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ABSTRACT
In this work, we address the issues involved in whisper-to-audible
speech conversion. Spectral mapping techniques using Gaussian
mixture models or Artificial Neural Networks borrowed from voice
conversion have been applied to transform whisper spectral features
to normally phonated audible speech. However, the modeling and
generation of fundamental frequency (F0) and its contour in the
converted speech is a major issue. Whispered speech does not con-
tain explicit voicing characteristics and hence it is hard to derive a
suitable F0, making it difficult to generate a natural prosody after
conversion. Our work addresses the F0 modeling in whisper-to-
speech conversion. We show that F0 contours can be derived from
the mapped spectral vectors, which can be used for the synthesis of
a speech signal. We also present a hybrid unit selection approach
for whisper-to-speech conversion. Unit selection is performed on
the spectral vectors, where F0 and its contour can be obtained as a
byproduct without any additional modeling.

Index Terms— Silent speech interface, whisper-to-speech con-
version, voice conversion, F0 generation.

1. INTRODUCTION

Speech is a result of time varying pulmonary excitation that is mod-
ified by the vocal tract. The excitation is typically followed by an
oscillation of the vocal cords, which modulate the air flow expelled
from the lungs and therefore may be closed or vibrate periodically.
The period of this vibration is referred to as fundamental frequency
(F0). Speech sounds are produced based on the type of excitation.
While periodically vibrating vocal cords lead to voiced sounds, the
lack of vibration leads to unvoiced sounds.

Whispered speech is produced when the vocal cords are ad-
ducted to produce a narrow constriction at the glottis. This results
in excitation of vocal tract without the periodic vibration of the vo-
cal cords. The articulation process itself remains the same as in nor-
mal audible speech. Whispered speech is of substantial interest both
scientifically as well as for practical usage. From the speech pro-
duction view, it is important to understand how a speaker embeds
information into the speech signal without using F0. On the prac-
tical side, multiple application scenarios are imaginable: privacy in
cell phone communication, no disturbance of bystanders or passing
information only to the nearby are some evident examples. Another
area of interest are patients with speech disabilities who are affected
by an absent or handicapped pitch generation system and therefore
can only produce whisper-like sounds.

All these problems are also tackled by the related area of Silent
Speech Interfaces [1]. Silent Speech Interfaces have gained increas-
ing interest over the last years. Most approaches like electromyo-
graphic speech recognition [2], ultra-sound based speech interfaces

[3], and interfaces using Electromagnetic Articulography [4] aim at
completely silently produced speech. A currently closer-to-market
approach is the usage of Non-Audible Murmur (NAM) [5], which
refers to whisper-like low amplitude sounds generated by laryngeal
airflow noise and which is usually detected using a contact micro-
phone attached to the skin. There also have been attempts to directly
convert whispered speech to audible speech for a better understand-
ability (e.g. [6] – [8]).

One general approach for this conversion is suggested by [9],
where a statistical Gaussian mixture model is trained to predict both
spectral features and F0 of audible speech from the spectral vectors
of whispered speech. However, from the studies in [10] and [11], it
is understood that F0 is encapsulated in whispered speech in a non-
trivial way. Hence, instead of using the input whispered speech, we
investigate whether spectral vectors of audible speech obtained as
a result of the statistical transformation from the whispered speech
bear a better correlation with fundamental frequency.

The remainder of this paper is organized as follows. Section 2
provides the details on the database used for our experiments, fol-
lowed by a study of the general necessity for a whispered-to-audible
speech conversion in section 3. Section 4 explains the proposed
baseline system, and differentiates this approach from other tech-
niques. Section 5 discusses a hybrid unit selection approach for the
conversion of whisper-to-audible speech to enable a more natural
F0 generation, which is followed by a listening test evaluation in
section 6. The work is concluded with section 7.

2. DATABASE INFORMATION

We use a dataset with normal and whispered read speech of five per-
sons (four male, one female). While the mother tongue of all sub-
jects is non-English, their English pronunciation skills range from
good to very good. Their age ranges from 21 to 33 years. Each per-
son recorded 200 phonetically balanced English sentences per speak-
ing mode, i.e. a total of 400 sentences, which originated from the
broadcast news domain. All sentences were recorded using a smart-
phone microphone with a sampling rate of 16 kHz once in normal
voice and once in whispered voice in random order. Since one of the
applications for whispered speech is privacy in phone communica-
tion we used a smartphone microphone instead of a standard headset
microphone. All recorded audible and whispered speech utterances
are divided into three sets for training (70%), development (15%),
and evaluation (15%) per speaker. Table 1 gives detailed informa-
tion about the durations of the recorded utterances.
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Table 1. Data corpus information for recorded audible (aud) and
whispered (whis) utterances, including speaker breakdown.

