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Abstract. We introduce the notion of fundamental groupoid of a digraph and prove
its basic properties. In particular, we obtain a product theorem and an analogue of the
Van Kampen theorem. Considering the category of (undirected) graphs as the full subcate-
gory of digraphs, we transfer the results to the category of graphs. As a corollary we obtain
the corresponding results for the fundamental groups of digraphs and graphs. We give an
application to graph coloring.
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1. Introduction

In this paper we develop further the homotopy theory for digraphs (= directed

graphs) initiated in [9], [8], and [10]. In the category of digraphs, the homology

and the homotopy theories were introduced in [8] in such a way that the homology

groups are homotopy invariant and the first homology group of a connected digraph

is isomorphic to the abelization of its fundamental group. In a natural way we can

consider the category of nondirected graphs as a full subcategory of digraphs. Thus,

the homology and homotopy theories of digraph can be transferred to the category

of nondirected graphs, thus leading to similar results for the latter category.

In the case of undirected graphs the fundamental group was first introduced in

papers [3] and [4], where they described the relation of the fundamental group of

graph to the Atkin homotopy theory [1], [2]. Note that for undirected graphs the

notions of fundamental groups of [8] and [3], [4] coincide.
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In the present paper we introduce the notion of the fundamental groupoid of

a digraph that is a natural generalization of the notion of fundamental group of

digraph from [8]. Our definition of groupoid has essentially the origin in the discrete

nature of graphs and is not related to the notion of fundamental groupoid of a graph

as a topological space from [5] and [13].

We prove basic properties of the fundamental groupoid of digraphs, in particular,

a product formula for the fundamental groupoids for various notions of product of

digraphs as well as an analogue of the Van Kampen theorem for groupoids. Con-

sidering the category of nondirected graphs as a full subcategory of the category of

digraphs we transfer these results to the category of nondirected graphs. Note that

the Van Kampen theorem for the fundamental group of graphs was obtained also

in [3] and [4].

The paper is organized as follows. In Section 2, we give a preliminary material,

necessary definitions, and some useful constructions in the category of digraphs based

on [8], [9], and [12].

In Section 3, we define the fundamental groupoid of a digraph and describe its

basic properties. In fact, we define a functor from the category of digraphs to the

category of groupoids. We prove the results concerning fundamental groupoids for

various products of digraphs. We also give application to the first homology group

of the products.

In Section 4, we construct a functor ∆ (geometrical realization) from the cat-

egory of digraphs to the category of 2-dimensional CW-complexes, that provides

a natural equivalence of the corresponding fundamental groupoids on the vertices of

digraphs. As a consequence of the geometric realization we obtain an analogue of

the Van Kampen theorem for groupoids of digraphs.

In Section 5, we transfer the aforementioned results to the category of nondirected

graphs and compare our results with those in [3], [4].

In Section 6, we give an application to coloring of graphs.

2. Category of digraphs and homotopy theory

In this section we give necessary definitions and preliminary material (see [9]

and [8]) which we need in the following sections. We prove also several technical

results.

Definition 2.1. A directed graph (digraph) G is a pair (VG, EG) consisting of a

set VG of vertices and a subset EG ⊂ {VG×VG\diag} of ordered pairs. The elements

of EG are called arrows and are denoted by v → w, where the vertex v = orig(v → w)

is the origin of the arrow and the vertex w = end(v → w) is the end of the arrow.
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A based digraph G∗ = (G, ∗) is a digraph G together with a based vertex v =

∗ ∈ VG.

If there is an arrow from v to w, then we write v → w. For two vertices v, w ∈ VG

we write v
→
= w if either v = w or v → w.

Definition 2.2. A digraph H is called a subdigraph of G if VH ⊂ VG and

EH ⊂ EG.

Definition 2.3. A digraph map (or simplymap) from a digraphG to a digraphH

is a map f : VG → VH such that v → w on G implies f(v)
→
= f(w) on H . A digraph

map f is non-degenerate if v → w on G implies f(v)→ f(w) on H .

A digraph map of based digraphs f : (G, v) → (H,w) has additional property:

f(v) = w.

The set of all digraphs with digraph maps form a category of digraphs that will be

denoted by D. The set of all based digraphs with based digraph maps form a category

of based digraphs that will be denoted by D∗.

For two digraphs G and H we denote by Hom(G,H) the set of all digraph maps

from G to H . For two based digraphs G∗ and H∗ we denote by Hom(G∗, H∗) the

set of all based digraph maps from G∗ to H∗.

Definition 2.4. For digraphs G,H define two notions of their product.

(i) Define a �-product Π = G � H as a digraph with a set of vertices VΠ = VG×VH

and a set of arrows EΠ given by the rule

(x, y)→ (x′, y′) if x = x′ and y → y′, or x→ x′ and y = y′,

where x, x′ ∈ VG and y, y
′ ∈ VH . The �-product is also referred to as the Cartesian

product.

(ii) Define a ⋊-product P = G⋊H as a digraph with a set of vertices VP = VG×VH
and a set of arrows EP given by the rule

(x, y)→ (x′, y′) if x = x′ and y → y′, or x→ x′ and y = y′, or x→ x′ and y → y′.

Let G and H be digraphs. For any vertex v ∈ VH there are natural inclusions

iv : G→ P and jv : G→ Π given on the set of vertices by the rules

iv(x) = (x, v) ∈ VP , jv(x) = (x, v) ∈ VΠ for x ∈ VG.

Similarly, there are natural inclusions iw : H → P and jw : H → Π for any w ∈ VG.

37



Also we have natural projections p : P → G, q : P → H given on the set of vertices

by the rule

p(x, y) = x ∈ VG, q(x, y) = y ∈ VH for x ∈ VG, y ∈ VH .

Similarly, there are projections Π→ G and Π→ H .

In what follows we use the sign ∪̇ to denote a disjoint union.

Definition 2.5. (i) Let f : G→ H be a digraph map of digraphs G,H . Define

a digraph Cf = (VC, EC) as

VC = VG ∪̇ VH , EC = EG ∪̇ EH ∪̇ EI , where EI = {(v → f(v)) : v ∈ VG}.

The digraph Cf is called the direct cylinder of the map f . The inverse cylinder C−
f

of the map f has the same set of vertices VC as Cf and the set of arrows

EC− = EG ∪̇EH ∪̇ EI− , where EI− = {(f(v)→ v) : v ∈ VG}.

Let us recall now the basic notions of the homotopy theory of [8]. Let In, n > 0,

denote a digraph with the set of vertices Vn = {0, 1, . . . , n} and the set of arrows EIn
that contains exactly one of the arrows i → (i + 1) and (i + 1) → i for any i =

0, 1, . . . , n − 1, and no other arrow. The digraph In is called a line digraph. There

are only two line digraphs with two vertices, which will be denoted by I = (0 → 1)

and I− = (1→ 0).

Denote by I∗n the based digraph (In, 0). Let In (or I
∗
n) be the set of all line

digraphs (or based line digraphs) with the vertex set Vn and set

I =
⋃

n>0

In, I∗ =
⋃

n>0

I∗n.

Definition 2.6. Let G,H be digraphs.

(i) Two digraph maps fi : G → H , i = 0, 1, are called homotopic if there exists

a line digraph In ∈ I and a digraph map F : G � In → H such that

F |G�{0} = f0 : G � {0} → H, F |G�{n} = f1 : G � {n} → H.

In this case we shall write f0 ≃ f1. If In = I1, then we shall refer to F as a one-step

homotopy from f0 to f1 and to the maps fi as one-step homotopic.

(ii) Two digraphs G and H are homotopy equivalent if there exist digraph maps

f : G→ H, g : H → G

such that

f ◦ g ≃ IdH , g ◦ f ≃ IdG.
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In this case, we write H ≃ G, and the maps f and g are called homotopy inverses

to each other.

