10
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K�575 and 0�	�0.775 in Fig. 6. We draw the reader’s
ttention to two points: (1) as 	 increases, so too does �
or all values of K, and (2) as K increases, � decreases,
ndicating that the deviations between the two models de-
rease. In a practical optical system, e.g., K=590524 (i.e.,
=532 nm, L=10 cm, f=10 cm), ��1.3
10−7.

. Effect on the Optical Transfer Function
f an imaging system can be modeled as linear and shift
nvariant, then its incoherent imaging ability can be con-
eniently described using the OTF, given by a scaled ver-
ion of the autocorrelation of the generalized pupil func-
ion [3]. The term generalized pupil function is used to
ndicate that lens aberrations can be included in the pupil
unction with the result that it may no longer be a real
unction [3].

In this subsection we incorporate the diffraction effects
ue to the finite extent of L1 using Eq. (10) to write a gen-
ralized pupil function pg�xap� as follows:

pg�xap� = p�xap�F�xap,K,	�exp�j
���. �14�

The OTF, HSPM���, of the SPM optical system is found
y calculating the normalized autocorrelation of pg; see
q. (15). Using a variable, �, that has been normalized
ith respect to the aperture size, a, such that �=xap/a,
ives

ig. 5. Intensity of image distribution for aN=0.25, �a=0.0039,
f image distribution at the vignetting limit: 	=0.75, aN=0.25, �

N=0.25, �c=0.1491, and Pc=0.017.

Fig. 6. (Color online) Variation of � as a function of K and 	.
HSPM��� =
pg��� * pg���

�
−�

�

�hSPM�u��2du

, �15�

here hSPM�u� is the Fourier transform of HSPM��� and *
enotes correlation.
In the left-hand plots of Figs. 7(a)–7(c), the magnitudes

f the LSI and SPM OTFs, �H����, are presented for 	=0,
.5 and 0.75. The LSI OTF, HLSI���, is calculated by per-
orming the autocorrelation of the aperture function given
y Eq. (5) and normalizing with respect to the total power
n the aperture opening as outlined in Chap. 6 of Ref. [3].
he SPM OTF, HSPM���, is given by Eq. (15) and is calcu-

ated numerically [14,17]. In order to highlight the devia-

=0.050. LSI PSF is also plotted (see dashed curve). (b) Intensity
357, and Pb=0.045. (c) Intensity of image distribution for 	=1,

ig. 7. �H���� of LSI (dashed lines) and SPM (solid curves) with
N=0.25 (left column) and Diff���= �HLSI��� �−�HSPM���� (right
olumn). (a) 	=0, (b) 	=0.5, (c) 	=0.75.
and Pa

b=0.0
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ions between the two models, we also provide plots of the
bsolute difference between the LSI and SPM OTFs,
iff���= �HLSI��� �−�HSPM����, for the three situations,
hen 	=0, 0.5 and 0.75.
Equation (15) was evaluated for K=15.7, aN=0.25, and

or [Fig. 7(a)] 	=0, [Fig. 7(b)] 	=0.5, and [Fig. 7(c)] 	
0.75. In Figs. 7(a)–7(c) we present the results using the
ormalized variable �. The dashed lines represent the
SI case and the solid curves the SPM case. As can be
een, the OTF changes as 	 varies, emphasising again
hat the imaging operation is not performing space-
nvariant incoherent imaging. In Fig. 7(a) the magnitude
ifference is less than in both Figs. 7(b) and 7(c). This is
n keeping with the analysis presented in Subsection 3.B.
s 	 increases, the difference between the predictions of

he LSI and SPM models becomes larger.

. Imaging of a Semi-Infinite Straight Edge
n this subsection we examine coherent and incoherent
maging of an edge for the LSI and SPM cases. Math-
matically we model a 1-D edge using the unit-step func-
ion [14,18]

step�x� = �1, x � 0

0, x � 0
. �16�

When comparing the coherent and incoherent cases we
ill examine the behavior for two situations, an on-axis
nd an off-axis centered edge. Mathematically we model
hese cases using step �xobj� and step �xobj−	�, where 	 is
he location, off axis in the object plane, where the edge
ccurs.

Examining Eq. (16), we can see that the edge, as de-
ned, extends to +/−infinity in the object plane. We know,
owever, from Section 3 that a ray-based analysis pre-
icts that the image of such an object will begin to taper
ff to zero as we pass the vignetting limit (see Fig. 2). In
ther words, even with the LSI model we do not expect
ur system to be capable of imaging all the rays from an
nfinite object plane to an infinite image plane. Thus
hen simulating the LSI case we include the effects of vi-
netting as described in Section 2.