Speaker Average data length,
in [s] for aud/whis

Total amount of
data (mm:ss)

Train Dev Eval
1 533/513 109/104 113/104 12:36/12:02
2 554/596 110/121 116/125 13:01/14:01
3 514/541 102/106 110/116 12:06/12:43
4 532/530 107/107 112/112 12:32/12:29
5 478/497 102/105 108/114 11:28/11:56

Total 2611/2677 530/543 560/571 61:42/63:11

3. PREFERABILITY OF WHISPERED SPEECH VERSUS
NORMAL SPEECH

Since whispered speech is typically perceived well by human beings,
it is natural to question the necessity of a whisper-to-audible speech
conversion. Given natural recordings of both audible and whispered
speech, we investigate whether listeners prefer whispered or audi-
ble speech in quiet office environments and in noisy conditions. For
testing, we use 36 randomly selected English sentences from our
data corpus described in section 2.
The TestVox [12] framework is used to conduct AB preference lis-
tening tests. A set of 10 subjects with non-English mother tongue
take part in the listening tests. For all 36 test sentences, each par-
ticipant listens to the whispered and normally voiced version and is
asked which version he/she prefers considering the intelligibility. A
third, neutral option is also given. To minimize bias, we random-
ize both the order of the 36 test sentences, as well as whether the
whispered or the normal utterance is played first. Every participant
listens to one half of the sentences via laptop speakers and the other
half of the sentences using a clip-on-headphone on his preferred ear
(to simulate the act of hearing on a cell phone). In order to examine
the effect of a loud environment to the intelligibility of whispered
speech, five of the ten listeners carry out the tests in a quiet office
environment. The remaining five participants conduct the tests at
a cafeteria during lunchtime, a particularly loud and noisy environ-
ment. All tests are supervised by an instructor to guarantee that all
participants follow the same rules.

Table 2 shows the results of the listening tests and states that
whispered speech is preferred substantially less (about 4%) even in
the quiet office environment. We also observe that there is no pref-
erence in about 39% to 44% of the utterances. We assume this is an
equal bias towards audible and whispered speech. Audible speech
is preferred in 51% to 59% for all situations. These listening tests
suggest the strong preference of the listeners towards audible speech
and hence justify the efforts of performing a transformation from
whisper-to-audible speech.

Table 2. Preference in percentages for audible speech (Aud), whis-
pered speech (Whis), or neither. Each test condition has five listeners
rating a total of 180 sentences.

Test-cond. Aud Whis Neither
Quiet environment: Laptop 51.1% 4.4% 44.4%
Quiet environment: Headphone 54.4% 4.4% 41.1%
Noisy environment: Laptop 55.6% 3.3% 41.1%
Noisy environment: Headphone 58.9% 2.2% 38.9%

4. WHISPER-TO-AUDIBLE SPEECH CONVERSION

4.1. Feature extraction and alignment

To extract features from the speech signal, an excitation-filter model
of speech is applied. 25 Mel-cepstral coefficients (MCEPs) [13] are
extracted as filter parameters and fundamental frequency (F0) esti-
mates are derived as excitation features for every 5 ms. As the du-
rations of the whispered and normal utterances typically differ (see
table 1), dynamic time warping is used to align MCEP vectors of
whispered and audible speech.

4.2. Whisper-to-audible mapping

In this work, we use an artificial neural network (ANN) to perform
the mapping from spectral vectors of whispered speech to audible
speech. However, such mapping can also be performed using Gaus-
sian mixture models [9] and we refer to this component abstractly as
mapper. Details about the training and topology of this ANN map-
ping can be found in [14].

To perform the spectral mapping of whispered speech to audible
speech, the 25 dimensional MCEPs from whispered speech are con-
catenated with their ∆ and ∆∆ features to build a 75 dimensional
vector, which was mapped to a 25 dimensional vector of audible
speech using the ANN model topology 75L 90N 90N 25L. Here
L represents a linear activation function, N represents the nonlinear
tanh-function and the numbers refer to the amount of neurons used
in each layer. The structure of the ANN is chosen on empirical basis
from prior experiments.

Figure 1(a) shows the general approach presented in [9]. As
can be observed, the mapper is trained to predict both spectral fea-
tures and F0 of audible speech from the spectral vectors of whis-
pered speech. We therefore refer to this F0 mapping approach as
WhisToF0. However, from the studies in [10] and [11], it is un-
derstood that F0 is encapsulated in whispered speech in a non-trivial
way. Hence, we want to investigate whether spectral vectors of audi-
ble speech obtained as a result of the statistical transformation from
the whispered speech can bear a better correlation with fundamental
frequency.