(iii) A digraph G is contractible if it is homotopy equivalent to the one-vertex

digraph.

Thus, we obtain a well defined category D′ of digraphs with the classes of homo-

topic maps as digraph maps in D′.

A homotopy between two based digraph maps f, g : G∗ → H∗ is defined as in

Definition 2.6 with additional requirement that F |{∗}�In = ∗. Then we obtain a ho-

motopy category D∗′ of based digraphs.

For any In ∈ In define the line digraph În ∈ In as:

i→ j in În ⇔ (n− i)→ (n− j) in In.

For any two line digraphs In and Im, define the line digraph In+m = In∨Im ∈ In+m

by identification of the vertices n ∈ In and 0 ∈ Im and keeping the arrows in In, Im.

Definition 2.7. (i) A path-map in a digraph G is any digraph map ϕ : In → G,

where In ∈ In. A based path-map on a based digraph G
∗ is a based digraph map

ϕ : I∗n → G∗. A loop on a based digraph G∗ is a based path-map ϕ : I∗n → G∗ such

that ϕ(n) = ∗.

(ii) For a path-map ϕ : In → G define the inverse path-map ϕ̂ : În → G by

ϕ̂(i) = ϕ(n− i).

(iii) For two path-maps ϕ : In → G and ψ : Im → G with ϕ(n) = ψ(0) define the

concatenation path-map ϕ ∨ ψ : In+m → G as

ϕ ∨ ψ(i) =

{
ϕ(i), 0 6 i 6 n,

ψ(i− n), n 6 i 6 n+m.

Definition 2.8. A digraph map h : In → Im is called a shrinking map if

h(0) = 0, h(n) = m, and h(i) 6 h(j) whenever i 6 j.

Definition 2.9. Consider two path-maps

(2.1) ϕ : In → G, ψ : Im → G such that ϕ(0) = ψ(0), ϕ(n) = ψ(m).

A one-step direct C∂-homotopy from ϕ to ψ is a pair (h, F ), where h : In → Im is

a shrinking map and F : Ch → G is a digraph map such that

(2.2) F |In = ϕ and F |Im = ψ.

If the same is true with Ch replaced everywhere by C
−
h , then we refer to a one-step

inverse C∂-homotopy.
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Now we define an equivalence relation on the set of path-maps of a digraph G.

Definition 2.10. Let ϕ, ψ be path-maps as in (2.1). We call these path-maps

C∂ -homotopic and write ϕ
C∂

≃ ψ if there exists a finite sequence {ϕk}
m
k=0 of path-

maps such that ϕ0 = ϕ, ϕm = ψ and for any k = 0, . . . ,m − 1, ϕk is one-step

C∂ -homotopic to ϕk+1 or inverse ϕk+1 is one-step C∂-homotopic to ϕk.

As follows from Definition 2.10, the relation ϕ
C∂

≃ ψ is an equivalence relation.

Note that for the based loops in a based digraph G∗, our notion of C∂ -homotopy

from Definition 2.10 coincides with the notion of C-homotopy of [8], Definition 4.10.

Theorem 2.11 ([8]). Let π1(G
∗) be the set of equivalence classes under C∂-

homotopy of based loops of a digraph G∗. The C∂-homotopy class of a based loop ϕ

will be denoted by [ϕ]. Then π1(G
∗) is a group with the neutral element [e], where

e : I∗0 → G∗ is the trivial loop, the inverse element of [ϕ] is [ϕ̂], and the product is

given by concatenation of the loops [ϕ][ψ] = [ϕ ∨ ψ].

Now we discuss the properties of the ⋊-product of digraphs.

Proposition 2.12. For any line digraph In and any digraph G

G⋊ In ≃ G.

P r o o f. Consider the case n = 1 and the digraph G ⋊ I. We have a natural

inclusion

j : G→ G⋊ I, j(v) = v ⋊ {0}, v ∈ VG

and a natural projection p : G ⋊ I → G such that the composition p ◦ j : G → G

is the identity map. Now we prove that the composition j ◦ p is homotopic to the

identity map IdG⋊I . Define a homotopy

H : (G⋊ I) � I− → G⋊ I

as:

H0 = IdG⋊I : (G⋊ I) � {0} → G⋊ I, H0(v, t, 0) = (v, t, 0), v ∈ VG, t ∈ VI ,

on the bottom, and the composition

j ◦ p : (G⋊ I) � {1} → G⋊ {0}, H1(v, t, 1) = (v, 0), v ∈ VG, t ∈ VI , 1 ∈ VI−

on the top. The map H is a well defined digraph map of digraphs.

The case of G ⋊ I− is similar, which settles the claim for n = 1. The claim for

general n is proved by induction on n. �
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Let D, G, H be arbitrary digraphs. For a given digraph map

f : D → G⋊H

consider the digraph maps

f1 = p ◦ f : D → G, f2 = q ◦ f : D → H,

where p : G⋊H → G, q : G⋊H → H are natural projections.

Proposition 2.13. There exists a one to one correspondence between the sets

Hom(D,G⋊H) and Hom(D,G)×Hom(D,H), given by the rule

f ↔ (f1, f2).

P r o o f. Let r be the map of sets

(2.3) Hom(D,G⋊H)→ Hom(D,G) ×Hom(D,H), r(f) = (f1, f2).

Let f 6= g ∈ Hom(D,G⋊H). Since the digraph maps f and g are defined on the set

of vertices, there exists a vertex v ∈ VD such that

f(v) = (v1, v2) 6= g(v) = (w1, w2), where (v1, v2), (w1, w2) ∈ VG⋊H .

Hence, at least one inequality v1 6= w1, v2 6= w2 is true. Hence, (f1, f2)(v) 6=

(g1, g2)(v) since fi(v) = vi, gi(v) = wi. Thus, the map r is a one-to-one inclusion.

The map r is a surjection since any two maps f1 ∈ Hom(D,G), f2 ∈ Hom(D,H) are

defined by the maps of vertices

f1 : VD → VG, f2 : VD → VH ,

which define a map of vertices

f = (f1, f2) : VD → VG⋊H = VG × VH ,

which is a well-defined digraph map of digraphs f : D → G ⋊H for which r(f) =

(f1, f2). �

Lemma 2.14. Consider a path map ϕ : Is → In⋊ In such that ϕ(0) = (0, 0) and

ϕ(k) = (n, n). Then ϕ is C∂ -homotopic to the diagonal path map ∆: In → In ⋊ In
given by ∆(i) = (i, i).
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P r o o f. Using [8], Proposition 3.6, it is easy to construct a deformation retrac-

tion r from In ⋊ In onto its diagonal diag which leads to a homotopy

F : (In ⋊ In) � Ik → In ⋊ In

such that F |(In⋊In)�{0} = id, F |(In⋊In)�{k} = r and additionally

(2.4) F |diag�{i} = iddiag

for any i ∈ Ik. For any path-map ϕ : Is → In ⋊ In define a digraph map

ϕ � idIk : Is � Ik → (In ⋊ In) � Ik.

Then the composition

Φ := F ◦ (ϕ � idIk) : Is � Ik → In ⋊ In

has the following properties: Φ|Is�{0} = ϕ and Φ|Is�{k} is the digraph map onto

diag such that Φ(0, k) = (0, 0), Φ(s, k) = (n, n). Now by (2.4), Φ|Is�{0} = ϕ and

Φ|Is�{k} are homotopic and hence, C∂ -homotopic. It remains to observe that the

path-maps

Φ|Is�{k} : Is → diag

and ∆: In → diag are C∂-homotopic (for example, using [8], Theorem 4.13). �

Definition 2.15. Let ϕ : Im → G be a path-map. An extension ϕE of ϕ is any

path-map

ϕE : In → G, In ∈ I

that is given by the composition ϕ ◦ h, where h : In → Im is a shrinking map.