To make our results as general as possible, in the fol-
owing figures the image plane axis, xim� is normalized
ith respect to the diameter of L1 and xim=xim� /L. This

ime we choose a larger value for K, K=157, and set aN

ig. 8. LSI (solid curve) and SPM (dots) coherent distribution
0.25. (b) LSI (solid curve) and SPM (dots) distributions for a 1-
0.25. When this diffraction problem was considered by
onsidine [18] and Goodman [3], the vignetting effects in

he LSI case were neglected and the intensities in the im-
ge plane were normalized so that they approached unity
s xim approached infinity (see Fig. 7.20 in Ref. [3]). We
ormalize the LSI and SPM intensities in the image
lane in the same manner and refer to them as ILSI� �xim�
nd ISPM� �xim), respectively.

. Coherent Imaging
e note one feature that is common to the distributions

redicted by the LSI and SPM models that can be impor-
ant in estimating the widths of lines in integrated circuit
asks [3], namely, the point at which each distribution

rosses the edge [see Fig. 8(a)]. We refer to this point as
RLSI

C or CRSPM
C , where the superscript C denotes coher-

nt imaging. In Fig. 8(a) we present the results for an on-
xis edge. Note that the values of both the LSI and the
PM field intensities as they cross the edge are CRLSI

C

CRSPM
C =0.25.

The ringing observed in the coherent images is reminis-
ent of Gibb’s phenomenon that occurs at discontinuities
hen the Fourier series expansion is used. This effect is

trongest when discontinuities in the object are imaged,
nd thus strong oscillations are evident at the location of
he discontinuity xim=0. If we could neglect the vignetting
ffects in the imaging system, these oscillations would de-
ay asymptotically toward unity [18]. However, when
ignetting effects are included in the LSI model there is a
orner at the vignetting limit xim=0.75, the derivative of
hich is discontinuous. This causes the oscillations to
nce again increase in amplitude as xim�0.5. Since the
PM model images only a finite region of the object plane,
ue to the finite extent of L1, the vignetting effects are al-
eady included in this model. We do note, however, that
he frequency of the oscillations around the edge or dis-
ontinuity for the SPM case appears to be higher than for
he LSI case, with the result that at xim=0.8 the LSI and
PM distributions are almost exactly out of phase.
In Fig. 8(b) we present the LSI and SPM distributions

or the case of an off-axis edge, and once again CRLSI
C

CRSPM
C =0.25. There are strong oscillations around the

iscontinuity and corner points associated with the edge
nd the vignetting limit, respectively.

e image plane for a 1-D step centered at 	=0, K=157, and aN
centered at 	=0.5.
s in th
D step
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. Incoherent Imaging
he incoherent response of the system to the semi-infinite
dge is displayed in Fig. 9(a) with CRLSI

I =CRSPM
I =0.5. In

ig. 9(a) we note that as the LSI (solid curve) and SPM
dots) distributions rise from zero to unity there is a re-
ion where the slope in both cases is approximately linear
ut different, with the SPM rising more rapidly. In control
ngineering there is a common performance metric for de-
cribing the responses of systems to a sudden input or
oad (usually a unit step), which is termed the rise time. It
s defined as the time taken for the system to go from 10%
o 90% of its new steady-state value [19]. We now use a
imilar rise distance metric and illustrate what we mean
raphically in Fig. 9(a) for the LSI case.

From inspection of Fig. 9(a) it would appear that the
ise distance in the SPM case is less than in the LSI case,
ndicating an improved response. Also, we note that the
ignetting limit occurs at xim� =0.75, and in this region [the
ircled area in Fig. 9(a)] the SPM response appears to
rop off more quickly than in the LSI case. This we at-
ribute mainly to the degradation in the PSF in the
ircled region due to diffraction effects from the aperture
t L1; see Figs. 5(a)–5(c) and Figs. 7(a)–7(c).
We now consider the response of the imaging system

or an off-set or off-axis edge, i.e., unit step �xobj−	�. In
ig. 9(b) we present the results with, once again, CRLSI

I

CRSPM
I =0.5, and the rise distance for the SPM is less

han that for the LSI case. We again draw attention to the
egradation of the SPM response near the vignetting
imit point (see circled region).

We note that the results presented in Figs. 9(a) and
(b) require the numerical calculation of integrals that ex-
ibit unstable convergence. This sometimes produces er-
oneous results, some of which for completeness are high-
ighted with gray boxes in Figs. 9(a) and 9(b).

. Effect of a Finite-Size Lens L2 on the Distribution in
he Image Plane
arlier in this section we made the assumption that L2
as effectively infinite in extent. This assumption al-

owed us to derive an analytical solution for the distribu-
ion in the image plane arising from a point source in the
bject plane. In this subsection we wish to examine spe-
ifically how the finite extent of the second lens affects the

ig. 9. LSI (solid curve) and SPM (dots) incoherent distributio
0.25. (b) LSI (solid curve) and SPM (dots) distributions for a 1-
maging system performance. Assuming that the input to
he imaging system is a point source located on axis in the
bject plane, we examine how � varies as a function of the
adius of L2, denoted �. We again choose K=15.7, L
10 cm, and aN=0.25. We are not aware of an analytical
olution for this case, and so the following � values were
alculated numerically [20]. In Fig. 10 we present the re-
ults. The dashed line indicates the size of � when � is
ssumed infinite and is plotted for comparative purposes.
decreases rapidly (solid curve) as � approaches L, and,

ndeed, once ��L, the solid curve and dashed line
uickly converge, indicating that effects of diffraction
rom the second lens can effectively be neglected.