To study this correlation, we use a linear regression fit to predict
F0 from the first cepstral coefficient C0 of whispered and audible
speech. Table 3 shows the mean square error (MSE) in predicting
F0 from C0 of whispered, audible and whisper-to-audible mapped
speech. The MSE in predicting F0 using whisper C0 exceeds the
MSE when using C0 from audible and whisper-to-audible C0. At
the same time, the MSE in predicting F0 using C0 of whisper-to-
audible is smaller than using C0 from whisper.

Table 3. Mean square error (MSE) of the linear regression fit on
the first cepstral coefficient (C0) of whisper, audible and whisper-
to-audible mapped spectral vectors.

Type of C0 MSE (Hz2) of linear regression fit
of C0 and F0

Whisper 772
Audible 710
Whis-to-aud (mapped) 721

4.3. F0 modeling

From table 3, it can be inferred that spectral vectors of audible and
whisper-to-audible speech can be used for predicting F0 and its
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(a) WhisToF0 Conversion Approach (b) Proposed MappedToF0 Conversion Approach

Fig. 1. Architecture of (a) whisper-to-audible speech conversion approach followed by [9] (WhisToF0) and of (b) proposed whisper-to-
audible speech conversion (MappedToF0). MCEPs represent spectral features, and F0 represents fundamental frequency. W refers to
whispered speech features, and A’ refers to whisper-to-audible converted features.

contour. Regarding this result, we thus propose the architecture as
shown in figure 1 (b) for modeling F0 and its contour in the case of
whisper-to-audible speech conversion. Since the whisper-to-audible
converted MCEPA′ features instead of the whispered MCEPW are
taken as input for the F0 mapping, we refer to this approach as
MappedToF0.

Following this approach, we model F0 and its contour as a non-
linear mapping of spectral vectors produced from the output of the
whisper-to-audible spectral mapper. Once the spectral mapper (re-
ferred to as ANN–I) is trained with the time-aligned MCEP data
(using Dynamic Time Warp) of whispered and audible features, the
entire training data is fed as input to obtain the predicted audible
MCEPs at the output layer.

The predicted MCEPs (MCEPA′ ) are used to train another ANN
model (referred to as ANN-II), whose output is a 51 dimensional
vector representing the F0 contour. Instead of predicting a single
F0 value, we train the ANN-II to model a F0 contour of about 250
ms (i.e., appending F0 values from the left and right context of 25
frames). The choice of 250 ms is made in view of the average sylla-
ble length [15].

Thus for every 5 ms, we obtain a 51 dimensional F0 vector.
The final F0 contour is obtained by picking the middle value of this
vector and performing a mean smoothing. Figure 2 shows the F0
contour predicted from the mapped MCEPs (i.e., from the output of
ANN-I) of the whispered speech. The predicted F0 demonstrates
that mapped MCEPs are useful features to predict F0 and its con-
tour. The topology of ANN-II used in these experiments is 25L 75N
12N 75N 51N . The middle layer represents a compression layer,
which projects the data onto a lower dimensional space, for extract-
ing compact representations.

To finally synthesize a whispered-to-audible converted speech
signal we use the Mel Log Spectrum Approximation (MLSA) filter
method [16], which takes the generated F0 and the mapped MCEPs
as input.

5. A HYBRID FRAMEWORK

In this section, we describe our experiments on selecting a unit (ei-
ther in the parametric space or directly from the wavefiles) for the
purpose of whisper-to-audible speech conversion. This idea is moti-
vated from a hybrid unit selection framework in text-to-speech sys-
tems [17]. Given that we have target spectral vectors (i.e. MCEPs
predicted from ANN-I), one could use these vectors to search for a
suitable unit in the training set. This enables to pick a nearest neigh-
bor MCEP vector and the corresponding F0 from the training set.
One could also opt to use the speech segment directly to avoid sig-
nal processing. The steps followed in our approach are as follows:
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Fig. 2. F0 of audible speech and predicted from whis-to-aud
mapped MCEPs. (No time alignment used)

• During training, the set of MCEP vectors from the training
data are used to build a dictionary. Each entry in the dictio-
nary is a 125 dimensional vector, i.e., a joint MCEP vector
with a left and right context of 2 frames. These entries are in-
dexed along with the corresponding F0 values and with their
time stamps in the corresponding wave files.

• The output vectors predicted by ANN-I on the development
set are appended with the left and right context information
and the dictionary is searched for their nearest neighbors.
While one could use a sophisticated search algorithm, as an
initial step, we choose the nearest neighbor approach.
Subsequently, the MCEPs and the F0 of the corresponding
nearest neighbor are used to synthesize the speech signal via
the MLSA filter. This approach is referred to as synth1.

• As another method, the corresponding time stamps are used
to slice the unprocessed speech waveform segments and con-
catenate them using overlap and add method [18]. This ap-
proach is referred to as synth2.