Note that any extension ϕE of ϕ by means of shrinking map h : In → Im satisfies

the conditions

ϕE(0) = ϕ(0), ϕE(n) = ϕ(m).

The following technical result will be used in Section 3 to describe the fundamental

groupoid of the product of digraphs.

Proposition 2.16. Let ψ = (ψ1, ψ2) : Im → G ⋊ H be a path-map and h1, h2 :

In → Im be shrinking maps that induce extensions ψ
E
1 : In → G and ψE2 : In → H .

Consider the digraph map

ψ′ := (ψE1 , ψ
E
2 ) : In → G⋊H.

Then ψ
C∂

≃ ψ′.
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P r o o f. Consider the commutative diagram

In

∆n

��

In

δ

��

ψ′

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑

In ⋊ In
h1⋊h2// Im ⋊ Im

ψ1⋊ψ2 // G⋊H

Im

∆m

OO

ψ

99sssssssssss

in which ∆i denotes the natural diagonal inclusions, and δ = (h1 ⋊ h2) ◦ ∆n. By

Lemma 2.14 the path-maps δ : In → Im ⋊ In and ∆m : Im → Im ⋊ Im are C∂-

homotopic. From commutativity of the diagram it follows that ψ
C∂

≃ ψ′. �

For two digraphs G,H define a digraph Dhom(G,H) with the set of vertices

VDhom(G,H) = Hom(G,H)

and f → g in Dhom(G,H) if there is a one-step homotopy such as

(2.5) F : G � I → H, F |G�{0} = f, F |G�{1} = g.

Theorem 2.17. For digraphsD, G, H there is a natural isomorphism of digraphs

Dhom(D,G⋊H) ∼= Dhom(D,G)⋊Dhom(D,H).

P r o o f. By the proof of Proposition 2.13, the map r from (2.3) defines a bijective

map of vertices

VDhom(D,G⋊H) → VDhom(D,G) × VDhom(D,H).

Let F be the homotopy of (2.5) that gives an arrow f → g in Dhom(G,H). Then

p ◦ F : D � I → G

provides a homotopy between p ◦ f and p ◦ g, and

q ◦ F : D � I → H

provides a homotopy between q ◦ f and q ◦ g. Hence, the map r maps arrows to

arrows, and it is an injective map on arrows.
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Now we prove that it is surjective. Consider a part of the digraph Dhom(D,G)⋊

Dhom(D,H)

(2.6)

f1 // g1

g2 (f1, g2)
a0 // (g1, g2)

f2

OO

(f1, f2) a4
//

a1

OO

a2

::ttttttttttt
(g1, f2),

a3

OO

which is obtained by the ⋊-product of the arrows f1 → g1 and f2 → g2. Let us show

that ai belongs to the image of the map r on arrow for any i = 0, . . . , 4.

Consider, at first, the case i = 0. By definition of the digraphs Dhom(D,G)

and Dhom(D,H) it follows from (2.6) that there is a homotopy F1 : D � I → G

between f1 and g1, and there is a homotopy F2 : D � I → H between f2 and g2.

Let d : D � I → D be the natural projection. The map

(F1, g2 ◦ d) : D � I → G⋊H

gives a homotopy between the map (f1, g2) : D → G⋊H and the map (g1, g2) : D →

G⋊H . The homotopy (F, g2 ◦d) represents an arrow in Dhom(D,G⋊H) that maps

by means of r to the arrow a0 in (2.6).

The cases i = 1, 3, 4 are similar. Consider the case i = 2. Let Ψ denote the

composition

D � I
F1�F2−→ G � H → G⋊H,

where the second map is the natural inclusion. This map gives a homotopy between

the map (f1, f2) : D → G ⋊ H and the map (g1, g2) : D → G ⋊ H , and hence

represents an arrow in Dhom(D,G ⋊ H) that maps by means of r to the arrow a2

in (2.6). The theorem is proved. �

For two based digraphs G∗, H∗ define a based digraph Dhom(G∗, H∗) with the

set of vertices VDhom(G∗,H∗) = Hom(G∗, H∗) consisting of based maps, and the base

point is given by the trivial map ∗ : G→ ∗ ∈ H . There is an arrow f → g in

Dhom(G∗, H∗) if there is a one-step homotopy

(2.7) F : G∗
� I∗ → H∗, ∗ = 0 ∈ I, F |G�{0} = f, F |G�{1} = g.

The products � and ⋊ of digraphs are defined naturally in the category D∗ of

based digraphs, where ∗ = ∗ � ∗ ∈ G � H is a based vertex and, similarly, ∗ =

∗⋊ ∗ ∈ G⋊H .

44



Corollary 2.18. For based digraphs D∗, G∗, H∗ there is a natural isomorphism

of based digraphs

Dhom(D∗, G∗
⋊H∗) ∼= Dhom(D∗, G∗)⋊Dhom(D∗, H∗).

P r o o f. The result follows from Theorem 2.17 since the correspondence f ↔

(f1, f2) given in Proposition 2.13 preserves the based maps. �

3. Fundamental groupoids of digraphs

In this section we define a notion of the fundamental groupoid of a digraph and

describe its basic properties. We prove the theorem about the fundamental groupoid

of the products of digraphs. As a corollary we obtain the corresponding results for

the fundamental groups of digraphs. Our definition is motivated by the classical def-

inition of a groupoid from [13], Chapter 1, Section 7, and Chapter 3, Sections 6, 7, 8.

A groupoid is a small category in which every morphism is an equivalence.

Definition 3.1. (i) An edge of a digraph G = (V,E) is an ordered pair (v, w)

of vertices such that either v = w or there is at least one of the arrows v → w or

v ← w.

(ii) An edge-path ξ of a digraph G is a finite nonempty sequence

(3.1) (v0, v1)(v1, v2) . . . (vn−2, vn−1)(vn−1, vn)

of edges of the digraph G, where n is any natural number. The vertex v0 is called the

tail of the edge-path ξ and vn the head of ξ. We shall write v0 = t(ξ) and vn = h(ξ).

(iii) A closed edge-path at the vertex v0 ∈ VG is an edge-path ξ such that t(ξ) =

h(ξ) = v0.

(iv) If ξ1 and ξ2 are two edge paths with h(ξ1) = t(ξ2), then we define the product

edge-path ξ1ξ2 consisting of the sequence of edges ξ1 followed by the edges of ξ2.

(v) For any edge-path ξ from (3.1) define the inverse edge-path ξ−1 as

ξ−1 := (vn, vn−1)(vn−1, vn−2) . . . (v1, v0).

We collect some obvious properties of edge-paths in the next statement.

Lemma 3.2. The edge-paths of a digraph G satisfy the following properties:

⊲ (ξ1ξ2)ξ3 = ξ1(ξ2ξ3),

⊲ (ξ−1)−1 = ξ,

⊲ t(ξ1ξ2) = t(ξ1), h(ξ1ξ2) = h(ξ2),

⊲ t(ξ) = h(ξ−1), h(ξ) = t(ξ−1),

where we assume that all the products are well-defined.
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Definition 3.3. (i) We shall say that the sequence of three vertices (v0, v1, v2)

of a digraph G forms a triangle if there is a permutation π of (v0, v1, v2) such that

the map i 7→ π(vi), i = 0, 1, 2, provides the isomorphism from the following triangle

0

��❃
❃❃

❃❃
❃❃

// 1

��
2

to the subdigraph of G with the vertices π(v0), π(v1), π(v2).