In Fig. 11 we examine in more detail the effect the sec-
nd lens aperture has on the final image plane intensity
istribution, ISPM

� �xim� �. In the top graph we set �=L and
lot 0�ISPM

� �xim� ��0.2 over the range 0�xim� �R. The LSI
SF is plotted as a dashed curve, again for comparative
urposes. It is expected that the second lens aperture will
emove some of the incident wave field distribution, af-
ecting the final image plane distribution. The effect can
e seen clearly in the top graph of Fig. 11 [ISPM

� �xim� � is
lotted as a solid curve]. For example, the second sidelobe
f ISPM

� �xim� � is distorted and slightly oscillatory when com-
ared with the LSI PSF. In the bottom graph of Fig. 11,
e plot the same distribution, this time with �=1.5L. In

his instance, less of the distribution incident upon L is

he image plane for a 1-D step centered at 	=0, K=157, and aN
centered at 	=0.5.

ig. 10. Variation of � with K=15.7, L=10 cm, and aN=0.25 as
function of � (solid curve). Dashed line indicates corresponding
when �→�.
ns in t
2
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emoved by the aperture. The result is that the second
idelobe associated with the ISPM

� �xim� � distribution be-
omes smooth and in fact larger than the corresponding
SI sidelobe, consistent with the results presented in
igs. 5(a) and 10.

. CONCLUSION
n Chap. 6 of Goodman’s Introduction to Fourier Optics
3], an imaging system consisting of several optical ele-

ents is modeled as a linear shift-invariant (LSI) system.
iffraction effects in the imaging process are attributed to
single limiting aperture somewhere in the system with

he assumption that all other apertures are effectively in-
nite in extent. Taking the case of the 4-f imaging system,
e examined this approximation in detail by comparing

he response of the LSI model to what we term the super-
osition model (SPM), including diffraction effects due to
he finite extent of a lens, L1. As was shown in Subsection
.A, the LSI model indicates that the limiting aperture in
he Fourier plane is illuminated by a perfect plane wave.
owever, the SPM model indicates that the aperture is in

act illuminated by a more complex wave field. As we saw
n Subsection 3.E, once ��L, the effect of diffraction from
he second lens, L2, has a much less significant impact on
he final output distribution in the image plane than does
1. Thus it is the differences between the LSI and the

ig. 11. ISPM
� �xim� � refers to the distribution in the image plane

hen diffraction from both L1 and L2 is considered. LSI PSF is
lso plotted (see dashed curves in plots). Top, �=L; bottom, �
1.5L.
PM representations of the system that effectively repre-
ent the fundamental paraxial diffraction limits. We pro-
eed to analyze these differences for the remainder of Sec-
ion 3.

In Subsection 3.B the response of the SPM model to
everal point sources in the object plane located at differ-
nt off-axis distances, 	=0, 	=0.75, etc., are presented. It
s clear from examining Figs. 5(a)–5(c) that the system
oes not perform space-invariant imaging.
In Subsection 3.C we consider the incoherent perfor-
ance of the system by examining a modified version of

he optical transfer function (OTF). This modified OTF is
ependent on spatial position in the object plane, again
emonstrating that the 4-f imaging system does not per-
orm space-invariant imaging.

Finally, in Subsection 3.D we compare the imaging of
n edge (unit-step) function using the LSI and SPM mod-
ls. Again, there are differences between the LSI and the
PM predictions; however, significantly, the cross-over
oint, CR, (see Subsection 3.D) for both models occurs at
=0.25 (coherent case) and 	=0.5 (incoherent case).

We conclude that (i) when diffraction effects from lens
pertures are included in the analysis of a 4-f imaging
ystem, the system no longer performs shift-invariant im-
ging; (ii) once the extent of L2 is greater than that of L1
in a unit magnification system), the resultant PSF (apart
rom some distortion of the second sidelobe; see Fig. 11)
emains largely unaffected by changes in the diameter of
2; and (iii) the deviations between the LSI and the SPM
odels dramatically reduce in size as K approaches val-
es used in practical optical systems, e.g., when K�6
105, ��1.3
10−7. In this case, as expected, an LSI

nalysis is sufficient. It is, however, of fundamental im-
ortance that the ultimate performance limitations of an
maging system in the paraxial regime be fully under-
tood and quantified.

While the manuscript was under review, it came to the
uthor’s attention that a paper examining the effect of
iffraction from multiple apertures in an optical system
n the power transmitted to the output plane has previ-
usly been published and may serve as an interesting
ompanion to the work presented here [21].
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