To evaluate the effectiveness of the proposed mapping tech-
niques, Mel-cepstral distortion (MCD) [19] is computed between
MCEPs of audible and converted whisper-to-audible speech after
aligning them using dynamic time warp. The MCD scores are
shown in table 4. While there is only little difference between
the hybrid unit selection approaches synth1 and synth2, MCD
scores achieved with ANN are clearly lower. Additionally, we com-
pute the distortion of the 0th Mel coefficient, which represents the
signal’s energy and is therefore ignored in speech recognition appli-
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cations. Since we want to investigate the prosodic properties of the
whisper-to-audible mapping, we evaluate this coefficient separately
in figure 3. It is noticeable that synth1 achieves the smallest dis-
tortion, implying that this may be related to an improved prosodic
modeling.

Table 4. Mel-cepstral distortion (MCD) and standard deviation for
whisper-to-audible mapping using ANN model (ANN-MCD) and
our proposed hybrid approaches (synth1 and synth2). The MCD
scores (lower is better) are computed on the development set of 30
wavefiles.

Spk ANN MCD Synth1 MCD Synth2 MCD
1 4.34 (0.24) 5.18 (0.28) 5.21 (0.28)
2 4.77 (0.28) 5.65 (0.31) 5.64 (0.29)
3 5.59 (0.34) 6.44 (0.35) 6.43 (0.34)
4 5.16 (0.39) 6.00 (0.38) 5.99 (0.36)
5 5.58 (0.30) 6.55 (0.32) 6.81 (0.27)

Fig. 3. Distortion (logarithmic scale) of 0th Mel coefficient
for whisper-to-audible mapping using ANN model and hybrid ap-
proaches synth1 and synth2.

Figure 4 shows the spectrogram of the recorded audible speech
and the converted whisper-to-audible speech from ANN (i.e., ANN-
I + ANN-II), synth1 and synth2 methods. It is noticeable that
synth2 produces stopping sounds due to the concatenation of the
audible sound units, which can be easily seen in the spectrogram.
On a closer look (e.g. between 0.8s and 1s) it can be observed that
the formants are better modeled with synth1 and synth2, regarding
a flat contour with the ANN approach.

6. LISTENING TEST EVALUATION

Since MCD scores do not consider the quality of the F0 modeling,
we evaluate our mapping approaches in conducting two AB prefer-
ence listening tests, which again include a third, neutral option.

The first test is designed to evaluate the output of synth1 ver-
sus synth2, the second listening test aims to distinguish between
synth1 and the WhisToF0 ANN approach. Each participant lis-
tens to both mapping outputs and has to give a preference consider-
ing the naturalness. We intentionally decided to ask for naturalness
instead of intelligibility, since this is more affected from a proper F0
contour. To minimize bias, we again randomize the order of test sen-
tences and both output files. 17 listeners participate in the synth1
versus synth2 test (total of 425 utterance-pairs) and there are 14 par-
ticipants in ANN versus synth1 test (total of 700 utterance-pairs).

Table 5 shows both listening test results. Synth1 gives signifi-
cantly (p = 0.0293) better results than synth2, while a comparison
of synth1 with the WhisToF0 ANN mapping shows no significant
preference.

Fig. 4. Spectrogram of audible speech (org), output from ANN,
synth1 and synth2 methods (no time alignment used) of the ut-
terance “This will no longer be his problem when he leaves next
month”.

Having a detailed look at the mapped utterances depicts two
drawbacks of the compared methods: ANN gives a smooth output
with a flat prosodic contour that sounds very robotic, while synth1
gives a more variable prosodic contour with unnatural stopping
sounds due to the alignment of the units. It is therefore hard for
the listener to estimate a preference considering a broad term like
naturalness.

Table 5. Preference in percentages for synth1 (A) versus synth2
(B) on upper half, and hybrid approach synth1 (A) versus ANN
approach (A) or neither.

Test-cond. A B Neither
synth1 vs synth2 42.35% 33.18% 24.47%
synth1 vs ANN 34.29% 37.57% 28.15%

7. CONCLUSION AND FUTURE WORK

To emphasize the usefulness of a whisper-to-speech transformation,
we conducted a listening test which shows the preference of the lis-
teners towards audible speech. In order to improve the modeling of
F0, we successfully used the mapped spectral vectors instead of the
whispered input spectral vectors.

Additionally, we showed that a hybrid unit selection framework
can be adapted for whisper-to-speech conversion. This approach was
performed on the spectral vectors, where F0 and its contour could be
obtained without any additional modeling and thus gives the oppor-
tunity to generate a natural F0 contour, which is hard to obtain by
considering whispered speech only. This approach reduced the dis-
tortion of the 0th Mel coefficient and is a first step towards a natural
F0 generation.

Since this is a preliminary study, there are several factors (e.g.
stopping sounds due to unit concatenation) that will be optimized in
the near future.
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