(ii) We shall say that the sequence of four vertices (v0, v1, v2, v3) of a digraph G

forms a square if there is a cyclic permutation π of (v0, v1, v2, v3) such that the map

i 7→ π(vi), i = 0, 1, 2, 3, provides the isomorphism of the following square

1 // 3

0

OO

// 2

OO

to the subdigraph of G with the vertices π(v0), π(v1), π(v2), π(v3).

Now we introduce the edge-path groupoid of a digraph.

Definition 3.4. Two edge-paths ξ1 and ξ2 are called equivalent (and we write

ξ1 ∼ ξ2) if ξ1 can be obtained from ξ2 by a finite sequence of local transformations

of following types or their inverses (where the dots “. . .” denote the unchanged parts

of the edge-paths):

(i) . . . (v0, v1)(v1, v2) . . . 7→ . . . (v0, v2) . . . provided (v0, v1, v2) forms a triangle in G;

(ii) . . . (v0, v1)(v1, v3) . . . 7→ . . . (v0, v2)(v2, v3) . . . provided (v0, v1, v2, v3) forms

a square in G;

(iii) . . . (v0, v1)(v1, v3)(v3, v2) . . . 7→ . . . (v0, v2) . . . provided (v0, v1, v2, v3) forms

a square in G;

(iv) . . . (v0, v1)(v1, v0) . . .→ . . . (v0, v0) . . . provided v0 → v1 or v1 → v0 or v0 = v1;

(v) . . . (v0, v0)(v0, v1) . . . 7→ . . . (v0, v1) . . .

Using transformation (iv) and (v), we obtain also that

(vi) . . . (v0, v1)(v1, v1) . . . 7→ . . . (v0, v1) . . .

It follows directly from the definition that the relation ∼ has the following prop-

erties.

Proposition 3.5. The relation “∼” is an equivalence relation on the set of edge-

paths of the digraph G. It has the following properties:
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(i) If ξ1 ∼ ξ2, then t(ξ1) = t(ξ2), h(ξ1) = h(ξ2).

(ii) If ξ1 ∼ ξ
′
1, ξ2 ∼ ξ

′
2 and t(ξ2) = h(ξ1), then ξ1ξ2 ∼ ξ

′
1ξ

′
2.

(iii) Let t(ξ) = v0, h(ξ) = v1, then (v0, v0), ξ ∼ ξ ∼ ξ(v1, v1).

(iv) If ξ1 ∼ ξ2, then ξ
−1
1 ∼ ξ−1

2 .

For a path-map ϕ : In → G with vi = ϕ(i) ∈ V we have for any i = 0, . . . , n− 1

at least one of the following relations:

vi = vi+1, vi → vi+1, vi+1 → vi.

Hence, the path-map ϕ determines the following edge-path in G:

ξϕ = (ϕ(0), ϕ(0))(ϕ(0), ϕ(1)) . . . (ϕ(n− 1), ϕ(n)).

Theorem 3.6. Two path-maps ϕ : In → G and ψ : Im → G with ϕ(0) = ψ(0),

ϕ(n) = ψ(m) are C∂ -homotopic if and only if ξψ ∼ ξϕ.

P r o o f. The proof is similar to [8], Theorem 4.13, where the case of loops was

treated. �

Proposition 3.7. The following identities are true for path-maps ϕ and ψ on G:

(ξϕ)
−1 ∼ ξϕ̂, ξϕ∨ψ ∼ ξϕξψ ,

where ϕ̂ is the inverse path-map and ϕ∨ψ is the concatenation of ϕ and ψ assuming

that it is well-defined.

The proof is trivial.

Denote by [ξ] the equivalence class of the edge-path ξ under the relation “∼”. As

follows from Proposition 3.5, the following notations make sense:

t([ξ]) := t(ξ), h([ξ]) := h(ξ)

and

[ξ]−1 := [ξ−1], [ξ1] ◦ [ξ2] := [ξ1ξ2]

provided ξ1ξ2 is well-defined. The following statement follows from Lemma 3.2 and

Proposition 3.5.

Theorem 3.8. For any digraph G the vertex set of G as the set of objects and

the set of the equivalence classes of edge-paths ξ as morphisms from t(ξ) to h(ξ)

form a category E(G) that is a groupoid. The composition of two morphisms [ξ1]

and [ξ2] is given by [ξ1] ◦ [ξ2], and the inverse morphism of [ξ] is [ξ]
−1.
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The groupoid E(G) is called the fundamental groupoid of the digraph G. We

shall denote by HomE(G)(v, w) the set of morphisms from v ∈ V to w ∈ V in the

category E(G), or simply Hom(v, w) if the digraph G is clear from the context.

Let v ∈ VG be a vertex in a digraph G. Consider the edge-paths ξ in G with

t(ξ) = h(ξ) = v. These edges-paths form a group with the neutral element (v, v) and

with the product of edge-paths. Denote this group by E(G, v).

Proposition 3.9. We have an isomorphism

E(G, v) ∼= π1(G
v).

P r o o f. For any path-map ϕ : In → G with ϕ(0) = ϕ(n) = v we already define

an edge-path ξϕ with t(ξϕ) = h(ξϕ) = v. By Theorem 3.6, the map

Θ: π1(G, v)→ E(G, v),

Θ([ϕ]) = [ξϕ]

is well-defined and preserves the group operations by Proposition 3.7. The map Θ is

an epimorphism and a monomorphism as follows from Theorem 3.6. �

Let G and H be groupoids. We shall consider a functor F : G → H as a morphism

of groupoids. Thus, we obtain the category Grpd of groupoids and morphisms of

groupoids.

Proposition 3.10. The fundamental groupoid is a functor

E : D → Grpd.

P r o o f. Let f : G→ H be a digraph map. For any edge-path

ξ = (v0, v1) . . . (vn−1, vn)

of the digraph G define an edge-path f∗(ξ) of the digraph H by the rule

f∗(ξ) = (f(v0), f(v1)) . . . (f(vn−1), f(vn)).

By Definitions 2.3 and 3.1 the edge-path f∗(ξ) is well-defined. Using Definition 3.4

it is an easy exercise to check that ξ1 ∼ ξ2 implies f∗(ξ1) ∼ f∗(ξ2). Thus, we obtain

a well-defined function f♯ : E(G) → E(H) that satisfies the relations f♯(1v) = 1f(v),

v ∈ VG and f♯(ξ1 ◦ ξ2) = f♯(ξ1) ◦ f♯(ξ2). �
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Now we recall the definition of product of groupoids (see [5], Section 6.4). The

product C1 × C2 of two groupoids C1 and C2 is a groupoid with the set of objects

Ob(C1×C2) consisting of all ordered pairs (A1, A2), where A1 ∈ Ob(C1), A2 ∈ Ob(C2).

The setMor((A1, A2), (B1, B2)) consists of ordered pairs of morphisms (f1, f2), where

f1 : A1 → B1, f2 : A2 → B2 are the morphisms of the categories C1 and C2, respec-

tively. The composition of morphisms and the inverse morphism in C1×C2 are defined

in a natural way:

(g1, g2) ◦ (f1, f2) = (g1f1, g2f2), (f1, f2)
−1 = (f−1

1 , f−1
2 ).

We have the natural projection functors

π1 : C1 × C2 → C1, π2 : C1 × C2 → C2

such that for any functors f1 : B → C1, f2 : B → C2 there is a unique functor

f : B → C1 × C2 such that π1f = f1, π2f = f2.

Theorem 3.11. Let G,H be digraphs. Then the groupoid E(G⋊H) is isomorphic

to E(G) × E(H).

P r o o f. The natural projections of digraphs p : G ⋊ H → G, q : G ⋊ H → H

induce morphisms of groupoids

E(p) : E(G⋊H)→ E(G), E(q) : E(G⋊H)→ E(H),

which determines a morphism of groupoids

f : E(G ⋊H)→ E(G)× E(H).

Recall that Ob(E(G ⋊H)) = Ob(E(G) × E(H)) = VG × VH . The morphism f is the

identity map on the set of objects VG×VH , and for any morphism in E(G⋊H) that

is given by a class [ξ] of an edge-path ξ we have

f([ξ]) = ([p♯(ξ)], [q♯(ξ)]).

We prove, at first, that the map f is surjective. For an edge-path ξ1 = (v0, v1) . . .

(vn−1, vn) in G and an edge-path ξ2 = (w0, w1) . . . (wm−1, wm) in H we define an

edge-path ξ in G⋊H such that

(3.2) f([ξ]) = ([p♯(ξ)], [q♯(ξ)]) = ([ξ1], [ξ2]).
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Without loss of generality we can suppose that n > m. By Definition 3.4, we have

ξ2 ∼ ξ
′
2 := (w0, w1) . . . (wm−1, wm)(wm, wm) . . . (wm, wm)︸ ︷︷ ︸

n−m times

.

Define an edge-path ξ in G⋊H as

ξ = ((v0, w0), (v1, w1)) . . . ((vm−1, wm−1), (vm, wm)) . . . ((vn−1, wm), (vn, wm)).

By the definition of ⋊-product this is, indeed, an edge-path and condition (3.2) is

satisfied. Hence the map f is surjective.

Now we prove that the map f is injective. Let ξ1 and ξ2 be two edge-paths in

G⋊H such that

t(ξ1) = t(ξ2) = (v0, w0), h(ξ1) = h(ξ2) = (vn, wn)

and

(3.3) p♯(ξ1) ∼ p♯(ξ2), q♯(ξ1) ∼ q♯(ξ2).

Define path-maps ϕ : In → G⋊H and ψ : Im → G⋊H in such a way that ξ1 = ξϕ,

ξ2 = ξψ . Note that these path-maps do not have to be unique. From the definition

of the projections p and q and Theorem 3.6 we obtain

p♯(ξ1) = ξpϕ, p♯(ξ2) = ξpψ , q♯(ξ1) = ξqϕ, q♯(ξ2) = ξqψ

and

pϕ
C∂∼= pψ in G,(3.4)

qϕ
C∂∼= qψ in H.(3.5)

We would like to conclude from (3.4)–(3.5) that ϕ
C∂∼= ψ. Then by Theorem 3.6,

ξ1 = ξϕ ∼ ξψ = ξ2, and hence the map f in (3.2) is injective. It is sufficient to prove

ϕ
C∂∼= ψ in the following cases:

(1) in (3.4) we have a one-step direct C∂ -homotopy and in (3.5) the equality;

(2) in (3.4) we have a one-step inverse C∂-homotopy and in (3.5) the equality;

(3) in (3.4) and in (3.5) we have a one-step direct C∂-homotopy;

(4) in (3.4) and in (3.5) we have a one-step inverse C∂ -homotopy;

(5) in (3.4) we have a one-step direct C∂ -homotopy and in (3.5) a one-step inverse

C∂ -homotopy.
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From these cases the general case follows. Note that cases (1) and (2) follow

directly from cases (3) and (4). We consider only case (5). In other cases the

argument is similar and simpler.

Let (h1, F1) be a one-step direct C∂ -homotopy from pϕ to pψ that is given by

a shrinking map h1 : In → Im and the commutative diagram

(3.6)

In

pϕ

��

// Ch1

F1

��

Imoo

pψ

��
G G G.

This diagram extends to the commutative diagram

(3.7)

In
= //

��

In

��

pϕ // G

In � I−
S1 // Ch1

F1 // G

In

OO

h1 // Im

OO

pψ // G.

It follows from (3.7) that

(3.8) pϕ ≃ pψh1 in G,

which implies

(3.9) (pϕ, qψh2) ≃ (pψh1, qψh2) in G⋊H.

Let (h2, F2) be a one-step inverse C∂ -homotopy from qϕ to qψ that is given by

a shrinking map h2 : In → Im and the commutative diagram

(3.10)

In

qϕ

��

// C−
h2

F1

��

Imoo

qψ

��
H H H.

51



This diagram extends to the commutative diagram

(3.11)

In
= //

��

In

��

qϕ // H

In � I
S2 // C−

h2

F2 // H

In

OO

h2 // Im

OO

qψ // H.

It follows that

qϕ ≃ qψh2 in H

and hence,

(pϕ, qϕ) ≃ (pϕ, qψh2) in G⋊H.

Together with (3.9) this yields

(pϕ, qϕ) ≃ (pψh1, qψh2) in G⋊H.

By Proposition 2.16 we have

(pψh1, qψh2)
C∂

≃ (pψ, qψ) in G⋊H,

which implies

ϕ = (pϕ, qϕ)
C∂

≃ (pψ, qψ) = ψ in G⋊H,

which was to be proved. �

Corollary 3.12. For based digraphs G∗ and H∗ there is a natural isomorphism

π1(G
∗
⋊H∗) ∼= π1(G

∗)× π1(H
∗),

where π1(G
∗)× π1(H

∗) is the direct product of fundamental groups.

P r o o f. Follows from Proposition 3.9 and Theorem 3.11. �

Theorem 3.13. For digraphs G andH , the natural inclusion σ : G � H → G⋊H

induces an isomorphism of fundamental groupoids

E(G � H) ∼= E(G ⋊H).

In particular, for the based digraphs, this map induces an isomorphism

π1(G
∗ � H∗) ∼= π1(G

∗
⋊H∗) ∼= π1(G

∗)× π1(H
∗)

of fundamental groups.
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P r o o f. The inclusion σ induces a morphism σ♯ : E(G � H) → E(G ⋊ H) of

groupoids. We will prove that it is surjective and injective.

For any edge-path ξ in G⋊H , define an edge-path ξ� in G � H such that ξ ∼ ξ�

in G ⋊ H . To that end we transform any diagonal edge ((v1, w1), (v2, w2)) of ξ in

G⋊H to the edge path

(3.12) ((v1, w1), (v1, w2))((v1, w2), (v2, w2)),

that lies in G � H , using transformation (i) of Definition 3.4 in G⋊H . Doing that

to all diagonal edges of ξ, we obtain an edge-path ξ� as was claimed above. This

implies immediately that σ♯ is surjective, since σ♯([ξ
�]) = [ξ].

Now let us prove the following claim: if ξ, η are edge-paths in G ⋊H which are

equivalent in G ⋊ H , then ξ� ∼ η� in G � H . If this is already known, then for

any two edge-paths ξ and η in G � H such that ξ ∼ η in G ⋊H we have ξ� = ξ ,

η� = η, and hence, ξ ∼ η in G � H , which implies the injectivity of σ♯.

To prove the above claim it suffices to assume that η is obtained from ξ by one

elementary transformation in G⋊H . By Definition 3.4 any elementary transforma-

tion is done along an embedded digraph S ⊂ G ⋊H , where S is isomorphic to one

of the following digraphs: a single vertex digraph, 0 → 1, 0 ⇆ 1, the triangle, the

square. Let P be a projection of S onto G and Q be a projection of S onto H . Then

P � Q is a subgraph of G � H . By inspecting all the above cases of S, one sees that

P � Q is always contractible. By the assumption that η is obtained from ξ by one

elementary transformation, we have

ξ = γ1αγ2, η = γ1βγ2,

where γ1, γ2 are edge-paths in G⋊H , α, β are edge-paths in P ⋊Q, and t(α) = t(β),

h(α) = h(β), where α is transformed to β along S. By the definition of the operation

ξ → ξ�, we obtain

ξ� = γ�1 α
�γ�2 , η� = γ�1 β

�γ�2 ,

where

t(α�) = t(β�), h(α�) = h(β�).

By the contractibility of P � Q, the edge-paths α�, β� are equivalent in P � Q.

Hence, ξ� ∼ η� in G � H , which finishes the proof. �

The notion of homology groups Hp(G,Z) of digraphs was introduced in [10] (see

also [6], [7], [9]). The physical applications of homology (cohomology) theory of

digraphs requires development of effective methods of computing of these groups.
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Using isomorphism between the first homology group and the abelization of the

fundamental group for digraphs [8], Theorem 4.23, and applying Theorem 3.13, we

obtain the following result.

Theorem 3.14. For any two connected digraphs G,H we have

H1(G � H,Z) ∼= H1(G⋊H,Z) ∼= H1(G,Z) ⊕H1(H,Z).

4. Geometric realization and Van Kampen theorem

In this section, for any finite digraph G = (V,E) we construct a 2-dimensional

finite CW-complex K = ∆(G) (with topological space |K|) for which the set of 0-

dimensional cells coincides with the set of vertices V . We prove the functoriality

of ∆ and obtain an isomorphism

HomE(G)(v, w) ∼= HomP(|K|)(v, w), v, w ∈ V,

where HomE(G)(v, w) is the set of morphisms from v to w of the groupoid E(G) and

HomP(|K|)(v, w) is the set of morphisms from v to w of the fundamental groupoid

P(|K|) of the topological space |K| (see [13], Chapter 1, Section 7). This implies, in

particular, that for any vertex v ∈ V

π1(G, v) ∼= π1(|K|, v).

Then we obtain a Van Kampen theorem for the fundamental groupoids of digraphs

and provide several examples which illustrate this theorem.

At first we need several technical definitions and lemmas.

Definition 4.1. Let {Gi}i∈A be a family of subdigraphs of one digraph, where A

is any index set.

(i) The union G =
⋃
i∈A

Gi of digraphs Gi is a digraph G such that

VG =
⋃

i∈A

VGi
, EG =

⋃

i∈A

EGi
.

(ii) The intersection G =
⋂
i∈A

Gi is a digraph G such that

VG =
⋂

i∈A

VGi
, EG =

⋂

i∈A

EGi
.
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Now, for any finite digraph G = (V,E) we construct functorialy a 2-dimensional

cell complex K = ∆(G).

The 0-dimensional skeleton K0 of K consists of the set of vertices V . Let D1 =

[0, 1] denote the standard closed unit interval which is a closed 1-cell with the bound-

ary ∂D1 = {0, 1}.

Let P be the set of all ordered pairs (v, w), where v, w ∈ V , such that v → w; if

also w → v, then we choose in P only one of the pairs (v, w), (w, v). For any pair

(v, w) ∈ P we attach a one-dimensional cell D1 to K0, using attaching map

ϕv,w : ∂D1 → K0, ϕv,w(0) = v, ϕv,w(1) = w.

Now, we define 1-dimensional skeleton K1 of K by attaching to K0 1-dimensional

cells D1 according to the maps ϕv,w for all (v, w) ∈ P .

Let T be the set of subdigraphs of G that are isomorphic to the triangle from

Definition 3.3 (i). For any subdigraph

(4.1) τ =

v0

  ❇
❇❇

❇❇
❇❇

❇
// v1

��
v2

from T we attach to K1 a standard triangle D2 ⊂ R
2 with the vertices {a0, a1, a2}

and with boundary ∂D2 = [a0, a1] ∪ [a1, a2] ∪ [a0, a2] using attaching map

ϕτ : ∂D
2 → K1, ϕτ ([ai, aj]) = [vi, vj ].

Let S be the set of all subdigraphs of G that are isomorphic to the square. For any

subdigraph

(4.2) σ =

v0

��

// v1

��
v2 // v3

from S we attach to K1 a standard square D2 ⊂ R
2 with the vertices {a0, a1, a2, a3}

with boundary ∂D2 = [a0, a1] ∪ [a0, a2] ∪ [a1, a3] ∪ [a2, a3] using attaching map

(4.3) ϕσ : ∂D
2 → K1, ϕσ([ai, aj ]) = [vi, vj ].

Now we define ∆(G) = K = K2 as the cell complex that is obtained from K1 by

attaching all the triangles and squares as above.
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Proposition 4.2. For any digraph map f : G→ H we can define a cellular map

∆f : ∆(G)→ ∆(H)

which coincides with f on the set of 0-dimensional cells (that is, with VG) in such

a way that we obtain a functor ∆ from the category of digraphs D to the category

of CW-complexes (with cellular maps).

P r o o f. By the definition of a digraph map, f can map triangles to triangles or

edges or vertices, and squares to squares or triangles, or edges, or vertices. Now, it

follows that the map ∆f , that is firstly defined on vertices as f , extends uniquely to

a cellular map ∆(G)→ ∆(H). �

For a digraph G = (V,E) let P(|K|) denote the fundamental groupoid of the topo-

logical space |K|, where K = ∆(G). The class of the path ϕ : [0, 1]→ |K| in P(|K|)

will be denoted by [ϕ]. For the points v, w ∈ |K| we denote by HomP(|K|)(v, w)

the set of morphisms from v to w in P(|K|). Any vertex v ∈ V determines a 0-

dimensional cell in K and a point in |K|, which we continue denoting by v.

Let Jn be the CW-complex that is the subdivision of the closed unit interval

[0, 1] in n equal parts (1-cells) by 0-cells i0 = 0, . . . , in = 1. For any edge-path

ξ = (v0, v1) . . . (vn−1, vn) in the digraph G define a cellular map ϕξ : Jn → K by

ϕξ(ik) = vk on the set of 0-cells, and

ϕξ[ik, ik+1] = [vk, vk+1]

on the 1-cells. This map defines a path in |K| by

|ϕξ| : [0, 1]→ |K|, |ϕξ|(0) = v0 = t(ξ), |ϕξ|(1) = vn = h(ξ).

Lemma 4.3.

(i) Let ξ1 ∼ ξ2 be edge-paths in a digraph G. Then the maps |ϕξ1 | and |ϕξ2 | are

homotopic relative to the boundary.

(ii) If h(ξ1) = t(ξ2), then |ϕξ1ξ2 | is homotopic to the path |ϕξ1 | ∗ |ϕξ2 | relative to

the boundary.

P r o o f. Follows from Definition 3.4 and the construction of ∆(G) (this result is

a cellular analogue of the simplicial case, see [13], Chapter 3, Sections 6, 9–11). �

It follows from Lemma 4.3 that for any two vertices v, w ∈ V the map

(4.4) ̺ : HomE(G)(v, w)→ HomP(K)(v, w), ̺([ξ]) = [|ϕξ|]

is well-defined.

Proposition 4.4. For any two vertices v, w ∈ V the map ̺ in (4.4) is a bijection.
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P r o o f. This is a cellular version of the simplicial theorem (see [13], Chapter 3,

Section 6, Theorem 16). The proof is standard, using cellular approximation theorem

(see [11], Chapter 4.1, Theorem 4.8). �

Corollary 4.5. For any digraph G = (V,E) and v ∈ V we have isomorphisms

π1(G, v) ∼= E(G, v) ∼= π1(|∆(G)|, v).

Now we recall several notions from the category theory (see, for example, [5],

Chapter 6.6). Let C be a category. A commutative square C

(4.5)

C0

i2

��

i1 // C1

u1

��
C2

u2 // C

in the category C is called a pushout if for any commutative diagram

C0

i2

��

i1 // C1

u′

1

��
C2

u′

2 // C′

in the category C there is a unique morphism c : C → C′ such that cui = u′i, i = 1, 2.

Now let X be a CW-complex with CW-subcomplexes X1, X2 such that X =

X1 ∪X2, and set X0 = X1 ∩X2. Then we obtain a pushout X of natural inclusions

(4.6)

|X0|

i2

��

i1 // |X1|

u1

��
|X2|

u2 // |X |

in the category of topological spaces (see [5], Chapters 4 and 6).

Let A ⊂ X be a subset of a topological space X . Then we can define a full

subgroupoid PA(X) of the fundamental groupoid P(X) in the following way [5],

Chapter 6.3. The elements of PA(X) are all classes of homotopy paths relative to the

boundary in the space X , joining points of A. Thus, for example, P∗(X) = π1(X, ∗),

where ∗ is a base point. Any inclusion of topological spaces j : Y → X induces

a morphism of groupoids j∗ : PA(Y ) → PA(X). A set A is called representative

in X if A meets each path-component of the space X . We need the following result.
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Theorem 4.6 (Van Kampen theorem [5], Chapter 6.7.2). Let X be a path-

connected space and let X be pushout (4.6). If the set A ⊂ X is representative

in X0, X1, X2, then the square

(4.7)

PA(X0)

i2∗

��

i1∗ // PA(X1)

u1∗

��
PA(X2)

u2∗ // PA(X)

is a pushout square in the category of groupoids.

Definition 4.7. We shall call any of the following subdigraphs a cell of a di-

graph G:

(i) any subdigraph that consists of two adjacent vertices of G with all arrows

between them;

(ii) any subdigraph that is a triangle;

(iii) any subdigraph that is a square (see Definition 3.3).

Theorem 4.8 (Van Kampen theorem for digraphs). Let a connected digraph G

be a union of two subdigraphs G = G1 ∪G2 such that any cell of the digraph G lies

at least in one of the subdigraphs Gi, i = 1, 2, and let G0 = G1 ∩ G2. Then the

square

(4.8)

E(G0)

��

// E(G1)

��
E(G2) // E(G),

in which all morphisms are induced by natural inclusions, is a pushout in the category

of groupoids.

P r o o f. The inclusions of digraphs induce the inclusion of topological spaces of

their CW-complexes

(4.9)

|∆(G0)|

��

// |∆(G1)|

��
|∆(G2)| // |∆(G)|.

Now the result follows from Theorem 4.6 and Proposition 4.4 since the set of ver-

tices V is representative in |∆(G0)|, |∆(G1)|, and |∆(G2)|. �
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Corollary 4.9. Let G∗ be a based connected digraph with connected based sub-

digraphs G∗
i , i = 1, 2, such that G = G1∪G2 and G0 = G1∩G2 is connected. Under

the assumptions of Theorem 4.8,

(4.10) π1(G
∗) = π1(G

∗
1) ∗ π1(G

∗
2)/N,

where N is the normal subgroup of the free product generated by all the elements

of the form [x] ∗ [x]−1, where x is a based loop in G0.

In the following examples we show that the conditions of Theorem 4.8 cannot be

relaxed.

Example 4.10. (i) Consider the following based digraph G∗

(4.11)

1

��

// 2

����
��
��
�

��

∗

__❄❄❄❄❄❄❄

����
��
��
�

3 // 4

__❄❄❄❄❄❄❄

and let G1 be the subdigraph that is obtained from G by removing vertex 4 with

adjacent arrows, and G2 is obtained similarly removing vertex 1. Clearly, G =

G1 ∪G2 and the intersection G0 = G1 ∩G2 is the following line digraph

2→ ∗ → 3.

There are deformation retractions of G∗
1, G

∗
2, and G

∗ to the following cyclic sub-

digraphs, respectively,

1 // 2

����
��
��
�

∗

__❄❄❄❄❄❄❄

∗ ∗

����
��
��
�

3 // 4

__❄❄❄❄❄❄❄
and

1 // 2

����
��
��
�

∗

__❄❄❄❄❄❄❄

(see [8], Example 3.14). Hence, by [8],

(4.12) π1(G
∗
1)
∼= π1(G

∗
2)
∼= π1(G

∗) ∼= Z, π1(G
∗
0) = {e},

which implies that (4.10) is not satisfied. In this case Corollary 4.9 does not apply

since the cell given by the square {1, 2, 3, 4} lies neither in G1 nor in G2.
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(ii) For the based digraph G∗

3 //

��

2

��
1

// ∗

^^❃❃❃❃❃❃❃❃
oo

there is a deformation retraction of G∗ onto (∗ ⇄ 1). Hence by [8], π1(G
∗) = {e}.

The digraph G is the union of two digraphs

(4.13) G1 =

3 //

��

2

��
1 // ∗oo

and G2 =

3 // 2

��
∗

__❄❄❄❄❄❄❄
.

Then G0 = G1 ∩G2 = (3→ 2→ ∗) and

π1(G
∗) = π1(G

∗
1) = π1(G

∗) = {e}, π1(G
∗
2)
∼= Z,

so (4.10) fails. In this case the cell

3

��
1 ∗oo

^^❃❃❃❃❃❃❃❃

does not lie in G1 or in G2 and Corollary 4.9 is not applicable.

(iii) Consider a digraph G∗

(4.14)

1

��❅
❅❅

❅❅
❅❅

❅

��
2

@@�������
// ∗

OO

3 .oo

There is an evident deformation retraction of G∗ onto (∗ ⇄ 1), hence π1(G
∗) = 0.

We can present G∗ as the union of two digraphs:

(4.15) G1 =

1

��
2

@@�������
// ∗

and G2 =

1

��❅
❅❅

❅❅
❅❅

❅

2

@@�������
// ∗

OO

3 .oo

Then G0 = G1 ∩G2 = (1← 2→ ∗) and

π1(G
∗) = π1(G

∗
1) = π1(G

∗
0) = {e}, π1(G

∗
2) = Z.

In this case the cell (∗⇄ 1) does not lie in G1 or in G2, Corollary 4.9 is not applicable,

and (4.10) fails.
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5. Fundamental groupoids of graphs

The deep connection between Atkin homotopy theory and a homotopy theory for

graphs was exhibited in [3] and [4]. In particular, the new notion of the fundamental

group for undirected graphs was introduced there. In [8] the notion of the funda-

mental group for digraphs was introduced, and it was transferred to the category of

graphs, using isomorphism between the category of graphs and the full subcategory

of symmetric digraphs. The so obtained fundamental group is isomorphic to the

fundamental group from [3].

In this section we transfer the results about fundamental groupoids of digraphs to

that of undirected graphs, similarly to [8].

We recall shortly the notation from [8], Section 6, that we shall use in this section

with minimal changes. To denote graphs and the graph maps we shall use bold font,

for example, G = (VG,EG), f : G→ H.

Definition 5.1. A graph G = (VG,EG) is a pair of a set VG of vertices and

a subset EG ⊂ {VG × VG \ diag} of non-ordered pairs of vertices that are called

edges. We shall write v ∼ w for (v, w) ∈ EG.

A graph map from a graph G = (VG,EG) to a graph H = (VH,EH) is a map

f : VG → VH

such that for any edge v ∼ w on G we have either f(v) = f(w) or f(v) ∼ f(w).

As usually, a based graph G
∗ is the graph G with a fixed vertex ∗ and a based

graph map preserves base vertexes.

The set of all graphs with graph maps forms a category G. Let us associate to

each graph G = (VG,EG) a symmetric digraph O(G) = G = (VG, EG), where

VG = VG and EG is defined by the condition v → w ⇔ v ∼ w. Thus, we obtain

a functor O that provides an isomorphism of the category G and the full subcategory

of symmetric digraphs of the category D.

The functor O allows us to transfer the notions and results obtained in category D

to category G. In particular, we obtain in this way the definition of the fundamental

groupoid of a graph as below.

Definition 5.2. (i) A formal edge of a graph G = (V,E) is an ordered pair

(v, w) of vertices such that v ∼ w or v = w.

(ii) An edge-path ξ of a graph G is a finite nonempty sequence

(5.1) (v0v1)(v1, v2) . . . (vn−1, vn)

61



of formal edges of the graph G. The vertex v0 is called the tail of the edge-path ξ

and vn the head of the edge-path ξ. We write v0 = t(ξ), vn = h(ξ).

(iii) A closed edge-path at the vertex v0 ∈ V is an edge-path ξ such that t(ξ) =

h(ξ) = v0.

(iv) For two edge-paths ξ1 and ξ2 with h(ξ1) = t(ξ2) we define a product edge-path

ξ1ξ2 consisting of the sequence of formal edges ξ1 followed by the formal edges of ξ2.

(v) For any edge-path ξ from (5.1) define the inverse edge-path ξ−1 as

ξ−1 := (vn, vn−1)(vn−1, vn−2) . . . (v1, v0).

It follows directly from Definition 5.2 that the edge-paths of a graph G satisfy the

following properties:

⊲ t(ξ1ξ2) = t(ξ1), h(ξ1ξ2) = h(ξ2),

⊲ t(ξ) = h(ξ−1), h(ξ) = t(ξ−1),

⊲ (ξ1ξ2)ξ3 = ξ1(ξ2ξ3),

⊲ (ξ−1)−1 = ξ,

where we suppose that all products are defined.

Define an edge-path groupoid of a graph similarly as in Section 3.

Definition 5.3. Two edge-paths ξ1 and ξ2 in G = (V,E) are called equivalent

(and we write ξ1 ∼ ξ2) if ξ1 can be obtained from ξ2 by a finite sequence of the

following local transformations or their inverses (where the dots “. . .” denote the

unchanged parts of the edge-paths):

(i) . . . (v0, v1)(v1, v2) . . . 7→ . . . (v0, v2) . . ., where v0 ∼ v2 or v0 = v2;

(ii) . . . (v0, v1)(v1, v2) . . . 7→ . . . (v0, v3)(v3, v2) . . ., where the vertices v0, v1, v2, v3

are different and v0 ∼ v3 and v3 ∼ v2;

(iii) . . . (v0, v1)(v1, v2)(v2, v3) . . . 7→ . . . (v0, v3) . . ., where the vertices v0, v1, v2, v3

are different and v0 ∼ v3.

Note that the list of local transformations in Definition 5.3 follows from Defini-

tion 3.4 using inverse functor O−1 on the subcategory of symmetric digraphs, which

allows to simplify this list.

The relation “∼” on the set of edge paths of a graph G is an equivalence relation.

We shall denote by [ξ] the equivalence class of the edge-path ξ. For equivalence

classes the following notations and operations are well-defined:

t([ξ]):=t(ξ), h([ξ]):=h(ξ), for t(ξ1) = h(ξ1) [ξ1] ◦ [ξ2]:=[ξ1ξ2], [ξ]−1 = [ξ−1].

Theorem 5.4. For any graph G the vertex set of G as the set of objects and the

set of the equivalence classes of edge-paths ξ as morphisms from t(ξ) to h(ξ), form

a category E(G) that is a groupoid. The composition of two morphisms [ξ1] and [ξ2]

is given by [ξ1] ◦ [ξ2], and the inverse morphism of [ξ] is [ξ]
−1.
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The groupoid E(G) is called the fundamental groupoid of the graph G.

We denote by HomE(G)(v, w) the set of morphisms from v ∈ V to w ∈ V in the

category E(G), or simply Hom(v, w) if the graph G is clear from the context.

Let v ∈ V be a vertex in a graph G. Consider the set of equivalence classes [ξ]

of edge-paths ξ of G such that t(ξ) = h(ξ) = v. This set is a group with the

neutral element [(v, v)] and with the groupoid product of E(G). Denote this group

by E(G, v). Note that the fundamental group π1(G
∗) of a based graph G

∗ was

introduced in [3], and [4], Proposition 5.6. It follows from [8] that

E(G, v) ∼= π1(G
v).

Definition 5.5. Let G = (VG,EG) and H = (VH,EH) be two graphs.

(i) Define the Cartesian product Π = G � H as a graph with the set of vertices

VΠ = VG ×VH and with the set of edges EΠ such that (x, y) ∼ (x′, y′) if and only

if

either x′ = x and y ∼ y′, or x ∼ x′ and y = y′.

(ii) Define a ⋊-product P = G ⋊ H as a graph with the set of vertices VP =

VG ×VH and there is an edge

(x, y) ∼ (x′, y′) for x, x′ ∈ VG; y, y′ ∈ VH

if one of the following conditions is satisfied:

x′ = x, y ∼ y′; or y′ = y, x ∼ x′; or x ∼ x′, y ∼ y′.

Theorem 5.6. We have an isomorphism of groupoids

E(G � H) ∼= E(G⋊H) ∼= E(G) × E(H).

In particular, for based graphs we have an isomorphism of fundamental groups

π1(G
∗
� H

∗) ∼= π1(G
∗
⋊H

∗) ∼= π1(G
∗)× π1(H

∗).

This property of fundamental groups of graphs is new. We think that the direct

proof of this result, using the definition of π1 from [3] and [4], can be very nontrivial.

Now we state the Van Kampen theorem for the fundamental groupoids of graphs.

For the fundamental group of graph it was proved in [4].

The union and intersection of subgraphs is defined in the same way as those for

digraphs in Definition 4.1.
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Definition 5.7. We shall call any of the following subgraphs a cell of a graphG:

(i) a full subgraph consisting of three vertices (triangle);

(ii) a subgraph consisting of four vertices whose edges form a square.

Theorem 5.8 (Van Kampen theorem for graphs). Let G = G1 ∪G2 be a con-

nected graph such that any cell of G lies in one of the subgraphs G1,G2. Set

G0 = G1 ∩G2. Then the square

(5.2)

E(G0) //

��

E(G1)

��
E(G2) // E(G),

in which all morphisms are induced by natural inclusions, is a pushout in the category

of groupoids.

Corollary 5.9 ([4]). Let G∗ be a based connected graph with connected based

subdigraphs G∗
i , i = 1, 2, such that G = G1 ∪G2 and G0 = G1 ∩G2 is connected.

Under the assumptions of Theorem 5.8 we have

π1(G
∗) = π1(G

∗
1) ∗ π1(G

∗
2)/N,

where N is the normal subgroup of the free product generated by all the elements

of the form [x] ∗ [x]−1, where x is a based loop in G0.

6. An application to coloring

Now we formulate and prove a natural generalization of the classical Sperner

lemma, using the results of Section 3.

Let G = (V,E) be a planar (nondirected) finite connected graph which provides

a simplicial triangulation of a simply-connected closed domain D ⊂ R
2. Let H be

the subdigraph of G that lies on the boundary ∂D. Let any vertex of G be colored

by one of three colors, say {0, 1, 2}. Define a digraph G = (V,E) by putting V = V

and defining the set E of arrows according to the colors of vertices as follows:

0→ 1, 1→ 2, 2→ 0, 0 ⇆ 0, 1 ⇆ 1, 2 ⇆ 2.

In particular, we obtain a subdigraph H = (VH , EH) of G that lies on ∂D. Let us fix

a vertex ∗ ∈ VH and set n = |VH |. Going along ∂D clockwise, starting and ending

at ∗, we obtain a loop ϕ : I∗n → H∗ ⊂ G∗.
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Theorem 6.1.

(i) If [ϕ] 6= [e] in π1(G
∗), then there is at least one 3-color triangle in the triangu-

lation of D.

(ii) If rankπ1(G
∗) = r, then there are at least r 3-color triangles in the triangulation

of D.

P r o o f. Follows from the description of local transformations in Section 3 and

the method of [8], Theorem 4.20. �

Corollary 6.2. The number of 3-color triangles in the triangulation of D is at

least rankH1(G,Z).
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